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On the Absence of Spurious Local Trajectories

in Time-varying Nonconvex Optimization
Salar Fattahi, Cedric Josz, Yuhao Ding, Reza Mohammadi, Javad Lavaei, and Somayeh Sojoudi

Abstract

In this paper, we study the landscape of an online nonconvex optimization problem, for which the

input data vary over time and the solution is a trajectory rather than a single point. To understand

the complexity of finding a global solution of this problem, we introduce the notion of spurious (i.e.,

non-global) local trajectory as a generalization to the notion of spurious local solution in nonconvex

(time-invariant) optimization. We develop an ordinary differential equation (ODE) associated with a

time-varying nonlinear dynamical system which, at limit, characterizes the spurious local solutions of

the time-varying optimization problem. We prove that the absence of spurious local trajectory is closely

related to the transient behavior of the developed system. In particular, we show that if the problem is

time-varying, the data variation may force all of the ODE trajectories initialized at arbitrary local minima

at the initial time to gradually converge to the global solution trajectory. We study the Jacobian of the

dynamical system along a local minimum trajectory and show how its eigenvalues are manipulated by

the natural data variation in the problem, which may consequently trigger escaping poor local minima

over time.

I. INTRODUCTION

Sequential decision making with time-varying data is at the core of most of today’s problems. For

example, the optimal power flow (OPF) problem in the electrical grid should be solved every 5 minutes

in order to match the supply of electricity with a demand profile that changes over time [2]. Other
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examples include the training of dynamic neural networks [3], dynamic matrix recovery [4], [5], time-

varying multi-armed bandit problem [6], robot navigation and obstacle avoidance [7], and many other

applications [8]. Indeed, most of these problems are large-scale and should be solved in real-time, which

strongly motivates the need for fast algorithms in such optimization frameworks.

A recent line of work has shown that a surprisingly large class of data-driven and nonconvex opti-

mization problems—including matrix completion/sensing, phase retrieval, and dictionary learning, robust

principal component analysis—has a benign landscape, i.e., every local solution is also global [9]–[12].

A local solution that is not globally optimal is called spurious. At the crux of the results on the absence of

spurious local minima is the assumption on the static and time-invariant nature of the optimization. Yet,

in practice, many real-world and data-driven problems are time-varying and require online optimization.

This observation naturally gives rise to the following question:

Would fast local-search algorithms escape spurious local minima in online nonconvex optimization,

similar to their time-invariant counterparts?

In this paper, we attempt to address this question by developing a control-theoretic framework for

analyzing the landscape of online and time-varying optimization. In particular, we demonstrate that even

if a time-varying optimization may have undesired point-wise local minima at almost all times, the

variation of its landscape over time would enable simple local-search algorithms to escape these spurious

local minima. Inspired by this observation, this paper provides a new machinery to analyze the global

landscape of online decision-making problems by drawing tools from optimization and control theory.

We consider a class of nonconvex and online optimization problems where the input data vary over

time. First, we introduce the notion of spurious local trajectory as a generalization to the point-wise

spurious local solutions. We show that a time-varying optimization can have point-wise spurious local

minima at every time step, and yet, it can be free of spurious local trajectories. By building upon this

notion, we consider a general class of nonconvex optimization problems and model their local trajectories

via an ordinary differential equation (ODE) representing a time-varying nonlinear dynamical system. We

show that the absence of the spurious local trajectories in this time-varying optimization is equivalent

to the convergence of all solutions in its corresponding ODE. Based on this equivalence, we analyze

different classes of time-varying optimization problems and present sufficient conditions under which,

despite possibly having point-wise spurious local minima at all times, the time-varying problem is free

of spurious local trajectories. This implies that the time-varying nature of the problem is essential for

the absence of spurious local trajectories. Finally, we analyze the Jacobian of the ODE along a local

minimum trajectory and show how its eigenvalues are manipulated by the data variation.
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A. Related Works

Benign landscape: Nonconvexity is inherent to many problems in machine learning; from the classical

compressive sensing and matrix completion/sensing [13]–[15] to the more recent problems on the training

of deep neural networks [16], they often possess nonconvex landscapes. Reminiscent from the classical

complexity theory, this nonconvexity is perceived to be the main contributor to the intractability of these

problems. In many (albeit not all) cases, this intractability implies that in the worst-case instances of

the problem, spurious local minima exist and there is no efficient algorithm capable of escaping them.

However, a lingering question remains unanswered: are these worst-case instances common in practice

or do they correspond to some pathological or rare cases?

Answering this question has been the subject of many recent studies. In particular, it has been shown

that nearly-isotropic classes of problems in matrix completion/sensing [9], [10], [17], robust principle

component analysis [12], [18], and dictionary recovery [19] have benign landscape, implying that they

are free of spurious local minima. It has also been proven recently in [20] that under some conditions,

the stochastic gradient descent may escape the sharp local minima in the landscape. At the core of

the aforementioned results is the assumption on the static and time-invariant nature of the landscape.

In contrast, many real-world problems should be solved sequentially over time with time-varying input

data. For instance, in the optimal power flow problem, the electricity consumption of the consumers

changes hourly [21], [22]. Therefore, it is natural to study the landscape of such time-varying nonconvex

optimization problems, by taking into account their dynamic nature.

