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Abstract—This paper focuses on learning a model of system
dynamics online while satisfying safety constraints. Our objec-
tive is to avoid offline system identification or hand-specified
models and allow a system to safely and autonomously estimate
and adapt its own model during operation. Given streaming
observations of the system state, we use Bayesian learning to
obtain a distribution over the system dynamics. Specifically,
we propose a new matrix variate Gaussian process (MVGP)
regression approach with an efficient covariance factorization
to learn the drift and input gain terms of a nonlinear control-
affine system. The MVGP distribution is then used to optimize
the system behavior and ensure safety with high probability,
by specifying control Lyapunov function (CLF) and control
barrier function (CBF) chance constraints. We show that a safe
control policy can be synthesized for systems with arbitrary
relative degree and probabilistic CLF-CBF constraints by solving
a second order cone program (SOCP). Finally, we extend our
design to a self-triggering formulation, adaptively determining
the time at which a new control input needs to be applied in
order to guarantee safety.

Index Terms—Gaussian Process, learning for dynamics and
control, high relative-degree system safety, control barrier func-
tion, self-triggered safe control

SUPPLEMENTARY MATERIAL

Software and videos supplementing this paper are available
at: https://vikasdhiman.info/Bayesian_CBF

I. INTRODUCTION

Unmanned vehicles and other cyber-physical systems [2],
[3] promise to transform many aspects of our lives, including
transportation, agriculture, mining, and construction. Success-
ful use of autonomous systems in these areas critically depends
on safe adaptation in changing operational conditions. Existing
systems, however, rely on brittle hand-designed dynamics
models and safety rules that often fail to account for both the
complexity and uncertainty of real-world operation. Recent
work [4]–[19] has demonstrated that learning-based system
identification and control techniques may be successful at
complex tasks and control objectives. However, two crit-
ical considerations for applying these techniques onboard
autonomous systems remain less explored: learning online,
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relying on streaming data, and guaranteeing safe operation,
despite the estimation errors inherent to learning algorithms.
For example, consider steering a Ackermann-drive vehicle,
whose dynamics are not perfectly known, safely to a goal
location. Not only does the Ackermann vehicle need to learn
a distribution over its dynamics from state and control obser-
vations but also account for the variance of the dynamics to
guarantee safety while executing its actions.

Several approaches have been proposed in the literature
to guaratee safety of dynamical systems. Motivated by the
utility of Lyapunov functions for certifying stability properties,
[20]–[29] proposed control barrier functions (CBFs) as a tool
to enforce safety properties in dynamical systems. A CBF
certifies whether a control policy achieves forward invariance
of a safe set C by evaluating if the system trajectory remains
away from the boundary of C. A lot of the literature on CBFs
considers systems with known dynamics, low relative degree,
no disturbances, and time-triggered control, in which inputs
are recalculated at a fixed and sufficiently small period. Time-
triggered control is limiting because low frequency may lead
to safety violations in-between sampling times, while high
frequency leads to inefficient use of computational resources
and actuators. Yang et al. [30] extend the CBF framework,
for known dynamics, to a event-triggered setup [31]–[34] in
which the longest time until a control input needs to be
recomputed to guarantee safety is provided. CBF techniques
can handle nonlinear control-affine systems but many existing
results apply only to relative-degree-one systems, in which
the first time derivative of the CBF depends on the control
input. This requirement is violated by many underactuated
robot systems and motivates extensions to relative-degree-two
systems, such as bipedal and car-like robots. The works [35]–
[38] generalized these ideas, in the case of known dynamics,
by designing exponential control barrier function (ECBF) and
high order control barrier function (HOCBF), that can handle
control-affine systems with any relative degree.

Our work proposes a Bayesian learning approach for esti-
mating the posterior distribution of the control-affine system
dynamics from online data. We generalize the CBF control
synthesis techniques to handle probabilistic safety constraints
induced by the dynamics distribution. Our work makes the
following contributions. First, we develop a Matrix Variate
Gaussian Process (MVGP) regression to estimate the un-
known system dynamics and formulate probabilistic safety
and stability constraints for systems with arbitrary relative
degree. Second, we show that a control policy satisfying
the proposed probabilistic constraints can be obtained as the
solution of a deterministic second order cone program (SOCP).
The SOCP formulation depends on the mean and variance
of the probabilistic safety and stability constraints, which
can be obtained efficiently. Third, we extend our results to
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a self-triggered safe control setting, adaptively determining
the duration of each control input before re-computation is
necessary to guarantee safety with high probability. Finally, we
derive closed-form expressions for the mean and variance of
the probabilistic safety and stability constraints, up to relative-
degree two. This work extends our conference paper [1] by
introducing a SOCP control-synthesis formulation instead of
the original, possibly non-convex, quadratic program (QP)
problem. This paper also extends the self-triggered control
design to systems with relative degree above one, contains
a complete technical treatment of the result—including the
proofs of that were omitted in the conference version, and
presents new evaluation results.

II. RELATED WORK

Providing safety guarantees for learning-based control tech-
niques has received significant attention recently [39]–[46].
In particular, optimization-based control synthesis with CLF
and CBF constraints has been considered for systems subject
to additive stochastic disturbances [47]–[49]. Aloysius Pereira
et al. [49] combine CBF constraints and forward-backward
stochastic differential equations, to find a deep parameterized
safe optimal control policy in the presence of additive Brow-
nian motion in the system dynamics. Yaghoubi et al. [50]
provide a stochastic CBF framework for composite systems
where a component of the system evolve according to a known
deterministic dynamics and the other one follows a stochastic
dynamics based on the Weiner process. CBF conditions for
systems with uncertain dynamics have been proposed in [51]–
[58]. Fan et al. [51] study time-triggered CBF-based control
synthesis for control-affine systems with relative degree one,
where the input gain is known and invertible but the drift
term is learned via Bayesian techniques. The authors com-
pare the performance of Gaussian process (GP) regression
[59], dropout neural networks [60], and ALPaCA [61] in
constructing adaptive CLF and CBF conditions using bounds
on the error with respect to a system reference model. The
works in [52], [53], [55], [56] study time-triggered CBF-
based control of relative-degree-one systems with additive
uncertainties in the drift part of the dynamics. Wang et al.
[52] use GP regression to approximate the unknown part of the
3D nonlinear dynamics of a quadrotor robot. Cheng et al. [53]
propose a two-layers control policy design that integrates CBF-
based control with model-free reinforcement learning (RL).
Safety is ensured by bounding the worst-case deviation of
the dynamics estimate from the mean, using high-confidence
polytopic uncertainty bounds. Marvi and Kiumarsi [54] also
consider safe model-free reinforcement learning but, instead of
a two-layer policy design, the cost-to-go function is augmented
with a CBF term. The works [55], [56] use adaptive CBFs to
deal with parameter uncertainty. Salehi et al. [57] use Extreme
Learning Machines to approximate the dynamics of a closed-
loop nonlinear system (with a drift term only) subject to a
barrier certificate constraint during the learning process itself.

Our work builds upon the current literature by developing a
matrix variate GP regression with efficient covariance factor-
ization to learn both the drift term and the input gain terms of
a nonlinear control-affine system. The posterior distribution
is used to ensure safety for systems with arbitrary relative

degree. Compared to previous works, our safety constraints
are less conservative (probabilistic instead of worst-case) and
lead to a novel SOCP formulation. We also present results for
a self-triggering design with unknown system dynamics.

Research directions left open for future investigation include
the extension of the results to a frequentist setting [62]. Fol-
lowing [63], where the unknown but deterministic dynamics
are assumed to belong to the Reproducing Kernel Hilbert
Space (RKHS), our CBF-based self-triggered controller may
be redesigned in a frequentist framework. In fact, a time-
triggered setup that utlizes independent GP regression for
each coordinate has been recently developed in [64], where
a systematic approach is utilized to compute CBFs for the
learned model.

III. PROBLEM STATEMENT

Consider a control-affine nonlinear system:

ẋ = f(x) + g(x)u =
[
f(x) g(x)

] [1
u

]
, F (x)u, (1)

where x(t) ∈ X ⊂ Rn and u(t) ∈ U ⊂ Rm are the system
state and control input, respectively, at time t. Assume that
the drift term f : Rn → Rn and the input gain g : Rn →
Rn×m are locally Lipschitz and the admissible control set U
is convex. We study the problem of enforcing stability and
safety properties for (1) when f and g are unknown and need
to be estimated online, using observations of x, u, ẋ.

A. Notation
We use bold lower-case letters for vectors (x), bold capital

letters for matrices (X), and caligraphic capital letters for sets
(X ). The boundary of a set X is denoted by ∂X . Let vec(X) ∈
Rnm be the vectorization of X ∈ Rn×m, obtained by stacking
the columns of X. The Kronecker product is denoted by ⊗.
The Hessian and Jacobian of functions h : Rn×Rm → R and
f : Rn → Rn, respectively, are defined as:

Hx,yh(x,y) ,


∂2h

∂x1∂y1
. . . ∂2h

∂x1∂ym
...

...
∂2h

∂xn∂y1
. . . ∂2h

∂xn∂ym

 Jxf(x) ,


∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fn
∂x1

. . . ∂fn
∂xn

 .
The Lie derivative of V : Rn → R along f : Rn → Rn is
denoted by LfV : Rn → R. The space of r times continuously
differentiable functions h : X → R is denoted by Cr(X ,R).

B. Stability and Safety with Known Dynamics
We first review key results [25] on control Lyapunov

functions for enforcing stability and control barrier functions
for enforcing safety of control-affine systems with known
dynamics. System stability may be asserted as follows.

