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Abstract—In this paper, we investigate the enforcement of
opacity via supervisory control in the context of discrete-event
systems. A system is said to be opaque if the intruder, which
is modeled as a passive observer, can never infer confidently
that the system is at a secret state. The design objective is
to synthesize a supervisor such that the closed-loop system is
opaque even when the control policy is publicly known. In this
paper, we propose a new approach for enforcing opacity using
non-deterministic supervisors. A non-deterministic supervisor is
a decision mechanism that provides a set of control decisions
at each instant, and randomly picks a specific control decision
from the decision set to actually control the plant. Compared
with the standard deterministic control mechanism, such a
non-deterministic control mechanism can enhance the plausible
deniability of the controlled system as the online control decision
is a random realization and cannot be implicitly inferred from
the control policy. We provide a sound and complete algorithm
for synthesizing a non-deterministic opacity-enforcing supervisor.
Furthermore, we show that non-deterministic supervisors are
strictly more powerful than deterministic supervisors in the
sense that there may exist a non-deterministic opacity-enforcing
supervisor even when deterministic supervisors cannot enforce
opacity.

Index Terms—Opacity, Supervisory Control, Discrete Event
Systems.

I. INTRODUCTION

INFORMATION security and privacy have become increas-
ingly important issues in the analysis and design of modern

engineering systems due to potential malicious attacks and
information leakages in networks. In this paper, we investigate
an important information-flow security property called opacity
in the context of Discrete-Event Systems (DES). In this frame-
work, a dynamic system is modeled as a DES and an intruder
is modeled as a passive observer that monitors the behavior of
the dynamic system via observable events. Essentially, opacity
is a confidential property capturing whether or not the system
can always deny of the possibility of executing of a secret
behavior even when it may be true, i.e., it holds the plausible
deniability for secret behaviors. Therefore, a system is said to
be opaque with respect to a set of secret states if the intruder
can never know for sure that the system is visiting a secret
state.
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Due to the increasing demands for security certification
in safety-critical systems, the notion of opacity has drawn
considerable attention in the past years in the literature; see,
e.g., [2], [5], [31]. In particular, in the context of DES,
different notions of opacity have been studied, including, e.g.,
current-state opacity [26], initial-state opacity [39], K-step and
infinite-step opacity [51]. The verification of opacity has also
been studied for different DES models including Petri nets
[25], [37], [43], stochastic DES [8], [21], [47], [52], real-time
systems [45] and networked DES [27], [49]. More recently,
the notion of opacity has been extended to linear/nonlinear
systems with infinite-states and continuous dynamics [1], [36],
[53]. The reader is referred to the comprehensive surveys [19],
[24] and the textbook [15] for recent advances on this active
research area.

Given an open-loop system that is verified to be non-
opaque, one important problem is to enforce opacity via
some enforcement mechanisms. This is also referred to as
the synthesis problem, which is a very active research topic
in the literature and many different enforcement mechanisms
have been proposed. For example, [4], [7], [54] consider the
enforcement of opacity via dynamic masks that change the
output information dynamically. The idea of changing the
output information has also been leveraged by using insertion
functions [20], [22], [28], [46] and event shuffles [3]. In
addition, event delays is also used to enforce opacity in [12].

One of the most widely investigated opacity enforcement
mechanism is via the supervisory control theory [16], [38],
[50]. In this framework, a supervisor is used to restrict the
behavior of the system such that the closed-loop system is
opaque [9], [38], [57]. For example, in [42] a formula for
controllable and opaque sublanguage is provided. In [10],
the authors solve the opacity control problem by assuming
that all controllable events are observable and the observa-
tion of the intruder is included in the observation of the
supervisor. In [50], a uniform approach is provided to solve
the opacity-enforcing control problem without the assumption
that controllable events are observable; however, it assumes
that the observations of the supervisor and the intruder are
equivalent. Recently in [44], the authors provide an algorithm
for synthesizing an opacity enforcing supervisor without any
assumption on event sets. However, it needs to assume that
the control policy is not publicly known, which reduces the
problem to the computation for a maximal controllable and
observable sublanguage of the supremal opaque sublanguage.

Note that all existing works on opacity-enforcing supervi-
sory control considers deterministic supervisors, which issue
a specific control decision at each instant. However, such a
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deterministic decision mechanism may decrease the plausible
deniability of the system. This is because, by knowing the
control policy and by observing the occurrences of observable
events, the intruder can recover the control decision made by
the supervisor and, therefore, obtain a better state-estimate of
the system.

In this paper, we propose to use non-deterministic su-
pervisors, for the first time, to enforce opacity. Unlike a
deterministic supervisor that issues a specific control decision
at each instant, a non-deterministic supervisor provides a set
of control decisions at each instant and the specific control
decision applied is chosen randomly via a “coin toss” manner.
In other words, even if the intruder knows the control policy,
it still does not know the specific control decision applied
as it is decided randomly on-the-fly. Compared with the
deterministic control mechanism, the non-deterministic control
mechanism can significantly enhance the plausible deniability
of the system, and, therefore, is more likely to enforce opacity.

The main contribution of this paper is that we provide
an algorithmic correct-by-construction procedure for synthe-
sizing a non-deterministic supervisor that enforces opacity.
This problem is fundamentally more challenging than the
deterministic case as the observation of the supervisor and the
intruder are incomparable. Specifically, although the specific
control decision applied is unknown a priori, the supervi-
sor will know this online choice after it is chosen. This
information, however, is not available to the intruder. Hence,
the supervisor’s knowledge is strictly more than that of the
intruder. In the standard opacity-enforcing control problem, it
is sufficient to know the state-estimate of the system, which
is not sufficient in our setting due to the issue of incompa-
rable information. To address this issue, we propose a new
information-state that not only contains the state-estimate from
the supervisor’s point of view, but also contains the estimate
of the supervisor’s estimate from the intruder’s point of view.
In other words, the control decision should be made not only
based on what the supervisor thinks about the plant, but also
based on what the intruder thinks about the supervisor. Based
on the proposed new information-state, we provide a sound
and complete approach that synthesizes a non-deterministic
supervisor enforcing opacity. In particular, we show that using
non-deterministic supervisors is strictly more powerful than
using deterministic supervisors, in the sense that, there may
exist a non-deterministic opacity-enforcing supervisor even
when deterministic supervisors cannot enforce opacity.

We note that the notion of non-deterministic supervisors
was originally proposed in [18] to solve the standard su-
pervisory control problem for safety and non-blockingness
under partial observation. This approach was extended by
[23]. Non-deterministic control mechanism has also been
used for (bi)similarity enforcing supervisory control problems
with non-deterministic models and specifications [11], [13],
[40], [41], [56]. However, to the best of our knowledge,
non-deterministic supervisors have never been applied to the
opacity-enforcement problem. More importantly, the essence
of why we use non-deterministic supervisors here is to enhance
the plausible deniability of the system, which is fundamentally
different from the essence of the existing works.

The rest of this paper is organized as follows. In Section II,
we introduce some necessary preliminaries. In Section III, we
first provide a motivating example to illustrate the advantage
of non-deterministic supervisors. Then we formally present the
non-deterministic control mechanism and formulate the corre-
sponding opacity enforcement control problem. In Section IV,
we propose a new type of information state (IS) that captures
both the knowledge of the supervisor and the knowledge of
the intruder and analyze the underlying information-flow. Then
we restrict our attention to the class of information-state-
based supervisors and discuss how an IS-based supervisor
can be encoded as or be decoded from an IS-mapping. In
Section V, we propose an algorithm to synthesize an IS-
based non-deterministic opacity-enforcing supervisor based on
the structure of the generalized bipartite transition system. In
Section VI, we prove the correctness of the synthesis proce-
dure proposed in Section V by showing that restricting our
attention to IS-based supervisors is without loss of generality.
Finally, we conclude the paper in Section VII. Preliminary
and partial versions of some of the results in this paper are
presented in [48]. First, all definitions, notations and theorems
in [48] have been reformulated in a more uniform manner.
More importantly, the result in [48] is only sound as it restricts
the solution space to a finite space a priori. In this work, we
show that restricting to IS-based supervisor is without loss
of generality using new techniques developed based on IS-
mappings. This new result establishes both the soundness and
the completeness of the synthesis algorithm, i.e., the non-
deterministic synthesis problem is completely solved.

II. PRELIMINARIES

A. System Model

Let Σ be a finite set of events. A string over Σ is a finite
sequence s = σ1 · · ·σn, σi ∈ Σ. We denote by Σ∗ the set
of all strings over Σ including the empty string ε. A language
L ⊆ Σ∗ is a set of strings. For two languages L1 and L2, their
concatenation is L1L2 = {s1s2 ∈ Σ∗ : s1 ∈ L1, s2 ∈ L2}.
The prefix-closure of language L is defined by L = {v ∈ Σ∗ :
∃u ∈ Σ∗ s.t. vu ∈ L}.

We assume basic knowledge of DES and use common
notations; see, e.g., [6]. A DES is modeled as a deterministic
finite-state automaton

G = (X,Σ, δ, x0),

where X is the finite set of states, Σ is the finite set of events,
δ : X × Σ → X is the partial transition function, where
δ(x, σ) = y means that there is a transition labeled by event
σ from state x to y, and x0 ∈ X is the initial state. The
transition function can also be extended to δ : X × Σ∗ → X
in the usual manner [6]. For simplicity, we write δ(x, s) as
δ(s) when x = x0. The language generated by G is defined
by L(G) := {s ∈ Σ∗ : δ(x0, s)!}, where ! means “is defined”.

When the system is partially observed, Σ is partitioned
into two disjoint sets: Σ = Σo∪̇Σuo, where Σo is the set of
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observable events and Σuo is the set of unobservable events.
The natural projection P : Σ∗ → Σ∗o is defined by

P (ε) = ε and P (sσ) =

{
P (s)σ if σ ∈ Σo

P (s) if σ ∈ Σuo

The natural projection is also extended to P : 2Σ∗ → 2Σ∗o by
P (L) = {P (s) : s ∈ L}.

