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Abstract—Recent years have seen increased interest in per-
formance guarantees of gradient descent algorithms for non-
convex optimization. A number of works have uncovered that
gradient noise plays a critical role in the ability of gradient
descent recursions to efficiently escape saddle-points and reach
second-order stationary points. Most available works limit the
gradient noise component to be bounded with probability one or
sub-Gaussian and leverage concentration inequalities to arrive
at high-probability results. We present an alternate approach,
relying primarily on mean-square arguments and show that a
more relaxed relative bound on the gradient noise variance is
sufficient to ensure efficient escape from saddle-points without
the need to inject additional noise, employ alternating step-sizes
or rely on a global dispersive noise assumption, as long as a
gradient noise component is present in a descent direction for
every saddle-point.

Index Terms—Stochastic optimization, adaptation, non-convex
cost, gradient noise, stationary points.

I. INTRODUCTION

In this work, we consider optimization problems of the form:

wo , argmin
w∈RM

J(w) (1)

where J(w) is a risk function defined as the expectation of a

loss function, i.e.,

J(w) , Ex Q(w;x) (2)

where the expectation is over the distribution of the data

variable x. We wish to study first-order methods for pursuing

solutions of (1), i.e., recursions of the form:

wi = wi−1 −µ∇̂J (wi−1) (3)

where ∇̂J (wi−1) denotes some suitable update direction.

When the gradient of J(·) can be evaluated, which in general

requires the distribution of x to be known, then one popular

and effective construction is to employ the actual gradient

vector:

∇̂J
G
(wi−1) , ∇J (wi−1) (4)

When the distribution of x is unknown, we can instead can

instead rely on the stochastic gradient approximation [1]:

∇̂J
SG

(wi−1) , ∇Q (wi−1,xi) (5)

where ∇Q (wi−1,xi) denotes an instantaneous approximation

of ∇J (wi−1) based on the realization xi observed at time
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i. For strongly convex cost functions J(·), both gradient (4)

and stochastic gradient (5) implementations of (3) are very

well behaved and well studied in the literature – see, e.g., [2],

[3] and the references therein. One particular conclusion is

that, under suitable conditions on the loss function and data

distribution, descent along the true gradient ∇J (wi−1) results

in linear convergence to the minimizer wo, while stochastic

“descent” along the instantaneous gradient approximation (5)

results in a small performance degradation in steady-state for

small step-sizes, i.e., lim supi→∞ E ‖wo −wi‖
2 ≤ O(µ) [4].

One surprising fact that arises when considering non-convex

cost functions is that employing stochastic or perturbed gradi-

ent directions is generally beneficial and can in fact improve

the ability of an algorithm to escape saddle-points. For exam-

ple, recursion (3) with true gradients (4) can take exponentially

long to escape from saddle-points [5]. However, by simply

perturbing the gradient by adding i.i.d. noise will allow the

algorithm to escape strict saddle-points in polynomial time [6].

More formally, perturbed gradient descent takes the form [6]:

∇̂J
PG

(wi−1) , ∇J (wi−1) + vi (6)

where vi is some i.i.d. perturbation term with positive definite

covariance matrix. When the true gradient ∇J (wi−1) is

unavailable, the perturbation can be added instead to the

instantaneous gradient approximation [7]:

∇̂J
PSG

(wi−1) , ∇Q (wi−1,xi) + vi (7)

In this work, we will study a generic update direction

∇̂J (wi−1) and examine the dynamics of (3) in non-convex

environments under conditions that are more relaxed than

typically assumed in the recent literature. To this end, we

introduce the gradient noise process:

si(wi−1) , ∇J(wi−1)− ∇̂J (wi−1) (8)

and write (3) as:

wi = wi−1 −µ∇J(wi−1)− µ si(wi−1) (9)

Any particular choice for the gradient estimate ∇̂J (wi−1)
will induce a different gradient noise process (8) with varying

properties. For example, while employing construction (6)

results in i.i.d. gradient noise, a general construction of the

form (5) will generally result in a gradient noise process that

is no longer i.i.d.

A. Related Works

The results and proof techniques presented in this work are

related to our recent works [8], [9], which considered instead
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distributed optimization problems under and absolute variance

bound on the gradient noise. The contribution of this current

work in relation to these earlier studies is two-fold. First, we

focus here solely on the case of single-agent optimization, i.e.,

on centralized as opposed to decentralized implementations.

Second, and more importantly, by limiting our analysis to the

single-agent setting, we are able to relax the absolute variance

condition employed in [8], [9] to a mixed variance bound

consisting of a mixture of relative and absolute components,

thus leading to new performance guarantees in the centralized

case.

There have of course been several other useful works

on non-convex optimization using first-order methods in the

literature. The primary focus in these earlier works has been

establishing convergence to first-order stationary points, i.e.,

points where the gradient vanishes so that ∇J (wi−1) = 0 as

i → ∞ [10]–[13]. First-order stationarity by itself however,

is generally not a sufficient guarantee of a desirable solution

since the set of first-order stationary points includes saddle-

points and even local maxima. For this reason, in more

recent years, there has been growing interest in convergence

guarantees that exclude such undesirable first-order stationary

points. To do so, one also examines second-order conditions.

In particular, recall that second-order stationary points are

those where not only the gradient vector is zero, but there

are also restrictions on the smallest eigenvalue of the Hessian

matrix at their locations [14]. These restrictions, when chosen

to exclude local maxima and strict saddle-points can help

ensure convergence towards local minima. Actually, under

such restrictions, the stationary points can be shown to always

correspond to local minima for some functions of interest [6],

[15]–[18].

One approach for ensuring convergence to these desirable

second-order stationary points is by incorporating second-

order information via the Hessian matrix into the update rela-

tion [19], [20]. Such a construction helps ensure that a descent

direction can be identified even when the gradient vanishes and

no longer carries directional information. For many, especially

large-scale problems, evaluating the Hessian matrix at every

iteration can be prohibitively costly. This fact has spawned a

number of works that continue to employ first-order schemes

for identifying a descent direction around saddle-points for

both deterministic and stochastic optimization [21]–[23].

A second class of methods for the escape from saddle-points

exploits the fact that strict saddle-points (defined later) are

unstable, in the sense that small perturbations, either induced

during initialization [24], [25] or added to the true gradient

direction [6], [26], [27], will cause iterates to approach second-

order stationary points almost surely. These algorithms require

knowledge of the true gradient ∇J(wi−1), which generally

requires information about the distribution of x. Strategies for

stochastic optimization, where instantaneous approximations

∇Q (wi−1,xi) are employed in place of the true gradient

∇J(wi−1) have also been studied recently. The works [28],

[29] and [7] consider perturbed stochastic gradients (7) with

diminishing and constant step-sizes, respectively, while [30]

employs (5) by interlacing small and large step-sizes and the

works [8], [9], [31] descend along (5) with constant step-sizes.

This work is most related to these latter references — we

shall make a detailed distinction when discussing the modeling

conditions below. We also note that a number of recent works

consider variance reduced strategies for the setting where J(·)
corresponds to an empirical risk based on a finite number

of samples [12], [22], [32]. In contrast, our focus is on the

streaming data setting, where the sample size tends to infinity

and traditional variance reduction techniques are inapplicable.

II. MODELING CONDITIONS

A. Smoothness Conditions

We employ the following smoothness assumptions.

Assumption 1 (Lipschitz gradients). The gradient ∇J(·) is

Lipschitz, namely, there exists δ > 0 such that for any x, y:

‖∇J(x)−∇J(y)‖ ≤ δ‖x− y‖ (10)

Assumption 2 (Lipschitz Hessians). The cost J(·) is twice-

differentiable and there exists ρ ≥ 0 such that:

‖∇2J(x) −∇2J(y)‖ ≤ ρ‖x− y‖ (11)

Assumption 1 is common in the study of gradient algorithms,

even for the minimization of convex function [4] and first-

order stationarity in non-convex environments [10], [11]. It

implies a quadratic upper bound on the cost:

J(y) ≤ J(x) +∇J(x)T (y − x) +
δ

2
‖x− y‖2 (12)

and uniform lower and upper bounds on the Hessian matrix:

− δI ≤ ∇2J(x) ≤ δI (13)

The stronger Assumption 2 is not necessary to establish con-

vergence to first-order stationary points [10]. It is frequently

employed to characterize more granularly the dynamics of

(stochastic) gradient algorithms around first-order stationary

points, both to establish the ability of various gradient algo-

rithms to escape saddle-points [6], [7], [22], [24] or to study

the mean-square deviation of stochastic gradient implementa-

tions from minimizers in the strongly-convex setting [4]. It

implies a tighter upper bound than (12) [19]:

J(y) ≤ J(x) +∇J(x)
T
(y − x) +

1

2
(y − x)

T∇2J(x)(y − x)

+
ρ

6
‖y − x‖3 (14)

B. Gradient Noise Conditions

We shall employ the following conditions on the gradient noise

process (8).

Definition 1 (Filtration). We denote by F i the filtration

generated by the random processes wj for all j ≤ i:

F i , {w0,w1, . . . ,wi} (15)

Informally, F i captures all information that is available about

the stochastic processes wj up to time i.
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Assumption 3 (Gradient noise process). The gradient noise

process (8) satisfies:

E {si(wi−1)|F i−1} = 0 (16)

E
{
‖ si(wi−1)‖

4|F i−1

}
≤ β4‖∇J(wi−1)‖

4
+ σ4 (17)

for some non-negative constants β4, σ4.

The fourth-order condition (17) also implies a bound on the

second-order moment via Jensen’s inequality:

E
{
‖ si(wi−1)‖

2|F i−1

}
≤

√
β4‖∇J(wi−1)‖

4
+ σ4

(a)

≤ β2‖∇J(wi−1)‖
2 + σ2 (18)

where (a) follows from the sub-additivity of the square root.