Definition 1. A function V ∈ C1(X ,R) is a control Lyapunov
function (CLF) for the system in (1) if it is positive definite,
V (x) > 0, ∀x ∈ X \ {0}, V (0) = 0, and satisfies:

inf
u∈U

CLC(x,u) ≤ 0, ∀x ∈ X , (2)

where CLC(x,u) , LfV (x) + LgV (x)u + γ(V (x)) is a
control Lyapunov condition (CLC) defined for some class K
function γ.
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Proposition 1 (Sufficient Condition for Stability [25]). If
there exists a CLF V (x) for system (1), then any Lipschitz
continuous control policy π(x) ∈ {u ∈ U | CLC(x,u) ≤ 0}
asymptotically stabilizes the system.

Let C , {x ∈ X | h(x) ≥ 0} be a safe set of system states,
defined implicitly by a function h ∈ C1(X ,R). System (1) is
safe with respect to C if C is forward invariant, i.e., for any
x(0) ∈ C, x(t) remains in C for all t ≥ 0. System safety may
be asserted as follows.

Definition 2. A function h ∈ C1(X ,R) is a control barrier
function (CBF) for the system in (1) if

sup
u∈U

CBC(x,u) ≥ 0, ∀x ∈ X , (3)

where CBC(x,u) , Lfh(x)+Lgh(x)u+α(h(x)) is a control
barrier condition (CBC) defined for some extended class K∞
function α.

Proposition 2 (Sufficient Condition for Safety [25]). Consider
a set C defined implicitly by h ∈ C1(X ,R). If h is a CBF and
∇h(x) 6= 0 for all x when h(x) = 0, then any Lipschitz
continuous control policy π(x) ∈ {u ∈ U | CBC(x,u) ≥ 0}
renders the system in (1) safe with respect to C.

Prop. 1 and Prop. 2 provide sufficient conditions for a
control policy π(x) applied to the system in (1) to guarantee
stability and safety. Note that the conditions are defined by
affine constraints in u. This allows the formulation of control
synthesis as a quadratic program (QP) in which stability and
safety properties are captured by the linear CLC and CBC
constraints, respectively:

π(x) ∈ arg min
u∈U,δ∈R

‖R(x)u‖2 + λδ2

s.t. CLC(x,u) ≤ δ, CBC(x,u) ≥ 0,
(4)

where R(x) ∈ Rm×m is a matrix penalizing control effort
and δ is a slack variable that ensures feasibility of the QP
by giving preference to safety over stability, controlled by
the scaling factor λ > 0. If a stabilizing control policy π̂(x)
is already available, it may be modified minimally online to
ensure safety:

π(x) ∈ arg min
u∈U

‖R(x) (u− π̂(x)) ‖2

s.t. CBC(x,u) ≥ 0.
(5)

In practice, the QPs above cannot be solved infinitely
fast. Optimization is typically performed at triggering times
tk, tk+1, . . ., providing control input uk , π(xk) when the
system state is xk , x(tk). Ames et al. [21, Thm. 3] show
that if f , g, and α ◦ h are locally Lipschitz, then π(x)
and CBC(x, π(x)) are locally Lipschitz. Thus, for sufficiently
small inter-triggering times τk , tk+1 − tk, solving (5) at
{tk}k∈N ensures safety during the inter-triggering intervals
[tk, tk+1) as well.

C. Stability and Safety with Unknown Dynamics

This work considers stability and safety for the control-
affine nonlinear system in (1) when the system dynamics

F (x) ∈ Rn×(1+m) are unknown. We place a prior distri-
bution over vec(F (x)) using a GP [59] with mean function
vec(M0(x)) and covariance function K0(x,x′).

Our objective is to compute the posterior distribution of
vec(F (x)) using observations of the system states and controls
over time and ensure stability and safety using the estimated
dynamics model despite possible estimation errors.

Problem 1. Given a prior distribution on the unknown system
dynamics, vec(F (x)) ∼ GP (vec(M0(x)),K0(x,x′)), and
a training set, X1:k , [x(t1), . . . ,x(tk)], U1:k , [u(t1),
. . . ,u(tk)], Ẋ1:k = [ẋ(t1), . . . , ẋ(tk)]1, compute the poste-
rior distribution GP (vec(Mk(x)),Kk(x,x′)) of vec(F (x))
conditioned on (X1:k,U1:k, Ẋ1:k).

Problem 2. Given a safe set C , {x ∈ X | h(x) ≥ 0}, initial
state xk , x(tk) ∈ C, and the distribution GP(vec(Mk(x)),
Kk(x,x′)) of vec(F (x)) at time tk, choose a control input
uk and triggering period τk such that for u(t) , uk:

P(CBC(x(t),uk) ≥ 0) ≥ pk for all t ∈ [tk, tk + τk), (6)

where x(t) follows the dynamics in (1), and pk ∈ (0, 1) is a
user-specified risk tolerance.

IV. MATRIX VARIATE GAUSSIAN PROCESS REGRESSION
OF SYSTEM DYNAMICS

This section presents our novel Matrix Variate Gaussian
Process (MVGP) solution to Problem 1. We aim to estimate the
unknown drift f and input gain g of system (1) using a state-
control dataset (X1:k,U1:k, Ẋ1:k). To simplify the derivation,
we assume that X1:k and U1:k are observed without noise, butt
each measurement ẋ(tk) in Ẋ1:k is corrupted by zero-mean
Gaussian noise N (0,S) that is independent across time steps.
Treating f(x)+g(x)u as a single vector-valued function with
input [x>,u>]> may seem natural from a function approxima-
tion perspective, but this approach ignores the control-affine
structure. Encoding this structure in the learning process not
only increases the learning efficiency, but also ensures that the
control Lyapunov and control barrier conditions remain linear
in u. Hence, we focus on learning the matrix-valued function
F (x) = [f(x) g(x)] defined in (1).

The simplest approach is to use n(1+m) decoupled GPs for
each element of F (x). This approach ignores the dependencies
among the components of f(x) and g(x). Furthermore, since
the outputs of f(x) and g(x) are observed together via Ẋ1:k,
training data dimensions are still mutually correlated and
cannot be treated as decoupled GPs denying the efficiency
advantage. At the other extreme, treating vec(F (x)) as a single
vector-valued function and using a single GP distribution will
enable high estimation accuracy but specifying an effective
matrix-valued kernel function K0(x,x′) and optimizing its
hyperparameters is challenging. A promising approach is
offered by the Coregionalization GP (CoGP) model [65],
where the kernel function is decomposed as K0(x,x′) ,
Σκ0(x,x′) into a scalar kernel κ0(x,x′) and a covariance
matrix parameter Σ ∈ Rn(1+m)×(1+m)n. Estimating Σ may

1If not available, the derivatives may be approximated via finite differences,
e.g., Ẋ1:k ,

[x(t2)−x(t1)
t2−t1

, . . . ,
x(tk+1)−x(tk)

tk+1−tk

]
, provided that the inter-

triggering times {τk = tk − tk−1}k are sufficiently small.
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still require a lot of training data. Moreover, the matrix-times-
scalar-kernel structure is not preserved in the posterior of
the Coregionalization model, preventing its effective use for
incremental learning when new data is received over time.

We propose an alternative factorization of K0(x,x′) in-
spired by the Matrix Variate Gaussian distribution [66], [67].
The strengths of our factorization are that it models the
correlation among the elements of F (x), preserves its structure
in the posterior GP distribution, and has similar training and
testing complexity as the decoupled GP approach.

Definition 3. The Matrix Variate Gaussian (MVG) distribution
is a three-parameter distribution MN (M,A,B) describing a
random matrix X ∈ Rn×m with probability density function:

p(X; M,A,B) ,
exp

(
− 1

2 tr
[
B−1(X−M)>A−1(X−M)

])
(2π)nm/2 det(A)m/2 det(B)n/2

where M ∈ Rn×m is the mean. Up to a scaling factor, each
column of X has the same covariance A ∈ Rn×n, and each
row has the same covariance B ∈ Rm×m.

Additional properties of the MVG distribution are provided
in Appendix A. Note that if X ∼ MN (M,A,B), then
vec(X) ∼ N (vec(M),B ⊗ A). Based on this observation,
we propose the following decomposition of the GP prior:

vec(F (x)) ∼ GP(vec(M0(x)),B0(x,x′)⊗A), (7)

where B0(x,x′) ∈ R(m+1)×(m+1) and A ∈ Rn×n. We call
such a process F (x) with kernel structure defined in (7) a
Matrix Variate Gaussian Process (MVGP).

We assume that the measurement noise covariance matrix
satisfies S = σ2A for some parameter σ > 0. This assump-
tion on the relationship between S and the dynamics row
covariance A is necessary to preserve the Kronecker product
structure of the covariance in the GP posterior.

To simplify notation, let B1:k
1:k ∈ Rk(m+1)×k(m+1) be a

matrix with k×k block elements
[
B1:k

1:k

]
i,j

, B0(xi,xj) and

define M1:k ,
[
M0(x1) · · · M0(xk)

]
∈ Rn×k(m+1),

B1:k(x) , [B0(x,x1), . . . ,B0(x,xk)] ∈ R(m+1)×k(m+1) and
U1:k , diag(u1, . . . ,uk) ∈ Rk(m+1)×k. Consider an arbitrary
test point x∗. The train and test data are jointly Gaussian:[

vec(Ẋ1:k)
vec(F (x∗))

]
∼ N

([
vec(M1:kU1:k)
vec(M0(x∗))

]
,[

U>1:kB
1:k
1:kU1:k + σ2Ik U>1:kB

>
1:k(x∗)

B1:k(x∗)U1:k B0(x∗,x∗)

]
⊗A

)
, (8)

where

U>1:kB
1:k
1:kU1:k =

u>1 B0(x1,x1)u1 · · · u>1 B0(x1,xk)uk
...