B. Deterministic Supervisory Control

In the framework of supervisory control, a supervisor dy-
namically enables/disables controllable events based on its
observation. Formally, we assume that the events set is further
partitioned as Σ = Σc∪̇Σuc, where Σc is the set of controllable
events and Σuc is the set of uncontrollable events. A control
decision γ ∈ 2Σ is a set of events such that Σuc ⊆ γ,
i.e., uncontrollable events can never be disabled. We define
Γ = {γ ∈ 2Σ : Σuc ⊆ γ} as the set of control decisions
or control patterns. A deterministic supervisor is a function
S : P (L(G))→ Γ. The language generated by the controlled
system, denoted by L(S/G), is defined recursively by
• ε ∈ L(S/G); and
• For any s ∈ Σ∗, σ ∈ Σ, we have sσ ∈ L(S/G) iff
sσ ∈ L(G), s ∈ L(S/G) and σ ∈ S(P (s)).

C. Opacity

We assume that system G has a “secret”, which is modeled
as a set of secret states XS ⊆ X . Furthermore, we consider a
passive intruder having the following capabilities:
A1 The intruder knows the system model;
A2 The intruder can observe the occurrences of observable

events.
Such an intruder is essentially an outside observer or an
“eavesdropper”. We say that system G is opaque w.r.t. XS

and Σo if

(∀s∈L(G) : δ(s)∈XS)(∃t∈L(G) : δ(t) /∈XS)[P (s) = P (t)].

That is, the intruder cannot infer for sure that the system is in
a secret state based on the information flow.

When the original system is not opaque, one approach is to
design a supervisor S such that the closed-loop system S/G
is opaque; this is referred to as the opacity-enforcing control
problem. In this setting, however, the implementation of such
a supervisor may become a public information. To capture this
severe scenario, we assume:
A3 The intruder knows the functionality of the supervisor,

i.e., the control policy.
Note that, under the setting of deterministic supervisors, this
knowledge together with the assumption that the intruder
and the observer both observe Σo imply that the intruder
knows precisely the control decision applied at each instant.
Therefore, to define opacity of the controlled system, we
should only consider strings in L(S/G) rather than all strings
in L(G). Formally, we say that a deterministic supervisor
S : P (L(G)) → Γ enforces opacity on G, or the closed-
loop system S/G is opaque, if for any string s ∈ L(S/G)
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Fig. 1. System G with Σc = {c1, c2}, Σo = {o1, o2, o3} and XS =
{0, 4, 10}.

such that δ(s) ∈ XS , there exists a string t ∈ L(S/G) such
that δ(t) /∈ XS and P (s) = P (t).

Finally, we introduce some operators that will be used in this
paper. Given a set of states m ∈ 2X , we denote by URγ(m)
the unobservable reach of m under control decision γ ∈ Γ,
i.e.,

URγ(m) = {δ(x,w) ∈ X : x ∈ m,w ∈ (Σuo ∩ γ)∗}. (1)

We also denote by NXσ(m) the observable reach of m upon
the occurrence of an observable event σ ∈ Σo, i.e.,

NXσ(m) = {δ(x, σ) ∈ X : x ∈ m}. (2)

III. ENFORCING OPACITY USING NON-DETERMINISTIC
SUPERVISORS

In this section, we propose to use non-deterministic su-
pervisors to enforce opacity. First, we illustrate the advan-
tage of using non-deterministic supervisors by a motivating
example. Then we formally define the functionality of the
non-deterministic supervisor and opacity of non-deterministic
control systems. We formulate the corresponding opacity-
enforcing supervisory control problem that we want to solve
in this paper.

A. Motivating Example

Example 1. Let us consider system G shown in Fig. 1
with Σo = Σuc = {o1, o2, o3} and XS = {0, 4, 10}.
String c2o1c2o1 leads to secret state 10 and its observation
is P (c2o1c2o1) = o1o1. By observing o1o1, the intruder
cannot infer for sure that the system is in state 10 since
P (c2o1c1o1) = o1o1 and δ(c2o1c1o1) = 9 6∈ XS . However,
by observing o3, the intruder knows for sure that the system
is at secret state 4 since for any string s such that P (s) = o3,
we have δ(s) = 4 ∈ XS . Therefore, the system is not opaque
and we need to synthesize a supervisor to protect the system
from revealing secret 4.

For this system, however, we cannot even synthesize a
deterministic supervisor to enforce opacity. To see this clearly,
let us evaluate what the supervisor can do initially. We have
Γ = {∅, {c1}, {c2}, {c1, c2}}.1 Clearly, the supervisor cannot
choose ∅ as the initial control decision; otherwise secret state
0 will be the only reachable state. Also, the supervisor cannot

1For the sake of simplicity, uncontrollable events are omitted in each control
decision, i.e., ∅ standards for {o1, o2, o3} in this example.
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make {c1} initially. This is because, under this control decision
and by observing event o1, the intruder knows for sure that the
system is at state 4 which is reached via 0

c1−→ 1
o1−→ 4. Note

that transitions 0
c2−→ 3

o1−→ 5 cannot provide the plausible
deniability since c2 is disabled initially. For the same reason,
making {c2} initially will also reveal the secret. Finally,
decision {c1, c2} is also problematic initially as it makes state
2 reachable from which transition 2

o3−→ 4 will also reveal the
secret. Therefore, we cannot enforce opacity for this system
using a deterministic supervisor.

However, one can enforce opacity using the following
control mechanism. Initially, the supervisor randomly chooses
to either enable c1 or enable c2, but not enable both simul-
taneously. In other words, the control policy initially is a set
{{c1}, {c2}} and the specific choice is made randomly on-the-
fly. Therefore, upon the occurrence of o1 or o2, the intruder
does not know whether this event is from state 1 or from state 3
since it does not know whether or not the initial online control
decision is {c1} or {c2} by just knowing the control policy
{{c1}, {c2}}. On the other hand, since c1 and c2 will not be
enabled simultaneously, state 2 is not reachable; hence, event
o3, which reveals the secret, will also not occur. Then after
observing o1 or o2, the supervisor can make decision {c1, c2}
deterministically, which prevents the system from revealing
secret state 10.

The above example shows that using a non-deterministic
control mechanism is more powerful than the deterministic one
for the purpose of enforcing opacity. This result is intuitive
as opacity is essentially a confidential property. Using a
non-deterministic decision framework will, on the one hand,
enhance the plausible deniability of the secret behavior of the
system, and, on the other hand, decrease the confidentiality
of the intruder’s knowledge about the system. Hence, the
system is more likely to be opaque under the non-deterministic
mechanism.

B. Non-deterministic Supervisor
Now, we formally define the non-deterministic supervisor

and the corresponding opacity enforcement problem.
Compared with a deterministic supervisor that issues a spe-

cific control decision at each instant, a non-deterministic super-
visor works as follows. At each instant, the non-deterministic
supervisor provides a set of possible control decisions. Then
it non-deterministically picks a specific control decision from
this set in a “coin-toss” manner and keeps this specific control
decision until a new observable event occurs. In other words,
the control policy only determines a set of allowed decisions,
but the specific control decision chosen is unknown a pri-
ori, which is a random realization under the control policy.
Therefore, the supervisor makes decision not only based on
observable events, but also depends on the specific control
decisions chosen along the trajectory.

To define the “history” of the supervisor, we introduce the
notion of the extended string which is an alternating sequence
of control decisions and events either ending up with a control
decision in the form of

ρ = γ0σ1γ1 · · ·σnγn ∈ Γ(ΣΓ)∗ (3)

or ending up with an event in the form of

ρ = γ0σ1γ1 · · ·σn ∈ (ΓΣ)∗ (4)

Then the set of all extended strings is Γ(ΣΓ)∗ ∪ (ΓΣ)∗ =
(ΓΣ)∗(Γ∪{ε}). For any extended string ρ ∈ (ΓΣ)∗(Γ∪{ε}),
we denote by ρ|Σ the projection to Σ∗, i.e., ρ|Σ = σ1 . . . σn.

Since some events are unobservable for the supervisor and
the supervisor cannot update its decision upon the occurrence
of an unobservable event, similar to the natural projection, we
define a new projection mapping

O : (ΓΣ)∗(Γ ∪ {ε})→ (ΓΣo)
∗(Γ ∪ {ε}) (5)

such that, for any extended string, projection O erases each
unobservable event together with its successor control decision
(if there exists one). Formally, for extended string ρ in the form
of Equation (3), let 1 ≤ i1 < i2 < · · · < ik ≤ n be all indices
such that σij ∈ Σo. Then we have

O(ρ) = γ0(σi1γi1)(σi2γi2) · · · (σikγik) (6)

and for extended string ρ in the form of Equation (4), we have

O(ρ) = γ0(σi1γi1)(σi2γi2) · · · (σik−1
γik−1

)σik . (7)

From the supervisor’s point of view, each decision is made
immediately (by first providing a set of decisions and then
picking one from the set) after observing an observable event.
Therefore, the supervisor should make decision based on alter-
nating sequences that end up with observable events. Hence,
the non-deterministic supervisor is defined as a function

SN : (ΓΣo)
∗ → 2Γ (8)

that maps an observable extended string O(ρ) =
γ0σ1γ1 · · ·σn ∈ (ΓΣo)

∗, which is referred to a decision
history, to a set of possible control decisions. This definition
essentially says that, although the control policy is non-
deterministic, the supervisor knows the realization, i.e., which
specific decision was picked at each previous instant. This is
a reasonable setting as the supervisor always knows what it
actually picks. Now, we define the language generated by a
non-deterministic supervisor.