Condition (18) is the same as the one employed in [11] to

study first-order stationarity under a diminishing step-size rule

and corresponds to a mixture of the absolute and relative

noise components appearing in [2]. It is weaker than the

condition assumed in works on second-order stationarity. For

example, the works [6], [31] require the gradient noise process

to be uniformly bounded for all wi with probability one.

This condition is relaxed in [7] by requiring the difference

∇J(wi−1) − ∇Q (wi−1,xi) to be sub-Gaussian and further

in [8], [9] by allowing for a uniform bound on the fourth-

order moment. Works that employ bounded or sub-Gaussian

gradient perturbation generally rely on concentration relations,

which explicitly exploit the bounded or sub-Gaussian nature

of the gradient noise process [7].

In this work, we take a different approach by anchoring

our analysis around mean-square arguments. This allows us

to track the evolution of the iterates wi in the mean-square

sense, rather than with high probability and avoid the need

for restrictive probability bounds on the gradient noise process.

Observe that condition (17) is weaker than a uniform bound on

the fourth moment of the gradient noise process, since we al-

low for a relative component in the form of β4‖∇J(wi−1)‖
4
.

This condition allows for the gradient noise variance to grow

away from first-order stationary points and in particular does

not enforce a uniform bound on the gradient noise variance as

seen from (18). In place of stronger bounds on the gradient

noise variance, we employ a smoothness condition on the gra-

dient noise covariance, previously employed for characterizing

the mean-square deviation of stochastic gradient algorithms

around the minimizer in strongly convex optimization [4].

Assumption 4 (Lipschitz covariances). The gradient noise

process has a Lipschitz covariance matrix, i.e.,

Rs(wi−1) , E

{
si(wi−1)si(wi−1)

T|F i−1

}
(19)

satisfies

‖Rs(x) −Rs(y)‖ ≤ βR‖x− y‖γ (20)

for some βR and 0 < γ ≤ 4.

This condition essentially ensures that the second-order mo-

ment of the gradient noise process is approximately invariant

so long as the iterates wi−1 remain sufficiently close. From

the bound on the aggregate gradient noise variance (18), we

can upper bound the gradient noise covariance as follows:

‖Rs (wi−1)‖

≤ E
{∥∥si(wi−1) si(wi−1)

T
∥∥ |F i

}

= E

{
‖si(wi−1)‖

2 |F i

}

(18)

≤ β2‖∇J(wi−1)‖
2 + σ2 (21)

Before introducing the final assumption, we formally define

first and second-order stationary points, similar to prior works

on second-order stationary guarantees [6], [8], [9], [19]. We

decompose the space w ∈ R
M into four sets.

Definition 2 (Sets). To simplify the notation in the sequel, we

introduce following sets:

G ,

{
w : ‖∇J(w)‖2 ≥ µ

c2
c1

(
1 +

1

π

)}
(22)

GC ,

{
w : ‖∇J(w)‖2 < µ

c2
c1

(
1 +

1

π

)}
(23)

H ,
{
w : w ∈ GC , λmin

(
∇2J(w)

)
≤ −τ

}
(24)

M ,
{
w : w ∈ GC , λmin

(
∇2J(w)

)
> −τ

}
(25)

where τ is a small positive parameter, c1 and c2 are constants:

c1 , 1− µ
δ

2

(
1 + β2

)
= O(1) (26)

c2 ,
δ

2
σ2 = O(1) (27)

and 0 < π < 1 is a parameter to be chosen. Note that GC =
H ∪M. We also define the probabilities πG

i , Pr {wi ∈ G},

πH
i , Pr {wi ∈ H} and πM

i , Pr {wi ∈ M}. Then, for all

i, we have πG
i + πH

i + πM
i = 1.

As explained in [8], [9], the above definition first decomposes

the space R
M into the set G, where the squared norm of the

gradient is larger than O(µ) and its complement GC . Since the

squared norm of the gradient in GC is not precisely equal to

zero, but nevertheless small for small step-sizes µ, we refer to

these points as approximately first-order stationary. The set of

approximate first-order stationary points is further decomposed

into those where the Hessian matrix has a strictly negative

eigenvalue H, and those who do not M. The set of points H
correspond to approximate strict saddle-points, and are points

where a descent direction could be identified from the Hessian

matrix. Points in M are referred to as approximately second-

order stationary, since they are indistinguishable from minima

based on first and second-order information.

Assumption 5 (Gradient noise in strict saddle-points).

Suppose w is an approximate strict-saddle point, i.e., w ∈ H.

Introduce the eigendecomposition of the Hessian matrix as

∇2J(w) = V ΛV T and let the decomposition:

V =
[
V ≥0 V <0

]
, Λ =

[
Λ≥0 0
0 Λ<0

]
(28)

where Λ≥0 ≥ 0 and Λ<0 < 0. Then, we assume that:

λmin

((
V <0

)T
Rs (w)V

<0
)
≥ σ2

ℓ (29)
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for some σ2
ℓ > 0 and all w ∈ H.

As explained in [8], [9], assumption 5 is similar to the con-

dition in [30], where alternating step-sizes are employed, and

ensures that at every strict saddle-point there is a gradient noise

component in a descent direction with non-zero probability.

It will be leveraged to establish the ability of recursion (3)

to escape strict saddle-points. Note that, in contrast to the

global dispersive noise assumption [31], condition (29) is only

required to hold locally in the vicinity of strict saddle-points.

When there is no prior information, condition (29) can always

be guaranteed by choosing the update direction to be the per-

turbed stochastic gradient direction (7) with vi ∼ N (0, σ2
ℓ I),

as is done in [7]. Under this construction, the additional

perturbation vi plays a similar role to ridge regularization,

which is frequently added to convex optimization problems

to ensure strong convexity and hence improved convergence

behavior in the absence of a priori strong convexity guarantees.

An alternative construction is to add perturbations selectively,

when a saddle-point is detected by calculating the gradient

norm, resulting in an algorithm similar to [26].

Remark #1: In order to make the notation more compact,

and whenever it is clear from context, we shall omit the

argument wi−1 from the gradient noise term and write instead

si , si(wi−1) with the understanding that the gradient noise

at time i is a function of the iterate wi−1 at time i − 1 in

addition to the data xi at time i.

Remark #2: The proof technique used to establish the main

theorems in the next section are motivated by the arguments

used in the works [8], [9] for distributed optimization in

non-convex environments. The main difference is that the

arguments need to be adjusted to accommodate the more

relaxed relative variance bound (17) in the single-agent case.

III. PERFORMANCE ANALYSIS

A. Preliminary Lemmas

Before proceeding with the analysis, we list some preliminary

lemmas, which will be used repeatedly throughout.

Lemma 1 (Conditioning [8]). Suppose w ∈ R
M is a random

variable measurable by F . In other words, w is deterministic

conditioned on F and E {w |F} = w. Then,

E

{
E {x |F} |w ∈ S

}
= E {x |w ∈ S} (30)

for any deterministic set S ⊆ R
M and random x ∈ R

M .

Lemma 2 (A limiting result). For T, µ, δ > 0 and k ∈ Z+

with µ < 1
δ , we have:

lim
µ→0

(
(1 + µδ)k +O(µ2)

(1− µδ)
k−1

)T
µ

= e−Tδ+2kTδ = O(1) (31)

Proof: This lemma is a minor variation of the result in [8].

The adjusted proof is listed in Appendix A.

B. Large-Gradient Regime

Theorem 1. For sufficiently small step-sizes:

µ ≤
2

δ (1 + β2)
(32)

and when the gradient at wi is sufficiently large, i.e., wi ∈ G,

the stochastic gradient recursion (3) yields descent in expec-

tation in one iteration, namely,

E {J(wi+1)|wi ∈ G} ≤ E {J(wi)|wi ∈ G} − µ2 c2
π

(33)

On the other hand, when wi ∈ M, we can bound the expected

ascent:

E {J(wi+1)|wi ∈ M} ≤ E {J(wi)|wi ∈ M}+ µ2c2
(34)

Proof: Appendix B.

Theorem 1 ensures that, whenever wi ∈ G, i.e., whenever

the gradient is sufficiently large, one can expect descent in

one iteration. This descent relation is similar to those used to

establish convergence to first-order stationary points [11]. In

fact, repeatedly applying (33) would allow us to conclude that

wi must eventually reach GC with high probability, as long

as J(·) is bounded from below. In contrast to strongly convex

optimization however, where a small gradient norm always

implies vicinity to the global minimizer, first-order stationary

points can be arbitrarily far from a local minimum in non-

convex surfaces. For this reason, we will proceed to study the

behavior around strict-saddle points in the sequel.