. . .
...

u>k B0(xk,x1)u1 · · · u>k B0(xk,xk)uk


B1:k(x∗)U1:k =

[
B0(x1,x∗)u1 · · · B0(xk,x∗)uk

]
.

(9)

Applying a Schur complement to (8), we find the dis-
tribution of vec(F (x∗)) conditioned on the training data
(X1:k,U1:k, Ẋ1:k). The posterior mean and covariance func-
tions are provided in the next proposition.

Proposition 3. The posterior distribution of vec(F (x)) condi-
tioned on the training data (X1:k,U1:k, Ẋ1:k) is a Gaussian
process GP(vec(Mk(x)),Bk(x,x′)⊗A) with parameters:

Mk(x) , M0(x) +
(
Ẋ1:k −M1:kU1:k

)
(U1:kB1:k(x))

†

Bk(x,x′) , B0(x,x′)−B1:k(x)U1:k (U1:kB1:k(x′))
†

(U1:kB1:k(x))
† ,

(
U>1:kB

1:k
1:kU1:k + σ2Ik

)−1
U>1:kB

>
1:k(x).

(10)

Proof. See Appendix B.

Prop. 3 shows that, for a given control input u, the MVGP
posterior of F (x)u is (applying Lemma 8):

F (x)u ∼ GP(Mk(x)u,u>Bk(x,x′)u⊗A). (11)

A key property of the MVGP model in Prop. 3 is that
the posterior preserves the kernel decomposition. In the spe-
cial case of, B0(x,x′) , Bκ0(x,x′), in addition to the
kernel parameters, our model requires learning of B ∈
R(1+m)×(1+m) and, if the measurement noise statistics are
unknown, A ∈ Rn×n and σ ∈ R. Thus, the MVGP model
has fewer parameters than a CoGP model, which requires
(1 +m)2n2 parameters for the full covariance decomposition
K0(x,x′) , Σκ0(x,x′). For a data set with k examples, the
training computational complexity of our MVGP approach is
O(k3), while the same for the CoGP model is O(k3n3). This
is because our model inverts only a (k × k) matrix while the
CoGP model inverts a (kn × kn) matrix (see Appendix C).
Fig. 1 shows a comparison of the covariances obtained from
an MVGP model (with B0(x,x′) = Bκ0(x,x′)) and from
a CoGP model. The shapes of the MVGP covriances for
different columns of F (x) are the same by construction, while
those of CoGP model may be arbitrary. Thus, the CoGP
model is more expressive than our MVGP model. However,
MVGP model offers considerable computational advantages
especially for high-dimensional systems without significant
loss in accuracy. The accuracy and computational complexity
of the MVGP and CoGP models are compared in Sec. VIII-A.

V. SELF-TRIGGERED CONTROL WITH PROBABILISTIC
SAFETY CONSTRAINTS

The MVGP model developed in Sec. IV addresses Prob-
lem 1 and provides a probabilistic estimate of the unknown
system dynamics F (x)u in (11). In this section, we consider
Problem 2. We extend the optimization-based control synthesis
approach in (4) to handle probabilistic stability and safety
constraints induced by the posterior distribution of F (x)u.
We focus on handling probabilistic safety constraints of the
form P(CBC(x,u) ≥ 0) ≥ p. Since the control Lyapunov
and control barrier conditions have the same form, involving
the Lie derivative of a known function V (x) or h(x) with
respect to the system dynamics, our approach can be used
for stability constraints as well, as demonstrated in Sec.
VIII-B. Furthermore, we develop self-triggering conditions
to adaptively decide the times tk, tk+1, . . ., at which the
system inputs u should be recomputed in order to guarantee
safety with high probability along the continuous-time system
trajectory, instead of instantaneously in time.
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Fig. 1. Covariances of f(x) and the columns of g(x) learned from an Ackermann vehicle simulation described in Sec. VIII-B using an MVGP model (left)
and a CoGP model (right). By construction the shapes of the covariances for each column of the MVGP model are the same (up to scale), while the column
covariance shapes for the CoGP model are not constrained.

Our approach requires the stochastic system dynamics
F (x)u to be locally Lipschitz continuous with high proba-
bility. This is necessary to ensure that for any MVGP sample
F̂ (x), the ordinary differential equation ẋ = F̂ (x)u in (1)
has a unique solution [68, Thm. 3.20]. Without such an
assumption, the system would be able to instantaneously move
from a safe state with a large safety margin to an unsafe
state, making it impossible to guarantee safety for any time
duration after a control triggering instant. The next Lemma
shows constructively how to compute a Lipschitz constant Lf

which holds with a user-specified probability 1 − δL for a
vector-valued GP model with kernel whose fourth-order partial
derivatives are Lipschtz continuous. The proof follows, with
minor modifications, the argument in [69, Thm 3.2].

Lemma 1. Consider the vector-valued function f(x) ,
F (x)u in (11) with distribution GP(µ(x),AκB(x,x′)),
where µ(x) = Mk(x)u and κB(x,x′) = u>Bk(x,x′)u.
Suppose that κB(x,x′) has continuous partial derivatives
of fourth order. For j ∈ {1, . . . , n}, let κ∂jB (x,x′) ,
∂2

∂xj∂x′
j
κB(x,x′) with Lipschitz constant L∂jκ over a compact

set X with maximal extension r = maxx,x′∈X ‖x − x′‖.
Then, each element of the Jacobian of f(x) is bounded with
probability of at least 1− δL

n2 :∣∣∣∣sup
x∈X

∂fi(x)

∂xj

∣∣∣∣ ≤ Li,∂j , ∀i, j ∈ {1, . . . , n}, (12)

where

Li,∂j ,

√
2 log

(
2n2

δL

)
κi,∂jX + 12

√
6nmax

{
κi,∂jX ,

√
rAiiL

∂j
κ

}

and κi,∂jX , maxx∈X

√
Aiiκ

∂j
B (x,x′). Furthermore, a sample

function f(x) of the given GP is almost surely continu-
ous on X and with probability of at least 1 − δL, Lf ,√

1
n2

∑n
i=1

∑n
j=1 L

2
i,∂j is a Lipschitz constant of f(x) on X .

Proof. See Appendix D.

The assumptions of Lemma 1 are mild and reasonable. The
assumption about kernel continuity can be satisfied by an ap-
propriate choice of a kernel function. For example, commonly
used radial basis functions are infinitely differentiable and
continuous. The assumption that the space X is bounded is
reasonable for physical systems. For example, the region that
an Ackermann vehicle can cover can be bounded based on the
maximum velocity and acceleration of the vehicle.

A. Probabilistic Safety Constraints

Consider probabilistic stability and safety constraints in the
CLF-CBF QP in (4), induced by the MVGP distribution of
F (x)u at time tk in (11):

π(xk) ∈ arg min
uk∈U,δ∈R

‖R(xk)uk‖2 + λδ2

s.t. P(CLC(xk,uk) ≤ δ | xk,uk) ≥ p̃k
P(CBC(xk,uk) ≥ ζ | xk,uk) ≥ p̃k,

(13)

where p̃k , pk/(1− δL) and δL is specified in Lemma 1.
Remark 1. Given a desired safety probability pk for the
interval [tk, tk + τk), defined in (6), we choose the Lipschitz
continuity probability 1− δL in Lemma 1 to ensure instanta-
neous safety at time tk with higher probability p̃k ∈ [0.5, 1).
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The choice of δL affects the Lipschitz constant Lf and in turn
the duration τk, as discussed in Sec. V-B. By ensuring safety
at time instant tk with probability at least p̃k, we guarantee
safety with probability at least pk = p̃k(1 − δL) during the
interval [tk, tk + τk) (see Proposition 5). Also see Remark 2
for further discussion on feasibility. •

To ensure that the safety constraint does not only hold
instantaneously at tk but over an interval [tk, tk + τk), we
enforce a tighter constraint via ζ > 0 and determine the time
τk for which it remains valid. The choice of ζ and its effect on
τk are discussed next. First, we obtain the mean and variance
of the CBC constraint, which is an affine transformation of
the system dynamics.

Lemma 2. Consider the dynamics in (1) with posterior
distribution in (11). Given xk and uk, CBCk , CBC(xk,uk)
is a Gaussian random variable with the following parameters:

E[CBCk] = ∇xh(xk)>Mk(xk)uk + α(h(xk)), (14)

Var[CBCk] = (u>k Bk(xk,xk)uk)(∇xh(xk)>A∇xh(xk)).

Proof. We start by rewriting the definition of CBC as:

CBCk = ∇xh(xk)>F (xk)uk + α(h(xk)). (15)

Then, the mean and variance of CBCk are:

E[CBCk] = ∇xh(xk)>E[F (xk)uk] + α(h(xk)),

Var[CBCk] = ∇xh(xk)> Var[F (xk)uk]∇xh(xk),
(16)

where the mean and variance of F (xk)uk are from (11).