Time-varying dynamical systems: Recently, there has been a growing interest in analyzing the

performance of numerical algorithms from a control-theoretical perspective [23]–[28]. Roughly speaking,

the general idea behind these approaches is to analyze the convergence of a specific algorithm by first

modeling its limiting behavior as an autonomous (time-invariant) ODE that describes the evolution

of a dynamical system, and then studying its stability properties. As a natural extension, one would

generalize this approach to online optimization by modeling its limiting behavior as a non-autonomous

ODE corresponding to a time-varying dynamical system. However, the stability analysis of time-varying

dynamical systems is highly convoluted in the nonlinear case. We note that several necessary and sufficient

conditions for the stability of linear time-varying systems were proposed in [29]. A generalized time-

varying Lyapunov function was proposed in [30] and has been applied in [31] to study the stability of

an averaged system. Furthermore, slowly time-varying systems are investigated in [32].
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II. CASE STUDIES

In this section, we present empirical studies on the dynamic landscapes of two problems in power

systems and machine learning: optimal power flow and dynamic matrix recovery.

A. Electrical Power Systems

(a) California average load profile for January

2019.

local trajectory

local trajectory

local trajectory

local trajectory

local solutions

(b) Solution trajectories of time-varying optimal

power flow.

Fig. 1: Case study in power systems (data collected from http://www.caiso.com).

In the optimal power flow problem, the goal is to match the supply of electricity with a time-varying

demand profile, while satisfying the network, physical, and technological constraints. In practice, the

problem is solved sequentially over time with the constraint that at every time-step, the solution cannot

be significantly different from the one obtained in the previous time-step due to the so-called ramping

constraints of the generators. We consider the IEEE 9-bus system [33] and initialize the system from the

global solution, as well as three different spurious local solutions. We then change the load over time

based on the California average load profile for the month of January 2019 (Figure 1a). The optimal

power flow problem is then solved sequentially using local search every 15 minutes for the period of 24

hours, while taking into account the temporal couplings between solutions via the ramping constraints.

The trajectories of the solutions for the optimal power flow problem with different initial points appear in

Figure 1b. In this figure, the solid blue line represents the cost obtained by the semidefinite programming

(SDP) relaxation of the optimal power flow [34]. This curve is a lower bound to the globally optimal

cost and serves as a certificate of the global optimality whenever it touches other trajectories.

The gray circles in these plots are some of the local solutions that were obtained via a Monte Carlo

simulation. Based on Figure 1b, indeed there exist multiple local solutions at almost all time-step (some

http://www.caiso.com
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of them emerge over time). However, surprisingly, the trajectories of the local solutions that are initialized

at different points all converge towards the global solution. This implies that there is no spurious local

trajectory, and therefore local search methods are able to find global minima of the optimal power flow

problem at future times even when they start from poor local minima at the initial time.

B. Dynamic Matrix Recovery

In the dynamic matrix recovery problem, the goal is to recover a time-varying low-rank matrix, based

on a limited number of linear observations [4], [5]. This problem can be formulated as follows:

inf
X∈Rn×r

m∑
i=1

(
〈Ai, XX>〉 − di(t)

)2
(1)

where 〈·, ·〉 is the inner product operator, {Ai}mi=1 are the sensing matrices, and d(t) is the time-varying

measurements vector. Equivalently, (1) can be re-written as

inf
X∈Rn×r,ε∈Rm

m∑
i=1

ε2i

s.t. 〈Ai, XX>〉 − εi = di(t) , i = 1, . . . ,m (2)

Assuming that d(t) does not change over time, it is well-known that the above optimization problem has

no spurious local minima if the sensing matrices {Ai}mi=1 satisfy a certain restricted isometry property

(RIP). In particular, it is said that the sensing matrices {Ai}mi=1 satisfy RIP with a constant δ ∈ [0, 1) if

the inequality (1− δ)‖X‖2F ≤
1
m

∑m
i=1〈Ai, X〉 ≤ (1 + δ)‖X‖2F is satisfied for every X ∈ Rn×n whose

rank is upper bounded by 2r (‖X‖F is the Frobenious norm of the matrix X). Recently, [11] showed

that if r = 1, an RIP constant of δ < 1/2 is both necessary and sufficient for the benign landscape of

the time-invariant matrix recovery problem.

Consider the sensing matrices

A1 =

1 0

0 1
2

, A2 =

 0
√

3
2√

3
2 0

 (3)

A3 =

 1 − 1√
2

1√
2

0

, A4 =

0 0

0
√

3
2


with the time-invariant measurement vector d =

[
1 0 0 0

]>
and r = 1. The paper [11] proved that

the RIP constant for the above sensing matrices is equal to 1/2. This implies that the matrix recovery

problem with the aforementioned sensing matrices is prone to having spurious local minima. In fact, [11]

showed that the above problem has one global solution at Z =
[
1 0

]>
and one spurious local solution at
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(b) The objective value of the local trajectory

over time

Fig. 2: Case study in matrix recovery.

X =
[
0, 1/
√

2
]>

. Now, consider the time-varying version of the above instance, where the measurement

vector changes over time, as in:

d(t) =


(0.8 + 0.2 cos t)2 + 1

2(0.2 sin t)2

√
3(0.2 sin t)(0.8 + 0.2 cos t)

0
√

3
2 (0.2 sin t)2


It is easy to see that Z =

[
0.8 + 0.2 cos t 0.2 sin t

]>
is the trajectory of the globally optimal solution to

the defined dynamic matrix recovery problem. Moreover, using a Gradient descent algorithm initialized

at the spurious local solution at time t = 0, we solve (2) sequentially over time with an appropriate

regularization (to be defined later). Figures 2a and 2b show that, despite the fact that the problem has a

spurious local minimum at t = 0 and future times, its local trajectory gradually converges to the global

one.