Definition 1. Let SN be a non-deterministic supervisor. The
set of extended strings generated by the closed-loop system,
denoted by Le(SN/G), is defined recursively by:
• ε ∈ Le(SN/G);
• γ0 ∈ Le(SN/G) if γ0 ∈ SN (ε);
• For any ρ = γ0σ1γ1 · · ·σnγnσn+1 ∈ (ΓΣ)∗, we have
ρ ∈ Le(SN/G), if and only if

– γ0σ1γ1 . . . σnγn ∈ Le(SN/G); and
– σ1 · · ·σnσn+1 ∈ L(G);
– σn+1 ∈ γn.

• For any ρ = γ0σ1γ1 · · ·σnγnσn+1γn+1 ∈ Γ(ΣΓ)∗, we
have ρ ∈ Le(SN/G), if and only if

– γ0σ1γ1 · · ·σnγnσn+1 ∈ Le(SN/G); and

– γn+1∈

{
{γn} if σn+1∈Σuo

SN (O(γ0σ1γ1 . . . σnγnσn+1)) if σn+1∈Σo

Then a string s ∈ Σ∗ is said to be generated by SN/G if there
exists an extended string ρ ∈ Le(SN/G) such that ρ|Σ = s.
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We define L(SN/G) = {ρ|Σ ∈ Σ∗ : ρ ∈ Le(SN/G)} as the
language generated by the closed-loop system.

The intuition of the above definition is as follows. Initially,
the first control decision should be included in the initial
set of control decisions provided by SN . When extended
string γ0σ1γ1 . . . σnγn is executed, the next event σn+1 should
be both feasible in the plant and enabled by the control
decision applied currently, i.e., γn. Furthermore, if σn+1

is unobservable, then the supervisor should not change the
control decision, i.e., γn+1 = γn. On the other hand, if σn+1 is
observable, then the supervisor may choose a specific control
decision from the new set of all possible control decisions
provided by SN , i.e., γn+1 ∈ SN (O(γ0σ1γ1 . . . σnγnσn+1)).
We denote by Loe(SN/G) the set of extended strings that end
up with observable events including the empty string, i.e.,

Loe(SN/G) = Le(SN/G) ∩ ({ε} ∪ (ΓΣ)∗(ΓΣo)).

We also denote by Lde(SN/G) the set of extended strings that
end up with control decisions, i.e.,

Lde(SN/G) = Le(SN/G) ∩ Γ(ΣΓ)∗.

The supervisor always issues a decision (first generates a set
of control decisions and then randomly picks one) when an
extended string ρ in Loe(SN/G) is generated. Then for any
observable extended string ρ ∈ O(Loe(SN/G)), we define

ÊS(ρ)={δ(ρ′|Σ)∈X : ∃ρ′ ∈ Loe(SN/G) s.t. O(ρ′) = ρ}
(9)

as the set of all possible states that can be reached immediately
after observing the last event from the supervisor’s point of
view, i.e., the state estimate of the supervisor without the
unobservable tail.

Once the supervisor issues the last control decision, the set
of states that can be reached unobservably can be determined.
Formally, for any extended string ρ ∈ O(Lde(SN/G)), we
define

ES(ρ) = {δ(ρ′|Σ)∈X : ∃ρ′ ∈ Le(SN/G) s.t. O(ρ′) = ρ}
(10)

as the state-estimate of the supervisor with the unobservable
tail included. These two state estimates can be computed
recursively as follows [50]:
• ÊS(ε) = {x0};
• ES(ρ′) = URγ(ÊS(ρ)) for ρ′ = ργ ∈ O(Lde(SN/G));
• ÊS(ρ′′) = NXσ(ES(ρ′)) for ρ′′ = ρ′σ ∈ O(Loe(SN/G)).

Here we use subscript “S” to emphasize that these state-
estimates are from the supervisor’s point of view.

Example 2. Still consider system G in Fig. 1 with Σc =
{c1, c2} and Σo = {o1, o2, o3}. Suppose that the initial non-
deterministic decision set is SN (ε) = {γ1, γ2, γ3, γ4}, where
γ1 = ∅, γ2 = {c1}, γ3 = {c2} and γ4 = {c1, c2}. Then we
have γ1, γ2, γ3, γ4 ∈ Le(SN/G). Suppose that the supervisor
chooses γ2 initially. Then we have γ2c1 ∈ Le(SN/G) and
since c1 is unobservable, we have γ2c1γ2 ∈ Le(SN/G).
When o2 occurs, ρ = γ2c1γ2o2 ∈ Loe(SN/G) becomes
the first extended string that ends up with an observable

event. Then the information available to the supervisor is
O(ρ) = γ2o2. The state estimate of the supervisor is
ÊS(γ2o2) = NXo2

(URγ2
(Ê(ε))) = NXo2

({0, 1}) = {5}, i.e.,
the supervisor knows for sure that system is at state 5 by first
choosing γ2 and then observing o2.

Suppose that the supervisor then issues γ4 deterministically,
i.e., SN (γ2o2) = {γ4} and the supervisor can only choose γ4;
this yields extended string ρ′ = γ2c1γ2o2γ4 ∈ Lde(SN/G)
With the last control decision information attached, the in-
formation available to the supervisor is O(ρ′) = γ2o2γ4.
Then the state estimate of the supervisor is ES(γ2o2γ4) =
URγ4

(ÊS(γ2o2)) = {5, 6, 7, 8}.
Again, extended string ρ′′ = γ2c1γ2o2γ4c1γ4o1 ∈

Loe(SN/G) can be generated with O(ρ′′) = γ2o2γ4o1. Then
the state estimate of the supervisor becomes ÊS(γ2o2γ4o1) =
NXo1

(ES(γ2o2γ4)) = {9, 10}.

Remark 1. Finally, we note that some non-deterministic
control decision sets may contain redundancy, i.e., for
{γ1, . . . , γn} ∈ 2Γ, γi ⊂ γj for some i, j = 1, . . . , n. In this
case, removing γi from the non-deterministic control decision
set does not change the behavior of the closed-loop system.
Formally, we say that a non-deterministic control decision
set {γ1, . . . , γn} ∈ 2Γ is irredundant if its elements are
incomparable, i.e., ∀i, j = 1, . . . , n : γi 6⊂ γj . For the sake of
simplicity and without loss of generality, hereafter, we only
consider irredundant non-deterministic control decision sets.

Remark 2. Note that our definition of non-deterministic
supervisor in Equation (8) is language-based, which may
require infinite memory to realize. However, we will show
later in the paper that finite-memory supervisors are always
sufficient for our purpose. For this case, one may also realize a
non-deterministic supervisor by a non-deterministic finite-state
automaton and the closed-loop behavior can be then computed
by taking the synchronous composition between the plant and
the supervisor automaton.

C. Opacity of Non-deterministic Control Systems

In the definition of opacity for the standard deterministic
setting, the intruder model has been specified by A1-A3. Here,
we still consider the same intruder model, but we explain A3
more clearly in the non-deterministic setting:

A3′ The intruder knows the functionality of the supervisor.
That is, the intruder knows the set of all possible control
decisions the supervisor may pick according to the control
policy. However, it does not know which specific control
decision the supervisor picks online.

This assumption is reasonable in many applications as long
as the communication channel between supervisor and the
actuator is reliable. Then under this setting, when the su-
pervisor observes ρ ∈ O(Le(SN/G)), the intruder can only
observes ρ|Σ ∈ P (L(SN/G)). Therefore, the state estimate
of the intruder essentially is more uncertain, which needs to
estimate all possible realizations consistent with the control
policy and the observation. Formally, for any observable string
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s ∈ P (L(SN/G)), we define XI(s) as the state estimate of
the intruder, i.e.,

XI(s) = {δ(s′)∈X : ∃s′ ∈ L(SN/G) s.t. P (s′) = s}. (11)

Then opacity of control systems under non-deterministic su-
pervisors is defined as follows.

Definition 2. Let SN : (ΓΣo)
∗ → 2Γ be a non-deterministic

supervisor. We say the closed-loop system SN/G is opaque
(w.r.t. Σo and XS) if ∀s ∈ P (L(SN/G)):XI(s) 6⊆ XS .

The state estimate of the supervisor and the state estimate
of the intruder can be related as follows. Since the intruder
observes strictly less than the supervisor, its estimate of the
system is essentially the union of its estimate of all possible
supervisor’s knowledge about the system. To see this more
clearly, for any observable string s ∈ P (L(SN/G)), we also
define

ÊI(s)={ÊS(ρ) ∈ 2X :ρ ∈ O(Loe(SN/G)) s.t. ρ|Σ = s} (12)

EI(s)={ES(ρ) ∈ 2X :ρ ∈ O(Lde(SN/G)) s.t. ρ|Σ = s} (13)

as the intruder’s estimates of the state-estimations of the
supervisor. Note that ÊI(s) and EI(s) are respectively the state
estimate immediately after observing an observable event and
the state-estimate with the unobservable tail included. Note
that we use subscript “I” to emphasize that these estimates are
from the intruder’s point of view. Then we have the following
result that connects EI and XI .

Proposition 1. For any s ∈ P (L(SN/G)), we have

XI(s) =
⋃
EI(s).

Proof. By the definitions of EI(s), ES(ρ), L(SN/G) and map-
ping O, we have⋃

EI(s)

=
⋃
{ES(ρ) ∈ 2X : ρ ∈ O(Lde(SN/G)) s.t. ρ|Σ = s}

={x ∈ ES(ρ) : ρ ∈ O(Lde(SN/G)) s.t. ρ|Σ = s}
={δ(ρ′|Σ) : ρ′ ∈ Le(SN/G) s.t. O(ρ′)|Σ = s}
={δ(s′) : s′ ∈ L(SN/G) s.t. P (s′) = s}
=XI(s)

This completes the proof.

Given a non-opaque system, our goal is to synthesize a non-
deterministic supervisor that restricts the system behavior such
that opacity is satisfied for the closed-loop system. The opacity
enforcement synthesis problem is formulated as follows.

Problem 1. (Opacity Enforcement Problem) Given system G
and secret states XS ⊆ X , synthesize a partial observation
non-deterministic supervisor SN : (ΓΣo)

∗ → 2Γ, such that
SN/G is opaque w.r.t. XS and Σo.