Using Lemma 2, we can rewrite the safety constraint as

P(CBCk ≥ ζ|xk,uk) = 1− Φ

(
ζ − E[CBCk]√

Var[CBCk]

)
≥ p̃k, (17)

where Φ(·) is the cumulative distribution function of the
standard Gaussian. Note that if the control input is chosen
so that ζ−E[CBCk]√

Var[CBCk]
→ −∞, as the posterior variance of CBCk

tends to zero, the probability P(CBCk ≥ ζ|xk,uk) tends to
one. Namely, as the uncertainty about the system dynamics
tends to zero, our results reduce to the setting of Sec. III-B,
and safety can be ensured with probability one. Using (17)
and noting that Φ−1(1 − p̃k) = −

√
2erf−1(2p̃k − 1), where

erf(·) is the Gauss error function, the optimization problem in
(13) can be restated as:

π(xk) ∈ arg min
uk∈U,δ∈R

‖R(xk)uk‖2 + λδ2

s.t. δ − E[CLCk] ≥ c(p̃k)
√

Var[CLCk]

ζ − E[CBCk] ≤ −c(p̃k)
√

Var[CBCk],

(18)

where c(p̃k) ,
√

2erf−1(2p̃k − 1). Using the reformulation in
(18), the next proposition shows that the control problem with
probabilistic stability and safety constraints in (13) is a convex
optimization problem, which can be solved efficiently.

Proposition 4. The chance-constrained optimization problem
in (13) for control-affine system dynamics in (1) with posterior
distribution (11) is a second-order cone program (SOCP):

π(xk) ∈ arg min
y∈R,δ∈R,u∈U

y (19a)

s.t. y −
∥∥∥R(xk)u +

√
λδ
∥∥∥
2
≥ 0 (19b)

qk(xk)>u− δ + c(p̃k) ‖Pk(xk)u‖2 ≤ 0 (19c)

ek(xk)>u− ζ − c(p̃k) ‖Vk(xk)u‖2 ≥ 0, (19d)

where

qk(xk) , Mk(xk)>∇xV (xk) +

[
γ(V (xk))

0m

]
,

Pk(xk) ,
√
∇xV (xk)>A∇xV (xk)B

1
2

k (xk,xk),

ek(xk) , Mk(xk)>∇xh(xk) +

[
α(h(xk))

0m

]
,

Vk(xk) ,
√
∇xh(xk)>A∇xh(xk)B

1
2

k (xk,xk),

and B
1
2

k (xk,xk) is the Cholesky factorization of Bk(xk,xk).

Proof. Substituting the mean and variance of CLCk and CBCk
(Lemma 2) in (18) and introducing an auxiliary variable y to
express the quadratic objective as a SOCP constraint leads to
the result.

Prop. 4 generalizes the CLF-CBF QP formulation in (4).
It shows that when the stability and safety constraints are
probabilistic, induced by the MVGP distribution of the system
dynamics, the control synthesis problem becomes a SOCP and,
hence, is still convex. We refer to the left-hand side of the
constraints in (19d) and (19c) as Stochastic CBC (SCBC)
and Stochastic CLC (SCLC), respectively. Note that when
p̃k = 0.5, c(p̃k) = 0 and the SOCP in (19) reduces to the
deterministic-case QP in (4). Otherwise, the SOCP can be
solved to arbitrary precision ε within O(− log(ε)) iterations
[70] with off-the-shelf solvers [71], [72].
Remark 2. If the SOCP program in (19) is infeasible, there
does not exist a control input that guarantees safety for
the current dynamics GP distribution and the user-specified
probabilistic safety requirement. This can be used as a failure
mode to ask a human to take over control or provide additional
training data that reduces the dynamics GP uncertainty. Since
our SOCP constraint is a conservative approximation of the
true probabilistic safety constraint in (13), it is possible that
control that meets the desired safety bounds exists even if the
SOCP is infeasible. Please refer to Casteñada et al [73] for
discussion of feasibility conditions of an SOCP controller. •

B. Self-triggering Design
The safety constraint in (19) ensures safety with high

probability at the triggering times {tk}k∈N. Here, we extend
our analysis to the inter-triggering invervals [tk, tk + τk). We
restate [30, Prop. 1] in our setting, showing that when the
system dynamics are Lipschitz continuous (Lemma 1), then
the change in the state is bounded.

Lemma 3. Consider the GP model of the system dynamics
in (11) with zero-order hold control for [tk, tk + τk). If
the assumptions of Lemma 1 are satisfied, i.e., with high
probability the system dynamics are Lipschitz continuous with
Lipschitz constant Lfk , then for all s ∈ [0, τk) the total change
in the system state is bounded with probability at least 1−δL:

‖x(tk + s)− xk‖ ≤ rk(s) ,
1

Lfk

‖ẋk‖
(
esLfk − 1

)
. (20)
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Recall from Sec. III-B that h is a continuously differentiable
function. Thus, using Lemma 3, for any inter-triggering time
τk, there exist a constant Lhk > 0 such that:

sup
s∈[0,τk)

‖∇xh(x(tk + s))‖ ≤ Lhk . (21)

This is used in the next proposition which concerns Prob-
lem 2. The next proposition guarantees safety during the inter-
triggering intervals as long as the controller ensures safety at
the triggering time using the SOCP in (19).

Proposition 5. Consider the GP model of the system dy-
namics in (11) with safe set C. Assume the system dynamics
have Lipschitz constant Lfk with probability at least 1 − δL
(Lemma 1), the system is safe with margin ζ at trigger-
ing time tk with probability at least p̃k = pk/(1 − δL)
(Prop. 4), and α is Lipschitz continuous with Lipschitz constant
Lα. Then, the system is safe according to the constraint
in (6) with probability at least pk for time duration τk ≤
1
Lfk

ln
(

1 +
Lfk

ζ

(Lfk
+Lα)Lhk‖ẋk‖

)
, where Lhk is defined in (21).

Proof. Since the program (13) has a solution at the triggering
time tk, we know P(CBCk ≥ ζ|xk,uk) ≥ p̃k. Thus, condi-
tioned on CBCk ≥ ζ and the Lipschitz continuity of the system
dynamics, if we prove CBC(s+tk) ≥ 0, for all s ∈ [0, τk), the
result follows. Using the Cauchy-Schwarz inequality, Lipschitz
continuity of the system dynamics and Lipschitz continuity
of α and h (from (21)), for all s ∈ [0, τk), we have with
probability at least p̃k(1− δL):

|CBC(x(s+ tk),uk)− CBCk| (22)

≤
(

sup
s∈[0,τk)

‖∇xh(x(s+ tk))‖Lfk + LαLhk

)
rk(s).

Thus, using (20) and (21), we notice that the right-hand side
of (22) is upper-bounded by LhkLfk

+LαLhk
Lfk

‖ẋk‖
(
eLfk

s − 1
)
,

which, in turn, is less than or equal to ζ for s = τk.

Prop. 4 ensures instantaneous safety with probability p̃k ≥
pk, while Prop. 5 extends the safety guarantee with probability
pk to the interval [tk, tk + τk). System safety as formalized
in Problem 2 is guaranteed because P(CBC(x) ≥ 0) ≥ pk
implies P(h(x) ≥ 0) ≥ pk, for all t ∈ [tk, tk + τk), due to
Prop. 2. Prop. 5 characterizes the longest time τk until it is
necessary to recompute the control input to guarantee safety.

Fig. 2 shows an evaluation of the Lipschitz constant Lfk

(Lemma 1) and triggering time τk (Prop. 5) for a system
with Ackermann dynamics. We compute Lfk and τk both
analytically and numerically. The shapes of the curves for
the numerical and analytical Lipschitz constant are the same,
although the analytical bound in Lemma 1 is a few orders of
magnitude more conservative. More details about the simula-
tion are presented in Sec. VIII-B.

VI. EXTENSION TO HIGHER RELATIVE-DEGREE SYSTEMS

Next, we extend the probabilistic safety constraint for-
mulation for systems with arbitrary relative degree2, using

2The motivation for assuming known relative degree but unknown dynamics
comes from robotics applications. Commonly, the class of the system is known
but the parameters (e.g., mass, moment of inertia) and high-order interactions
(e.g., jerk, snap, drag) of the dynamics are unknown. Estimating the relative
degree is left for future work (see [74]–[76]).
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Fig. 2. Lipschitz constant Lfk and triggering time τk for an Ackermann
vehicle simulation. The analytical values (left) obtained from Lemma 1 and
Prop. 5 are compared with numerical estimates (right). The shapes are similar
for both terms over a 200 time-step simulation but the magnitudes differs. See
Sec. VIII-B3 for details.

an exponential control barrier function (ECBF) [25], [37].
Sec. VI-A reviews ECBF results for systems with known dy-
namics. Sec. VI-B investigates probabilistic ECBF constraints,
while Sec. VI-C provides a self-triggering formulation.

A. Known Dynamics
Let r ≥ 1 be the relative degree of (1) with respect to

h(x), i.e., LgL(r−1)
f h(x) 6= 0 and LgL(k−1)

f h(x) = 0, ∀k ∈
{1, . . . , r − 1}. This condition can be expressed by defining

η(x) ,


h(x)
Lfh(x)

...
L(r−1)
f h(x)

 , F ,


0 1 . . . 0
...

...
...

0 0 . . . 1
0 0 . . . 0

 , G ,


0
...
0
1


and h(x) is the output of the linear time-invariant system:

η̇(x) = Fη(x) + Gu, h(x) = c>η(x), (23)

where c , [1, 0, . . . , 0]> ∈ Rr.

Definition 4 ([25], [37]). A function h ∈ Cr(X ,R) is an
exponential control barrier function (ECBF) for the system
in (1) if there exists a vector kα ∈ Rr such that the r-th
order control barrier condition CBC(r)(x,u) , L(r)

f h(x) +

LgL(r−1)
f h(x)u + k>αη(x) satisfies supu∈U CBC(r)(x,u) ≥

0 for all x ∈ X and h(x(t)) ≥ c>η(x0)e(F−Gkα)t ≥ 0,
whenever h(x(0)) ≥ 0.