III. NOTION OF SPURIOUS LOCAL TRAJECTORY

Inspired by the above case studies, we consider the effect of the variation in the input data on the

landscape of the optimization problem. We focus on the following time-varying nonconvex optimization:

inf
x(t)∈Rn

f(x(t), t) s.t. hi(x(t)) = di(t), i = 1, . . . ,m (4)

where the objective function f(x(t), t) and the right-hand side of the equality constraints vary over time

t ∈ [0, T ]. We assume that f : Rn × [0, T ] −→ R is a continuously differentiable function. Moreover,
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hi : Rn −→ R and di : [0, T ] −→ R for i = 1, . . . ,m are twice continuously differentiable functions, and

that T > 0 is a finite time horizon. Moreover, we assume that f is uniformly bounded from below (i.e.,

f(x(t), t) ≥ M for some constant M ) and that the problem is feasible for all t ∈ [0, T ]. The objective

function f(x, t) may be nonconvex in x and the constraint function h(x) = (h1(x), . . . , hm(x)) may be

nonlinear in x. Note that the dynamic matrix recovery problem (2) is a special case of (4).

Remark 1. Inequality constraints can also be included in (4) through a reformulation technique. In

particular, suppose that (4) includes a set of inequality constraints gj(x) ≤ vj(t) for j = 1, . . . , l. Then,

one can reformulate them as equality constraints through the following procedure:

1. Rewrite the inequality constraints by introducing a slack variable s ∈ Rl, as in

gj(x(t)) + sj(t) = vj(t), j = 1, . . . , l

2. Augment the objective function with a penalty p(s(t)) =
∑l

j=1 pj(sj(t)).

Here, pj(sj(t)) are nonsmooth loss functions for an exact reformulation. Furthermore, they can be relaxed

to continuously differentiable loss functions at the expense of incurring some (controllable) approximation

errors; see [35], [36]. This implies that the previously-introduced optimal power flow problem can be

reformulated as (4).

In practice, one can only hope to sequentially solve this problem at discrete times 0 = t0 < t1 < t2 <

. . . < tN = T . However, notice that (4) is un-regularized. In particular, depending on the properties of

the objective function, an arbitrary solution to (4) at time tk can be arbitrarily far from that of (4) at

time tk−1. However—as elucidated in our case study on the optimal power flow problem— it is neither

practical nor realistic to have solutions that change abruptly over time in many real-world problems. One

way to circumvent this issue is to regularize the problem at time tk+1 by penalizing the deviation of its

solution from the one obtained at time tk. Precisely, we employ a quadratic proximal regularization as

is done in online learning [37].

Definition 1. Given evenly spaced-out time steps 0 = t0 < t1 < t2 < . . . < tN = T for some integer N ,

a sequence x0, x1, x2, . . . , xN is said to be a discrete local trajectory of the time-varying optimization

(4) if the following holds:

1) x0 is a local solution to the time-varying optimization (4) at time t0 = 0;

2) for k = 0, 1, 2, . . . , N − 1, xk+1 is local solution to the regularized problem

infx∈Rn f(x, tk+1) + α ‖x−xk‖2
2(tk+1−tk)

s.t. hi(x) = di(tk+1) , i = 1, . . . ,m.

(5)
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Above, α > 0 is a fixed regularization parameter and ‖ · ‖ denotes the Euclidian norm.

Note that in the above definition, the term local solution refers to any feasible point that satisfies the

Karush-Kuhn-Tucker (KKT) conditions for (5). A natural approach to characterizing the global landscape

of (4) is to analyze discrete local trajectories of the regularized problem (5). However, notice that the

non-convexity of (5) may lead to bifurcations in discrete local trajectories. In particular, given a local

solution xk, the regularized problem (5) may possess two local solutions x(1)
k+1 and x(2)

k+1, each resulting

in a different discrete local trajectory.1 The non-uniqueness of the discrete local trajectories due to the

bifurcation will make the analysis inconclusive. This is because the next solution of the problem given

the current solution is not well-defined and due to the number of possibilities at each step, the solution

trajectory is not unique and can take an exponential number of possibilities depending on the settings

of the numerical algorithm (the choice of descent directions and step sizes). However, in what follows,

we show that such bifurcations disappear in the ideal scenario, where the regularized problem can be

sampled arbitrarily fast, or equivalently, as we increase N to infinity. In particular, given a fixed initial

local solution x0, we show that any discrete local trajectory starting from x0 converges uniformly to the

unique solution to a well-defined ODE that is initialized at x0. By building upon this result, we introduce

the notion of spurious local trajectory as a generalization to the notion of spurious local minima.

Given an initial local solution x0, consider the following initial value problem:

ẋ = − 1

α
η(x, t) + θ(x)ḋ (6a)

x(0) = x0 (6b)

where

η(x, t) :=
[
I − J (x)>(J (x)J (x)>)−1J (x)

]
×∇xf(x, t), (7a)

θ(x) := J (x)>(J (x)J (x)>)−1. (7b)

Above, J (x) denotes the Jacobian of the left-hand side of the constraints h(x) = [h1(x), . . . , hm(x)]>

and d(t) denotes the right-hand side of the constraints, that is to say d(t) = [d1(t), . . . , dm(t)]>. The term

θ(x)ḋ captures the effect of data variation in the dynamics, and the function η(x, t) can be interpreted

as the orthogonal projection of the gradient ∇xf(x, t) on the Kernel of J (x)>.