Remark 3. Compared with deterministic supervisors, the
additional power of non-deterministic supervisor, in terms of
opacity enforcement, relies on assumption A3′. That is, the
intruder is aware of the functionality of the non-deterministic
supervisor but cannot eavesdrop the specific control decisions

issued by the supervisor. Note that, if the intruder is completely
not aware of the functionality of the supervisor (no matter
deterministic or non-deterministic), then it has to make state
estimation based on the open-loop system G. For this case,
using non-deterministic supervisors does not provide any ad-
ditional power compared with deterministic supervisors, and it
suffices to solve the supervisor-unaware deterministic opacity-
enforcement problem; see, e.g., [42], [44]. If the intruder is
aware of the functionality of the non-deterministic supervisor,
but at the same time, is also capable of eavesdropping the
control decisions issued by the non-deterministic supervisor,
then this essentially means that that the non-deterministic
control information can be resolved by the intruder. For this
case, using non-deterministic supervisors is still the same
as using deterministic supervisors in terms of the capability
of enforcing opacity. Then it suffices to solve a supervisor-
aware deterministic opacity-enforcement problem; see, e.g.,
[10], [38], [50].

IV. INFORMATION STATE AND ITS FLOW

In the formulation of the opacity enforcement problem, the
domain of the supervisor is defined over languages. Therefore,
the solution space is infinite in general and there is no prior
knowledge to bound the memory of the supervisor. To effec-
tively solve the synthesis problem, in this section, we restrict
our attention to a class of information-state-based supervisors,
where the space of information states is finite. We first define
the information state in the non-deterministic control problem
and then discuss how the selected information state evolves.
Also, we define a IS-mapping that can encode an IS-based
supervisor. Our method for synthesizing a non-deterministic
supervisor is to first synthesize a IS-mapping and then encode
a supervisor from it. To this end, we finally put forward an
algorithm that decodes a non-deterministic supervisor from IS-
mapping. We will show later in Section VI that restricting our
attention to IS-based supervisors is without loss of generality
for the solvability of the general non-deterministic supervisor
opacity enforcement problem.

A. Proposed Information Structure

In the deterministic control problem, it is known that 2X is
sufficient to realize an opacity-enforcing supervisor [50]. That
is, a deterministic supervisor can be encoded as a state-based
mapping S : 2X → Γ, which can be decoded by recursively
estimating the state of the system and making decision based
on the state-estimate (information-state).

In the non-deterministic control problem, the supervisor
and the intruder observe different information. Hence, the
supervisor needs to make decision based on both the state
estimates of itself and that of the intruder. To separate the
observation of the supervisor and the intruder, we propose the
following information-state space

I := 2X × 22X

.

Each information state ı ∈ I is in the form of ı = (m,m).
Intuitively, the first component aims to represent the state
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estimate of supervisor, while the second component aims to
represent intruder’s knowledge of the supervisor.

Formally, given a non-deterministic supervisor SN and let
ρ ∈ O(Loe(SN/G)) be a decision history observed by the
supervisor. We define

ISN
(ρ) = (ÊS(ρ), ÊI(ρ|Σ)) ∈ 2X × 22X

as the information-state reached by ρ under SN . Clearly, we
have ÊS(ρ) ∈ ÊI(ρ|Σ) for any ρ by definition. We also define

ISN
:= {ISN

(ρ) : ρ ∈ O(Loe(SN/G))}

the set of all information-states reached by SN .

Definition 3. A non-deterministic supervisor SN : (ΓΣo)
∗ →

2Γ is said to be information-state-based (IS-based) if

∀ρ, ρ′∈O(Loe(SN/G)) : ISN
(ρ)=ISN

(ρ′)⇒SN (ρ)=SN (ρ′).
(14)

An IS-based supervisor only makes decisions based on
its current information-state rather than the entire history.
Therefore, we can encode an IS-based supervisor as a partial
IS-mapping.

Definition 4. We say a partial IS-mapping Θ : I → 2Γ

encodes supervisor SN : (ΓΣo)
∗ → 2Γ if

∀ρ ∈ O(Loe(SN/G)) : Θ(ISN
(ρ)) = SN (ρ).

Our general approach for synthesizing a non-deterministic
supervisor is to synthesize its IS-mapping encoding. Clearly,
given an IS-based supervisor SN , we can easily encode it
as an IS-mapping Θ : I → 2Γ, which is defined at each
state in ISN

. On the other hand, however, given a partial
IS-mapping Θ : I → 2Γ, it is not straightforward how to
decode an IS-based supervisor from it. In fact, not every
partial IS-mapping Θ : I → 2Γ actually encodes an IS-based
supervisor. As a necessary requirement, the partial IS-mapping
should be defined at state ı0 = ({x0}, {{x0}}), which is
the initial information-state of any IS-based supervisor. Then
one can argue inductively that, for any reachable information-
state, the partial IS-mapping should be defined, which suggests
that the domain of the partial IS-mapping should contain the
“reachability closure” from the initial-state ı0; otherwise, the
decoded supervisor will “get stuck” at those states where the
IS-mapping is undefined.

To compute such an “reachability closure”, we need to
investigate how the information-state evolves. As we discussed
earlier, the first component of the information-state can be
computed recursively based on ρ. However, the question is
how to compute the second component. To this end, we
should not only know the control decision for history ρ, but
should also know the control decisions for those ρ′ such that
ρ|Σ = ρ′|Σ. In the remaining part of this section, we will
elaborate on how ÊI(ρ|Σ) can be computed recursively and
by what information.

B. Micro/Macro States and Decisions
Before we proceed further, we define some necessary con-

cepts. First, we introduce the notion of micro-state, which is
used to represent the knowledge of supervisor.

Definition 5. (Micro-State)A micro-state m ∈ 2X is a set of
states and we define M = 2X as the set of micro-states. An
augmented micro-state m+ = (m, γ) ∈ 2X × Γ is a micro-
state augmented with a control decision and we define M+ =
2X × Γ as the set of augmented micro-states.

Then, we define the notion of macro-state, which is used to
represent the knowledge of intruder about the supervisor.

Definition 6. (Macro-State)A macro-state m = {m1,m2,
. . . ,mn} ⊆ 2X is a set of micro-states and we define
M = 22X

as the set of macro-states. An augmented macro-
state m+ = {(m1, γ1), (m2, γ2), . . . , (mn, γn)} ⊆ 2X × Γ is
a set of augmented micro-states and we define M+ = 22X×Γ

as the set of augmented macro-states.

In order to estimate the knowledge of the intruder, we
should not only know the decision of the supervisor at a
specific micro-state, but also should know the decisions at
other micro-states in the same macro-state, which means that
these micro-states are indistinguishable from the intruder’s
point of view. This leads to the notion of macro-control-
decision.

Definition 7. (Macro-Control-Decision) A macro-control-
decision is a set in the form of

d = {(m1,Γ1), (m2,Γ2), . . . , (mn,Γn)} ⊆ 2X × 2Γ,

where each (mi,Γi) is a pair of micro-state and a non-
deterministic control decision (a set of control decisions). We
denote byD=22X×2Γ

the set of macro-control-decisions.

Let m = {m1,m2, , . . . ,mn} ∈ M be a macro-state
and d ∈ D be a macro-control-decision. We say that d is
compatible with m if it is in the form of

d = {(m1,Γ1), (m2,Γ2), . . . , (mn,Γn)} ⊆ 2X × 2Γ,

i.e., d essentially assigns each micro-state mi ∈ m a non-
deterministic control decision Γi ∈ 2Γ.

The unobservable reach of a macro-control-decision d ∈ D
is defined by

�(d) = {(m′, γ) : ∃(m,Γ) ∈ d, γ ∈ Γ s.t. m′ = URγ(m)}.

Let m+ be an augmented macro-state and σ ∈ Σo be an
observable event. Then the observable reach of m+ upon the
occurrence of σ is defined as

N̂Xσ(m+) = {m′ : ∃(m, γ)∈m+ s.t. m′=NXσ(m)∧σ∈γ}.

C. Information-Flow Analysis

Now, suppose that an IS-mapping Θ : I → 2Γ that encodes
an IS-based supervisor SN is given. Let m = {m1, . . . ,mk}
be a macro-state representing the intruder’s estimate of the
supervisor’s knowledge. We define

dΘ(m) = {(m1,Θ(m1,m)), . . . , (mk,Θ(mk,m))}

as the macro-control-decision made by IS-based supervisor at
macro-state m.

Initially, the state-estimate of the supervisor is m0 = {x0}
and the intruder believes that this is the unique estimate of
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the system with estimate m0 = {m0}, which forms the initial
information-state ı0 = (m0,m0).

Then the supervisor issues a non-deterministic decision set
Γ0 = SN (ε) = Θ(m0,m0). Note that, we have pre-specified
that the supervisor is IS-based. Therefore, we denote the
control decision information at this instant by a macro-control-
decision dΘ(m0) = {(m0,Θ(m0,m0))}, which means that
“the supervisor will make control decision if its state-estimate
is m0”. Note that, at this instant, dΘ(m0) is a singleton as the
intruder does not yet have ambiguity about the supervisor, i.e.,
m0 = {m0}.

Once the allowed decision set Γ0 is specified, the supervisor
will pick a concrete control decision in it. The intruder does
not know which decision is chosen while the supervisor
knows. Suppose that Γ0 = {γ1

0 , . . . , γ
k
0} contains k control

decisions. Then the intruder’s knowledge about the supervisor
becomes

m+
0 =� (dΘ(m0)) (15)

={(URγ1
0
(m0), γ1

0), . . . , (URγk
0
(m0), γk0 )}

={(m1
0, γ

1
0), . . . , (mk

0 , γ
k
0 )},

which means that the supervisor’s estimate (with the unob-
servable tail) is possibly URγi

0
(m0) and the control decision

applied is γi0. Note that, the supervisor knows precisely which
augmented micro-state (mi

0, γ
i
0) it is at.