If kα satisfies the properties in [37, Thm. 2], then any con-
troller u = π(x) that ensures CBC(r)(x,u) ≥ 0 renders the
dynamics (1) safe with respect to C = {x ∈ X | h(x) ≥ 0}.
For relative-degree-one systems, k>αη(x) reduces to αh(x)
with α > 0. Thus, CBC(1), the safety condition based on
ECBF for r = 1, is equivalent to the CBC in Def. 2 when the
extended class K∞ function α is linear.

B. Probabilistic ECBF Constraints
As in (13), we are interested in solving

π(xk) ∈ arg min
uk∈U

‖R(xk)uk‖2

s.t. P(CBC(r)
k ≥ ζ|xk,uk) ≥ p̃k,

(24)
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where CBC(r)
k , CBC(r)(xk,uk) and we have dropped the

CLC term for clarity of presentation. While we explicitly
characterised the distribution of CBCk for relative degree one
in Lemma 2, the distribution of CBC(r)

k cannot be determined
explicitly for arbitrary r. Instead, we use a concentration bound
to rewrite the chance constraint in terms of the moments of
CBC(r)

k . Before we can derive a SOCP controller for higher
relative-degree systems, we need to show that the mean and
variance of CBC(r)

k are affine and quadratic in u, respectively.

Lemma 4. Let r ≥ 1 be the relative degree of (1) with respect
to h(x) ∈ Cr(X ,R) and F (x) be a random function with
finite mean and variance. Then, the expectation and variance
of CBC(r)(x,u) in Def. 4 are linear and quadratic in u,
respectively, and satisfy:

E[CBC(r)(x,u)] = e(r)(x)>u,

Var[CBC(r)(x,u)] = u>V(r)(x)V(r)(x)>u,
(25)

where

e(r)(x) , E
[
F (x)>∇xL(r−1)

f h(x) +

[
k>αη(x)

0m

]]
(26)

V(r)(x) , Var
[
F (x)>∇xL(r−1)

f h(x) +

[
k>αη(x)

0m

]] 1
2

(27)

Proof. See Appendix E.

The next proposition generalizes Prop. 4 to arbitrary
relative-degree systems by showing that control synthesis with
probabilistic safety constraints can still be cast as a SOCP.

Proposition 6. Consider the control-affine system in (1) with
stochastic dynamics and relative degree r ≥ 1 with respect
to an ECBF h(x) ∈ Cr(X ,R). If the system inputs are
determined in continuous time tk from the following SOCP,

π(xk) ∈ arg min
y∈R,uk∈U

y

s.t. y − ‖R(xk)uk‖2 ≥ 0 (28)

e
(r)
k (xk)>uk − ζ − c(r)(p̃k)

∥∥∥V(r)
k (xk)uk

∥∥∥
2
≥ 0,

where c(r)(p̃k) ,
√

p̃k
1−p̃k and p̃k ∈ (0, 1) is fixed for all

tk, then the system trajectory remains in the safe set C =
{x ∈ X | h(x) ≥ 0} with probability p̃k.

Proof. See Appendix F.

In the proposition above, we bound P(CBC(r)
k ≥ ζ|xk,uk)

in (24) using Cantelli’s inequality, because the exact distri-
bution of CBC(r)

k is unknown. The safety constraint in (28)
can be interpreted as: “The system must satisfy CBC(r)

k in
expectation by a margin c(p̃k) times the standard deviation of
CBC(r)

k ”. Solving the SOCP requires knowledge of the mean
and variance of CBC(r)

k . Sec. VII shows how to determine the
mean and variance of CBC(2)

k , which is of practical relevance
for many physical systems. For r > 2, Monte Carlo sampling
can be used to estimate these quantities.

C. Self-triggering Design
In this section, we extend the time-triggered formulation for

probabilistic safety of high relative-degree systems to a self-
triggering setup. Our extension to self-triggering control in the
relative-degree-one case in Proposition 5, relied on Lipshitz
continuity of the CBC components. To simplify the analysis
for arbitrary relative degree r, we temporarily introduce a
modified CBF hb(x) , h(x) − ζb with ζb > 0. We solve
the SOCP in (28) with ζ = 0 but replace h(x) with hb(x).
Enforcing the safety constraint in (28) for hb(xk), ensures
that with probability p̃k, h(xk) ≥ ζb at the sampling times.
We find an upper bound on the sampling time τk that ensures
h(x(t)) remains non-negative during the inter-triggering in-
tervals [tk, tk + τk). As shown in the next proposition, this
is sufficient to guarantee safety during the inter-triggering
interval as long as the system using the SOCP controller (28)
is safe at the triggering time tk.

Proposition 7. Consider the system in (1) with stochastic
dynamics and safe set C = {x ∈ X | h(x) ≥ 0}. Suppose
the system has relative degree r ≥ 1 with respect to h(x)
and the SOCP in (28) has a solution at triggering time
tk with hb(x) , h(x) − ζb as the CBF and ζ = 0.
Suppose that the system dynamics are Lipschitz continuous
with probability at least 1− δL (Lemma 1) and h is Lipschitz
continuous with Lipschitz constant Lhk . Then, h(x(t)) ≥ 0,
for t ∈ [tk, tk + τk), holds with probability pk = p̃k(1− δL),
where τk ≤ 1

Lfk
ln
(

1 +
Lfk

ζb
Lhk‖ẋk‖

)
.

Proof. Using Lemma 1 and 3 we have,

sup
s∈[0,τk)

|h(x(tk + s))− h(xk)| ≤ Lhk‖x(tk + s)− xk‖

≤ Lhk
Lfk

‖ẋk‖(eLfk
τk − 1) ≤ ζb, (29)

where the last inequality follows from the upper bound on τk.
Given h(x(t)) ≥ ζb at tk, we deduce h(x(t)) ≥ 0 for all time
in [tk, tk + τk), and the result follows.

Assuming that the Lipschitz continuity of system dynamics
occurs with probability at least 1− δL (Lemma 1), and given
the value of ‖ẋk‖ at triggering time tk and the parameter
ζb > 0 and the Lipschitz constant Lhk , Proposition 7 char-
acterizes the longest time τk until a control input needs to
be recomputed to guarantee safety with probability at least
pk = p̃k(1− δ) for a system with arbitrary relative degree.
Remark 3. Recent works [38], [77], [78]studya more general
high-order CBF (HOCBF) formulation than ECBF. Applying
our probabilistic safety constraints with a HOCBF is left for
future work. •

VII. SPECIAL CASE: RELATIVE DEGREE TWO

Systems with relative degree two appear frequently. We
develop an efficient approach for computing the mean and
variance of the relative-degree-two safety condition:

CBC(2)(x,u) = [∇xLfh(x)]>F (x)u + [h(x),Lfh(x)]>kα,

which is needed to specify the safety constraints in our SOCP
formulation in (28). Note that CBC(2)(x,u) is a stochastic pro-
cess whose distribution is induced by the GP vec(F (x)). Fig. 3
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∇xh(x)
∇xh(x)>f(x)︸ ︷︷ ︸

Lfh(x)

[·]

f(x) ∼ GP

[·]

∇xLfh(x)
∇x ∇x[Lfh(x)]>F (x)u

F (x)u ∼ GP
[·]

u = [1,0>m]>

[·]

[·]

Fig. 3. Computation graph for the second-order Lie derivative of a control
barrier function h(x) along the GP-distributed dynamics F (x)u of a relative
degree two system. Only two kinds of operations are required: (1) dot product
with a vector-variate GP ([·]) and (2) gradient of a scalar GP ([∇x]).

shows a computation graph for CBC(2)(x,u) with random
or deterministic functions as nodes and computations among
them as edges. The graph contains only two kinds of edges:
(1) dot product of a deterministic function with a vector-
variate GP and (2) gradient of a scalar GP. We show how
the mean, variance, and covariance propagate through these
two computations in Lemma 5 (dot product) and Lemma 6
(scalar GP gradient).

Lemma 5. Consider three Gaussian random vectors x, y,
z with means x̄, ȳ, z̄ and variances Var[x], Var[y], Var[z],
respectively. Let their pairwise covariances be cov(x,y),
cov(y, z) and cov(z,x). The mean, variance, and covariances
of x>y are given by:

E[x>y] = x̄>ȳ +
1

2
tr(cov(x,y) + cov(y,x)) (30)

Var[x>y] =
1

2
tr(cov(x,y) + cov(y,x))2 + ȳ> Var[x]ȳ

+ x̄> Var[y]x̄ + ȳ> cov(x,y)x̄ + x̄> cov(y,x)ȳ (31)cov(x,x>y)
cov(y,x>y)
cov(z,x>y)

 =

 cov(x,y)x̄ + Var[x]ȳ
Var[y]x̄ + cov(y,x)ȳ

cov(z,y)x̄ + cov(z,x)ȳ

 . (32)

Proof. See Appendix G.

