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Linearization-Based Quantized Stabilization

of Nonlinear Systems Under DoS Attacks
Rui Kato, Ahmet Cetinkaya, Member, IEEE, and Hideaki Ishii, Senior Member, IEEE

Abstract—Motivated by recent security issues in cyber-physical
systems, this technical note studies the stabilization problem of
networked control systems under Denial-of-Service (DoS) attacks.
In particular, we consider to stabilize a nonlinear system with
limited data rate via linearization. We employ a deterministic
DoS attack model constrained in terms of attacks’ frequency and
duration, allowing us to cover a large class of potential attacks. To
achieve asymptotic stabilization, we propose a resilient dynamic
quantizer in the sense that it does not saturate in the presence
of packet losses caused by DoS attacks. A sufficient condition for
stability is derived by restricting the average DoS frequency and
duration. In addition, because of the locality of linearization, we
explicitly investigate an estimate of the region of attraction, which
can be expected to be reduced depending on the strength of DoS
attacks. A simulation example is presented for demonstration of
our results.

Index Terms—DoS attacks, quantized control, stability analy-
sis, nonlinear systems, linearization.

I. INTRODUCTION

Networked control systems have been widely studied over

the past several decades [1]. In recent years, cyber security of

such systems has attracted much attention as the communi-

cation channels are exposed to malicious attackers; see, e.g.,

[2] and [3] for an overview. It has become clear that cyber

attacks to control systems may induce critical incidents in the

real world, resulting in, e.g., physical damages in equipments

and financial losses. The authors of [4] classified cyber attacks

on control systems into deception attacks, which are conducted

by changing the contents of packet data, and Denial-of-Service

(DoS) attacks, which refer to communication interruptions

including jamming attacks. DoS attacks are particularly critical

as it is easier to launch than deception attacks as mentioned

in [5]. For this reason, we examine the effects of DoS attacks

in this paper.

Since it is not rational to assume that malicious attacks

follow a certain probability distribution, we treat DoS attacks

in a deterministic manner rather than a stochastic one; see the

survey paper [6] for more detailed discussions on various DoS

attack models. A characterization of deterministic DoS attacks

in terms of average frequency and duration was introduced by
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[7], and is also used in this paper. In that paper, allowable DoS

frequency and duration to guarantee input-to-state stability of

linear systems were obtained. These conditions were made

less conservative in [8] by using a predictor that estimates

interrupted measurements. On the other hand, global stability

of nonlinear systems under DoS attacks was investigated in [9].

In contrast, the paper [10] provided a comprehensive treatment

of both malicious and non-malicious packet losses. A switched

system framework was also studied in [11].

On the other hand, data rate limitation of communication

channels is one of the important issues in networked control

systems [12]. In this context, information to be exchanged over

communication networks must be quantized. Many researchers

have explored a range of quantized control problems from var-

ious perspectives; see, e.g., [13] and the references therein. For

considering asymptotic stabilization under the required data

rate, we employ time-varying quantizers with the zooming-

in and zooming-out capabilities proposed by [14]. However,

packet losses may induce saturation of the dynamic quantizer,

since its quantization region becomes small as time passes.

To avoid such situations, we propose the resilient design that

expands the quantization region depending on the occurrence

of DoS attacks. Recently, observer-based quantized control

under DoS attacks was considered in [15]. In [16], the trade-

off between the minimum data rate for stabilization and the

tolerable level of DoS attacks was revealed. Furthermore, the

minimum data rate problem in the presence of probabilistic

packet losses has been addressed in [17] and [18]. These

results are applicable to linear systems but not to nonlinear

systems. In this paper, we consider quantized control of

nonlinear systems via linearization as studied in [19].

Though linearization-based control is a typical method in

practice, the effects of DoS attacks have not been much

explored in the literature. It is of particular interest in the

context of DoS attacks, since they may bring critical issues

when communication is interrupted. Indeed, if the state leaves

the region of attraction due to DoS attacks, then it will not con-

verge to the equilibrium point even after the communication

is restored. In [20], a linearization approach was analyzed and

an estimate of the region of attraction under DoS attacks was

derived. This paper provides an extension of the framework

presented there to take quantization effects into account.

The subsequent sections are organized as follows. In Sec-

tion II, we describe the problem setting and the DoS attack

model used in this paper. The encoding/decoding scheme

and the proposed resilient dynamic quantizer are introduced

in Section III. The main results of this paper are presented

in Section IV, where a sufficient condition for stability and

http://arxiv.org/abs/2012.06273v1
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Controller Plant

Channel with DoS

Fig. 1. Networked control system under DoS attacks

an initial condition to guarantee the convergence of state

trajectories are derived. In Section V, we present a simulation

example. Finally, we conclude the paper in Section VI. The

preliminary version of this paper appeared as [21]. The current

paper contains full proofs of the results.

Throughout this paper, we employ the following notation.

The sets of nonnegative reals and nonnegative integers are

denoted by R+ and Z+, respectively. Given a vector v and

a matrix M , ‖v‖∞ and ‖M‖∞ respectively denote the ∞-

norm and the induced ∞-norm. The length of an interval I is

denoted by |I|.

II. PROBLEM FORMULATION

In this section, we describe the problem setting of networked

control and the DoS attack model characterized by their

frequency and duration.

A. Nonlinear Networked Control System

Consider the nonlinear networked control system depicted

in Fig. 1, where a communication channel is inserted between

the sensor and the controller. Here, the plant to be controlled

is described by

ẋ(t) = f(x(t), u(t)), t ≥ 0, (1)

where x(t) ∈ R
n is the state and u(t) ∈ R

m is the control

input at time t. The initial state is given by x(0) = x0 ∈ R
n.

Assume that f : Rn×R
m → R

n is continuously differentiable

and that the system (1) has an equilibrium point at the origin,

i.e., f(0, 0) = 0. Then, we impose the following assumption.