Then when a new observable event σ ∈ Σo occurs, and the
intruder updates its knowledge to

m1 = N̂Xσ(m+
0 ) = {m1

1, . . . ,m
p
1}. (16)

which is a macro-state containing at most k micro-states, i.e.
p 6 k.

Now, let us assume that, after some steps, the intruder’s
knowledge about the supervisor (immediately after the occur-
rence of an observable event) is

mn = {m1
n, . . . ,m

k
n},

Note that the supervisor knows the exact state estimate, i.e.,
mi
n ∈ mn, and for each mi

n, it allows non-deterministic
decision set Γi = Θ(mi

n,mn) as we assume the supervisor is
IS-based and is encoded by Θ. Therefore, the corresponding
macro-control-decision is

dΘ(mn)={(m1
n,Θ(m1

n,mn)), . . . , (mk
n,Θ(mk

n,mn))}. (17)

Then the intruder’s knowledge about the supervisor is updated
by adding this control information

m+
n = �(dΘ(mn)),

which is an augmented marco-state containing at most∑k
i=1 |Θ(mi

n,mn)| augmented micro-states.
Based on the above discussion, suppose that the intruder

observes σ1 · · ·σn ∈ P (L(SN/G)) and by assuming the fact
that SN is an IS-based supervisor encoded by Θ, it induces
the following sequence

m0
d0−→ m+

0
σ1−→ m1

d1−→ . . .
σn−−→ mn

dn−→ m+
n , (18)

where m0 = {{x0}}, di = dΘ(mi), m+
i = �(di) and

mi+1 = N̂Xσi+1
(m+

i ). We note that σi+1 is defined at m+
i iff

there exist (m, γ)∈m+
i and x ∈ m such that δ(x, σi+1)! and

σi+1∈γ. Therefore, the sequence in Equation (18) is uniquely
defined when σ1 · · ·σn and Θ are fixed; it is independent from
the actual online choice of the supervisor at each instant.

Now we are ready to specify the reachability closure of an
IS-mapping. Formally let Θ : I → 2Γ be a partial IS-mapping
and ı = (m,m) ∈ I be an information-state. Then the
reachability closure of ı under Θ, denoted by REACHΘ(ı) ⊆ I ,
is defined recursively as follows:
• ı ∈ REACHΘ(ı);
• ı′ = (m′,m′) ∈ REACHΘ(ı) if

– m′ ∈m′; and
– there exists ı′′ = (m′′,m′′) ∈ REACHΘ(ı) such that

m′′
dΘ(m′′)−−−−−→ m′′+ σ−→ m′ for some σ ∈ Σo.

D. Property of the Information-State

The above analysis of information-flow is heuristic. In this
subsection, we formally show that the proposed information
updating rule indeed yields the state estimate of the intruder
in the controlled system.

Theorem 1. Let Θ be an IS-mapping that encodes an IS-
based supervisor SN and s = σ1 . . . σk ∈ P (L(SN/G)) be
an observable string available to the intruder. Let mk and
m+
k be states induced by s and Θ according to Equation (18).

Then we have
(i) mk = ÊI(s); and

(ii)

m+
k =

{
(ES(ργ), γ) :

ρ ∈ O(Loe(SN/G)) s.t.

ρ|Σ = s and γ ∈ SN (ρ)

}
.

Proof. We prove by induction on the length of s.
Induction Basis: For |s| = 0, i.e. s = ε, from the definition

of ÊI(s), we know that

ÊI(ε) ={ÊS(ρ) ∈ 2X : ρ ∈ O(Loe(SN/G)) s.t. ρ|Σ = ε}
={ÊS(ε)}
={{δ(ε)}}
={{x0}}
=m0

Since m+
0 = �(dΘ(m0)) and dΘ(m0) = {(m0, SN (ε))}, we

have
m+

0 =� (dΘ(m0))

={(URγ(m0), γ) : γ ∈ SN (ε)}

=
{

(URγ(ÊS(ε)), γ) : γ ∈ SN (ε)
}

= {(ES(γ), γ) : γ ∈ SN (ε)}

Note that ρ = ε is the only extended string in O(Loe(SN/G))
such that ρ|Σ = s. This completes the induction basis.

Induction Step: Let us assume that Theorem 1 holds for
|s| = k. Then we want to prove the case of sσk+1 ∈
P (L(SN/G)). By the induction hypothesis, we know that

m+
k =

{
(ES(ργ), γ) :

ρ ∈ O(Loe(SN/G)) s.t.
ρ|Σ = s and γ ∈ SN (ρ)

}
.
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Then, we have

mk+1

=N̂Xσk+1
(m+

k )

={NXσk+1
(m) : (m, γ) ∈m+

k , σk+1 ∈ γ}

=

{
NXσk+1

(ES(ργ)) :
ρ ∈ O(Loe(SN/G)) s.t.

ρ|Σ = s, γ ∈ SN (ρ) and σk+1 ∈ γ

}
={ÊS(ργσk+1) : ρ ∈ O(Loe(SN/G)) s.t. ρ|Σ = s}
={ÊS(ρ′) : ρ′ ∈ O(Loe(SN/G)) s.t. ρ′|Σ = sσk+1}
=ÊI(sσk+1).

For m+
k+1 = �(dΘ(mk+1)). Suppose that dΘ(mk+1) =

{(m1
k+1,Θ(m1

k+1,mk+1)), . . . , (mn
k+1,Θ(mn

k+1,mk+1))}.
Note that we have

mk+1 ={ÊS(ρ) : ρ ∈ O(Loe(SN/G)) s.t. ρ|Σ = sσk+1}
={m1

k+1, . . . ,m
n
k+1}

For each ρ ∈ O(Loe(SN/G)) such that ρ|Σ = sσk+1, since
SN is IS-based, we have SN (ρ) = Θ(ÊS(ρ),mk+1). Then we
have the followings

m+
k+1

=� (dΘ(mk+1))

={(URγ(m), γ) : ∃(m,Γ) ∈ dΘ(mk+1) s.t. γ ∈ Γ}

=

{
(URγ(ÊS(ρ)), γ) :

ρ ∈ O(Loe(SN/G)) s.t.
γ ∈ SN (ρ) and ρ|Σ = sσk+1

}

=

{
(ES(ργ), γ) :

ρ ∈ O(Loe(SN/G)), s.t.
γ ∈ SN (ρ) and ρ|Σ = sσk+1

}
This completes the induction step, i.e. (ii) holds.

For any augmented macro-state m+, we define

M(m+) = {m ∈M : (m, γ) ∈ m+}

as the macro-state obtained by removing the control decision
components from m+. Then the following result reveals that
the above defined states set M(m+

k ) are indeed the state
estimate of the intruder EI(s).

Corollary 1. Let Θ be an IS-mapping that encodes an IS-
based supervisor SN and s = σ1 . . . σk ∈ P (L(SN/G)) be
an observable string available to the intruder. Let m+

k be the
state reached according to the information-flow. Then we have

M(m+
k ) = EI(s)

Proof. By Theorem 1, we have

m+
k =

{
(ES(ργ), γ) :

ρ ∈ O(Loe(SN/G)) s.t.
ρ|Σ = s and γ ∈ SN (ρ)

}
.

Therefore,

M(m+
k ) =

{
ES(ργ) :

ρ ∈ O(Loe(SN/G)) s.t.
ρ|Σ = s and γ ∈ SN (ρ)

}
={ES(ρ′) : ρ′ ∈ O(Lde(SN/G)) s.t. ρ′|Σ = s}
=EI(s)

This completes the proof.

We explain the above concepts by the following example.

Example 3. Let us still consider system G in Fig.1. We
consider a non-deterministic supervisor SN defined by

∀ρ ∈ (ΓΣo)
∗ : SN (ρ) = {{c1}, {c2}}.

Clearly, this supervisor is IS-based and it can be encoded by
IS-mapping Θ : I → 2Γ such that ∀ı∈I : Θ(ı)={{c1}, {c2}}.

Initially, the supervisor’s estimate is m0 = {0} and the
intruder’s estimate of supervisor’s estimation is m0 = {{0}},
where the macro-control-decision induced by Θ is

dΘ(m0) = {({0},Θ({0}, {{0}}))} = {({0}, {{c1}, {c2}})}.

Then the intruder’s knowledge is updated to

m+
0 = �(dΘ(m0))

= {(UR{c1}({0}), {c1}), (UR{c2}({0}), {c2})}
= {({0, 1}, {c1}), ({0, 3}, {c2})}.

When event o1 is observed, the intruder updates its knowledge
to

m1 = N̂Xo1
(m+

0 ) = {NXo1
({0, 1}), NXo1

({0, 3})}
= {{4}, {5}},

which means that the intruder guesses that the supervisor’s
state-estimate is either {4} or {5} based on the information
available. Again, the macro-control-decision at m1 is

dΘ(m1) ={({4},Θ({4},m1)), ({5},Θ({4},m1))}
={({4}, {{c1}, {c2}}), ({5}, {{c1}, {c2}})},

which leads to

m+
1 = �(dΘ(m1))

=

{
(UR{c1}({4}), {c1}), (UR{c2}({4}), {c2}),
(UR{c1}({5}), {c1}), (UR{c2}({5}), {c2})

}
= {({4},{c1}), ({4},{c2}), ({5, 6},{c1}), ({5, 7},{c2})}.

Similarly, from m+
1 , observations can be observed and so

forth.