Lemma 6 ([79, Thm. 2.2.2][80, p. 43]). Let q(x) be a
scalar Gaussian Process with differentiable mean function
µ(x) : Rn 7→ R and twice-differentiable covariance function
κ(x,x′) : Rn × Rn 7→ R. If ∇xµ(x) exists and is finite for
all x ∈ R and Hx,x′κ(x,x′) = [∂

2κ(x,x′)
∂xi,∂x′

j
]n,ni=1,j=1 exists and

is finite for all (x,x′) ∈ R2n, then q(x) possesses a mean
square derivative ∇xq(x), which is a vector-variate Gaussian
Process GP(∇xµ(x),Hx,x′κ(x,x′)). If s is another random
process whose finite covariance with q is covq,s(x,x

′), then

cov(∇xq(x), s(x′)) = ∇x covq,s(x,x
′). (33)

The mean and variance of CBC(2)(x,u) can be computed
using Lemma 4:

E[CBC(2)(x,u)] = e(2)(x)>u

Var[CBC(2)(x,u)] = u>V(2)(x)V(2)(x)>u

e(2)(x) = E[F (x)>∇xLfh(x)]

+

[
kα,1h(x) + kα,2E[Lfh(x)]

0m

]
V(2)(x) =

(
Var[F (x)>∇xLfh(x)] (34)

Algorithm 1: Mean and variance of CBC(2)(x,u).
Data: ECBF h(x), system dynamics distribution

vec(F (x)) ∼ GP(vec(Mk(x)),Bk(x,x′)⊗A)
Result: E[CBC(2)(x,u)] and Var[CBC(2)(x,u)]

1 Compute E[Lfh(x)] = ∇xh(x)>Mk(x)[1,0>m]> and
Var[Lfh(x)] = [Bk(x,x′)]1,1 (∇xh(x)>A∇xh(x))

by substituting u = [1,0>m]> in Lemma 2.
2 Compute the mean and variance of ∇xLfh(x) using

Lemma 6,
3 Compute cov

(
∇xLfh(x),Lfh(x)

)
using (33)

4 Compute the mean and variance ∇x[Lfh(x)]>F (x)u
using Lemma 5,

5 Compute d(x)>u = cov
(
∇x[Lfh(x)]>F (x)u,Lfh(x)

)
using (32),

6 Plug the above values into (34) to obtain
E[CBC(2)(x,u)] and Var[CBC(2)(x,u)].

+

[
k2
α,2 Var[Lfh(x)] + 2[d(x)]1 [d(x)]>2:m+1

[d(x)]2:m+1 0m×m

]) 1
2

d(x) , kα,2 cov(F (x)>∇xLfh(x),Lfh(x))

where the means, variances, and covariances of Lfh(x) and
F (x)>∇xLfh(x) in the above equations can be computed via
Algorithm 1 using Lemma 5 and Lemma 6.

VIII. SIMULATIONS

We evaluate our proposed MVGP learning model and the
SOCP-based safe control synthesis on two simulated systems:
(A) Pendulum and (B) Ackermann Vehicle. To allow reproduc-
ing the results, our implementation is available on Github3.

A. Pendulum

Consider a pendulum, shown in Fig 6, with state x =
[θ, ω]>, containing its angular deviation θ from the rest posi-
tion and its angular velocity ω. The pendulum dynamics are:[

θ̇
ω̇

]
=

[
ω

− gl sin(θ)

]
︸ ︷︷ ︸

f(x)

+

[
0
1
ml

]
︸ ︷︷ ︸
g(x)

u, (35)

where g is the gravitational acceleration, m is the mass, and
l is the length.

1) Estimating Pendulum Dynamics: We compare our
MVGP model versus the Coregionalization GP (CoGP) [65]
in estimating the pendulum dynamics using data from ran-
domly generated control inputs. In our simulation, the true
pendulum model has mass m = 1 and length l = 1. The
inference algorithms were implemented in Python using GPy-
Torch [81]. We let K0(x,x′) = Bκ0(x,x′) ⊗A for MVGP
and K0(x,x′) = Σκ0(x,x′) for CoGP, where κ0(x,x′) is a
scaled radial-basis function kernel. Further, A, B, and Σ are
constrained to be positive semi-definite by modeling each as
CrC

>
r + diag(v), where Cr ∈ Rl×r, r is a desired rank and

diag(v) is a diagonal matrix constructed from a vector v.

3https://github.com/wecacuee/Bayesian_CBF

https://github.com/wecacuee/Bayesian_CBF
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We emphasize that a straightforward implementation of
decoupled GPs for each system dimension is not possible be-
cause the training data is only available as a linear combination
of the unknown functions f(x) and g(x). We approximate
decoupled GP inference by constraining the matrices A, B,
and Σ in the MVGP and CoGP models to be diagonal. To
compare the accuracy of the GP models, we randomly split the
samples from the pendulum simulation into training data and
test data. Given a test set T , we compute variance-weighted
error as,

err(T ) ,

√√√√∑
x∈T

‖K−
1
2

k (x,x) vec(Mk(x)− F (x))‖22
|T | . (36)

A qualitative comparison of MVGP and CoGP is shown
in Fig. 4. A quantitative comparison of the computational
efficiency and inference accuracy of the models with full and
diagonal covariance matrices is shown in Fig. 5. The median
variance-weighted error and error bars showing the 2nd to
9th decile over 30 repetitions of the evaluation are shown.
The experiments are performed on a desktop with Nvidia®

GeForce RTXTM 2080Ti GPU and Intel® CoreTM i9-7900X
CPU (3.30GHz). The results show that MVGP inference is
significantly faster than CoGP, while maintaining comparable
accuracy. Both MVGP and CoGP have higher median accuracy
than their counterparts with diagonally restricted covariances.

2) Safe Control of Learned Pendulum Dynamics: A safe
set is chosen as the complement of a radial region [θc −
∆col, θc + ∆col] with θc = 45◦, ∆col = 22.5◦ that needs to
be avoided, as shown in Fig. 6. The control barrier function
defining this safe set is h(x) = cos(∆col) − cos(θ − θc).
The controller knows a priori that the system is control-affine
with relative degree two, but it is not aware of f and g. A
zero-mean prior M0(x) = 0n×(1+m) and randomly generated
covariance matrices A and B are used to initialize the MVGP
model. We formulate a SOCP as in (28) with r = 2. We
specify a task requiring the pendulum to track a reference
control signal π̂k(x) and specify the optimization objective as
‖R(xk)(uk−π̂k(xk))‖22 with R(xk) ≡ I. The reference signal
π̂k(x) is an ε-greedy policy [82], used to provide sufficient ex-
citation in the training data. Concretely, π̂k(x) is sampled from
an εk weighted combination of Direc delta distribution δ and
Uniform distribution U, π̂(xk) ∼ (1−εk)δu=0+εkU[−20, 20],
where εk = 10−k/50 so that εk goes from 1 to 0.01 in 100
steps. We initialize the system with parameters θ0 = 75◦,
ω0 = −0.01, τ = 0.01, m = 1, g = 10, l = 1. Our simulation
results show that the pendulum remains in the safe region
(see Fig. 6). Negative control inputs get rejected by the SOCP
safety constraint, while positive inputs allow the pendulum to
bounce back from the unsafe region.

B. Ackermann Vehicle

Consider an Ackermann-drive vehicle model with state x =
[x, y, θ]>, including position (x, y) and orientation θ. To make
the Ackermann dynamics affine in the control input, we define

z , v tan(φ), where v is the linear velocity and φ is the
steering angle. The Ackermann-drive dynamics are:ẋẏ

θ̇

 =

0
0
0


︸︷︷︸
f(x)

+

cos(θ) 0
sin(θ) 0

0 1
L


︸ ︷︷ ︸

g(x)

[
v
z

]
︸︷︷︸
u

, (37)

where L is the distance between the front and back wheels.
1) Estimating Ackermann-drive Dynamics: Similar to

Sec. VIII-A1, we compare the computational efficiency and
inference accuracy of MVGP and CoGP with diagonal and
full covariance matrices on training data generated from the
Ackermann-drive model in (37). We further explicitly assume
translation-invariant dynamics, i.e, F (x) = F ([0, 0, θ]>),
∀x ∈ R3. This assumption allows us to transfer the learned
dynamics to unvisited parts of the environment. The results
of the simulation are shown in Fig. 5. We again find that
MVGP inference is significantly faster than CoGP. In terms of
accuracy, MVGP is comparable to CoGP and restricting the
covariance matrices to diagonal matrices increases the median
variance-weighted error error.

2) Safe Control of Learned Ackermann-drive Dynamics:
To test our safe controller on the Ackermann-drive vehicle,
we consider navigation to a goal state in the presence of two
circular obstacles in the environment. The CBF for circular
obstacle i ∈ {1, 2} with center oi ∈ R2 and radius ri > 0 is:

hi(x) = q1(‖x1:2 − oi‖22 − r2i ) + q2 cos(θ − φo), (38)

where φo = tan−1
(
y−oi,2
x−oi,1

)
. We assume that a planning

algorithm provides a desired time-parameterized trajectory
x(d) = [x(d), y(d), θ(d)] and its time derivative ẋ(d). We select
a control Lyapunov function candidate:

V (x,x(d)) =
w1

2
ρ2 + w2(1− cos(α)), (39)

where ρ , ‖x(d)
1:2 − x1:2‖2 and α , θ − tan−1

(
y(d)−y
x(d)−x

)
. The

control Lyapunov condition is given by:

CLC(x,u) = ∇>x V (x,x(d))F (x)u+

∇>x(d)V (x,x(d))ẋ(d) + γvV (x,x(d)). (40)

The control Barrier condition for each obstacle i is:

CBC(x,u; i) = ∇>x hi(x)F (x)u + γhihi(x). (41)

We implement the SOCP controller in Prop. 4 with parameters:
q1 = 0.7, q2 = 0.3, w1 = 0.9, w2 = 1.5, γhi = 5, γV = 10,
τ = 0.01.

We perform two experiments to evaluate the advantages of
our model. First, we evaluate the importance of accounting for
the variance of the dynamics estimate for safe control. Second,
we evaluate the importance of online learning in reducing the
variance and ensuring safety.