1For example, there exist two discrete trajectories starting at x0 = 0 and at time t0 = 0 for the time-varying objective

function f(x, t) := x2(T/2−t). Indeed, the discrete trajectory stays at xk = 0 for tk ≤ T/2 and then, due to the regularization,

it bifurcates into two separate discrete trajectories.
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Later, we will show that the solution to (6) exists, it is unique, and can be used to fully characterize

the limiting behavior of every discrete local trajectory of the time-varying problem (4).

Assumption 1 (Uniform Boundedness). There exist constants R1 > 0 and R2 > 0 such that, for any

discrete local trajectory x0, x1, x2, . . ., the parameter ‖xk‖ and the objective function of (5) at xk are

upper bounded by R1 and R2, respectively, for every k ∈ {0, 1, 2, . . . , N}.

Assumption 1 is mild, and can be guaranteed by requiring the feasible region to be compact. This can

be ensured by adding constraints on the magnitude of the variables. For instance, in the time-varying

OPF, the variables of the problem, i.e., active and reactive power, voltage magnitudes, and their angles,

are restricted to bounded sets implied by the laws of physics and technological constraints on physical

devices. It is worth noting that the main results of the paper do not depend on the explicit values of the

constants R1 and R2.

Assumption 2 (Non-singularity). There exists a constant c > 0 such that, for any discrete local trajectory

x0, x1, x2, . . ., it holds that σmin(J (xk)) > c for all k ∈ {0, 1, 2, . . .}, where σmin denotes the minimal

singular value.

Assumption 2 implies that linear independence constraint qualification (LICQ) holds at every point

of a discrete local trajectory, which in turn implies that the constraints are non-degenerate. The LICQ

is a simple sufficient condition to guarantee the well-definedness of the KKT points [38], and is the

most standard assumption in the optimization literature [36], [39], [40]. Indeed, most of the off-the-shelf

solvers, such as IPOPT [41], only converge to solutions that automatically satisfy LICQ.

Theorem 1 (Existence and Uniqueness). Let Assumption 1 and Assumption 2 hold. Suppose that x0 is

an arbitrary local solution to the time-varying optimization (4) at t = 0. Then, the ODE (6) with the

initial value condition x(0) = x0 has a unique continuously differentiable solution x : [0, T ]→ Rn.

Theorem 1 states that the proposed ODE is well-defined and has a unique solution, provided that

its initial value is a local solution, i.e., it satisfies the KKT conditions for the original time-varying

optimization problem. As will be shown later, this assumption is crucial and cannot be relaxed in general.

Given the unique solution to the proposed ODE, the next theorem precisely characterizes its relationship

to any discrete local trajectory of (5) starting at x0.

Theorem 2 (Uniform Convergence). Let Assumption 1 and Assumption 2 hold. If x0 is a local solution

to the time-varying optimization (4) at t = 0, then any discrete local trajectory initialized at x0 converges
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towards the solution x : [0, T ]→ Rn with x(0) = x0, in the sense that

lim
N→+∞

sup
0≤k≤N

‖xk − x(tk)‖ = 0, (8)

where N is the number of points in the discrete local trajectories that are evenly spaced-out in time.

Sketch of the proofs. The proofs for Theorems 1 and 2 are quite involved and hence, they are deferred to

the next section. In what follows, we provide the high-level ideas of our developed proof techniques. Note

that most of the classical results on ordinary differential equations, namely the Picard-Lindelöf Theorem

[42, Theorem 3.1], the Cauchy-Peano Theorem [42, Theorem 1.2], and the Carathéodory Theorem [42,

Theorem 1.1], can only guarantee the existence of a solution in a local region, i.e., a neighborhood

[0, τ ] where τ < T is potentially very small. On the other hand, the global version of Picard-Lindelöf

Theorem only holds under a restrictive Lipschitz condition, which is not satisfied for (6). Instead, we

take a different approach to prove existence and uniqueness of the solution to (6) (Theorem 1). The proof

consists of three general steps:

1) By building upon the Arzelà-Ascoli Theorem, we show that, among all the discrete local trajectories

that are initialized at x0, there exists at least one that is uniformly convergent to a continuously

differentiable function y : [0, T ]→ Rn.

2) By fully characterizing the KKT points of (5), we prove that y is a solution to (6) when N → +∞.

3) The uniqueness of the solution is then proved by showing the existence of an open and connected

set D such that the proposed ODE is locally Lipschitz continuous on D and (y(t), t) ∈ D for every

t ∈ [0, T ]. This, together with [42, Theorem 2.2], completes the proof of Theorem 1.

Given the existence and uniqueness of the solution to (6), we show the correctness of Theorem 2 by

making an extensive use of the so-called backward Euler method [43]. In particular, we show that all of

the discrete local trajectories converge to a discretized version of the solution to (6) that is obtained by

the backward Euler method. This, together with the existing convergence results on the backward Euler

iterations, completes the proof of Theorem 2. �

Now that we have established the connection between the discrete local trajectories and their continuous

limit, we naturally propose the following definition.

Definition 2. A continuously differentiable function x(t) : [0, T ] −→ Rn is said to be a continuous local

trajectory of the time-varying optimization (4) if the following holds:

1) x(0) is a local solution to the time-varying optimization (4) at time t = 0;

2) x(t) is a solution to (6).

The next definition will be at the core of our subsequent definition of spurious local trajectories.



11

(a) Graph of a time-varying optimization

infx∈R f(x, t) showing that the final state of the

trajectory belongs to the region of attraction of

the global minimum.

(b) Graph of the same time-varying optimization

infx∈R f(x, t) from above showing that the trajec-

tory can never stay in a neighborhood of the global

minimum of arbitrarily small size.