E. Decode Supervisor from IS-Mapping

Finally, we are ready to discuss how to decode an IS-based
non-deterministic supervisor from an IS-mapping Θ : I → 2Γ.
The decoded non-deterministic supervisor is denoted by SΘ.
Let DOM(Θ) = {ı ∈ I : Θ(ı)!} be the domain of Θ. We say
that IS-mapping Θ is reachability-closed if

REACHΘ(ı0) ⊆ DOM(Θ),

where ı0 = ({x0}, {{x0}}) is the initial information-state.
Clearly, Θ is necessarily to be reachability-closed; other-
wise, the supervisor cannot make decision after some execu-
tions. Without loss of generality, we can further assume that
REACHΘ(ı0) = DOM(Θ) as the mapping information of those
unreachable states are not used.
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When IS-mapping Θ is reachability-closed, we can decode
a supervisor SΘ as follows. For any decision history ρ =
γ0σ1γ1 . . . γn−1σn, we have

SΘ(ρ) = Θ(ÊS(ρ), ÊI(ρ|Σ)). (19)

Note that, based on the previous discussion, both ÊS(ρ) and
ÊI(ρ|Σ) can be computed recursively based on Θ. Therefore,
in practice, SΘ(ρ) can be executed online according to Algo-
rithm 1. Specifically, we use parameters m,m+,m and m+

to represent ÊS(ρ), ES(ρ), ÊI(ρ|Σ) and EI(ρ|Σ), respectively.
Note that the updates of m and m+ use the online observation
σ and the IS-mapping Θ to generate a non-deterministic
control decision set Γ, in which an actual control decision
applied γ ∈ Γ is chosen randomly. However, the updates of
m and m+ only use the online observation σ and the actual
decision γ applied.

Algorithm 1: Online Decoding of IS-Mapping Θ

1 m← {x0} and m← {{x0}} and ρ← ε;
2 while ρ = ε or a new event σ ∈ Σo is observed do

if a new event σ ∈ Σo ∩ γ is observed then
3 m← NXσ(m+) and m← N̂Xσ(m+);
4 ρ← ρσ;

5 Define SΘ(ρ)← Θ(m,m) as the current
non-deterministic control decision;

6 Randomly pick γ ∈ SΘ(ρ) and apply this
control decision online;

7 m+ ← URγ(m) and m+ ← �(dΘ(m));
8 ρ← ργ;

By understanding how an IS-mapping Θ can be decoded
as an IS-based supervisor, hereafter, we will also refer to a
reachability-closed IS-mapping Θ as an IS-based supervisor
directly. In order to solve the general opacity enforcement
problem as formulated in Problem 1, our approach is to
restrict our solution space to IS-based supervisors and solve
the following IS-mapping synthesis problem.

Problem 2. (Information-State-Based Opacity Enforcement
Problem) Given system G and secret states XS ⊆ X , syn-
thesize an IS-based supervisor SΘ : (ΓΣo)

∗ → 2Γ decoded
from IS-mapping Θ : I → 2Γ, such that SΘ/G is opaque
w.r.t. XS and Σo.

Remark 4. Problem 2 essentially restricts the solution space
of Problem 1 to a finite domain. Clearly, if there exists an
IS-based supervisor that enforces opacity, then there exists
a non-deterministic opacity-enforcing supervisor. However,
the following question arise immediately: whether or not
the non-existence of an IS-based supervisor also implies the
non-existence of a general supervisor? We will show later
in Section VI that there exists a non-deterministic opacity
enforcing supervisor if and only if there exists an IS-based
one. In other words, restricting our attention to Problem 2 is
without loss of generality for the solvability of Problem 1.

V. SYNTHESIS OF IS-BASED SUPERVISORS

In this section, we discuss how to synthesize an IS-based su-
pervisor that enforces opacity. We first introduce the structure
of the generalized bipartite transition system. Then we present
a synthesis algorithm that returns a solution to Problem 2.

A. Bipartite Transition System

By the analysis in the previous section, we see that the
update of the intruder’s knowledge consists of two steps:
one is when the supervisor picks a macro-control-decision
and the other is when a new observable event occurs. To
separate these two steps, we adopt the idea of the bipartite
transition systems (BTS) proposed in [50]. Here, we call the
proposed structure generalized BTS (G-BTS) as it captures, in
a more general manner, both the supervisor’s estimate and the
intruder’s knowledge about the supervisor, while the original
BTS in [50] only captures the supervisor’s estimate.

Definition 8. A generalized bipartite transition system (G-
BTS) T w.r.t. G is a 7-tuple

T = (QY , QZ , hYZ , hZY ,Σo, D, y0).

where
• QY ⊆M is a set of macro-states;
• QZ ⊆M+ is the set of augmented macro-states;
• hYZ : QY ×D → QZ is the transition function from Y -

states to Z-states satisfying: for any hYZ(m, d) = m+,
we have

– d is compatible with m; and
– m+ = �(d).

• hZY : QZ ×Σo → QY is the transition function from Z-
states to Y -states satisfying: for any hZY (m+, σ) = m,
σ ∈ Σo, we have

– m = N̂Xσ(m+).
• D is the set of macro-control-decisions;
• Σo is the set of observable events of system G;
• y0 = {{x0}} ∈ QY is the initial Y -state.

The G-BTS essentially captures the information-flow an-
alyzed in Section IV. Specifically, at each Y -state, the IS-
based supervisor makes a macro-control-decision d and then
moves to a Z-state by updating the intruder’s knowledge via
unobservable reaches under the issued macro-control-decision
d. When a new observable event σ ∈ Σo occurs at a Z-state,
we move to a Y -state by computing the observable reach, and
so forth.

Example 4. Again, we consider system G in Fig. 1. An exam-
ple of the G-BTS is shown in Fig. 2(a), in which rectangular
states represent Y -states and oval states represent Z-states.
Some states are omitted in Fig. 2(a) for simplicity. States are
named by s1, . . . , s32. The initial Y -state is s1 = {{0}}, from
which macro-control-decisions d1, . . . , d5 that are compatible
with s1 can be made. For example, if the macro-control-
decision made is d5 = {({0}, {{c1}, {c2}})}, then we move
to Z-state s10 = �(d5). From this state, observable events
o1 and o2 can occur, and both lead to the same Y -state s18.
From Y -state s18, macro-control-decisions d9, . . . , d13 that
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Fig. 2. (a) An example of the G-BTS, where rectangular states represent Y -states and oval states represent Z-states. (b) Decision diagram of the synthesized
non-deterministic supervisor.

are compatible with s18 can be made. If the macro-control-
decision made is d11, then we move to s23 = �(d11) and so
forth.

B. Synthesis of IS-Based Supervisors

Now, we present how to synthesize IS-based non-
deterministic opacity-enforcing supervisors represented by an
IS-mapping. Given a G-BTS T , for any Y -state y ∈ QY , we
define

CT (y) := {d ∈ D : hYZ(y, d)!}

as the set of macro-control-decisions defined at y in T . Also,
we say that a Y -state y is consistent if CT (y) 6= ∅; and a
Z-state z is consistent if, for any σ ∈ Σo, we have

hZY (z, σ)!⇔ (∃(m, γ)∈z)[NXσ(m) 6= ∅ ∧ σ∈γ}].

Intuitively, a Y -state is consistent if at least one macro-control-
decision is defined and a Z-state is consistent if all feasible
events are defined. Consistency is required for the purpose of
control as the supervisor should be able to provide a control
decision for any observation. We denote by QTconst the set of
consistent states in T and we say that T is consistent if all
reachable states are consistent.

As discussed earlier, we restrict our attention to IS-based
supervisors. Our approach for synthesizing non-deterministic
opacity-enforcing supervisors consists of the following two
steps:

(i) construct the largest consistent G-BTS in which all states
are not secret-revealing;

(ii) extract one IS-based supervisor in the form of an IS-
mapping from this largest G-BTS.

Since such an IS-based supervisor is extracted from T , by
Theorem 1 and Corollary 1, we know that, upon the occurrence
of any decision history, the Z-state z ∈M+ reached is essen-
tially the set of all possible state-estimates of the supervisor.
Moreover, by Proposition 1, we know that

⋃
M(z) = XI(s),

where s is the observation leading to the Z-state. Therefore,
to make sure that the closed-loop system SΘ/G is opaque, it
suffices to guarantee that, for any Z-state z ∈ M+ reached,
we have ⋃

M(z) * XS .

To this end, we define

Qreveal = {z ∈M+ :
⋃
M(z) ⊆ XS}

as the set of secret-revealing Z-states.
In order to synthesize an IS-based supervisor, first, we

construct the largest G-BTS w.r.t. G that enumerates all the
feasible transitions satisfying the constraints of hYZ and hZY .
We denote such an all-feasible G-BTS by Ttotal. Then, we
need to delete all secret-revealing Z-states in Ttotal and obtain
a new G-BTS

T0 = Ttotal� (QY ∪QZ)\Qreveal
,

where T �Q denotes the G-BTS obtained by restricting the
state-space of T to Q ⊆ QY ∪QZ .

However, by deleting secret-revealing states, the resulting
G-BTS may become inconsistent. Hence, we also need to
delete inconsistent states recursively. Specifically, we define
an operator F that maps a G-BTS to a new G-BTS by:

F : T 7→ T�QT
const

,
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and we define
T ∗ = lim

k→∞
F k(T0)

as the largest consistent G-BTS in which there is no secret-
revealing state. The existence of the supremal fixed-point as
well as the finite-convergence of iteration follow directly from
the computation of winning region in two-player games [14]
or the well-known supremal controllable sub-language [6].

The construction of T ∗ follows directly from its definition
and one can proceed in two steps. First, we construct T0 by a
depth-first search or a breadth-first search from the initial Y -
state y0. Specifically, at each state encountered, one needs to
consider all possible successor states, until reaching a secret-
revealing state or a state that has been visited. Second, we
prune inconsistent states from T0 by iterations. Specifically,
we need to remove Y -states having no successor and Z-states
at which some feasible transitions are undefined, until the
structure converges. Similar searching and pruning procedure
can be found in the literature; see, e.g., Algorithm 1 in [50].
We illustrate this procedure by the following example.