Recall the observation in Prop. 4 that c(p̃k = 0.5) = 0. In
this case, the SOCP in (19) reduces to the deterministic-case
QP in (4). We dub the case of p̃k = 0.5 as Mean CBF and
the case of p̃k = 0.99 as Bayes CBF. In both the cases, the
covariance matrices are initialized as A = 0.01I3 and B = I3.
The true dynamics, F (x), is specified with L = 12, while the
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Fig. 4. Qualitative comparison of our Matrix Variate Gaussian Process (MVGP) regression with the Coregionalization GP (CoGP) model [65]. Training
sample are generated using random control inputs to the pendulum. The training samples are shown as +. The learned models are evaluated on a 20 × 20
grid, shown as contour plots. The MVGP model has lower computational complexity than CoGP (O(k3) vs O(k3n3), see Sec. IV) without significant drop
in accuracy.

300 400 500

Training samples

0.05

0.10

0.15

In
fe

re
n

ce
ti

m
e

(s
ec

s)

CoGP (diag)

MVGP (diag)

CoGP (full)

MVGP (full)

300 400 500

Training samples

0

5

10

15

20

V
ar

ia
n

ce
w

ei
gh

te
d

er
ro

r

Pendulum

80 100 120

Training samples

0.008

0.010

0.012

0.014

0.016

0.018

In
fe

re
n

ce
ti

m
e

(s
ec

s)

MVGP (diag)

CoGP (diag)

CoGP (full)

MVGP (full)

80 100 120

Training samples

0

1

2

3

4

V
ar

ia
n

ce
w

ei
gh

te
d

er
ro

r

Ackermann Drive

Fig. 5. Comparison of the computational efficiency and inference accuracy
of MVGP and CoGP [65]. Both models are evaluated on the Pendulum and
Ackermann systems in two modes: 1) with correlation matrix constrained to be
diagonal (labelled diag) and (2) without any constraint on correlation matrix
(labelled full). The results show that MVGP is significantly faster than CoGP.
We argue in Sec. IV that the computational complexity of MVGP is O(k3)
for k training examples, while that of CoGP is O(k3n3), where n is the state
dimension. The variance-weighted error is computed via (36). The error bars
denote the range from the 2nd to the 9th decile over 30 repetitions, centered
around the median. The median errors of the MVGP and CoGP models are
similar but enforcing diagonal covariance matrices, increases the median error.

mean dynamics M0(x) is obtained with L = 1. The result
of simulation is shown in Fig. 7. The Bayes CBF controller
slows down when the safety constraint in (19d) hits zero and
then changes direction while avoiding the obstacle. However,
the Mean CBF controller is not able to avoid the obstacle
because it does not take the variance of the dynamics estimate
into account and the mean dynamics are inaccurate.

We also evaluate the importance of online learning for

time time time

Fig. 6. Pendulum simulation (left) with an unsafe (red) region. The pendulum
trajectory (middle two) resulting from the application of safe control inputs
(right) is shown. The pendulum starts from θ = 75◦, drops down until it
reaches the unsafe region and then stays there.

safe control. We compare two setups: (1) updating the system
dynamics estimate online via our MVGP approach every 40
steps using the data collected so far (With Learning) and
(2) relying on the prior system dynamics estimate only (No
Learning). In both the cases, we choose p̃k = 0.99. The
true dynamics are specified with L = 1, while prior mean
dynamics correspond to L = 8. The covariance matrices A
and B are initialized with elements independently sampled
from a standard Gaussian distribution while ensuring them to
positive semi-definite as before. The result are shown in Fig. 8.
Online learning of the vehicle dynamics reduces the variance
and allows the vehicle to pass between the two obstacles.
This is not possible using the prior dynamics distribution
because the large variance makes the safety constraint in (19d)
conservative.

3) Evaluating triggering time: We evaluate the bounds on
the Lipschitz constant Lfk (Lemma 1) and triggering time τk
(Prop 5) for the Ackermann vehicle. At any time k, we use
the following choice of parameters to compute τk, δL = 10−4,
ζ = 10−2, Lα = 1, and Lhk = maxx∈Xk ∇xh(x). We define
Xk to be a cuboid with sides (0.2, 0.2, π50 ) in the directions x, y
and θ respectively centered around the current state xk. We
compute the Lipschitz constant Lfk and τk both numerically
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Fig. 7. Comparison of enforcing CBF constraints with Ackermann dynamics
when accounting (Bayes CBF) and not accounting (Mean CBF) for the
variance in the dynamics estimate. The top row shows the Ackermann vehicle
trajectory in dashed blue with two obstacles in red. The contour plots shows
the minimum of the SCBC (19d) values corresponding to the two obstacles,
evaluated on the (x, y) grid while keeping θ and u fixed. The middle row
shows the magnitude of the velocity input over time. The bottom row shows
the minimum of the two SCBC (19d) values over time. Enforcing safety using
only the mean CBC (Mean CBF) results in a collision, while accounting for
stochastic CBC (Bayes CBF) constraint causes the Ackermann vehicle to
slow down and turn away from the unsafe region. A video rendering of these
simulations is available in the supplementary material.

and analytically. The numerical computation of Li,∂j is done
by sampling the GP, ∂fi(x)

∂xj
over a 10 × 10 × 10 grid in Xk

and taking the maximum norm as the Lipschitz constant. The
rest of the computation for the numerical approximation of
τk is the same as the analytical τk. The results are shown in
Fig. 2. The shapes of the numerical and analytical Lipschitz
constants are the same, although they differ by a couple
orders of magnitude in scale since the analytical bound is
conservative. Also, note that we are that in the numerical
approximation δL is determined by the samples drawn from
the GP. We also observe that the second term in the expression
for Li,∂j (Lemma 1) dominates the effect of δL on the
Lipschitz constant.

IX. CONCLUSION

Allowing artificial systems to safely adapt their own models
during online operation will have significant implications for
their successful use in unstructured changing real-world envi-
ronments. This paper developed a Bayesian inference approach
to approximate system dynamics and their uncertainty from
online observations. The posterior distribution over the dynam-
ics was used to specify probabilistic constraints that guarantee
safe and stable online operation with high probability. Our
results offer a promising approach for controlling complex
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Fig. 8. The effect of online dynamics learning (right) versus no online learning
(left) on the safe control of an Ackermann vehicle. The top row shows the
vehicle trajectory in dashed blue with two obstacles in red. The middle row
shows the trace of the covariance matrix tr(Bk(x,x)⊗A), which we use
as a measure of uncertainty. The bottom row shows the minimum of the
two probabilistic safety constraint over time, as defined in (19d). Note that
without learning, the vehicle gets stuck between the two obstacles because
the uncertainty in the dynamics is too high, i.e., the safety condition in (19d)
cannot be rendered positive. With online learning, however, the uncertainty
is reduced enough to allow the safety condition to become positive in the
area between the two obstacles. The dynamics distribution is updated every
40 time steps. Note the drop in uncertainty in the middle row at these time
steps. A video rendering of these simulations is available in the supplementary
material.

systems in challenging environments. Future work will focus
on applications of the proposed approach to real robot systems.

APPENDIX A
ADDITIONAL PROPERTIES OF THE MVG DISTRIBUTION

Lemma 7 ([66]). Let X follow an MVG distribution
MN (M,A,B). Then, vec(X) ∼ N (vec(M),B⊗A).

Lemma 8 ([66]). Let X follow an MVG distribution
MN (M,A,B) and let C ∈ Rd×n and D ∈ Rm×d. Then,

CX ∼MN (CM,CAC>,B),

XD ∼MN (MD,A,D>BD).
(42)

APPENDIX B
PROOF OF PROPOSITION 3

Let GP(vec(Mk(x)),Kk(x,x′)) be the posterior dis-
tribution of vec(F (x)) conditioned on the training data
(X1:k,U1:k, Ẋ1:k). The mean and variance can be obtained
by applying Schur’s complement to (8),

vec(Mk(x)) = vec(M0(x))+ (43)(
B1:k(x)⊗A

)>(B1:k
1:k ⊗A

)−1
vec(Ẋ−M1:kU1:k),
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Kk(x,x) = B0(x,x)⊗A− (44)(
B1:k(x)⊗A

)>(B1:k
1:k ⊗A

)−1(B>1:k(x)⊗A
)
.

where B1:k
1:k , U>1:kB

1:k
1:kU1:k + σ2Ik and B1:k(x) ,

B1:k(x)U1:k. For appropriately sized matrices P, Q, R, S,
the Kronecker product satisfies (P⊗Q)(R⊗S) = (PR⊗QS)
and (P⊗Q)−1 = P−1⊗Q−1. Thus, we can rewrite the mean
as:

vec(Mk(x)) = vec(M0(x))+((
B>1:k(x)[B1:k

1:k]−1
)
⊗AA−1

)
vec(Ẋ−M1:kU1:k).

(45)

Applying (P⊗Q) vec(R) = vec(QRP>), we get

Mk(x) = M0(x) + (Ẋ1:k −M1:kU1:k)[B1:k
1:k]−1B>1:k(x)

= M0(x) + (Ẋ1:k −M1:kU1:k)(U1:kB1:k(x))†. (46)

Similarly, the covariance can be rewritten as,

Kk(x,x′) =
(
B0(x,x′)−B1:k(x)[B1:k

1:k]−1B>1:k(x′)
)
⊗A

=
(
B0(x,x′)−B1:k(x′)U1:k(U1:kB1:k)†

)
⊗A. (47)

Defining Bk(x,x′) such that Kk(x,x) = Bk(x,x′) ⊗ A,
we can write the posterior distribution of vec(F (x)) as
GP(vec(Mk(x)),Bk(x,x′)⊗A).