C. Escape from Saddle-Points

Beginning at a strict saddle-point wi ∈ H and for any j ≥ 0,

we have from (3):

wi+j+1 = wi+j −µ∇J(wi+j)− µ si+j+1(wi+j) (35)

Subtracting this relation from wi, we find:

wi −wi+j+1 = wi−wi+j +µ∇J(wi+j) + µ si+j+1(wi+j)
(36)

We shall study the evolution of the deviation wi −wi+j+1

over several iterations j ≥ 0. For brevity, we define:

w̃
i
j+1 , wi−wi+j+1 (37)

so that (36) becomes:

w̃
i
j+1 = w̃

i
j + µ∇J(wi+j) + µ si+j+1(wi+j) (38)

From the mean-value theorem we find [4]:

∇J(wi+j)−∇J(wi) = Hi+j (wi+j −wi)
(37)
= −Hi+jw̃

i
j

(39)

where

Hi+j ,

∫ 1

0

∇2J ((1− t)wi+j +twi) dt (40)

so that (38) can be reformulated to:

w̃
i
j+1 = (I − µH i+j) w̃

i
j + µ∇J(wi) + µ si+j+1(wi+j)

(41)
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In a manner similar to [4], [6], [33], we replace the random and

time-varying matrix Hi+j by the Hessian matrix ∇2J(wi)
evaluated at the starting point i. This substitution obviously

leads to an approximate recursion in place of (41); we shall

denote its state vector by w̃
′i
j+1 instead of w̃

i
j+1, as seen

below in (42). The point is that while the Hessian ∇2J(wi)
is random and depends on the time instance i, it becomes

deterministic and constant when conditioning on F i and

iterating over j ≥ 0. We thus arrive at the following recursion,

which we shall refer to as the short-term model:

w̃
′i
j+1 =

(
I − µ∇2J(wi)

)
w̃

′i
j + µ∇J(wi) + µ si+j+1(wi+j)

(42)

where

w̃
′i
j+1 , wi−w′

i+j+1 (43)

The fact that the driving matrix I − µ∇2J(wi) is constant

for all j ≥ 0 ensures that (42) is a more tractable recursion

than (41). In order for this model to be useful, however, we

need to ensure that the function J(w′
i+j) evaluated at the

iterate of the short-term model carries sufficient information

about the actual recursion of interest, i.e., J(wi+j). We begin

by establishing a set of deviation bounds over a finite time

horizon. These ensure that the iterates w′
i+j and wi+j remain

close for a bounded number of iterations, which will allow us

to relate J(w′
i+j) and J(wi+j) further below.

Lemma 3 (Deviation bounds). The following quantities are

conditionally bounded:

E

{∥∥∥w̃i
j

∥∥∥
2

|wi ∈ H

}
≤ O(µ) (44)

E

{∥∥∥w̃i
j

∥∥∥
3

|wi ∈ H

}
≤ O(µ3/2) (45)

E

{∥∥∥w̃i
j

∥∥∥
4

|wi ∈ H

}
≤ O(µ2) (46)

E

{∥∥∥w̃i
j − w̃

′i
j

∥∥∥
2

|wi ∈ H

}
≤ O(µ2) (47)

E

{∥∥w̃′i
j

∥∥2|wi ∈ H
}
≤ O(µ) (48)

for j ≤ T
µ , where T denotes an arbitrary constant that is

independent of the step-size µ.

Proof: Appendix C.

These deviation bounds, along with the smoothness conditions

on J(·) allow us to establish the following corollary.

Corollary 1 (Short-term model accuracy). Beginning at

wi ∈ H, the short term model is accurate over a finite horizon

j ≤ T
µ , i.e.,

E {J(wi+j)|wi ∈ H} ≤ E
{
J(w′

i+j)|wi ∈ H
}
+O(µ3/2)

(49)

for j ≤ T
µ , where T denotes an arbitrary constant that is

independent of the step-size µ.

Proof: Appendix D.

We conclude that J(·) evaluated at the true iterate wi+j is

upper bounded by J(·) evaluated at the short-term model w′
i+j

(up to an approximation error O(µ3/2) that will turn out to be

negligible for small step-sizes), so long as both recursions are

initialized at strict-saddle points wi ∈ H.

Theorem 2 (Descent through strict saddle-points). Begin-

ning at a strict saddle-point wi ∈ H and iterating for is

iterations after i with

is =
log
(
2M σ2

σ2

ℓ

+ 1 +O(µ)
)

log(1 + 2µτ)
≤ O

(
1

µτ

)
(50)

guarantees

E {J(wi+is)|wi ∈ H}

≤ E {J(wi)|wi ∈ H} −
µ

2
Mσ2 + o(µ) (51)

Proof: Appendix E.

We conclude that when wi reaches an approximately strict-

saddle points in H, where the gradient norm alone is no

longer sufficient to guarantee descent in a single iteration,

we can nevertheless guarantee descent after O(1/µ) iterations.

Recall that Theorem 1 guarantees descent for points in G. As

such, Theorems 1 and 2 together guarantee (expected) descent

whenever wi /∈ M and, as long as J(·) is bounded from

below, they ensure that wi must eventually reach a point in

M. This argument is formalized in the final theorem.

Theorem 3. Suppose J(w) ≥ Jo. Then, for sufficiently small

step-sizes µ, we have with probability 1 − π, that wio ∈ M,

i.e., ‖∇J(wio)‖2 ≤ O(µ) and λmin

(
∇2J(wio)

)
≥ −τ in at

most io iterations, where

io ≤
(J(w0)− Jo)

µ2c2π
is (52)

and is denotes the escape time from Theorem 2.

Proof: Appendix F.

IV. SIMULATION RESULTS

In this section, we consider a simple example, arising from a

single-hidden-layer neural network with a linear hidden layer

and a logistic activation function leading into the output layer.

The cross-entropy loss for such a structure can be simplified

to an equivalent logistic loss [9]:

Q(w1,W2;γ,h) = log
(
1 + e−γwT

1
W2 h

)
(53)

The regularized learning problem can then be formulated as:

J(w1,W2) = EQ(w1,W2;γ,h)+
ρ

2
‖w1‖

2+
ρ

2
‖W2‖

2
F (54)

The cost surface is depicted in Fig. 1. The cost J(·) has

two local minima in the positive and negative quadrants,

respectively, and a single strict saddle-point at w1 = W2 = 0.

We initialize w0 = col {−0.5, 0.5} and compare the direct

stochastic gradient descent implementation (5) with:

∇̂J(w1,W2) , ∇Q(w1,W2;γ,h) + s · col {1, 1} (55)

where s ∼ N (0, 1) and the direction col {1, 1} corresponds

to the local descent direction at the strict saddle-point w1 =
W2 = 0. The particular choice of the direction is informed
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Fig. 1. Cost surface of a simple neural network with ρ = 0.1 and sample
trajectories. The symmetric nature of the loss and initialization result in an
equal probability of escaping towards the local minimum in the positive or
negative quadrant.

Fig. 2. Evolution of the function value.

by the analysis and Assumption 5 and will allow us to verify

whether condition (29) is indeed necessary. A realization of

the learning curve is depicted in Fig. 2. It can be observed

that the stochastic gradient recursion is outperformed by (55),

since Assumption 5 is not satisfied for (5). Furthermore, it is

evident that the escape time increases at a rate of O(1/µ) as

µ decreases, suggesting the tightness of the escape time (50).

APPENDIX A

PROOF OF LEMMA 2

The proof techniques in these appendices are generally similar

to the ones used in our works [8], [9] albeit after some

necessary adjustments to account for the relative variance

bound (17) and the adjusted relations in Definition 2.

To begin with, for the natural logarithm of the expression,

we have:

log

(
(1 + µδ)

k
+O(µ2)

(1− µδ)k−1

)T
µ

=
T

µ

(
log
(
(1 + µδ)

k
+O(µ2)

)
− (k − 1) log (1− µδ)

)

(56)

Since the logarithm is continuous over R+, we have:

log


 lim

µ→0

(
(1 + µδ)k +O(µ2)

(1− µδ)k−1

)T
µ




= lim
µ→0

log



(
(1 + µδ)k +O(µ2)

(1− µδ)k−1

)T
µ




= lim
µ→0

T

µ

(
log
(
(1 + µδ)

k
+O(µ2)

)
− (k − 1) log (1− µδ)

)

= lim
µ→0

T

µ

(
log
(
(1 + µδ)

k
)
− (k − 1) log (1− µδ)

)

= lim
µ→0

T

µ
(k log ((1 + µδ))− (k − 1) log (1− µδ))

= kT lim
µ→0

log (1 + µδ)

µ
− (k − 1)T lim

µ→0

log (1− µδ)

µ
(57)

We examine the fraction inside the limit more closely. Since

both the numerator and denominator of the fraction approach

zero as µ → 0, we apply L’Hôpital’s rule:

lim
µ→0

log (1± µδ)

µ
= lim

µ→0

±δ

1± µδ
= ±δ (58)

Hence, we find:

lim
µ→0

(
(1 + µδ)

k
+O(µ2)

(1− µδ)
k−1

)T
µ

= ekTδ+(k−1)Tδ = e−Tδ+2kTδ

(59)

APPENDIX B

PROOF OF LEMMA 1

Since J(·) has δ-Lipschitz gradients:

J(wi+1) ≤ J(wi) +∇J(wi)
T (wi+1 −wi) +

δ

2
‖wi+1 −wi‖

2

(60)

From (3), we find:

J(wi+1)

≤ J(wi) +∇J(wi)
T

(
−∇̂J(wi)

)
+

δ

2

∥∥∥−µ∇̂J(wi)
∥∥∥
2

≤ J(wi)− µ∇J(wi)
T∇J(wi)− µ∇J(wi)

T
si+1(wi)

+ µ2 δ

2
‖∇J(wi) + si+1(wi)‖

2
(61)

Under conditional expectation, we have:

E {J(wi+1)|F i}

≤ J(wi)− µ‖∇J(wi)‖
2 − µ∇J(wi)

T
E {si+1(wi)|F i}

+ µ2 δ

2
E

{
‖∇J(wi) + si+1(wi)‖

2|F i

}

= J(wi)− µ

(
1− µ

δ

2

)
‖∇J(wi)‖

2

+ µ2 δ

2
E

{
‖si+1(wi)‖

2|F i

}

≤ J(wi)− µ

(
1− µ

δ

2

(
1 + β2

))
‖∇J(wi)‖

2
+ µ2 δ

2
σ2

(a)
= J(wi)− µc1‖∇J(wi)‖

2
+ µ2c2 (62)
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where (a) follows from (26)–(27). Taking expectations condi-

tioned on wi ∈ G, we find:

E {J(wi+1)|wi ∈ G}

≤ E {J(wi)|wi ∈ G} − µc1 E
{
‖∇J(wi)‖

2|wi ∈ G
}
+ µ2c2

≤ E {J(wi)|wi ∈ G} − µc1 · µ
c2
c1

(
1 +

1

π

)
+ µ2c2

= E {J(wi)|wi ∈ G} − µ2 c2
π

(63)

On the other hand, starting from (62) and taking expectations

conditioned on wi ∈ M, we have:

E {J(wi+1)|wi ∈ M}

≤ E {J(wi)|wi ∈ M}− µc1 E
{
‖∇J(wi)‖

2|wi ∈ M
}

+ µ2c2
(a)

≤ E {J(wi)|wi ∈ M}+ µ2c2 (64)

where (a) follows since c1 = 1− µ δ
2

(
1 + β2

)
≥ 0 whenever

µ ≤ 2
δ(1+β2) .