Fig. 3: Example of a time-varying optimization.

Definition 3. The region of attraction of a local minimum x∗(t) of f(·, t) in the feasible set F(t) =

{x ∈ Rn : h(x) = d(t)} at a given time t is defined as:{
x0 ∈ F(t)

∣∣ lim
s→∞

x̃(s) = x∗(t) where
dx̃(s)

ds
= − 1

α
η(x̃(s), t) + θ(x̃(s))ḋ(t) and x̃(0) = x0

}
We next introduce the central notion in this paper.

Definition 4. A continuous local trajectory x(t) is said to be spurious if for all T̄ < T , there exists a

time t ∈ [T̄ , T ] such that x(t) does not belong to the region of attraction of a global solution of f(·, t).

Accordingly, the time-varying optimization problem (4) is said to have no spurious local trajectories

if, when initialized at a local solution, any continuous local trajectory x(t) belongs to the region of

attraction of a global solution of f(·, t) at all times t ∈ [T̄ , T ] for some constant T̄ < T .

So far, we have taken the time horizon T to be finite. However, the above definition naturally applies

to problems with an infinite time horizon T = +∞. In Theorem 3, we will provide a sufficient condition

under which the above non-spurious trajectory property holds for a general objective function with a

damping sinusoidal time-varying perturbation.

It may be speculated that a spurious local trajectory could have been simply defined as a trajectory that

does not converge towards a global solution. To understand why the latter definition is not meaningful,

notice that both discrete and continuous local trajectories are defined with respect to the regularized
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problem (5), as opposed to (4). The regularization term acts as an inertia in the continuous local trajectory,

forcing it to “lag behind” the global solution when it changes rapidly over time. Therefore, under this

alternative definition, all trajectories would be considered spurious. This would be true even for the

trajectory initialized at the global minimum. See Figures 3a and 3b for an illustration of this phenomenon.

The notion introduced in Definition 4, while it deals with continuous local trajectories, naturally has

implications for discrete local trajectories. With sufficiently small time steps, the discrete trajectory will

eventually converge to the region of attraction of a global solution if the corresponding continuous

trajectory is not spurious.

IV. CONDITIONS FOR THE ABSENCE OF SPURIOUS LOCAL TRAJECTORIES

In this section, we analyze the role of data variation on the behavior of the solution trajectories. Observe

that without data variation, strict spurious local minima cannot not be escaped. This is a consequence

of classical results on the local stability of time-invariant ODEs (see for instance [44, Corollary 10]). In

contrast, we show that data variation can enable escaping spurious local solutions over time. In particular,

we prove that even a simple periodic variation in the data can induce continuous local trajectories to

escape non-global minima and eventually track the global minima.

To better illustrate the main idea, we start with a class of uni-dimensional time-varying problems, and

provide sufficient conditions for the absence of spurious local trajectories. Then, we extend our results

to a general class of multi-dimensional problems. Consider the function

inf
x∈R

f(x, t) := g(x− β sin(t)) (9)

where g : R −→ R is continuously twice differentiable and β > 0 models the variation of the data over

time. Only the right-hand side varies over time, and therefore, this problem fits well in our introduced

framework. We assume that g(·) admits only three stationary points g′(y1) = g′(y2) = g′(y3) with

y1 < y2 < y3. We assume also that y1 and y3 are local minima such that g(y1) > g(y3), while y2 is a

local maximum. Finally, we assume that g is coercive (its limit at ±∞ is +∞). Thus, its global infimum

is reached in y3.

The motivation behind studying this class of functions f(·) is as follows. Since g(y) has a global

minimum as well as a spurious solution, when it is minimized by a gradient descent algorithm initialized

at the spurious solution, it will become stuck there. This means that using gradient descent for such

function is inefficient. However, one can oscillate the function to arrive at the time-varying function

f(x, t) and then study it in the context of online optimization. The following result identifies sufficient

conditions for the absence of spurious local trajectories, which implies that if α and β are selected

appropriately, gradient descent will always find the global solution.
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Proposition 1. If α, β > 0 are such that

1) αβ > C := maxy16y6y3
g′(y),

2) ∃m1,m2 ∈ R : m1 < y1 < m2 and g′(m1) = g′(m2) = −αβ,

3) −C/α(t2 − t1)− β(sin(t2)− sin(t1)) +m1 > m2 where 0 < t1 6 t2 satisfy cos(t1) = cos(t2) =

−C/(αβ),

then the time-varying problem (9) has no spurious local trajectories.

Proof. A continuous local trajectory x : [0, 2π] −→ R satisfies

x(0) 6 y3, ẋ = − 1

α
∇xf(x, t), (10)

which, after the change of variable y := x− β sin(t), reads

y(0) 6 y3, ẏ = − 1

α
g′(y)− β cos(t). (11)

We first show by contradiction that there exists t ∈ [0, 2π] such that y(t) > m2. Assume that y(t) < m2

for all t ∈ [0, 2π]. Then, for all t ∈ [0, 2π], it holds that

ẏ = − 1

α
g′(y)− β cos(t) > −C

α
− β cos(t). (12)

Thus, we have

y(t2) > −C
α

(t2 − t1)− β(sin(t2)− sin(t1)) + y(t1). (13)

We next show by contradiction that y(t1) > m1. Assume that y(t1) < m1. Thus y(t1) < m1 <

y1 6 y(0). Let t3 denote the maximal element of the compact set [0, t1] ∩ y−1(m1), where y−1(b) :=

{a ∈ R | y(a) = b}. Thus y(t) 6 y(t3) for all t ∈ [t3, t1]. As a result, y′(t3) 6 0. Together with

y′(t3) = −1/αg′(m1) − β cos(t3) = β(1 − cos(t3)), this implies that t3 = 0 or t3 = 2π. This is in

contradiction with 0 < t3 < t1 < π.