Assumption 1: The function f in (1) is Lipschitz in a certain

region D := {x ∈ R
n : ‖x‖∞ < ̺} for any input u ∈ R

m,

where ̺ > 0 is some positive number. That is, there is a

constant L ≥ 0 satisfying ‖f(y, u)−f(z, u)‖∞ ≤ L‖y−z‖∞
for all y, z ∈ D and u ∈ R

m.

Letting T > 0 be a fixed sampling period, we denote by

tk := kT , k ∈ Z+, the sampling instants. The ideal sampler

ST measures the state at each sampling time. The sampled

state is then transformed by the encoder Ek into a certain

symbol to be sent through the communication channel. At the

controller side, the decoder Dk produces the quantized state

after receiving the packet as explained in the next section.

During the sampling/transmission intervals, the control input

is kept constant by the zeroth-order hold HT .

For given vectors x̄ ∈ R
n and ū ∈ R

m, let φ(t, x̄, ū) be

the solution to (1) for t ∈ [0, T ] with the initial state x0 = x̄
and the constant input u(t) ≡ ū. Then, we define φT (x̄, ū) :=
φ(T, x̄, ū). Furthermore, for ease of presentation, we write the

sampled value x(tk) as xk for each k ∈ Z+, and the same

notation is used for other variables as well.

If a DoS attack is active at a sampling time, then the packet

transmission at that instant fails. In this case, the control input

is set to zero until the next packet reaches the controller side.

Let θk ∈ {0, 1} be the indicator that stands for the absence or

presence of packet losses. If a packet loss occurs at time tk,

we set θk = 1, and otherwise θk = 0. Then, the control input

applied to the plant (1) is given as follows:

u(t) = (1 − θk)Kqk, t ∈ [tk, tk+1), k ∈ Z+, (2)

where K ∈ R
m×n is a feedback gain matrix, the choice of

which is given later. Moreover, qk ∈ R
n denotes the quantized

value of the sampled state xk .

B. Data Rate Limitation

Since we consider a communication channel whose data

rate is limited, the information that the packet can contain

is taken from a finite set. Let M := {0, 1, . . . ,Mn − 1} be

the set of integers that can be sent by communication at each

transformation, where M is a positive integer expressing the

number of the quantization levels in one coordinate of R
n.

In this case, the data rate of the channel is denoted by R :=
n log2(M)/T bits per unit of time. Defining Λ := eLT , in

what follows, we make the assumption below.

Assumption 2: The number of the quantization levels M
satisfies M > Λ.

Remark 1: The above condition can be found in [14], and

it is sufficient to stabilize the nonlinear system (1) if there

is no packet loss. Thus, the conservativeness of the data rate

condition is the same as that in [14], although DoS attacks are

considered. Note that, for linear systems, one can reduce the

data rate condition using a certain coordinate transformation

as considered in [15], [16]. However, for nonlinear systems,

it is difficult to find such a transformation. Although local

asymptotic stability can be preserved under a data rate which

is arbitrarily close to the minimum data rate for the linearized

system [22], it is not practically enough from the viewpoint

of, e.g., the region of attraction. Because we quantitatively

explore the region of attraction in the subsequent section, the

above assumption on the data rate is employed.

C. Averagely Constrained DoS Attacks

Here, we introduce a deterministic class of DoS attacks. For

i ∈ Z+, let ai ≥ 0 and τi ≥ 0 denote the launching time and

the length of the ith DoS attack, respectively. Notice that when

τi = 0, the attack is impulsive, and thus, it has no length. We

then define the collection of DoS attack intervals by

A(t) :=
⋃

i∈Z+

[ai, ai + τi] ∩ [0, t].

Furthermore, we denote by N(t) the number of DoS attacks

for which the starting time is inside the interval [0, t]. Follow-

ing the work of [7], we characterize DoS attacks in terms of

their frequency and duration.
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Assumption 3 (DoS frequency): There exist constants κF ≥
0 and ρF ∈ [0,∞) such that

N(t) ≤ κF + ρF t, t ≥ 0.

Assumption 4 (DoS duration): There exist constants κD ≥ 0
and ρD ∈ [0, 1) such that

|A(t)| ≤ κD + ρDt, t ≥ 0.

In the above assumptions, the constants ρF and ρD repre-

sent the allowable average frequencies and durations of DoS

attacks. On the other hand, the constants κF and κD indicate

the initial energy to launch attacks. In this framework, an

attacker does not need to follow certain attack strategies such

as periodic attacks. Note that an attacker can launch frequent

but short DoS attacks to cause packet losses at all transmission

times. Such situations may occur when ρF ≥ 1/T is allowed,

under which DoS attacks can be sufficiently frequent compared

with the transmission period. This implies that periodic com-

munications are vulnerable as the transmission time instants

are available for attackers. To make the communication more

secure, randomized transmission protocols are proposed by

[23] in the context of multi-agent consensus problems.

Remark 2: In [7], [8], more restrictive class of DoS attacks

is considered. There, the frequencies and the durations of

DoS attacks are constrained for any time intervals [τ, t] with

τ ≤ t rather than [0, t]. Note that such assumptions are

required to guarantee input-to-state stability with respect to

disturbances [7] or to construct a state predictor [8]. In

particular, the DoS model considered in [7], [8] has an upper

bound on the consecutive packet losses. In contrast, we do

not assume consecutive packet losses to be bounded. We also

note that the DoS parameters are determined depending on the

attacker’s resource. As the attacker’s power is time-varying,

these parameters can be time dependent in general. However,

the control parameters are fixed in this paper, and hence, we

only consider the constant DoS parameters. If one employs

adaptive or switching control strategies whose parameters are

changed depending on the attack level in real time, then there

is an advantage to estimate the DoS parameters on-line.

III. QUANTIZED CONTROL VIA LINEARIZATION

In this section, we consider to stabilize the nonlinear system

(1) via linearization. First, we explore the inter-sample behav-

ior and the vanishing perturbation property of the remainder

term of linearization. Then, the encoding and decoding proce-

dures are explained, followed by proposing a resilient dynamic

quantizer design.