APPENDIX C

PROOF OF LEMMA 3

We refer to (41). Suppose j ≤ T
µ , where T is an arbitrary

constant independent of µ. We then have for j ≥ 0:

E

{∥∥∥w̃i
j+1

∥∥∥
2

|F i+j

}

(41)
= E

{∥∥∥ (I − µH i+j) w̃
i
j + µ∇J(wi) + µ si+j+1

∥∥∥
2

|F i+j

}

(a)
=
∥∥∥(I − µH i+j) w̃

i
j + µ∇J(wi)

∥∥∥
2

+ µ2
E

{
‖si+j+1‖

2|F i+j

}

(b)
=

1

1− µδ

∥∥∥(I − µH i+j) w̃
i
j

∥∥∥
2

+
µ

δ
‖∇J(wi)‖

2

+ µ2
E

{
‖si+j+1‖

2|F i+j

}

(c)

≤
(1 + µδ)2

1− µδ

∥∥∥w̃i
j

∥∥∥
2

+
µ

δ
‖∇J(wi)‖

2

+ µ2
E

{
‖si+j+1‖

2|F i+j

}

(d)

≤
(1 + µδ)

2

1− µδ

∥∥∥w̃i
j

∥∥∥
2

+
µ

δ
‖∇J(wi)‖

2

+ µ2β2‖∇J(wi+j)‖
2 + µ2σ2

=
(1 + µδ)2

1− µδ

∥∥∥w̃i
j

∥∥∥
2

+
µ

δ
‖∇J(wi)‖

2

+ µ2β2‖∇J(wi) +∇J(wi+j)−∇J(wi)‖
2
+ µ2σ2

(e)

≤
(1 + µδ)

2

1− µδ

∥∥∥w̃i
j

∥∥∥
2

+
µ

δ
‖∇J(wi)‖

2
+ 2µ2β2‖∇J(wi)‖

2

+ 2µ2β2‖∇J(wi+j)−∇J(wi)‖
2
+ µ2σ2

(f)

≤
(1 + µδ)

2
+ (1− µδ)2µ2β2δ2

1− µδ

∥∥∥w̃i
j

∥∥∥
2

+ µ

(
1

δ
+ 2µβ2

)
‖∇J(wi)‖

2
+ µ2σ2

(g)

≤
(1 + µδ)

2
+O(µ2)

1− µδ

∥∥∥w̃i
j

∥∥∥
2

+O(µ)‖∇J(wi)‖
2
+ µ2σ2

(65)

where (a) follows from the conditional zero-mean property

of the gradient noise term in Assumption 3, (b) follows from

Jensen’s inequality

‖a+ b‖2 ≤
1

α
‖a‖2 +

1

1− α
‖b‖2 (66)

with α = µδ < 1 and (c) follows from the sub-multiplicative

property of norms along with −δI ≤ ∇2J(wi) ≤ δI , which

follows from the Lipschitz gradient condition in Assumption 1.

We can now take expectations over wi ∈ H to obtain:

E

{∥∥∥w̃i
j+1

∥∥∥
2

|wi ∈ H

}

≤
(1 + µδ)

2
+O(µ2)

1− µδ
E

{∥∥∥w̃i
j

∥∥∥
2

|wi ∈ H

}

+O(µ)E
{
‖∇J(wi)‖

2|wi ∈ H
}
+O(µ2)

(a)

≤
(1 + µδ)

2
+O(µ2)

1− µδ
E

{∥∥∥w̃i
j

∥∥∥
2

|wi ∈ H

}
+O(µ2) (67)

where (a) follows from the definition of the set H (24). Note

that, at time i = 0, we have:

w̃
i
0 = wi−wi+0 = 0 (68)

and hence the initial deviation is zero, by definition. Iterating,

starting at j = 0 yields:

E

{∥∥∥w̃i
j

∥∥∥
2

|wi ∈ H

}

≤

(
j−1∑

n=0

(
(1 + µδ)

2
+O(µ2)

1− µδ

)n)
O(µ2)

=
1−

(
(1+µδ)2+O(µ2)

1−µδ

)j

1− (1+µδ)2+O(µ2)
1−µδ

O(µ2)

=

((
(1+µδ)2+O(µ2)

1−µδ

)j
− 1

)
(1− µδ)

1 + 2µδ + µ2δ2 − 1 + µδ
O(µ2)

=

((
(1+µδ)2+O(µ2)

1−µδ

)j
− 1

)
(1− µδ)

3δ + µδ2
O(µ)

≤

((
(1+µδ)2+O(µ2)

1−µδ

) T
µ

− 1

)
(1− µδ)

3δ + µδ2
O(µ)

=O(µ) (69)

where the last line follows from Lemma 2 after noting that:

((
(1+µδ)2+O(µ2)

1−µδ

)T
µ

− 1

)
(1− µδ)

3δ + µδ2

≤

((
(1+µδ)2+O(µ2)

1−µδ

)T
µ

− 1

)
(1− µδ)

3δ
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≤

(
(1+µδ)2+O(µ2)

1−µδ

)T
µ

3δ
(70)

This establishes (44). We proceed to establish a bound on the

fourth-order moment. Using the inequality [4]:

‖a+ b‖4 ≤ ‖a‖4 + 3‖b‖4 + 8‖a‖2‖b‖2 + 4‖a‖2
(
aTb
)

(71)

we have:

E

{∥∥∥w̃i
j+1

∥∥∥
4

|F i+j

}

≤
∥∥∥(I − µHi+j) w̃

i
j + µ∇J(wi)

∥∥∥
4

+ 3µ4
E

{
‖si+j+1‖

4 |F i+j

}

+ 8µ2
∥∥∥(I − µHi+j) w̃

i
j + µ∇J(wi)

∥∥∥
2

× E

{
‖si+j+1‖

2 |F i+j

}

+ 4µ
∥∥∥(I − µH i+j) w̃

i
j + µ∇J(wi)

∥∥∥
2

×
(
(I − µHi+j) w̃

i
j + µ∇J(wi)

)T

× (E {si+j+1 |F i+1})

(a)
=
∥∥∥(I − µHi+j) w̃

i
j + µ∇J(wi)

∥∥∥
4

+ 3µ4
E

{
‖si+j+1‖

4 |F i+j

}

+ 8µ2
∥∥∥(I − µHi+j) w̃

i
j + µ∇J(wi)

∥∥∥
2

× E

{
‖si+j+1‖

2 |F i+j

}

(b)

≤
∥∥∥(I − µHi+j) w̃

i
j + µ∇J(wi)

∥∥∥
4

+ 3µ4
(
‖∇J(wi+j)‖

4
+ σ4

)

+ 8µ2
∥∥∥(I − µHi+j) w̃

i
j + µ∇J(wi)

∥∥∥
2

×
(
‖∇J(wi+j)‖

2
+ σ2

)
(72)

where in step (a) we dropped cross-terms due to the con-

ditional zero-mean property of the gradient noise in Assump-

tion 3, step (b) follows from the fourth-order conditions on the

gradient noise in Assumption 3. We shall bound each term one

by one. From Jensen’s inequality, we find for 0 < α < 1:

‖a+ b‖4 =
1

α3
‖a‖4 +

1

(1− α)3
‖b‖4 (73)

and hence for the first term on the right-hand side of (72) with

α = 1− µδ and 0 < µ < 1
δ :

∥∥∥(I − µHi+j) w̃
i
j + µ∇J(wi)

∥∥∥
4

≤
(1 + µδ)

4

(1− µδ)
3

∥∥∥w̃i
j

∥∥∥
4

+
µ4

µ3δ3
‖∇J(wi)‖

4

=
(1 + µδ)

4

(1− µδ)
3

∥∥∥w̃i
j

∥∥∥
4

+O(µ)‖∇J(wi)‖
4

(74)

After taking expectations conditioned on wi ∈ H, we find:

E

{∥∥∥(I − µH i+j) w̃
i
j + µ∇J(wi)

∥∥∥
4

|wi ∈ H

}

≤
(1 + µδ)

4

(1− µδ)
3 E

{∥∥∥w̃i
j

∥∥∥
4

|wi ∈ H

}

+O(µ)E
{
‖∇J(wi)‖

4|wi ∈ H
}

(24)

≤
(1 + µδ)

4

(1− µδ)3
E

{∥∥∥w̃i
j

∥∥∥
4

|wi ∈ H

}
+O(µ3) (75)

For the second term we have, again from (73) with α = 1
2 :

3µ4
(
‖∇J(wi+j)‖

4 + σ4
)

= 3µ4
(
‖∇J(wi) +∇J(wi+j)−∇J(wi)‖

4
+ σ4

)

(73)

≤ 3µ4
(
8‖∇J(wi)‖

4
+ 8‖∇J(wi+j)−∇J(wi)‖

4
+ σ4

)

(73)