APPENDIX C
COREGIONALIZATION GAUSSIAN PROCESS

Here, we show how the Coregionalization model [65] can
be applied to Gaussian process inference when the training
data is available as a matrix vector product.

Lemma 9. Let vec(F (x)) ∼ GP(vec(M0(x)),Σκ0(x,x′)),
where Σ ∈ R(1+m)n×(1+m)n is the covariance matrix of the
output dimensions, and κ0(x,x′) is the kernel function. Denote
the kernel function evaluation over the training data as,

K1:k
1:k ,

κ0(x1,x1) . . . κ0(xk,x1)
...

...
κ0(xk,x1) . . . κ0(xk,xk)

 ∈ Rk×k

K1:k(x) ,
[
κ0(x1,x) . . . κ0(xk,x)

]
∈ R1×k.

(48)

Let M1:k and U1:k be defined as in Proposition 3. Then, the
posterior distribution of vec(F (x)), given the training data
(Ẋ1:k,X1:k,U1:k), is GP

(
vec(Mk(x)),Kk(x,x′)

)
, where

vec(Mk(x)) , vec(M0(x))+

K1:k(x)[K1:k
1:k]−1 vec(Ẋ1:k −M1:kU1:k),

Kk(x,x′) , Σκ0(x,x′)−K1:k(x)[K1:k
1:k]−1K>1:k(x),

(49)

K1:k
1:k , (U>1:k ⊗ In)(K1:k

1:k ⊗ Σ)(U1:k ⊗ In) + Ik ⊗ S, and
K1:k(x) , (K1:k(x)⊗Σ)(U1:k ⊗ In).

Proof. Using vec(PQR) = (R>⊗P) vec(Q), we can rewrite
F (x)u as

F (x)u = vec(InF (x)u) = (u> ⊗ In) vec(F (x)). (50)

Thus, the variance of F (x)u can be expressed in terms of the
kernel Σκ0(x,x′):

F (x)u∼N
(
M0(x)u, (u>⊗ In)Σκ0(x,x′)(u⊗ In)

)
. (51)

The training data is generated from ẋ = F (x)u + w with
w ∼ N (0n,S) and is jointly Gaussian:

vec(Ẋ1:k) ∼ N
(
vec(M1:kU1:k),K1:k

1:k

)
, (52)

The covariance for a single point is given by,

cov(vec(F (x)), F (x′)u) (53)
= cov(vec(F (x), (u> ⊗ In) vec(F (x′))) = Σκ0(x,x′)(u⊗ In).

A similar expression for covariance can be obtained between
the training data and the test data, cov(vec(F (x)), Ẋ1:k) =
K1:k(x). We can now write the joint distribution between the
training and test data,[

vec(Ẋ1:k)
vec(F (x))

]
∼ N

([
vec(M1:kU1:k)

M0(x)

]
,

[
K1:k

1:k K>1:k(x′)
K1:k(x) Σκ0(x,x′)

])
.

Applying a Schur complement, we get the posterior distribu-
tion in (49).

APPENDIX D
PROOF OF LEMMA 1

Proof. The bound on each element of the Jacobian of f(x) is
due to [69, Lemma B.2] with probability at least 1− δL

n2 ,

|fi(x′)− fi(x)| ≤ Li,∂j |x′j − xj | ∀i, j ∈ {1, . . . , n}. (54)

Denote the event in (54) by Ei,∂j so that P(Ei,∂j) ≥ 1− δL
nn .

A lower bound on the probability of intersection of all events
can be computed using a union bound:

P(∩ni=1 ∩nj=1 Ei,∂j) = 1− P(∪ni=1 ∪nj=1 E{i,∂j)

≥ 1−
n∑
i=1

n∑
j=1

P(E{i,∂j) = 1−
n∑
i=1

n∑
j=1

(1− P(Ei,∂j))

≥ 1− δL. (55)

Adding (54) for all j ∈ {1, . . . , n} and using the Cauchy-
Schwarz inequality, we get for each i ∈ {1, . . . , n}:

n|fi(x′)−fi(x)| ≤
n∑
j=1

Li,∂j |x′j−xj | ≤

√√√√ n∑
j=1

L2
i,∂j‖x′−x‖2.

Squaring and adding all inequalities for i ∈ {1, . . . , n}, we
get:

‖f(x′)− f(x)‖2 ≤

√√√√ 1

n2

n∑
i=1

n∑
j=1

L2
i,∂j‖x′ − x‖2.

APPENDIX E
PROOF OF LEMMA 4

Recall the definition of CBC(r)(x,u):

CBC(r)(x,u) = L(r)
f h(x) + LgL(r−1)

f h(x)u + k>α η(x)

= Lf [L(r−1)
f h(x)] + Lg[L(r−1)

f h(x)]u + k>α η(x)

= ∇x[L(r−1)
f h(x)]>f(x) +∇x[L(r−1)

f h(x)]>g(x)u + k>α η(x)

= ∇x[L(r−1)
f h(x)]>F (x)u + k>α η(x).
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Since, u = [1,u>]>, we can rewrite the above as

CBC(r)(x,u) =

(
∇xL(r−1)

f h(x)>F (x) +

[
k>α η(x)

0m

]>)
u

Using linearity of expectation, we see that E[CBC(r)(x,u)] is
linear in u:
E[CBC(r)(x,u)]

=

(
E[F (x)>∇xL(r−1)

f h(x)] + E
[[

k>α η(x)
0m

]])>
︸ ︷︷ ︸

e(r)(x)

u. (56)

Also, applying Var(x>u) = Var(u>x) = u> Var(x)u to
CBC(r)(x,u), we get:

Var[CBC(r)(x,u)] (57)

= u> Var

[
∇xL(r−1)

f h(x)>F (x) +

[
k>α η(x)

0m

]>]
︸ ︷︷ ︸

V(r)(x)V(r)(x)>

u.

APPENDIX F
PROOF OF PROPOSITION 6

Unlike CBC for relative degree one, the distribution of
CBC(r) is not a Gaussian Process for r ≥ 2. Hence, instead
of computing the probability distribution analytically, we use
Cantelli’s inequality to bound the mean and variance of
CBC(r)

k . For any scalar λ > 0, we have

P
(

CBC(r)
k ≥ E[CBC(r)

k ]− λ | xk,uk

)
≥ 1− Var[CBC(r)

k ]

Var[CBC(r)
k ] + λ2

.

Since we want the probability to be greater than p̃k, we ensure
its lower bound is greater than p̃k, i.e.,

1− Var[CBC(r)
k ]

Var[CBC(r)
k ] + λ2

≥ p̃k. (58)

The terms can be rearranged into,

(1− p̃k)(Var[CBC(r)
k ] + λ2) ≥ Var[CBC(r)

k ]

λ ≥
√

p̃k
1− p̃k

Var[CBC(r)
k ].

(59)

For some desired margin, E[CBC(r)
k ] ≥ ζ, we can substitute

λ = (E[CBC(r)
k ]− ζ) > 0 in (59), so that:

E[CBC(r)
k ]− ζ >

√
p̃k

1− p̃k
Var

1
2 [CBC(r)

k ]

=⇒ P
(

CBC(r)
k ≥ ζ | xk,uk

)
≥ p̃k

(60)

Using the constraint in (24) and the explicit expressions in
(56) and (57) for the mean and variance of CBC(r)

k , we get:

π(xk) ∈ arg min
uk∈U

‖R(xk)uk‖2 (61)

s.t. e
(r)
k (xk)>uk − ζ − c(r)(p̃k)

∥∥∥V(r)
k (xk)uk

∥∥∥
2
≥ 0,

where c(r)(p̃k) =
√

p̃k
1−p̃k . To ensure that (61) is a standard

SOCP, we convert the objective into a SOCP constraint by
introducing an auxilary variable y, leading to (28).

APPENDIX G
PROOF OF LEMMA 5

Recall the following result about the mean and cumulants
of a quadratic form of Gaussian random vectors.

Lemma 10 ([83, p. 55]). Let x be a Gaussian random vector
with mean x̄ and covariance matrix Σ. Let Λ be a symmetric
matrix and consider the random variable x>Λx. The mean
of x>Λx is

E[x>Λx] = x̄>Λx̄ + tr(ΛΣ).

The rth cumulant of x>Λx is:

Kr(x>Λx) = 2r−1(r − 1)![tr(ΛΣ)r + rx̄>Λ(ΣΛ)r−1x̄].

The variance of x>Λx is the second cumulant:

Var[x>Λx] = K2(x>Λx) = 2 tr(ΛΣ)2 + 4x̄>ΛΣΛx̄.

The covariance between x and x>Λx is:

cov(x,x>Λx) = 2ΣΛx̄

Returning to the proof of Lemma 5, consider the three
Gaussian random vectors x, y, and z. Note that x>y can
be written as a quadratic form:

x>y =
1

2

[
x> y> z>

] 0 I 0
I 0 0
0 0 0

x
y
z

 . (62)

Applying Lemma 10 to (62), shows that:

E[x>y] = x̄>ȳ +
1

2
tr(cov(x,y) + cov(y,x))

Var[x>y] =
1

2
tr(cov(x,y) + cov(y,x))2 + ȳ> Var[x]ȳ

+ x̄> Var[y]x̄ + ȳ> cov(x,y)x̄ + x̄> cov(y,x)ȳcov(x,x>y)
cov(y,x>y)
cov(z,x>y)

 = cov

x
y
z

 ,x>y


= 2

 Var[x] cov(x,y) cov(x, z)
cov(y,x) Var[y] cov(y, z)
cov(z,x) cov(z,y) Var[z]

 1

2

ȳ
x̄
0

 .
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