A. Linearization Analysis

Linearization of (1) around the origin yields

ẋ(t) = Ax(t) +Bu(t) + g(x(t), u(t)), (3)

where

A :=
∂f(x, u)

∂x

∣∣∣∣
x=0,u=0

, B :=
∂f(x, u)

∂u

∣∣∣∣
x=0,u=0

,

and g(x, u) := f(x, u) − Ax − Bu is the remainder term of

the linear approximation. Assume that A is unstable and that

the pair (A,B) is stabilizable.

Then, we discretize the continuous-time system (3) with

sampling period T to obtain

xk+1 = Ãxk + B̃uk + g̃(xk, uk), (4)

where Ã := eAT , B̃ :=
∫ T

0 eAs dsB, and

g̃(xk, uk) :=

∫ T

0

eA(T−s)g(φ(s, xk, uk), uk) ds.

Here, we suppose that the sampling period is nonpathological,

and hence, (Ã, B̃) is stabilizable. We now choose the con-

troller gain K in (2) such that Ã + B̃K is Schur stable. By

this choice, the origin x = 0 is locally asymptotically stable

for (1) in the absence of DoS attacks. Note that global stability

is not guaranteed due to linearization, which is important in

the context of networked control under DoS attacks.

Whereas [15] considers discrete-time systems, we employ

the sampled-data setting as bounds on the inter-sample behav-

ior are required to analyze the plant nonlinearity. We now

define c0 := [1 + T (‖BK‖∞ + ‖K‖∞)]eT (‖A‖∞+1) and

c1 := eT (‖A‖∞+1). The following lemma is useful to examine

bounds on the nonlinear term in (4).

Lemma 1: For any x̄ ∈ R
n, consider the solution φ(t, x̄, ū)

to (1) with ū = (1 − θ)Kx̄, where θ ∈ {0, 1}. Then, there

exists a constant d > 0 such that ‖x̄‖∞ < d implies for all

t ∈ [0, T ),

‖φ(t, x̄, ū)‖∞ ≤

{
c0‖x̄‖∞ if θ = 0,

c1‖x̄‖∞ if θ = 1.

Proof: See Appendix A.

To explore local stability of the origin, we need bounds on

the remainder term of linearization. Given γ > 0, we define

γ0 := (c0+‖K‖∞)γT eT‖A‖∞ and γ1 := c1γT e
T‖A‖∞ . In the

following lemma, we give the region inside which the growth

of the effects of the plant nonlinearity is characterized in terms

of the state norm.

Lemma 2: For any x̄ ∈ R
n, consider the nonlinear function

g̃(x̄, ū) in (4) with ū = (1 − θ)Kx̄, where θ ∈ {0, 1}. Then,

for every γ > 0, there exists a constant δ ∈ (0, d] such that

‖x̄‖∞ < δ implies

‖g̃(x̄, ū)‖∞ ≤

{
γ0‖x̄‖∞ if θ = 0,

γ1‖x̄‖∞ if θ = 1,

where d is as in Lemma 1.

Proof: See Appendix B.

B. Encoding/Decoding Scheme

Due to the limited data rate, we consider a finite number

of partitions of the quantization region. In this subsection, we

state the encoding/decoding scheme of the dynamic quantizer

following [14]. We consider the encoder and the decoder

which have two time-dependent variables: the center of the

quantization region and the radius of the quantization range.

We denote these variables with the symbols ξk ∈ R
n and
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Algorithm 1 Encoding process

Input: Sampled state measurement xk ∈ Q(ξk, Ek).
Output: Encoded symbol i ∈ M.

The quantization region Q(ξk, Ek) is partitioned into the

Mn equal boxes with the same dimension, each of which

is indexed by an integer in M.

for k ∈ Z+ do

Encode xk into the symbol i associated with the partition

in which xk lies.

Send the symbol i to the decoder.

Receive an acknowledgement θk ∈ {0, 1} from the

decoder.

Update ξk and Ek based on the value of θk by the rules

(7) and (8).

end for

Algorithm 2 Decoding process

Input: Encoded symbol i ∈ M.

Output: Quantized state measurement qk ∈ R
n.

The decoder knows which symbol i ∈ M corresponds to

which partition of Q(ξk, Ek).
for k ∈ Z+ do

if if the decoder receives the packet at time tk then

Set qk as the center ξk of the partition associated with

the received symbol i.
Send the acknowledgement θk = 0 to the encoder.

else

Set qk to zero.

Send the acknowledgement θk = 1 to the encoder.

end if

Update ξk and Ek based on the value of θk by the rules

(7) and (8).

end for

Ek ≥ 0, respectively. Now, we define the quantization region

at time tk as follows:

Q(ξk, Ek) := {x ∈ R
n : ‖x− ξk‖∞ ≤ Ek}.

This is a hypercube which has the edges of length 2Ek and is

centered at ξk, and this region must be the same in both the

encoder and the decoder at each time. Since the initial state

is not known exactly in general, we set ξ0 = 0. For E0, we

make the following assumption, under which the encoder and

the decoder know how far the state is from the origin.

Assumption 5: We set E0 ≥ 0 such that the initial state x0

of (1) satisfies ‖x0‖∞ ≤ E0.

To avoid saturation of the quantizer, ξk and Ek are adjusted

based on the reachable set of state trajectories. In this paper,

we assume that an acknowledgement signal or the value of θk
is exchanged between the encoder and decoder and that this

signal is not subject to DoS attacks similarly to [15] and [16].

In practice, this assumption is unrealistic. However, one can

estimate the occurrence of packet losses from the behavior of

the state without acknowledgements as considered in [24].