≤ 3µ4

(
8‖∇J(wi)‖

4
+ 8δ4

∥∥∥w̃i
j

∥∥∥
4

+ σ4

)

=O(µ4)‖∇J(wi)‖
4 +O(µ4)

∥∥∥w̃i
j

∥∥∥
4

+ O(µ4) (76)

After taking expectations over wi ∈ H we have:

E

{
3µ4

(
‖∇J(wi+j)‖

4 + σ4
)
|wi ∈ H

}

≤O(µ4)E
{
‖∇J(wi)‖

4|wi ∈ H
}

+O(µ4)E

{∥∥∥w̃i
j

∥∥∥
4

|wi ∈ H

}
+O(µ4)

≤O(µ4)E

{∥∥∥w̃i
j

∥∥∥
4

|wi ∈ H

}
+O(µ4) (77)

For the last term, we have:

8µ2
∥∥∥(I − µHi+j) w̃

i
j + µ∇J(wi)

∥∥∥
2 (

‖∇J(wi+j)‖
2
+ σ2

)

= 8µ2
∥∥∥(I − µHi+j) w̃

i
j + µ∇J(wi)

∥∥∥
2

‖∇J(wi+j)‖
2

+ 8µ2
∥∥∥(I − µH i+j) w̃

i
j + µ∇J(wi)

∥∥∥
2

σ2

(66)

≤ 8µ2

(
(1 + µδ)2

1− µδ

∥∥∥w̃i
j

∥∥∥
2

+
µ

δ
‖∇J(wi)‖

2

)
‖∇J(wi+j)‖

2

+ 8µ2

(
(1 + µδ)2

1− µδ

∥∥∥w̃i
j

∥∥∥
2

+
µ

δ
‖∇J(wi)‖

2

)
σ2

= 8µ2

(
(1 + µδ)2

1− µδ

∥∥∥w̃i
j

∥∥∥
2

+
µ

δ
‖∇J(wi)‖

2

)

× ‖∇J(wi) +∇J(wi+j)−∇J(wi)‖
2

+ 8µ2

(
(1 + µδ)2

1− µδ

∥∥∥w̃i
j

∥∥∥
2

+
µ

δ
‖∇J(wi)‖

2

)
σ2

(66)

≤ 8µ2

(
(1 + µδ)

2

1− µδ

∥∥∥w̃i
j

∥∥∥
2

+
µ

δ
‖∇J(wi)‖

2

)

×
(
2‖∇J(wi)‖

2
+ 2‖∇J(wi+j)−∇J(wi)‖

2
)

+ 8µ2

(
(1 + µδ)

2

1− µδ

∥∥∥w̃i
j

∥∥∥
2

+
µ

δ
‖∇J(wi)‖

2

)
σ2
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(66)

≤ 8µ2

(
(1 + µδ)2

1− µδ

∥∥∥w̃i
j

∥∥∥
2

+
µ

δ
‖∇J(wi)‖

2

)

×

(
2‖∇J(wi)‖

2
+ 2δ2

∥∥∥w̃i
j

∥∥∥
2
)

+ 8µ2

(
(1 + µδ)

2

1− µδ

∥∥∥w̃i
j

∥∥∥
2

+
µ

δ
‖∇J(wi)‖

2

)
σ2

=O(µ2)
∥∥∥w̃i

j

∥∥∥
4

+O(µ3)‖∇J(wi)‖
4

+O(µ2)‖∇J(wi)‖
2
∥∥∥w̃i

j

∥∥∥
2

+O(µ2)
∥∥∥w̃i

j

∥∥∥
2

+O(µ3)‖∇J(wi)‖
2

(78)

After taking conditional expectations:

E

{
8µ2
∥∥∥(I − µH i+j) w̃

i
j + µ∇J(wi)

∥∥∥
2

×
(
‖∇J(wi+j)‖

2
+ σ2

)
|wi ∈ H

}

≤O(µ2)E

{∥∥∥w̃i
j

∥∥∥
4

|wi ∈ H

}

+O(µ3)E
{
‖∇J(wi)‖

4|wi ∈ H
}

+O(µ2)E

{
‖∇J(wi)‖

2
∥∥∥w̃i

j

∥∥∥
2

|wi ∈ H

}

+O(µ2)E

{∥∥∥w̃i
j

∥∥∥
2

|wi ∈ H

}

+O(µ3)E
{
‖∇J(wi)‖

2|wi ∈ H
}

≤O(µ2)E

{∥∥∥w̃i
j

∥∥∥
4

|wi ∈ H

}
+O(µ3) · O(µ2)

+O(µ2)E

{
O(µ)

∥∥∥w̃i
j

∥∥∥
2

|wi ∈ H

}
+O(µ2) ·O(µ)

+O(µ3) · O(µ)

≤O(µ2)E

{∥∥∥w̃i
j

∥∥∥
4

|wi ∈ H

}
+O(µ3) (79)

Returning to (72), after taking expectations over wi ∈ H on

both sides and grouping terms we find:

E

{∥∥∥w̃i
j+1

∥∥∥
4

|wi ∈ H

}

≤
(1 + µδ)

4
+O(µ2)

(1− µδ)
3 E

{∥∥∥w̃i
j

∥∥∥
4

|wi ∈ H

}
+O(µ3) (80)

Recall again that w̃
i
0 = 0 and therefore iterating yields:

E

{∥∥∥w̃i
j

∥∥∥
4

|wi ∈ H

}

≤

(
j−1∑

n=0

(
(1 + µδ)

4
+O(µ2)

(1− µδ)
3

)n)
O(µ3)

=
1−

(
(1+µδ)4+O(µ2)

(1−µδ)3

)j

1− (1+µδ)4+O(µ2)

(1−µδ)3

O(µ3)

=

((
(1+µδ)4+O(µ2)

(1−µδ)3

)j
− 1

)
(1− µδ)3

(1 + µδ)
4
+O(µ2)− (1− µδ)

3 O(µ3)

≤

(
(1+µδ)4+O(µ2)

(1−µδ)3

)j
− 1

(1 + µδ)
4
+O(µ2)− (1− µδ)

3O(µ3)

≤

(
(1+µδ)4+O(µ2)

(1−µδ)3

)j

(1 + µδ)
4
+O(µ2)− (1− µδ)

3O(µ3)

(a)

≤

(
(1+µδ)4+O(µ2)

(1−µδ)3

)j

O(µ)
O(µ3)

=

(
(1 + µδ)

4
+O(µ2)

(1− µδ)
3

)j

O(µ2)

≤

(
(1 + µδ)

4
+O(µ2)

(1− µδ)
3

)T
µ

O(µ2)

≤O(µ2) (81)

where in (a) we expanded:

(1 + µδ)
4
+O(µ2)− (1− µδ)

3

= 1 + 4µδ +O(µ2)− 1 + 3µδ −O(µ2) = O(µ) (82)

and the last step follows from Lemma 2. This establishes (46).

Eq. (45) then follows from Jensen’s inequality via:

E

{∥∥∥w̃i
j

∥∥∥
3

|wi ∈ H

}
≤

(
E

{∥∥∥w̃i
j

∥∥∥
4

|wi ∈ H

})3/4

≤
(
O(µ2)

)3/4
= O(µ3/2) (83)

We now study the difference between the short-term

model (42) and the true recursion (41). We have:

wi+j+1 −w′
i+j+1

= − w̃i
i+1 + w̃

′i
i+1

= − (I − µHi+i) w̃
i
j − µ∇J(wi)− µ si+j+1

+
(
I − µ∇2J(wi)

)
w̃

′i
i + µ∇J(wi) + µ si+j+1

= − (I − µHi+i) w̃
i
j +

(
I − µ∇2J(wi)

)
w̃

′i
i

=
(
I − µ∇2J(wi)

) (
wi+j −w′

i+j

)

+ µ
(
Hi+j −∇2J(wi)

)
w̃

i
j (84)

Before proceeding, note that the difference between the Hes-

sians in the driving term can be bounded as:

∥∥∇2J(wi)−Hi+i

∥∥

=

∥∥∥∥∇2J(wi)−

∫ 1

0

∇2J ((1− t)wi+j +twi) dt

∥∥∥∥

=

∥∥∥∥
∫ 1

0

(
∇2J(wi)−∇2J ((1− t)wi+j +twi)

)
dt

∥∥∥∥
(a)

≤

∫ 1

0

∥∥∇2J(wi)−∇2J ((1− t)wi+j +twi)
∥∥ dt

(b)

≤ ρ

∫ 1

0

‖(1− t)wi−(1− t)wi+j‖ dt

= ρ
∥∥∥w̃i

j

∥∥∥
∫ 1

0

(1− t)dt =
ρ

2

∥∥∥w̃i
j

∥∥∥ (85)



10

where (a) follows Jensen’s inequality and (b) follows form the

Lipschitz Hessian assumption 2. Returning to (84) and taking

norms yields:

‖wi+j+1 −w′
i+j+1 ‖

2

=
∥∥∥
(
I − µ∇2J(wi)

) (
wi+j −w′

i+j

)

+ µ
(
Hi+j −∇2J(wi)

)
w̃

i
j

∥∥∥
2

(a)

≤
1

1− µδ

∥∥(I − µ∇2J(wi)
) (

wi+j −w′
i+j

)∥∥2

+
µ2

µδ

∥∥∥
(
Hi+j −∇2J(wi)

)
w̃

i
j

∥∥∥
2

(b)

≤
1

1− µδ

∥∥(I − µ∇2J(wi)
) (

wi+j −w′
i+j

)∥∥2

+
µ

δ

∥∥∥
(
Hi+j −∇2J(wi)

)
w̃

i
j

∥∥∥
2

(85)

≤
(1 + µδ)

2

1− µδ

∥∥wi+j −w′
i+j

∥∥2 + µ

δ

ρ

2

∥∥∥w̃i
j

∥∥∥
4

(86)

where (a) again follows from Jensen’s inequality (66) with

α = 1 − µδ and (b) follows from the same inequality with

α = 1
2 . Taking expectations over wi ∈ H yields:

E

{
‖wi+j+1 −w′

i+j+1 ‖
2
|wi ∈ H

}

≤
(1 + µδ)2

1− µδ
E

{∥∥wi+j −w′
i+j

∥∥2|wi ∈ H
}

+
µ

δ

ρ

2
E

{∥∥∥w̃i
j

∥∥∥
4

|wi ∈ H

}

(81)

≤
(1 + µδ)

2

1− µδ
E
∥∥wi+j −w′

i+j

∥∥2 +O(µ3) (87)

Since both the true and the short-term model are initialized

at wi, we have wi+0 −w′
i+0 = 0. Iterating and applying the

same argument as above leads to:

E ‖wi+j+1 −w′
i+j+1 ‖

2
≤ O(µ2) (88)

which is (47).