Now that we have proven that y(t1) > m1, equation (13) implies that y(t2) > m2. This is a

contradiction. Therefore there exists t ∈ [0, 2π] such that y(t) > m2. Using the same argument as

in the previous paragraph, we obtain y(2π) > m2. As a result, x(2π) = y(2π) − β sin(2π) > m2 as

well. Finally, using standard arguments in Lyapunov theory, there exists T̄ < T such that x(t) belongs

to the region of attraction of y3 for all t ∈ [T̄ , T ].

We highlight the implications of the above proposition through a numerical example.

Example 1. Consider the objective function f(x, t) := g(x− β sin(t)) where

g(y) := 1/4y4 + 1/8y3 − 2y2 − 3/2y + 8. (14)
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The time-varying objective f(x, t) has the following stationary points: it admits a spurious local minimum

at −2 + β sin(t), a local maximum at −3/8 + β sin(t), and a global minimum at 2 + β sin(t). The three

sufficient conditions of Proposition 1 can be brought to bear on this example. They yield three inequalities,

as shown in Figure 4a, whose feasible region is represented in Figure 4b. Taking a point in that feasible

region, we confirm numerically in Figure 4c that a trajectory initialized at a local minimum of f(·, 0)

winds up in the region of attraction of the global solution to f(·, T ) at the final time T = 2π. In contrast,

taking a point outside the feasible region, we observe in Figure 4d that a trajectory initialized at a local

minimum of f(·, 0) does not end up in the region of attraction of the global solution to f(·, T ).2

We make a few remarks regarding Figure 4a. Note that k1 and k2 are integers in {0, 1, 2} such that

k1 minimizes the line it appears in, and k2 minimizes the line it appears in while not being equal to k1.

These numbers come from Viète’s solution to a cubic equation [45]. Furthermore, the second inequality

corresponds to minus the discriminant of a fourth-order polynomial.

Next, we will extend the aforementioned result to a general class of multi-dimensional optimization

problems. The goal is to show that certain non-global local solutions of an arbitrary time-invariant

function g(x) that cannot be escaped using deterministic local search methods can indeed be escaped via

the conversion of the problem to a time-varying function f(x, t) for which there is no spurious trajectory.

Consider the time-varying optimization problem

inf
x∈Rn

f(x, t) := inf
x∈Rn

g(x− βe−λt sin(ωt)u) (15)

where g : Rn −→ R is continuously twice differentiable, coercive (its limit as ‖y‖ → +∞ is +∞). The

amplitude β > 0 and the pulsation ω > 0 model the sinusoidal variation of data over time with a damping

factor of λ > 0. The variation occurs along a direction u ∈ Rn of norm 1. Let {yi}i∈I denote the set

of spurious local minima of g(x). Moreover, let B(a, r) (respectively S(a, r)) denote the Euclidian ball

(respectively sphere) in Rn centered at a and of radius r. Given a fixed R > 0, we define the following

2In order to increase visibility, a maximal threshold is used on the objective function f(x, t) in Figure 4c and Figure 4d

(hence the flat parts). For the same reason, a non-linear scaling is used. Precisely, (x, t) −→ f(x + (β − 1) sin(t), t) and

t −→ x(t)− (β − 1) sin(t) are represented in the figures. This explains why x(t) appears to decrease for small 0 6 t 6 2π in

Figure 4c.
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constants

C1 := max
y∈

⋃
i∈I

B(yi,R)
‖∇g(y)‖,

C2 := min
d ∈ S(0, 1)

i ∈ I

〈∇g(yi −Rd), d〉. (16)

These constants enable us to control fluctuations of g(x) in the vicinity of its local minima. For the sake

of clarity, we assume that g(x) has no saddle points and local maxima outside of ∪i∈IB(yi, R) (for more

on this, see Remark 2). Notice that C1 > C2 due to the Cauchy-Schwarz inequality. Theorem 3 below

shows that if C1 is not too large, then one can escape spurious local minima, and if C2 is not too small,

then one will never return to the vicinity of any spurious local minima after some time.

Theorem 3. If 2αω(βe−λπ/(2ω) − R)/π > C1 and αβe−λRα/(C1+αβω)
√
λ2 + ω2 < C2, then the

time-varying optimization (15) has no spurious trajectories.

Proof. First, we show that the spurious local minimum is initially escaped. A continuous local trajectory

x(t) satisfies

x(0) ∈ {yi}i∈I , x′(t) = − 1

α
∇xf(x(t), t), (17)

which, after the change of variables y(t) := x(t)− βe−λt sin(ωt)u, reads

y′(t) = −∇g(y(t))/α− βe−λt[−λ sin(ωt) + ω cos(ωt)]u,

y(0) ∈ {yi}i∈I , (18)

We first show by contradiction that there exists some time t ∈ [0, T ] such that ‖y(t)− y(0)‖ > R > 0.