The encoding and decoding processes are described in

Algorithms 1 and 2, respectively. If we know which partitioned

box the state lies in, then the reachable set at the next sampling

instant can be estimated so that it becomes smaller than

the current quantization region, resulting in the zooming-in

process. However, if the packet loss occurs at time tk, we know

only that the state xk is inside Q(ξk, Ek). Hence, one needs

to expand the quantization region to capture the state xk+1

at the next sampling time tk+1, leading to the zooming-out

process. In the next subsection, we explain how the quantizer

is updated depending on the value of θk while the effects of

DoS attacks are taken into account.

C. Resilient Dynamic Quantizer Design

Suppose now that the sampled state xk lies in the quantiza-

tion region Q(ξk, Ek), which is equivalent to ‖xk − ξk‖∞ ≤
Ek. Recall from the quantization procedure mentioned above,

qk is the center of the partitioned box in which xk lies. Thus,

we know that the quantization error satisfies

‖xk − qk‖∞ ≤
1

M
Ek. (5)

To avoid saturation of the quantizer, i.e., to ensure that the state

never goes outside the quantization region, both the encoder

and decoder need to calculate ξk+1 and Ek+1 so that the

following inequality holds:

‖xk+1 − ξk+1‖∞ ≤ Ek+1, (6)

which is equivalent to xk+1 ∈ Q(ξk+1, Ek+1).

To do so, we propose the following update rules: At each

sampling time tk, the encoder and decoder generate ξk+1 and

Ek+1 by

ξk+1 :=

{
φT (qk,Kqk) if θk = 0,

φT (ξk, 0) if θk = 1,
(7)

Ek+1 :=





Λ

M
Ek if θk = 0,

ΛEk if θk = 1.
(8)

The zooming-in/out process depends on some variables.

First, ξk is updated to trace the state trajectory by estimating

the reachable set at time tk+1. This process is conducted by

simulating the nonlinear system model. Since our main focus

is local stabilization via linearization-based control, we do not

consider the computational complexity. Second, Ek is updated

to cover the uncertainty on the estimate of the reachable set.

Such uncertainty can be known from the Lipschitz property

of the system (1), which is assumed in Assumption 1. In

particular, the quantization level M must large enough such

that the trajectory remains in the quantization region. If there

are some uncertainties such as unmodeled dynamics and

computation errors, then one can modify the zooming rate

in (8) to avoid the saturation of the quantizer.

The quantizer needs to be capable to expand its quantization

range when packet losses occur. In what follows, we show that

the dynamic quantizer with (7) and (8) locally satisfies the

condition (6) at times when both zooming-in and zooming-

out occur.
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1) Zooming-In Process: We first consider the case where

the packet transmission at time tk is successful, that is, θk = 0.

In this case, the quantized state qk is available for both the

encoder and decoder. Note that from the Lipschitz condition

in Assumption 1, ‖φT (x, u) − φT (y, u)‖∞ ≤ eLT ‖x − y‖∞.

Hence, if xk, qk ∈ D, where D is given in Assumption 1, then

we can see from (7) that

‖xk+1 − ξk+1‖∞ = ‖φT (xk,Kqk)− φT (qk,Kqk)‖∞

≤ Λ‖xk − qk‖∞ ≤
Λ

M
Ek,

where the last inequality follows from the boundary condition

(5). Hence, by (8), we can guarantee the condition (6). We note

that, under Assumption 2, the quantization region becomes

smaller in the absence of DoS attacks.

2) Zooming-Out Process: We then consider the case where

the communication fails at time tk due to DoS attacks, that is,

θk = 1. In this case, the decoder does not know the value of

qk but knows that of ξk, and thus, the update rule (7) can be

performed. Whenever xk, qk ∈ D, we have

‖xk+1 − ξk+1‖∞ = ‖φT (xk, 0)− φT (ξk, 0)‖∞

≤ Λ‖xk − ξk‖∞ ≤ ΛEk.

Therefore, the update rules (7) and (8) can be used to ensure

that (6) holds. Notice that the quantization range becomes

larger since Λ > 1. This also indicates that DoS attacks induce

the expansion of the quantization region.

In [14], the zooming-out process is used when the initial

state is unknown. In contrast, our update rule is needed to

absorb the effects of DoS attacks. Moreover, differently from

stochastic packet losses, an attacker can launch long DoS

attacks to block packet transmissions consecutively. In our

framework, such DoS attacks are constrained by Assump-

tions 3 and 4.

IV. MAIN RESULTS

In this section, we consider stability analysis of the non-

linear system (1) with the control input (2). Furthermore, we

provide the initial condition to guarantee the convergence of

state trajectories.

A. Characterization of Switched Lyapunov Function

Various ways to analyze asymptotic stability of switched

systems with quantization have been considered such as

a switched Lyapunov function approach [25] and a com-

mon Lyapunov function approach [26]. Differently from the

aforementioned papers, we consider both stable and unstable

modes. To handle unstable dynamics, we employ a slightly

different technique that captures the system’s behavior within

the Lyapunov framework. Furthermore, we deal with nonlin-

earity of the plant, which affects the increase and decrease

rates of a Lyapunov function in a certain region.

Take ϕ0 ∈ (0, 1) and ϕ1 ∈ (1,∞) to be scalars with which

ϕ
−1/2
0 (Ã + B̃K) and ϕ

−1/2
1 Ã are Schur stable, respectively.