APPENDIX D

PROOF OF LEMMA 1

Recall that J(·) has δ-Lipschitz gradients, which implies:

J(wi+j) ≤ J(w′
i+j) +∇J

(
w′

i+j

)T (
wi+j −w′

i+j

)

+
δ

2

∥∥wi+j −w′
i+j

∥∥2 (89)

In the vicinity of saddle-points, we can refine the upper

bound (89) by taking expectations conditioned on wi ∈ H:

E {J(wi+j)|wi ∈ H}

≤ E
{
J(w′

i+j)|wi ∈ H
}

+ E

{
∇J

(
w′

i+j

)T (
wi+j −w′

i+j

)
|wi ∈ H

}

+
δ

2
E

{∥∥wi+j −w′
i+j

∥∥2|wi ∈ H
}

(a)

≤ E
{
J(w′

i+j)|wi ∈ H
}

+

√
E

{∥∥∇J
(
w′

i+j

)∥∥2|wi ∈ H
}

×

√
E

{∥∥wi+j −w′
i+j

∥∥2|wi ∈ H
}

+
δ

2
E

{∥∥wi+j −w′
i+j

∥∥2|wi ∈ H
}

(a)

≤ E
{
J(w′

i+j)|wi ∈ H
}

+

√
E

{
2‖∇J (wi)‖

2
+ 2δ2

∥∥w̃′i
j

∥∥2|wi ∈ H
}

×

√
E

{∥∥wi+j −w′
i+j

∥∥2|wi ∈ H
}

+
δ

2
E

{∥∥wi+j −w′
i+j

∥∥2|wi ∈ H
}

(b)

≤ E
{
J(w′

i+j)|wi ∈ H
}

+O
(
µ1/2

)√
E

{∥∥wi+j −w′
i+j

∥∥2|wi ∈ H
}

+
δ

2
E

{∥∥wi+j −w′
i+j

∥∥2|wi ∈ H
}

(c)

≤ E
{
J(w′

i+j)|wi ∈ H
}
+O(µ3/2) (90)

where (a) follows from:
∥∥∇J

(
w′

i+j

)∥∥2

=
∥∥∇J (wi) +∇J

(
w′

i+j

)
−∇J (wi)

∥∥2

≤ 2‖∇J (wi)‖
2
+ 2
∥∥∇J

(
w′

i+j

)
−∇J (wi)

∥∥2

≤ 2‖∇J (wi)‖
2
+ 2δ2

∥∥w′
i+j −wi

∥∥2 (91)

Step (b) follows from Cauchy-Schwarz inequality and (c) is

a result of the definition of H as approximately strict-saddle

points (24) and (48) and (c) is a result of (47).

APPENDIX E

PROOF OF THEOREM 2

The argument generally mirrors the proof to [9, Theorem

1] after accounting for the relative variance bound (17) by

noting that, around first-order stationary points, the relative

component β4‖∇J(wi)‖4 will necessarily be small.

From Corollary 1, we have:

E {J(wi+j)|wi ∈ H} ≤ E
{
J(w′

i+j)|wi ∈ H
}
+O(µ3/2)

(92)

so long as j ≤ T
µ . We can hence proceed by study-

ing E
{
J(w′

i+j)|H
}

and will add the approximation error

O(µ3/2) to the end result. From (14) we find:

J(w′
i+j) ≤ J(wi)−∇J(wi)

T
w̃

′i
j +

1

2

∥∥w̃′i
j

∥∥2
∇2J(wi)

+
ρ

6

∥∥w̃′i
j

∥∥3 (93)

We will bound each term appearing on the right-hand side.

From (42) we find after conditioning on F i+j :

E
{
w̃

′i
j+1|F i+j

}

=
(
I − µ∇2J(wi)

)
w̃

′i
j + µ∇J(wi) + µE {si+j+1 |F i+j}

(16)
=
(
I − µ∇2J(wi)

)
w̃

′i
j + µ∇J(wi) (94)
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Note that F i+j denotes the information captured in wk,j up

to time i + j, while F i denotes the information available up

to time i. Hence:

F i+j = F i ∪ filtration {wk,i+1, . . . ,wk,i+j} (95)

Hence, taking expectation of (94) conditioned on F i removes

the elements in filtration {wk,i+1, . . . ,wk,i+j} contained in

F i and yields:

E
{
w̃

′i
j+1|F i

}
=
(
I − µ∇2J(wi)

)
E
{
w̃

′i
j |F i

}

+ µ∇J(wi) (96)

Since w̃
′i
0 = 0, iterating starting at j = 0 yields:

E
{
w̃

′i
j |F i

}
= µ

(
j∑

k=1

(
I − µ∇2J(wi)

)k−1

)
∇J(wi)

(97)

This allows us to bound the linear term appearing in (93) as:

− E

{
∇J(wi)

T
w̃

′i
j |F i

}

= −∇J(wi)
T
E
{
w̃

′i
j |F i

}

(97)
= − µ∇J(wi)

T

(
j∑

k=1

(
I − µ∇2J(wi)

)k−1

)
∇J(wi)

= − µ‖∇J(wi)‖
2∑j

k=1
(I−µ∇2J(wi))

k−1 (98)

To study the quadratic term in (93), we introduce the eigen-

value decomposition of the Hessian around the iterate at time

i:

∇2J(wi) , V iΛiV
T

i (99)

which motivates the transformation:
∥∥w̃′i

j+1

∥∥2
∇2J(wi)

=
∥∥w̃′i

j+1

∥∥2
V iΛiV

T

i

=
∥∥∥V T

i wi − V T

i w
′
i+j+1

∥∥∥
2

Λi

=
∥∥w′i

j+1

∥∥2
Λi

(100)

where we introduced:

w′i
j+1 , V T

i w̃
′i
j+1 (101)

Under this transformation, recursion (42) is also diagonalized,

yielding:

w′i
j+1

, V T

i w̃
′i
j+1

= V T

i

(
I − µ∇2J(wi)

)
V iV

T

i w̃
′i
j

+ µV T

i ∇J(wi) + µV T

i si+j+1

= (I − µΛi)w
′i
j + µ∇J(wi) + µsi+j+1 (102)

with ∇J(wi) , V T

i ∇J(wi) and si+j+1 , V T

i si+j+1.

Applying the same transformation to the conditional mean

recursion (96), and subtracting the transformed conditional

mean on both sides of (102), we find:

w′i
j+1 − E

{
w′i

j+1|F i

}

= (I − µΛi)
(
w′i

j − E
{
w′i

j |F i

})
+ µsi+j+1 (103)

which allows us to cancel the driving term involving the gra-

dient. For brevity, define the (conditionally) centered random

variable:

w̌′i
j+1 = w′i

j+1 − E
{
w′i

j+1|F i

}
(104)

so that:

w̌′i
j+1 = (I − µΛi) w̌

′i
j + µsi+j+1 (105)

Before proceeding, note that we can express:

E

{∥∥w̌′i
j

∥∥2
Λi
|F i

}

= E

{∥∥w′i
j − E

{
w′i

j |F i

}∥∥2
Λi
|F i

}

= E

{∥∥w′i
j

∥∥2
Λi
|F i

}
−
∥∥E
{
w′i

j |F i

}∥∥2
Λi

(106)

Hence, we have:

E

{∥∥w̃′i
j

∥∥2
∇2J(wi)

|F i

}

= E

{∥∥w′i
j

∥∥2
Λi
|F i

}

= E

{∥∥w̌′i
j

∥∥2
Λi
|F i

}
+
∥∥E
{
w′i

j |F i

}∥∥2
Λi

(107)

In order to make claims about E

{∥∥w̃′i
j

∥∥2
∇2J(wi)

|F i

}
by

studying E

{∥∥w̌′i
j

∥∥2
Λi
|F i

}
, we need to establish a bound on

∥∥E
{
w′i

j |F i

}∥∥2
Λi

. We have:

∥∥E
{
w′i

j |F i

}∥∥2
Λi

=
∥∥∥E
{
V T

i w̃
′i
j |F i

}∥∥∥
2

Λi

(97)
= µ2

∥∥∥∥∥V
T

i

(
j∑

k=1

(
I − µ∇2J(wi)

)k−1

)
∇J(wi)

∥∥∥∥∥

2

Λi

= µ2

∥∥∥∥∥

(
j∑

k=1

(I − µΛi)
k−1

)
∇J(wi)

∥∥∥∥∥

2

Λi

= µ2∇J(wi)
T

(
j∑

k=1

(I − µΛi)
k−1

)
Λi

×

(
j∑

k=1

(I − µΛi)
k−1

)
∇J(wi) (108)

We shall order the eigenvalues of ∇2J(wi), such that its

eigendecomposition has a block structure:

V i =
[
V

≥0
i V <0

i

]
, Λi =

[
Λ

≥0
i 0

0 Λ
<0
i

]
(109)

with δI ≥ Λ
≥0
i ≥ 0 and Λ

<0
i < 0. Note that since

∇2J(wi) is random, the decomposition itself is random as

well. Nevertheless, it exists with probability one. We also

decompose the transformed gradient vector with appropriate

dimensions:

∇J(wi) = col
{
∇J(wi)

≥0
,∇J(wi)

<0
}

(110)
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We can then decompose (108):

∥∥E
{
w′i

j |F i

}∥∥2
Λi

= µ2∇J(wi)
T

(
j∑

k=1

(I − µΛi)
k−1

)
Λi

×

(
j∑

k=1

(I − µΛi)
k−1

)
∇J(wi)

= µ2
(
∇J(wi)

≥0
)T
(

j∑

k=1

(
I − µΛ≥0

i

)k−1
)
Λ

≥0
i

×

(
j∑

k=1

(
I − µΛ≥0

i

)k−1
)
∇J(wi)

≥0

+ µ2
(
∇J(wi)

<0
)T
(

j∑

k=1

(
I − µΛ<0

i

)k−1

)
Λ

<0
i

×

(
j∑

k=1

(
I − µΛ<0

i

)k−1

)
∇J(wi)

<0

(a)

≤ µ2
(
∇J(wi)

≥0
)T
(

j∑

k=1

(
I − µΛ≥0

i

)k−1
)
Λ

≥0
i

×

(
j∑

k=1

(
I − µΛ≥0

i

)k−1
)
∇J(wi)

≥0

(b)

≤ µ2
(
∇J(wi)

≥0
)T
(

∞∑

k=1

(
I − µΛ≥0

i

)k−1
)
Λ

≥0
i

×

(
j∑

k=1

(
I − µΛ≥0

i

)k−1
)
∇J(wi)

≥0

(c)
= µ2

(
∇J(wi)

≥0
)T (

µΛ≥0
i

)−1

Λ
≥0
i

×

(
j∑

k=1

(
I − µΛ≥0

i

)k−1
)
∇J(wi)

≥0

= µ
(
∇J(wi)

≥0
)T
(

j∑

k=1

(
I − µΛ≥0

i

)k−1
)
∇J(wi)

≥0

(d)

≤ µ
(
∇J(wi)

≥0
)T
(

j∑

k=1

(
I − µΛ≥0

i

)k−1
)
∇J(wi)

≥0

+ µ
(
∇J(wi)

<0
)T
(

j∑

k=1

(
I − µΛ<0

i

)k−1

)
∇J(wi)

<0

≤ µ∇J(wi)
T

(
j∑

k=1

(I − µΛi)
k−1

)
∇J(wi)

= µ
∥∥∇J(wi)

∥∥2∑j

k=1
(I−µΛi)

k−1 (111)

where (a) follows from Λ
<0
i < 0, (b) follows from:

j∑

k=1

(
I − µΛ≥0

i

)k−1

≤
∞∑

k=1

(
I − µΛ≥0

i

)k−1

(112)

for µ < 1
δ . Step (c) follows from the formula for the geometric

matrix series, and (d) follows from:

µ
(
∇J(wi)

≥0
)T
(

j∑

k=1

(
I − µΛ≥0

i

)k−1
)
∇J(wi)

≥0 ≥ 0

(113)

Comparing (111) to (98), we find that we can bound:

−E

{
∇J(wi)

T
w̃

′i
j |F i

}
+
∥∥E
{
w′i

j |F i

}∥∥2
Λi

≤ 0 (114)

To recap, we can simplify (93) as:

E
{
J(w′

i+j)|F i

}

≤ J(wi) +
1

2
E

{∥∥w̌′i
j

∥∥2
Λi
|F i

}
+

ρ

6
E

{∥∥w̃′i
j

∥∥3|F i

}

(115)

We proceed with the now simplified quadratic term. We square

both sides of (105) under an arbitrary diagonal weighting

matrix Σi, deterministic conditioned on wi and wi+j , to

obtain:

∥∥w̌′i
j+1

∥∥2
Σi

=
∥∥(I − µΛi) w̌

′i
j + µsi+j+1

∥∥2
Σi

=
∥∥(I − µΛi) w̌

′i
j

∥∥2
Σi

+ µ2‖si+j+1‖
2
Σi

+ 2µw̌′i
j

T

(I − µΛi)Σisi+j+1 (116)

Note that upon conditioning on F i+j , all elements of the

cross-term, aside from si+j+1, become deterministic, and as

such the term disappears when taking expectations. We obtain:

E

{∥∥w̌′i
j+1

∥∥2
Σi

|F i+j

}

=
∥∥(I − µΛi) w̌

′i
j

∥∥2
Σi

+ µ2
E

{
‖si+j+1‖

2
Σi

|F i+j

}

=
∥∥w̌′i

j

∥∥2
Σi−2µΛiΣi+µ2ΛiΣiΛi

+ µ2Tr
(
V iΣiV

T

i Rs (wi+j)
)

=
∥∥w̌′i

j

∥∥2
Σi−2µΛiΣi

+ µ2Tr
(
V iΣiV

T

i Rs (wi)
)

+ µ2Tr
(
V iΣiV

T

i (Rs (wi+j)−Rs (wi))
)

+ µ2
∥∥w̌′i

j

∥∥2
ΛiΣiΛi

(117)

We proceed to bound the last two terms. First, we have:

Tr
(
V iΣiV

T

i (Rs (wi+j)−Rs (wi))
)

(a)

≤
∥∥∥V iΣiV

T

i

∥∥∥ ‖Rs (wi+j)−Rs (wi)‖

(b)

≤ ρ (Σi)βR

∥∥∥w̃i
j

∥∥∥
γ

(118)

where (a) follows from Cauchy-Schwarz, since Tr(ATB) is an

inner product over the space of symmetric matrices, and hence,

|Tr(ATB)| ≤ ‖A‖‖B‖, and (b) follows from Assumption 4.

For the second term, we have:

∥∥w̌′i
j

∥∥2
ΛiΣiΛi

≤ ρ (ΛiΣiΛi)
∥∥w̌′i

j

∥∥2

≤ δ2ρ (Σi)
∥∥w̌′i

j

∥∥2 (119)
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We conclude that

E

{∥∥w̌′i
j+1

∥∥2
Σi

|F i

}

= E

{∥∥w̌′i
j

∥∥2
Σi−2µΛiΣi

|F i

}
+ µ2Tr

(
V iΣiV

T

i Rs (wi)
)

+ µ2ρ (Σi)E
{
qi+j |F i

}
(120)

where

qi+j , βR

∥∥∥w̃i
j

∥∥∥
γ

+ δ2
∥∥w̌′i

j

∥∥2 (121)

For brevity, we define

D , I − 2µΛi (122)

Y , V T

i Rs (wi)V i (123)

With these substitutions we obtain:

E

{∥∥w̌′i
j+1

∥∥2
Σi

|F i

}

= E

{∥∥w̌′i
j

∥∥2
DΣi

|F i

}
+ µ2Tr (ΣiY ) + µ2ρ (Σi)E

{
qi+j |F i

}

(124)

At j = 0, we have w̌′i
0 = 0. Letting Σj = ΛiD

j , we can

iterate to obtain:

E

{∥∥w̌′i
j+1

∥∥2
Λi
|F i

}

= µ2

j∑

n=0

Tr (ΛiD
nY )

+ µ2

j∑

n=0

ρ (ΛiD
n) · E

{
qi+n|F i

}

= µ2Tr

(
Λi

(
j∑

n=0

Dn

)
Y

)

+ µ2

j∑

n=0

ρ (ΛiD
n) · E

{
qi+n|F i

}
(125)

since w′
i+j+1 = wi at j = 0. Our objective is to show that

the first term on the right-hand side yields sufficient descent

(i.e., will be sufficiently negative), while the second term is

small enough to be negligible. To this end, we again make use

of the structured eigendecomposition (109). We have:

µ2Tr

(
Λi

(
j∑

n=0

Dn

)
V T

i Rs (wi)V i

)

(a)
= µ2Tr

(
Λ

≥0
i

(
j∑

n=0

(
I − 2µΛ≥0

i

)n
)

×
(
V

≥0
i

)T
Rs (wi)V

≥0
i

)

+ µ2Tr

(
Λ

<0
i

(
j∑

n=0

(
I − 2µΛ<0

i

)n
)

×
(
V <0

i

)T
Rs (wi)V

<0
i

)

(b)
= µ2Tr

(
Λ

≥0
i

(
j∑

n=0

(
I − 2µΛ≥0

i

)n
)

×
(
V

≥0
i

)T
Rs (wi)V

≥0
i

)

− µ2Tr

(
(
−Λ

<0
i

)
(

j∑

n=0

(
I − 2µΛ<0

i

)n
)

×
(
V <0

i

)T
Rs (wi)V

<0
i

)

(c)

≤ µ2Tr

(
Λ

≥0
i

(
j∑

n=0

(
I − 2µΛ≥0

i

)n
))

× λmax

((
V

≥0
i

)T
Rs (wi)V

≥0
i

)

− µ2Tr

(
(
−Λ

<0
i

)
(

j∑

n=0

(
I − 2µΛ<0

i

)n
))

× λmin

((
V <0

i

)T
Rs (wi)V

<0
i

)

(d)

≤ µ2Tr

(
Λ

≥0
i

(
j∑

n=0

(
I − 2µΛ≥0

i

)n
))(

β2‖∇J(wi)‖
2
+ σ2

)

− µ2Tr

(
(
−Λ

<0
i

)
(

j∑

n=0

(
I − 2µΛ<0

i

)n
))