Assume that ‖y(t)− y(0)‖ 6 R for all t > 0. Then, for all t > 0, it holds that

〈y′(t), u〉

= 〈−∇g(y(t))/α− βe−λt[−λ sin(ωt) + ω cos(ωt)]u, u〉

= −〈∇g(y(t)), u〉/α− βe−λt[−λ sin(ωt) + ω cos(ωt)]〈u, u〉

6 ‖∇g(y(t))‖/α− βe−λt[−λ sin(ωt) + ω cos(ωt)]

6 {C1 − αβe−λt[−λ sin(ωt) + ω cos(ωt)]}/α, (19)

from which we deduce that

〈y(t)− y(0), u〉 =

〈∫ t

0
y′(s)ds, u

〉
=

∫ t

0
〈y′(s), u〉ds

6 [C1t− αβe−λt sin(ωt)]/α. (20)
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Our assumption that 2αω(βe−λπ/(2ω) − R)/π > C1 implies that the upper bound in (20) is negative

when t = π/(2ω). Using the Cauchy-Schwarz inequality, we then obtain

‖y(π/(2ω))− y(0)‖ > |〈y(π/(2ω))− y(0), u〉|

> [αβe−λπ/(2ω) − C1π/(2ω)]/α > R.

This yields a contradiction. We conclude that there exists t1 > 0 such that ‖y(t1)− y(0)‖ > R. Observe

that

‖y(t1)− y(0)‖ =

∥∥∥∥∫ t1

0
∇g(y(t))dt− βe−λt1 sin(ωt1)u

∥∥∥∥
=

∫ t1

0
‖∇g(y(t))dt‖+ βe−λt1 sin(ωt1)

6 C1t1/α+ βe−λt1 sin(ωt1)

6 (C1/α+ βω)t1. (21)

As a result, t1 > Rα/(C1 +αβω). We have thus identified a minimum time taken by the trajectory to exit

the ball of radius R centered at y(0). Second, we show that, after some time, the continuous trajectory

never returns to the vicinity of any spurious local minimum. To reason by contradiction, assume that

there exist i ∈ I and t1 < t3 such that ‖y(t3)− yi‖ < R. Since the trajectory is continuous, there exists

t2 ∈ (t1, t3) such that ‖y(t2) − yi‖ = R, that is to say, there exists d ∈ Rn such that ‖d‖ = 1 and

y(t2) = yi +Rd. Take t2 to be the largest such instance in the interval (t1, t3). We then have

〈y′(t2), d〉

= 〈−∇g(y(t2))/α− βe−λt2 [−λ sin(ωt2) + ω cos(ωt2)]u, d〉

= 〈∇g(yi +Rd),−d〉/α− βe−λt2 [−λ sin(ωt2) + ω cos(ωt2)]〈u, d〉

> C2/α− βe−λt2 [−λ sin(ωt2) + ω cos(ωt2)]〈u, d〉

=
{
C2 − αβe−λt2

√
λ2 + ω2 cos(ωt2 + arctan(λ/ω))]

}
/α

> (C2 − αβe−λt2
√
λ2 + ω2)/α

> (C2 − αβe−λRα/(C1+αβω)
√
λ2 + ω2)/α (22)

where in the last inequality we used the fact that Rα/(C1 + αβω) 6 t1 < t2. The Taylor expansion for

t > t2 in a neighborhood of t2 reads

y(t)− y(t2) = y′(t2)(t− t2) + o(t− t2), (23)
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from which we deduce that〈
y(t)− y(t2)

t− t2
, d

〉
= 〈y′(t2), d〉+ o(1)

> (C2 − αβe−λRα/(C1+αβω)
√
λ2 + ω2)/(2α) > 0 (24)

where we used αβe−λRα/(C1+αβω)
√
λ2 + ω2 < C2. Hence

‖y(t)− yi‖ > 〈y(t)− yi, d〉 = 〈y(t)− y(t2) + y(t2)− yi, d〉

= 〈y(t)− y(t2), d〉+ 〈Rd, d〉

> R. (25)

Recall that ‖y(t3) − y(0)‖ 6 R. By continuity of the trajectory, there exists t ∈ (t2, t3] such that

‖y(t)− yi‖ = R, which contradicts the maximality of t2. Hence, for all t > t1 and i ∈ I, we have that

‖y(t)− yi‖ > R.

Third, we show that x(t1) = y(t1) +βe−λt1 sin(wt1)u is in the region of attraction of a global minimum

of the function f(x, t1). Now, we freeze the time at t1. Consider the set D = {x ∈ Rn : f(x, t1) ≤

f(x(t1), t1)} and choose D1 as the connected component of D which contains the point x(t1). Because

f(x, t1) is coercive, D1 is a compact set. In addition, D1 is a positively invariant set with respect to the

gradient flow system

˙̃x(s) = −∇x̃f(x̃(s), t1) (26)

for the fixed time t1 because the gradient flow system will not increase the function value. Denote f∗(t1)

as the global minimum value of f(x̃, t1) and take V (x̃) = f(x̃, t1)− f∗(t1). Then, V (x̃) is a Lyapunov

function for (26) such that V̇ (x̃) = −‖∇x̃f(x̃, t1)‖2 ≤ 0 in D1. Let E be the points in D1 such that

∇x̃f(x̃, t1) = 0. Since g(x) has no saddle points and local maxima outside of ∪i∈IB(yi, R), then f(·, t1)

has no saddle points and local maxima outside of ∪i∈IB(yi + βe−λt1 sin (wt1)u,R). Thus, the set E

only contains the global minima of f(x̃, t1). Furthermore, the set E is also an invariant set with respect

to (26). Then, by LaSalle’s theorem in [46, Theorem 4.4], the solution of (26) starting at x(t1) converges

to the global minimum as s → ∞. This implies that x(t1) is in the region of attraction of a global

minimum of the function f(x, t1). Finally, we show that the trajectory remains in the region of attraction

of the set of global minima after some time. This follows immediately from the assumption that g(x) has

no saddle points and local maxima outside of ∪i∈IB(yi, R) and the fact that the trajectory will never

returns to the vicinity of any spurious local minimum, that is, ∪i∈IB(yi, R).
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Observe that a necessary condition for the absence of spurious trajectories readily follows from the

proof of Theorem 3, namely that αβ
√
ω2 + λ2 > −C2. Indeed, if αβ

√
ω2 + λ2 < −C2, then the spurious

local minima cannot be escaped, using the same argument as in (23) and (24).