Then, there exist positive-definite matrices P0, P1 ∈ R
n×n

such that

(Ã+ B̃K)TP0(Ã+ B̃K)− ϕ0P0 ≺ 0, (9)

ÃTP1Ã− ϕ1P1 ≺ 0. (10)

We here note that there always exists a common matrix P =
P0 = P1 if the constant ϕ1 are large enough. However, more

preferable stability condition can be obtained by allowing the

use of distinct P0 and P1. Following the work of [25], we

define for p ∈ {0, 1} the positive definite function Wp : R
n ×

R+ → R+ as follows:

Wp(ξ, E) := ξTPpξ + ηpE
2, ξ ∈ R

n, E ≥ 0, (11)

where η0, η1 > 0 are sufficiently large numbers. These

functions satisfy the following two properties. First, there exist

α, β > 0 such that for every p ∈ {0, 1},

α(‖ξ‖∞ + E)2 ≤ Wp(ξ, E) ≤ β(‖ξ‖∞ + E)2. (12)

Second, there exist µ0, µ1 ≥ 1 such that

W1(ξ, E) ≤ µ0W0(ξ, E), W0(ξ, E) ≤ µ1W1(ξ, E). (13)

These properties are not difficult to verify. For example, to

satisfy the first property, we can use

α =
1

2
min

p∈{0,1}
{λmin(Pp), ηp},

β = max
p∈{0,1}

{nλmax(Pp), ηp},

where λmin(·) and λmax(·) represent the smallest and the

largest eigenvalues of a matrix, respectively. Moreover, the

following constants can be used for the second property:

µ0 = max

{
λmax(P1)

λmin(P0)
,
η1
η0

}
, (14)

µ1 = max

{
λmax(P0)

λmin(P1)
,
η0
η1

}
. (15)

Compared with [25], where the same Lyapunov-like func-

tions are employed to analyze stability of linear switched

systems, we consider nonlinear switched systems. Moreover,

the switching conditions are different.

Remark 3: Here, we explain the difference from the analysis

of our previous work [20]. The functions in (11) are composed

of two parts: The first part corresponds to the classical

quadratic Lyapunov function and was used in [20] for stability

analysis. Here, in addition, we have the second part related to

the quantization error. If one employs the dynamic quantizer as

explained in the previous section, then the quantization error

is expected to converge to zero. Therefore, by adding the error

term, one can utilize (11) as a Lyapunov function.

The function Wθk(ξk, Ek) decreases under the nominal

operation, whereas it increases under DoS attacks. We now

provide the convergence and divergence rates of this function

depending on the occurrence of packet losses. Let

ν0 := max{ϕ0,Λ
2/M2}, (16)

ν1 := max{ϕ1,Λ
2}. (17)
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Then, the following lemma gives a local characterization of

the switched Lyapunov-like function Wθk(ξk, Ek). Now, in

Lemma 2, we choose γ > 0 sufficiently small such that δ < ̺.

Lemma 3: Consider the nonlinear system (1) with (2) as

well as the dynamic quantizer (7) and (8). Suppose that

Assumptions 1–5 hold. Then, there exist ω0 ∈ [ν0, 1) and

ω1 ∈ [ν1,∞) such that ‖ξk‖∞ + Ek ≤ δ implies

Wθk+1
(ξk+1, Ek+1) ≤

{
ωθkWθk(ξk, Ek) if θk+1 = θk,

µθkωθkWθk(ξk, Ek) if θk+1 6= θk,

(18)

where µ0 and µ1 are as in (13), and δ ∈ (0, ̺) is given in

Lemma 2.

Proof: See Appendix C.

Remark 4: The convergence and divergence rates ω0 and ω1

partly depend on the data rate of the communication channel.

However, if the data rate is sufficiently large, then ω0 and

ω1 converge to that of the infinite data rate case, which

is determined only by the dynamics of the plant (1). This

property is the same as those of [25]. In this case, we can

recover our previous results presented in [20]. Furthermore, we

have restricted ourselves to the case where the control input

is reset to zero under DoS attacks. In this setting, it is not

difficult to characterize the divergence rate under DoS attacks

(see (10)). We note that other control settings such as hold-

input strategy [7], [9] and output feedback [15] may be useful

in practice. A similar analysis to this paper can be carried

out although the characterization of a Lyapunov function as in

(18) becomes more complicated.

B. Stability Condition Under DoS Attacks

Now, we are ready to state our main result. Let κ∗
D :=

κD + κFT and ρ∗D := ρD + ρFT . The following theorem

extends the result of [20] to the case where quantization needs

to be considered.

Thoerem 1: Consider the nonlinear networked control sys-

tem (1) with the control input (2). Suppose that Assump-

tions 1–5 hold. If

ρFT lnµ0µ1 + (1− ρ∗D) ln ν0 + ρ∗D ln ν1 < 0, (19)

then the origin is locally asymptotically stable.

Proof: Let χ(t) be the number of unsuccessful packet

transmissions that occur in the time interval [0, t]. Using

Assumptions 3 and 4, we obtain

χ(t) ≤
κ∗
D + ρ∗Dt

T
.

Since the quantizer does not saturate, i.e., (6) holds, we have

‖xk‖∞ ≤ ‖ξk‖∞ + Ek.

If ‖ξk‖∞+Ek ≤ δ holds for all k ∈ Z+, then we obtain from

Lemma 3 that

Wθk(ξk, Ek) ≤ (µ0µ1)
N(tk)ω

k−χ(tk)
0 ω

χ(tk)
1 Wθ0(ξ0, E0)

≤ (µ0µ1)
κF+ρF tkω

[−κ∗

D
+(1−ρ∗

D
)tk]/T

0

× ω
(κ∗

D
+ρ∗

D
tk)/T

1 Wθ0(ξ0, E0)

= cWωkWθ0(ξ0, E0), (20)

where cW := (µ0µ1)
κF (ω1/ω0)

κ∗

D
/T and ω :=

(µ0µ1)
ρF Tω

1−ρ∗

D

0 ω
ρ∗

D

1 . From the choice of ω0 and ω1

respectively given by (24) and (26) in the proof of Lemma 3,

there always exists δ in Lemma 3 such that ω0 and ω1 are

arbitrarily close to ν0 and ν1, respectively. The condition (19)

thus implies that ω < 1 holds in a certain small region, that

is, small δ. Next, we need to ensure that the quantization

region is contained in such a small region. Since ξ0 = 0, by

choosing sufficiently small E0, we have ‖ξk‖∞ + Ek ≤ δ
for all k ∈ Z+. Therefore, the positive-definite function

Wθk(ξk, Ek) converges to zero as k → ∞, which implies

asymptotic stability. Since the state lies in the quantization

region at every sampling time under Assumption 5, we can

conclude the asymptotic stability of the origin.