Example 5. Consider again system G in Fig. 1. First, we
construct the largest G-BTS Ttotal by enumerating all possible
transitions, which is in fact the structure shown in Fig. 2(a).
For sake of simplicity, as we discussed earlier, redundant
macro-control-decisions are omitted in Ttotal. For example,
d = {({0}, {γ1, γ2})} is not listed at state s1, since γ1 ⊂ γ2

and macro-control-decision d2 is sufficient enough to carry
this information.

Note that Z-states s2, s8 and s20 are secret-revealing states
since

⋃
M(s2) = {0} ⊆ XS ,

⋃
M(s8) = {4} ⊆ XS and⋃

M(s20) = {10} ⊆ XS . Therefore, we need to delete
states s2, s8 and s20 to obtain T0. However, this creates
inconsistent states s7 and s19 as no macro-control-decision
is defined. Therefore, these two states are removed when
applying operator F for the first time. Again, this further
creates inconsistent states s3, s6, s11, s14 and s24 since
some feasible observations are not defined. Therefore, these
states and the associated transitions are again deleted when
applying operator F for the second time. This yields the final
structure T ∗ including states s1,s9,s10, s17, s18, s21, s22, s23,
s27, . . . , s32, which is the largest consistent G-BTS having no
secret-revealing state.

Based on T ∗, Algorithm 2 is provided to synthesize an
IS-based non-deterministic supervisor in the form of an IS-
mapping via a depth-first search. Specifically, we start from
the initial Y -state and pick a macro-control-decision d from
the set of all macro-control-decisions defined at y. Then for
each pair (m, y), where m ∈ y, we use d to define the mapping
value for information-state (m, y), which is the unique non-
deterministic decision set associated with m in d. Then we
move to the unique Z-state reached under macro-control-
decision d and consider all successor Y -states by considering
all possible observable events. If the new Y -state has not
yet been visited, then we repeat the selection procedure by
making a recursive call of procedure DoDFS until all reachable
information-states are traversed. The computed IS-mapping
Θ∗ is reachability-closed by construction; hence can be used

Algorithm 2: Synthesis of IS-Based Supervisor Θ∗

input : T ∗
output: Θ∗

1 y0 ← {{x0}}, VISITED← {y0}, DOM(Θ∗)← ∅ ;
2 if y0 is not in T ∗ then
3 return “no solution” ;

4 DoDFS(Θ∗, y0);
5 return Θ∗;

procedure DoDFS(Θ∗, y);
6 choose a macro-control-decision d ∈ CT∗(y) ;
7 for m ∈ y do
8 DOM(Θ∗)← DOM(Θ∗) ∪ {(m, y)};
9 Θ∗(m, y)← Γm,d, where Γm,d is the unique

decision such that (m,Γm,d) ∈ d;

10 for σ ∈ Σo such that hZY (hYZ(y, d), σ) = y′ do
if y′ 6∈ VISITED then

11 VISITED← VISITED∪{y′} ;
12 DoDFS(Θ∗, y′);

to decode a corresponding IS-based supervisor SΘ∗ according
to Algorithm 1.

We show the computation procedure in Algorithm 2 by the
following example.

Example 6. We still consider our running example with T ∗

shown in Fig. 2 and we use Algorithm 2 to synthesize an
IS-mapping from T ∗. The algorithm starts from the initial
Y -state s1 = {{0}}, at which the macro-control-decision in
T ∗ is unique. Therefore, the supervisor will pick d5 which
induces partial mapping value Θ∗({0}, {{0}}) = {γ2, γ3}. By
choosing d5, we move to Z-state s10 and we need to consider
all possible successor Y -states of s10. Here, both o1 and o2

from s10 leads to Y -state s18 = {{4}, {5}}, where three
macro-control-decisions d9, d10, d11 are defined. Suppose that
the supervisor chooses d11 = {({4}, {γ1}), ({5}, {γ4})}. This
again induces partial mapping values Θ∗({4}, {{4}, {5}}) =
{γ1} and Θ∗({5}, {{4}, {5}}) = {γ4}. If observable
event o2 occurs, Y -state s29 is reachable and the macro-
control-decision defined is unique. Therefore, by choos-
ing d19 at s29 = {{10, 11}}, partial mapping value
Θ∗({10, 11}, {{10, 11}}) = {γ1} is induced. If observ-
able event o1 occurs, Y -state s31 is reachable and the
macro-control-decision defined is d20. Partial mapping value
Θ∗({9, 10}, {{9, 10}}) = {γ1} is induced. This completes the
construction of reachability-closed IS-mapping Θ∗, which can
also be represented as the decision diagram shown in Fig. 2(b).

Remark 5. The main purpose of this paper is to synthesize
a non-deterministic supervisor that guarantees opacity. Our
focus is the solvability of this problem and whether or not
the synthesized solution is maximally-permissive is out of
the main scope of this work. Here, we provide a heuristic
approach to improve the permissiveness of this solution. In
line 6 of Algorithm 2, we do not put specific criterion for
which macro-control-decision to choose from CT∗(y). To



13

enhance the permissiveness of the supervisor, we can pick
a locally maximal macro-control-decision at each Y -state.
Formally, given two non-deterministic decision sets Γ1 and
Γ2, we denote

• by Γ1 ≤ Γ2 if ∀γ ∈ Γ1,∃γ′ ∈ Γ2 : γ ⊆ γ′; and
• by Γ1 < Γ2 if Γ1 ≤ Γ2 and ∃γ ∈ Γ1,∃γ′ ∈ Γ2 : γ ⊂ γ′.

Then for each Y -state y = {m1, . . . ,mk} in T ∗ and two
macro-control-decisions d1 and d2 defined at y, where d1 =
{(m1,Γ1), · · · , (mk,Γk)}, d2 = {(m1,Γ

′
1), · · · , (mk,Γ

′
k)},

we say d2 is more permissive than d1, denoted by d1 < d2 if

• ∀i ∈ {1, . . . , k},Γi ≤ Γ′i; and
• ∃i ∈ {1, . . . , k},Γi < Γ′i.

Therefore, in line 6 of Algorithm 2, one can choose a locally
maximal macro-control-decision d ∈ CT∗(y) in the sense of

∀d′ ∈ CT∗(y) : d 6< d′.

For example, for T ∗ in Fig. 2(a), there are three macro-
control-decisions d9 = {({4}, {γ1}), ({5}, {γ1})}, d10 =
{({4},{γ1}), ({5},{γ2, γ3})} and d11 = {({4},{γ1}), ({5},{γ4})}
defined at s18. Then d11 is a locally maximally macro-control-
decision among these three. For example, we have d10 < d11

since γ2 ⊂ γ4 and γ3 ⊂ γ4. Therefore, for the sake of
permissiveness, the IS-mapping synthesis procedure can pick
d11 instead of d9 or d10.

We conclude this section by discussing the complexity of
the proposed supervisor synthesis algorithm. To construct the
largest consistent G-BTS T ∗, first, we need to build Ttotal,
which contains at most 22|X| Y -states and 22|X|+|Σc|

Z-
states. For each Y -state, there are at most 2|X|+|Σc| transi-
tions defined and for each Z-state, there are at most |Σo|
transitions defined. Overall, Ttotal contains, in the worst-case,
22|X|+|Σc|

+ 22|X| states and 22|X| ·2|X|+|Σc|+ |Σo| ·22|X|+|Σc|

transitions. The complexity of removing all secret-revealing
states to obtain G-BTS T0 is linear in the size of Ttotal.
The complexity of removing all inconsistent states iteratively
to obtain T ∗ is quadratic in the size of Ttotal. Once T ∗ is
constructed, we run Algorithm 2 to synthesize an IS-mapping
Θ∗, which is simply a depth-first search over the space of
T ∗ and the complexity is still linear in the size of T ∗. The
resulting IS-mapping contains at most 22|X| elements in its
domain. In order to execute the supervisor online, we use
Algorithm 1 to decode IS-mapping Θ∗. To this end, the
supervisor needs to store the IS-mapping Θ∗ computed offline,
and during the online execution, record both the current state
estimate m and the current macro-state m. Note that m
contains at most |X| states, while m contains at most 2|X|. By
making a new control decision upon the occurrence of a new
observable event, m and m can be updated, respectively, in
polynomial-time and exponential-time in the size of G. Note
that this online update transition can also be pre-computed
offline and be stored as transition rules together with the IS-
mapping Θ∗. Overall, the entire complexity of the proposed
synthesis approach is doubly-exponential in the size of the
original plant, where the major complexity is spent for the
offline computation.

VI. PROPERTIES OF THE SYNTHESIS PROCEDURE

In this section, we formally prove the correctness of the
synthesis procedure proposed in Section V. Note that in the
formulation of Problem 1, supervisors make control decision
based on the decision histories and can be non-IS-based
in general. However, our algorithm in Section V solves a
restricted version of Problem 1 by only considering IS-based
supervisors as formulated in Problem 2. Therefore, to show
the correctness of the proposed synthesis procedure in the
context of Problem 1, our arguments consist of the following
two steps:

(i) first, we show that our solution to the IS-based synthesis
problem, i.e., Problem 2, is sound and complete;

(ii) then we show that restricting Problem 1 to Problem 2 is
without loss of generality, i.e., Problem 1 is solvable if
and only if Problem 2 is solvable.

Throughout this section, we denote by SΘ∗ the IS-based
supervisor synthesized by Algorithm 2.

A. Correctness of the IS-Based Synthesis Algorithm

In this subsection, we show that Algorithm 2 indeed solves
Problem 2. First, we show that Algorithm 2 is sound in the
sense that the synthesized supervisor SΘ∗ is opacity-enforcing.

Theorem 2. IS-based non-deterministic supervisor SΘ∗ :
(ΓΣo)

∗ → 2Γ encoded from Θ∗ enforces opacity.