σ2
ℓ (126)

where in (a) we decomposed the trace since Λi

(∑j
n=0 D

n
)

is a diagonal matrix, (b) applies −
(
−Λ

<0
i

)
= Λ

<0
i . where

in (a) we decomposed the trace since Λi

(∑j
n=0 D

n
)

is

a diagonal matrix and applied −
(
−Λ

<0
i

)
= Λ

<0
i . Step (b)

follows from Tr(A)λmin(B) ≤ Tr(AB) ≤ Tr(A)λmax(B)
which holds for A = AT, B = BT ≥ 0, and (c) follows from

the bounded covariance property (21) and Assumption 5.For

the positive term, we have:

µ2Tr

(
Λ

≥0
i

(
j∑

n=0

(
I − 2µΛ≥0

i

)n
))(

β2‖∇J(wi)‖
2
+ σ2

)

(a)

≤ µ2Tr

(
Λ

≥0
i

(
∞∑

n=0

(
I − 2µΛ≥0

i

)n
))(

β2‖∇J(wi)‖
2
+ σ2

)

(b)

≤ µ2Tr

(
Λ

≥0
i

(
2µΛ≥0

i

)−1
)(

β2‖∇J(wi)‖
2
+ σ2

)

(c)

≤
µ

2
M
(
β2‖∇J(wi)‖

2
+ σ2

)
(127)

where (a) follows since I − 2µΛ≥0
i is elementwise non-

negative for µ ≤ 2
δ , (b) follows from

∑∞

n=0 A
n = (I −A)−1

and (c) follows since ∇2J(wi) is of dimension M . Hence,

under expectation:

µ2
E

{
Tr

(
Λ

≥0
i

(
j∑

n=0

(
I − 2µΛ≥0

i

)n
))

×
(
β2‖∇J(wi)‖

2 + σ2
)
|wi ∈ H

}

≤
µ

2
M
(
β2

E

{
‖∇J(wi)‖

2|wi ∈ H
}
+ σ2

)

(24)

≤
µ

2
M
(
β2 ·O(µ) + σ2

)
=

µ

2
Mσ2 +O(µ2) (128)
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For the negative term, we have under expectation conditioned

on wi ∈ H:

E

{
Tr

(
(
−Λ

<0
i

)
(

j∑

n=0

(
I − 2µΛ<0

i

)n
))

σ2
ℓ

∣∣∣∣∣wi ∈ H

}

(a)

≥ E

{
τ

(
j∑

n=0

(1 + 2µτ)
n

)
σ2
ℓ

∣∣∣∣∣wi ∈ H

}

(b)
= τ

(
j∑

n=0

(1 + 2µτ)n
)
σ2
ℓ

(c)
= τ

1− (1 + 2µτ)i+1

1− (1 + 2µτ)
σ2
ℓ

=
1

2µ

(
(1 + 2µτ)j+1 − 1

)
σ2
ℓ (129)

Step (a) makes use of the fact that(
−Λ

<0
i

) (∑j
n=0

(
I − 2µΛ<0

i

)n)
is a diagonal matrix,

where all elements are non-negative. Hence, its trace can be

bounded by any of its diagonal elements:

Tr

(
(
−Λ

<0
i

)
(

j∑

n=0

(
I − 2µΛ<0

i

)n
))

(24)

≥ τ

(
j∑

n=0

(1 + 2µτ)
n

)
(130)

In (b) we dropped the expectation since the expression is no

longer random, and (c) is the result of a geometric series. We

return to the full expression (126) and find:

µ2
E

{
Tr

(
Λi

(
j∑

n=0

Dn

)
V T

i Rs (wi)V i

)
|wi ∈ H

}

≤
µ

2
Mσ2 +O(µ2)−

µ

2

(
(1 + 2µτ)

j+1 − 1
)
σ2
ℓ

(a)

≤ −
µ

2
Mσ2 (131)

where (a) holds if, and only if,

µ

2
Mσ2 +O(µ2)−

µ

2

(
(1 + 2µτ)

j+1 − 1
)
σ2
ℓ ≤ −

µ

2
Mσ2

⇐⇒ 2M
σ2

σ2
ℓ

+O(µ) + 1 ≤ (1 + 2µτ)
j+1

⇐⇒ log

(
2M

σ2

σ2
ℓ

+ 1 +O(µ)

)
≤ (j + 1)log (1 + 2µτ)

⇐⇒
log
(
2M σ2

σ2

ℓ

+ 1 +O(µ)
)

log (1 + 2µτ)
≤ j + 1

⇐⇒
log
(
2M σ2

σ2

ℓ

+ 1 +O(µ)
)

O(µτ)
≤ j + 1 (132)

where the last line follows from limx→0 1/x log(1 + x) = 1.

We conclude that there exists a bounded is such that:

µ2
E

{
Tr

(
Λi

(
is∑

n=0

Dn

)
V T

i Rs (wi)V i

)}

≤ −
µ

2
Mσ2 (133)

Applying this relation to (125) and taking expectations over

wi ∈ H, we obtain:

E

{∥∥w̌′i
is+1

∥∥2
Λi
|wi ∈ H

}

≤ µ2
is∑

n=0

E
{(

Tr (ΛiD
n) · E

{
qi+n|F i

})
|wi ∈ H

}

−
µ

2
Mσ2 (134)

We now bound the perturbation term:

µ2
is∑

n=0

E
{(

ρ (ΛiD
n) ·E

{
qi+n|F i

})
|wi ∈ H

}

≤ µ2
is∑

n=0

E
{(

ρ (δI(I + 2µδI)
n
) · E

{
qi+n|F i

})
|wi ∈ H

}

= µ2
is∑

n=0

(
δ(1 + 2µδ)

n · E
{
qi+n|wi ∈ H

})

(121)
= µ2

is∑

n=0

δ(1 + 2µδ)
n ·

(
βR E

{∥∥∥w̃i
j

∥∥∥
γ

|wi ∈ H
}

+ δ2 E
{∥∥w̌′i

j

∥∥2|wi ∈ H
})

≤ µ2
is∑

n=0

δ(1 + 2µδ)
n ·
(
O(µγ) +O(µ2)

)

≤ δ

(
is∑

n=0

(1 + 2µδ)n
)
O(µ2+γ)

(a)

≤ O(µ1+γ) = o(µ) (135)

where (a) follows from Lemma 2. We conclude:

E

{∥∥w̌′i
is+1

∥∥2
Λi
|wi ∈ H

}
≤ −

µ

2
Mσ2 + o(µ) (136)

Returning to (115), we find:

E
{
J(w′

i+j)|wi ∈ H
}

≤ E {J(wi)|wi ∈ H}+
1

2
E

{∥∥w̌′i
j

∥∥2
Λi
|wi ∈ H

}

+
ρ

6
E

{∥∥w̃′i
j

∥∥3|wi ∈ H
}

≤ E {J(wi)|wi ∈ H} −
µ

2
Mσ2 + o(µ) (137)

and with (92) we prove the result.

APPENDIX F

PROOF OF THEOREM 3

We define the stochastic process:

t(k + 1) =





t(k) + 1, if wt(k) ∈ G,

t(k) + 1, if wt(k) ∈ M,

t(k) + is, if wt(k) ∈ H.

(138)

where t(0) = 0. From Theorem 1, we have:

E
{
J(wt(k))− J(wt(k+1))|wt(k) ∈ G

}

= E
{
J(wt(k))− J(wt(k)+1)|wt(k) ∈ G

}

≥ µ2 c2
π

(139)



15

and

E
{
J(wt(k))− J(wt(k+1))|wt(k) ∈ M

}

= E
{
J(wt(k))− J(wt(k)+1)|wt(k) ∈ M

}

≥ − µ2c2 (140)

while Theorem 2 ensures:

E
{
J(wt(k))− J(wt(k+1))|wt(k) ∈ H

}

= E
{
J(wt(k))− J(wt(k)+is)|wt(k) ∈ H

}

≥
µ

2
Mσ2 − o(µ) (141)

Together, they yield:

E
{
J(wt(k))− E J(wt(k+1))

}

= E
{
J(wt(k))− E J(wt(k+1))|wt(k) ∈ G

}
· πG

t(k)

+ E
{
J(wt(k))− E J(wt(k+1))|wt(k) ∈ H

}
· πH

t(k)

+ E
{
J(wt(k))− E J(wt(k+1))|wt(k) ∈ M

}
· πM

t(k)

≥ µ2 c2
π

· πG
t(k) +

(µ
2
Mσ2 − o(µ)

)
· πH

t(k) − µ2c2 · π
M
t(k)

(142)

Suppose πM
t(k) ≤ 1− π for all i. Then πG

t(k) + πH
t(k) ≥ π and

E
{
J(wt(k))− E J(wt(k+1))

}

≥ µ2 c2
π

·
(
π − πH

t(k)

)
+
(µ
2
Mσ2 − o(µ)

)
· πH

t(k)

− µ2c2 · (1− π)

= µ2c2π +
(µ
2
Mσ2 − µ2 c2

π
− o(µ)

)
πH
t(k)

(a)

≥ µ2c2π (143)

where (a) holds whenever µ
2Mσ2 − µ2 c2

π − o(µ) ≥ 0, which

holds whenever µ is sufficiently small. We hence have by

telescoping:

J(w0)− Jo ≥ E J(wt(0))− E J(wt(k))

= E J(wt(0))− E J(wt(1))

+ EJ(wt(1))− E J(wt(2))

+ · · ·

+ EJ(wt(k−1))− E J(wt(k))

≥ µ2c2πk (144)

Rearranging yields:

k ≤
J(w0)− Jo

µ2c2π
(145)

We conclude by definition of the stochastic process t(k):

i = t(k) ≤ k · is ≤
(J(w0)− Jo)

µ2c2π
is (146)
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