The stability condition (19) depends on the DoS parameters

ρF and ρD, which are characterized in Assumptions 3 and

4. The constants ρF and ρD give an upper bounds on the

time-average of the number and the duration of DoS attacks,

respectively. Thus, the condition (19) requires that the average

amount of DoS attacks is small enough. In the absence of DoS

attacks, the stability condition just requires that ν0 < 1, which

is clearly satisfied from (16). Notice that κF and κD , which

denote the initial energy for launching attacks, do not appear in

the condition (19). However, these parameters are associated

with the bound of the state trajectories and will be utilized in

the analysis of the region of attraction in the next subsection.

Remark 5: Here, we explain the comparison with the

existing results on networked control under DoS attacks. The

authors of [7] investigate input-to-state stability for linear

plants with respect to disturbances under more restrictive class

of DoS attacks. The remainder term of linearization as well

as measurement errors due to quantization can be seen as

a special case of disturbances. However, the nonlinear term

has the property that its effects vanish at the origin. Also,

quantization errors converge to zero as we employ a dynamic

quantizer. By these properties, we can use Assumptions 3 and

4 in DoS models instead of more restrictive class (see also

Remark 2). The stability condition (19) is similar to that of [7]

(see also [9] for the nonlinear systems case). As our focus is

on a linearization approach, we can recover the global stability

result for linear systems by ignoring the nonlinear parts in (3).

Compared with [9], we explored local stability of the nonlinear

system (1) particularly in the linearization framework. As we

discuss in the next subsection, the local stability point of view

is important when DoS attacks are addressed in stabilization

problems.

Remark 6: The dynamic quantizer proposed in this paper

is resilient in the sense that it does not saturate even under

DoS attacks. The above theorem can also be seen as an

extension of the work [14], where the effects of packet losses

are not considered. Furthermore, we take into account the

unstable dynamics induced by DoS attacks. The condition in

the above theorem indicates the allowable average frequency

and duration of such attacks to preserve local stability of

the nonlinear system. Notice that if the data rate is ap-

propriately large, then we have µ0 = λmax(P1)/λmin(P0),
µ1 = λmax(P0)/λmin(P1), ν0 = ϕ0, and ν1 = µ1 in

(14)–(17). These parameters are consistent with those of the
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stability condition in the case of the infinite data rate which

is presented in [20]. As mentioned in Remark 1, it is difficult

to find an appropriate coordinate transformation applied in the

quantization process as in the linear systems case. In particular,

the choice of the coordinate transformation affects the estimate

of the reachable set, which is associated with the zooming-

in/out procedure. Thus, investigating more explicit relationship

between the limitation of quantized control and the tolerance

of DoS attacks for nonlinear systems is left to future work.

C. Convergence Condition on Initial States

In the previous part of this section, we derived a local

stability condition. Due to linearization, we need to keep the

state within a small region around the equilibrium even in the

presence of packet losses. Otherwise, the state cannot converge

to the equilibrium point. In particular, we need to set the initial

condition so that the inequality (18) is satisfied. This is because

that inequality may not be valid when ‖ξk‖∞ + Ek > δ. The

following theorem provides a condition on E0 that guarantees

the state trajectory to stay inside the stability region at all

times and eventually converge to the origin.

Thoerem 2: Consider the nonlinear networked control sys-

tem (1) with the control input (2). Suppose that Assump-

tions 1–5 hold. Let ω0, ω1, and δ be taken from Lemma 3.

Also, suppose that (19) holds. If we choose E0 to satisfy

E0 < (µ0µ1)
−κF /2

(
ω0

ω1

)κ∗

D
/(2T )

δ∗, (21)

where δ∗ := δ
√
α/β, then the state trajectory x(t) remains

within the set {x ∈ R
n : ‖x‖∞ < δ} for all t ≥ 0 and

moreover achieves limt→∞ ‖x(t)‖∞ = 0.

Proof: Recall from (20) that, by Lemma 3, if ‖ξk‖∞ +
Ek < δ, then

Wθk(ξk, Ek) ≤ cWωkWθ0(ξ0, E0).

Under the condition (19), it holds that ω < 1, and hence, we

obtain

‖ξk‖∞ + Ek ≤

√
β

α
c
1/2
W (‖ξ0‖∞ + E0),

where we have used the inequalities (12). Since ξ0 = 0, the

above inequality becomes

‖ξk‖∞ + Ek ≤

√
β

α
c
1/2
W E0.

Note that (21) can be written as

E0 <

√
α

β
c
−1/2
W δ.

Thus, it follows ‖ξk‖∞ + Ek < δ for all k ∈ Z+. When the

state lies within the quantization region at time tk, we have

‖xk‖∞ ≤ ‖ξk‖∞+Ek. Since Wθk(ξk, Ek) converges to zero,

we can guarantee that the state x(t) approaches the origin.

Remark 7: The result in Theorem 2 is important in the

sense that the condition (21) may not hold while the stability

condition (19) holds. Such a case occurs when the DoS

parameters κF and κD are large. This property is not discussed

in [9] since the authors consider global stability. In practice,

it is important to focus on the effects of DoS attacks to the

region of attraction. The above theorem provides a quantitative

condition under which the state trajectory can remain within

the nominal region of attraction arising due to linearization.

Here, we emphasize that a certain level of DoS attacks makes

the state go outside the region of attraction, possibly leading

to an unstable behavior. Therefore, from the viewpoint of

local stability, the initial state should be close enough to the

equilibrium point if DoS attacks are present.

V. SIMULATION EXAMPLE

Here, we demonstrate the efficacy of our main results

through a simulation example.