Proof. Let s = σ1 · · ·σn ∈ P (L(SΘ∗/G)) be any observable
string in closed-loop system SΘ∗/G. Let m+

n be state induced
by s and IS-mapping Θ∗ according to Equation (18). By
Corollary 1, we know that

⋃
M(m+

n ) = XI(s). According to
Algorithm 2, m+

n is a reachable Z-state in T ∗ by construction.
Furthermore, since T ∗ is obtained from T0 where all Z-states
in Qreveal are removed. Therefore, we conclude that

XI(s) =
⋃
M(m+) 6⊆ XS ,

which means that Θ∗ enforces opacity.

Note that Algorithim 2 returns “no solution” when y0 is
not included in T ∗. Next, we show that Algorithim 2 is also
complete in the sense that there is indeed no solution to
Problem 2 when y0 is removed by operator F during the
construction of T ∗.

Theorem 3. If there exists a non-deterministic IS-based su-
pervisor that enforces opacity, then y0 must be included in T ∗,
i.e., Algorithm 2 will not return “no solution” when a solution
to Problem 2 exists.

Proof. Suppose that there exists a reachability-closed IS-
mapping Θ : I → 2Γ such that the encoded non-deterministic
supervisor SΘ enforces opacity. We construct a consistent
G-BTS T = (QY , QZ , hYZ , hZY ,Σo, D, y0) as follows:
QY = {m : (m,m) ∈ ISΘ

} and for any y ∈ QY , d =
{(m,Θ(m, y)) : m ∈ y} is the unique macro-control-decision
defined at y and QZ = {�(d) : ∃y ∈ QY s.t. hY Z(y, d)!}.
Since SΘ enforces opacity, we have ∀s ∈ P (L(SΘ/G)) :
XI(s) 6⊆ XS . Let m+

n be state induced by s and IS-
mapping Θ according to Equation (18). By the construction
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of T , we have m+
n ∈ QZ . By Corollary 1, we know that⋃

M(m+
n ) = XI(s). Therefore, we have QZ ∩ Qreveal = ∅.

Since T is included in T0 and T itself is consistent, no states in
T can be removed when iteratively applying operator F , which
means that all states in T are also included in T ∗. Therefore,
the initial Y -state y0 is included in T ∗ and Algorithm 2 will
not return “no solution”.

B. From Non-IS-Based Supervisors to IS-Based Supervisors
So far, we have shown that Algorithm 2 correctly solves

Problem 2, which is a restrictive version of Problem 1.
Clearly, Algorithm 2 is also sound for Problem 1 because
an IS-based solution is also a solution to Problem 1. Then it
remains to show the completeness of Algorithm 2 in terms of
Problem 1. To this end, it suffices to show that Problem 2
always has a solution when Problem 1 has one. Here, we
provide a constructive procedure that always construct an
IS-based opacity-enforcing supervisor that solves Problem 2
when a non-IS-based one that solves Problem 1 exists.

Suppose that there exists a (possibly non-IS-based) non-
deterministic supervisor SN : (ΓΣo)

∗ → 2Γ that enforces
opacity. We construct an IS-mapping Θ according to Algo-
rithm 3. The idea is similar to the information-flow analysis
for IS-mapping, which expends the information-state space
from the initial information state. We still use y to denote
state-estimates immediately after an observable event and use
z to denote state-estimates with the unobserable tail included.
However, since the supervisor needs not to be IS-based, simply
remembering the current information-state is not sufficient and
we also need to remember the history leading to each state
estimate. Therefore, for each micro-state mi in a Y -state, we
add an additional information ρi to track how this micro-state
is visited. Note that for each micro-state m in a Y -state, the
decision history may not be unique since there there may
have multiple ρ associated with the same m. Similarly, each
augmented micro-state in a Z-state is also attached with a
decision history information. Then procedure DoDSF imple-
ments a depth-first search to generate the domain of the IS-
mapping. Note that, since SN is not IS-based in general, it may
take different actions for different histories visiting the same
information-state. Our approach is to fix the control decision
for each information-state as the union of the decisions for all
its visits; the constructed mapping is, therefore, forced to be
IS-based. Algorithm 3 clearly terminates in a finite number
of states since it will stop when all possible macro-states are
visited.

The following result shows that Algorithm 3 indeed converts
a non-IS-based opacity-enforcing supervisor into an IS-based
opacity-enforcing supervisor.

Theorem 4. Let SN : (ΓΣo)
∗ → 2Γ be a non-deterministic

supervisor enforcing opacity and Θ : I → 2Γ be the
partial IS-mapping constructed by Algorithm 3. Then IS-based
supervisor SΘ also enforces opacity.

Proof. First, by construction, for each macro-state (Y -state
without the extended strings components) visited by IS-
mapping Θ, i.e., m = {m1, . . . ,mk} ∈ VISITED, IS-
mapping Θ defines a non-deterministic control decision for

Algorithm 3: Construction of IS-Mapping Θ from SN
input : SN
output: Θ

1 ρ← ε,m← {x0},VISITED ← {{m}} ;
2 y ← {(m, ε)} ;
3 DoDFS(y,VISITED);
4 return Θ;

procedure DoDFS(y,VISITED);
5 z ← ∅;
6 Suppose y = {(m1, ρ1), . . . , (mk, ρk)} ;
7 m← {m1, . . . ,mk} ;
8 for i = 1, . . . , k do
9 DOM(Θ)← DOM(Θ) ∪ {(mi,m)};

10 Θ(mi,m)←
⋃
{SN (ρ) : (mi, ρ) ∈ Y } ;

11 for γ ∈ SN (ρi) do
12 z ← z ∪ {(URγ(mi), ρiγ, γ)};

13 Suppose z = {(m1, ρ1, γ1), . . . , (mp, ρp, γp)} ;
14 for σ ∈ Σo do
15 y′ ← ∅;
16 for i = 1, . . . , p do
17 if σ ∈ γi then
18 y′ ← y′ ∪ {(NXσ(mi), ρiσ)};

19 if {m : (m, ρ) ∈ y′} 6∈ VISITED then
20 VISITED← VISITED∪{{m : (m, ρ) ∈ y′}};
21 DoDFS(y′);

each micro-state mi ∈m (lines 9-10). Also, for each Z-state
reached by SΘ, every possible observable events are defined
(line 14). Therefore, for every information-state (m,m) ∈
REACHΘ(({x0}, {{x0}})), Θ(m,m) is always well-defined,
i.e., IS-mapping Θ is reachability-closed. Therefore, its de-
coded IS-based supervisor SΘ is well-defined and we have

ISΘ = REACHΘ(ı0) = DOM(Θ),

where ı0 = ({x0}, {{x0}}).
By Corollary 1 and Proposition 1, to show that SΘ enforces

opacity, it suffices to show that

∀(m,m) ∈ DOM(Θ) :
⋃
M(�(dΘ(m))) 6⊆ XS .

To this end, we consider how m is added. Suppose y0y1 . . . yn
is the sequence of Y -states in the depth-first search such
that yn contributes m to VISITED, and let s = σ1 . . . σn
be the observable events along this sequence. More clearly,
suppose that yn = {(m1, ρ1), . . . , (mk, ρk)} and we have
{m1, . . . ,mk} = m. We claim that for yn, we have

yn = {(ÊS(ρ), ρ) : ρ ∈ O(Loe(SN/G)), ρ|Σ = s}

This claim can be seen inductively by the length of s. For |s| =
0, we have y0 = {({x0}, ε)}, where ε is the unique string in
O(Loe(SN/G)) whose projection is also ε and ÊS(ρ) = {x0}.
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Assume that this claim holds for |s| = k, then for the case of
sσk+1, according to lines 11-12 and lines 16-17, we have

yk+1 =

{
(NXσk+1

(URγ(m)), ργσk+1) :
(m, ρ) ∈ yk, γ ∈ SN (ρ), σk+1 ∈ γ

}
=

{
(ÊS(ρ′), ρ′) :

ρ′ ∈ O(Loe(SN/G)), ρ′|Σ = σ1 . . . σkσk+1

}
Now, still for the same m and string s leading to it. We have

M(�(dΘ(m)))

={URγ(m) ∈ 2X : (m,Γ) ∈ dΘ(m), γ ∈ Γ}
={URγ(ÊS(ρ)) ∈ 2X : ρ∈O(Loe(SN/G)), ρ|Σ =s, γ∈SN (ρ)}
={ES(ρ) ∈ 2X : ρ ∈ O(Lde(SN/G)) s.t. ρ|Σ = s}
=EI(s)

Since SN enforces opacity, we have
⋃
EI(s) = XI(s) 6⊆ XS ,

which means that
⋃
M(�(dΘ(m))) 6⊆ XS . This completes

the proof.

By combining Theorems 2-4, we have the following result
immediately that finally establishes the correctness of the
synthesis procedure.

Corollary 2. Algorithm 2 also correctly solves Problem 1, i.e.,
it is both sound and complete.

VII. CONCLUSION

In this paper, we proposed to use non-deterministic control
mechanism to enforce opacity. The essence is to leverage
the non-deterministic mechanism to enhance the plausible
deniability of the system. To this end, we formally defined the
non-deterministic supervisor and formulated the correspond-
ing opacity enforcement problem. Effective approach was
provided to synthesize a non-deterministic opacity-enforcing
supervisor based on both the information of the supervisor and
the information of the intruder. We showed that the proposed
algorithm is both sound and complete in the sense that it
will correctly return a non-deterministic opacity-enforcing
supervisor when one exists.

Although we show that non-deterministic supervisors are
strictly more powerful than deterministic ones, the synthesis
complexity is doubly-exponential in the size of the plant,
which is higher than the single-exponential complexity for
the deterministic case. Intuitively, this complexity is paid
because we should not only estimate all possible states of the
system from the supervisor’s point of view, but also need to
estimate the supervisor’s estimates from the intruder’s point
of view. Recently, some new efficient approaches, such as
abstraction-based approach [17], [29], [30], [34], [53], [55] and
compositional approach [32], [33], [35], have been proposed
to reduce the computational complexity in the verification and
synthesis of opacity. In the future work, we also would like
to leverage these techniques to further mitigate the complexity
of the proposed synthesis algorithm.
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