Consider the Liénard system

z̈(t)− (1− 3az2(t)− 5bz4(t))ż(t) + z(t) = u(t),

where a = 1/3 and b = 1/50. Choosing the state as

x(t) =

[
x1(t)
x2(t)

]
=

[
z(t)

ż(t)−
∫ z(t)

0
(1 + 3aw2 − 5bw4) dw

]
,

we obtain the state equation
[
ẋ1(t)
ẋ2(t)

]
=

[
x2(t) + x1(t) + ax3

1(t)− bx5
1(t)

−x1(t) + u(t)

]
.

The right-hand side of the above equation is locally Lipschitz

with L = 10, satisfying Assumption 1. Also, we choose the

sampling period as T = 0.1 and the number of quantization

levels as M = 6. The uncontrolled system has an unstable

equilibrium point at the origin and exhibits a stable limit cycle.

To stabilize the origin, we consider our linearization-based

quantized control framework. Specifically, we set the feedback

gain to K = [−1.81 −1.90], which is obtained by using the

LQR method on the linearized system. The simulation result

is presented in Fig. 2, where the initial state is set to x0 =
[0.1 0.1]T. In the figure, the shaded parts represent the DoS

attack intervals. The bottom figure shows the changes in the

radius Ek of the quantizer. One can observe that saturation

is avoided by expanding the quantization region when DoS is

present. From the simulation result, we can see that the state

x(t) converges to the origin under DoS attacks.

Then, we explain the importance to consider nonlinear

systems in the context of DoS attacks. Due to linearization, if

the initial state is located far from the equilibrium, then the

state trajectory from that position leaves the region of attrac-

tion and converges to a limit cycle trajectory. In such cases,

the state is unable to go to the origin by the linearization-

based control even after the communication recovers. This

fact can be observed in Fig. 3, where the initial state is set to

x0 = [0.3 0.3]T and DoS attacks are kept the same as above.

Here, the shaded area in gray represents the nominal region of

attraction. This area is numerically obtained by finding states

such that trajectories starting from there without the effects of

quantization and DoS attacks converge to the origin. Note that

the Lipschitz continuity of f with Lipschitz constant L = 10 is

preserved in this region, that is, the region D in Assumption 1

is larger than the region of attraction. Also, notice that in the
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Fig. 2. Trajectories of system state, input, and size of the quantization range

Fig. 3. State trajectory that leaves the region of attraction and approaches
a limit cycle. The shaded area in gray represents the nominal region of
attraction.

simulation in Fig. 3, the initial state is within this region. Thus,

the undesired unstable phenomenon is due to the nonlinearity

of the plant induced by the DoS attacks.

Here, we provide some discussion on the theoretical results

in the previous section. The stability condition derived in

Theorem 1 is presented in Fig. 4. Under the DoS parameters at

the lower left area, the stability of the origin is preserved. Thus,

if the initial state is very close to the origin, the trajectory can

converge to the origin even in the presence of DoS attacks.

However, we need to emphasize that the region of attraction

is affected by the strength of DoS attacks. In Theorem 2, the

theoretical value of δ is δ = 1.94× 10−7. In the presence of

DoS attacks, the estimated region of attraction becomes much

smaller. This theoretical result is indeed quite conservative,

and some numerical methods can be used to gain more precise

estimate of the region of attraction as above. Theoretical study

on the relation between the region of attraction and DoS

attacks is an important direction of future work. For example,

there are vulnerable positions in the state space from which it

Stable

Fig. 4. Allowable DoS attack level. At the lower left area, stability of the
origin is preserved.

is easy for the attacker to make the state leave the region of

attraction.

VI. CONCLUSION

In this paper, we have considered a quantized stabilization

problem of nonlinear networked control systems under DoS

attacks. Our proposed control strategy is based on the lin-

earization framework used together with a resilient dynamic

quantizer which does not saturate in the presence of packet

losses. A sufficient condition for stability and an estimate

of the region of attraction have been derived, characterizing

tolerable frequency and duration of DoS attacks. The sim-

ulation example demonstrates our results. Future research in-

cludes synchronization of nonlinear multi-agent systems under

DoS attacks, where information is exchanged among spatially

distributed agents. Furthermore, resilient control against DoS

attacks by using prediction of lost measurements is another

interesting direction.

APPENDIX A

PROOF OF LEMMA 1

For x̄ ∈ R
n, the solution φ(t, x̄, ū) to (1) can be written

φ(t, x̄, ū) = x̄+

∫ t

0

[Aφ(s, x̄, ū) +Bū+ g(φ(s, x̄, ū), ū)] ds

for t ∈ [0, T ). From Taylor’s theorem, we have

lim
(x,u)→(0,0)

‖g(x, u)‖∞√
‖x‖2∞ + ‖u‖2∞

= 0.

It follows that there exists a positive constant d′ > 0 such that
√
‖x‖2∞ + ‖u‖2∞ < d′ =⇒ ‖g(x, u)‖∞ ≤ ‖x‖∞ + ‖u‖∞.

(22)

Now, suppose that
√
‖φ(t, x̄, ū)‖2∞ + ‖ū‖2∞ < d′ holds for all

t ∈ [0, T ). Then, substituting ū = (1− θ)Kx̄ yields

‖φ(t, x̄, ū)‖∞ ≤ [1 + (1− θ)T (‖BK‖∞ + ‖K‖∞)]‖x̄‖∞

+

∫ t

0

(‖A‖∞ + 1)‖φ(s, x̄, ū)‖∞ ds.
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Applying Gronwall’s inequality, we obtain

‖φ(t, x̄, ū)‖∞

≤ [1 + (1− θ)T (‖BK‖∞ + ‖K‖∞)]‖x̄‖∞e
∫

t

0
(‖A‖∞+1) ds

≤ [1 + (1− θ)T (‖BK‖∞ + ‖K‖∞)]eT (‖A‖∞+1)‖x̄‖∞.

Let d := d′/
√
c20 + ‖K‖2∞. In this case, we observe that√

‖φ(t, x̄, ū)‖2∞ + ‖ū‖2∞ < d′ is satisfied whenever ‖x̄‖∞ +
‖ū‖∞ < d. Thus, by (22), we obtain the desired result.

APPENDIX B

PROOF OF LEMMA 2

It can be seen that for any γ > 0, there exists a constant

δ′ > 0 such that
√
‖x‖2∞ + ‖u‖2∞ < δ′ implies ‖g(x, u)‖∞ ≤

γ(‖x‖∞+‖u‖∞). With the scalar d given in Lemma 1, define

δ := min{d, δ′/
√
c20 + ‖K‖2∞}. Whenever ‖x̄‖∞ + ‖ū‖∞ <

δ, we have
√
‖φ(t, x̄, ū)‖2∞ + ‖ū‖2∞ ≤ δ for all t ∈ [0, T ). It

thus follows

‖g̃(x̄, ū)‖∞

≤ γeT‖A‖∞

∫ T

0

[‖φ(t, x̄, ū)‖∞ + (1− θ)‖K‖∞‖x̄‖∞] ds

≤ γT eT‖A‖∞ [cθ‖x̄‖∞ + (1− θ)‖K‖∞‖x̄‖∞] ≤ γθ‖x̄‖∞,

where the second inequality follows from Lemma 1. This

completes the proof.

APPENDIX C

PROOF OF LEMMA 3

We consider the two cases of θk+1 = θk = 0 and θk+1 =
θk = 1, separately. At first, we consider the case where θk+1 =
θk = 0. It follows from (7) that

ξk+1 = F (qk,Kqk) = Φ0qk + h0(qk)

with Φ0 := Ã+ B̃K and h0(qk) := g̃(qk,Kqk). Let us define

the positive-definite function V0(ξ) := ξTP0ξ for ξ ∈ R
n.

Then, this function satisfies

V0(ξk+1) = qTkΦ
T

0P0Φ0qk + 2hT

0 (qk)P0Φ0qk

+ hT

0 (qk)P0h0(qk)

≤ ϕ0q
T

kP0qk + 2‖P0Φ0‖∞‖qk‖∞‖h0(qk)‖∞

+ ‖P0‖∞‖h0(qk)‖
2
∞,

where we have used (9) in the inequality. By applying

Lemma 2, it holds that if ‖ξk‖∞ + Ek < δ, which yields

‖qk‖∞ < δ, then ‖h0(qk)‖∞ ≤ γ0‖qk‖∞. Thus, we have

V0(ξk+1) ≤ ϕ̂0V0(qk).

where ϕ̂0 := ϕ0+(2γ0‖P0Φ0‖∞+γ2
0‖P0‖∞)/λmin(P0), and

λmin(·) represents the minimum eigenvalue of a matrix. Here,

we define ζk := qk − ξk . Then, it satisfies ‖ζk‖∞ < (M −
1)/M . Moreover, we obtain

V0(qk) = ξTkP0ξk + 2ζTk P0ξk + ζTk P0ζk

≤ ξTkP0ξk + 2‖P0‖∞‖ξk‖∞‖ζk‖∞ + ‖P0‖∞‖ζk‖
2
∞.

From Young’s inequality, for any positive number ε > 0, it

holds

2‖ξk‖∞‖ζk‖∞ ≤
1

ε
‖ξk‖

2
∞ + ε‖ζk‖

2
∞.

By using this, the above inequality becomes

V0(qk) ≤ ϕ̃0V0(ξk) + ϑ‖ζk‖
2
∞

with the constants ϕ̃0 := ϕ̂0 + ‖P0‖∞/(ελmin(P0)) and ϑ :=
(1 + ε)‖P0‖∞. Note that one can always choose a large ε
to guarantee ϕ̃0 < 1 since ϕ̂0 < 1 by hypothesis. Finally, it

follows that

V0(ξk+1) ≤ ϕ̃0V0(ξk) + ϑ

(
M − 1

M

)2

E2
k .

Therefore, from (8) and (11), we obtain

W0(ξk+1, Ek+1)

= V0(ξk+1) + ϑ

(
M − 1

M

)2

E2
k + η0

Λ2

M2
E2

k

= ϕ̃0V0(ξk) + ϑ

(
M − 1

M

)2

E2
k + η0

Λ2

M2
E2

k

≤ ω0W0(ξk, Ek), (23)

where

ω0 := max

{
ϕ̃0,

ϑ

η0

(
M − 1

M

)2

+
Λ2

M2

}
. (24)

By Assumption 2, there always exists η0 > 0 such that ω0 < 1.

Next, consider the case where θk+1 = θk = 1. If this is the

case, the quantizer (7) can be written by

ξk+1 = f(ξk, 0) = Φ1ξk + h1(ξk),

where Φ1 := Ã and h1(ξk) := g̃(ξk, 0). We also define

V1(x) := xTP1x for all x ∈ R
n. From (10),

V1(ξk+1) ≤ ϕ1ξ
T

kP1ξk + 2‖P1Φ1‖∞‖ξk‖∞‖h1(ξk)‖∞

+ ‖P1‖∞‖h1(ξk)‖
2
∞.

It then follows from Lemma 2 that if ‖ξk‖∞ + Ek < δ,

V1(ξk+1) ≤ ϕ̂1V1(ξk),

where ϕ̂1 := ϕ1+(2γ1‖P1Φ1‖∞+γ2
1‖P1‖∞)/λmin(P1). We

therefore obtain from (8) that

W1(ξk+1, Ek+1) = V1(ξk+1) + η1E
2
k+1

≤ ϕ̂1ξ
T

kP1ξk + Λ2η1E
2
k

≤ ω1W1(ξk, Ek), (25)

where

ω1 := max{ϕ̂1,Λ
2} > 1. (26)

Therefore, in (23) and (25), we obtained the desired result

(18) for the case where θk+1 = θk. The relation for θk+1 6= θk
can be found by further applying the inequalities in (13) to (23)

and (25). The proof is now complete.
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