Remark 2. In Theorem 3, we assume that there are no saddle points or maxima outside of a certain region

containing the local minima (i.e. ∪i∈IB(yi, R)). We do so in order to focus on the main contribution of

this work, which is that time variation can lead to the absence of spurious local trajectories. Without this

assumption, a significant part of the proof would deal with escaping saddle points, a subject which has

already been treated in various papers [47]–[51]. If the variation of the data occurs along a direction u

chosen randomly, then it may be argued that the trajectory would escape saddle points with probability

1, using the stable manifold theorem [52] as in [47]–[51]. Theorem 3 would then hold almost surely.

Remark 3. Theorem 3 offers the first result in the literature about when spurious minima of a time-

invariant function can be escaped via a time-varying deterministic local search method. The existing

results are focused on stochastic gradient descent that offers a weaker result in a probabilistic sense

[20]. This theorem can be used to define the notion of escapable local minima through the parameters

C1 and C2, and indeed if C1 is small enough and C2 is large enough, the spurious local minima can

always be escaped based on the results of this theorem.

Although Theorem 3 is focused on a certain class of time-varying functions, similar results can

be obtained for other classes of functions. The time-varying problem (4) is devoid of spurious local

trajectories if one can show that all solutions of (6) with the initial point at any local solutions at t = 0

are contractive and the converging trajectory is inside the region of attraction of the global minimum

trajectory of (4) after some finite time. This can be studied via the contraction analysis of nonlinear

systems [53]–[55].

V. FUNDAMENTAL PROPERTIES OF ODE

In this section, we provide the formal versions of Theorems 1 and 2 together with their proofs. We

refer to the optimization problem (5) as OPT(k,∆t, xk−1). Let the Jacobian of the constraint set be

defined as

J (x) =


∇xh1(x)>

∇xh2(x)>

...

∇xhr(x)>

 (27)
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Definition 5. Given a feasible initial point x0, we say that the tuple
(
x0,∆t, {x∆t

k }∞k=0

)
is an

admissible KKT (AKKT) tuple if x∆t
0 = x0 and for every k ∈ {0, 1, ...}, x∆t

k is a feasible solution

of OPT(k,∆t, x∆t
k−1), it satisfies the KKT conditions, and J (x∆t

k ) is non-singular.

Assumption 3. There exists t > 0 such that any 0 < ∆t ≤ t is endowed with at least one AKKT tuple(
x0,∆t, {x∆t

k }∞k=0

)
. Furthermore, for any AKKT tuple

(
x0,∆t, {x∆t

k }∞k=0

)
, the sequence

{
x0, {x∆t

k }∞k=0

}
is uniformly bounded.

Roughly speaking, Assumption 3 implies that, for sufficiently small time steps, the regularized problem

remains feasible with non-degenerate and bounded solutions.

According to Definition 5, the Jacobian matrix J (x∆t
k ) is non-singular for every k and every AKKT

tuple
(
x0,∆t, {x∆t

k }∞k=1

)
. In this work, we impose a slightly stronger condition on the singular values

of J (x∆t
k ).

Assumption 4. There exists a universal constant c > 0 such that σmin(J (x∆t
k )) ≥ c for every k and

every AKKT tuple
(
x0,∆t, {x∆t

k }∞k=0

)
.

Similar to Assumption 2, this assumption requires the constraints to be non-degenerate. Now, we are

ready to present our main theorem.

Theorem 4. Consider the ODE (6) with the condition x(0) = x0, where x0 is a local solution to the

time-varying optimization (4) at t = 0. The following statements hold:

1. (Existence and uniqueness) (4) has a continuously differentiable and unique solution x : [0, T ]→ Rn.

2. (Convergence) Any AKKT tuple
(
x0,∆t, {x∆t

k }
dT/∆te
k=0

)
satisfies

lim
∆t→0+

sup
0≤k≤dT/∆te

‖x∆t
k − x(k∆t)‖ = 0, (28)

We will regularly refer to the following lemma in our subsequent analysis.

Lemma 1 (Lipschitz property on a ball). Given a continuously differentiable function p(x) : Rn → Rm,

we have

‖p(x)− p(y)‖ ≤ L(ε)‖x− y‖ for every x, y ∈ B(ε)

where L(ε) is a universal constant independent of x and y, and B(ε) is the Euclidean ball centered at

zero with radius ε.

Proof. The proof is straightforward and omitted for brevity.
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A. Proof of Existence and Uniqueness.

Next, we show the existence and uniqueness of the solution to the proposed ODE. Without loss of

generality, we assume that tk − tk−1 = ∆t for every k = 1, . . . , dT/∆te. Furthermore, to simplify the

notation, we may use the same symbols to refer to different universal constants throughout the proofs.

The next three lemmas will be useful in proving the existence of a solution (6).

Lemma 2. There exist constants t̄ and c > 0 such that for every AKKT tuple
(
x0,∆t, {x∆t

k }
dT/∆te
k=0

)
with ∆t ≤ t̄, we have ‖x∆t

k − x∆t
k−1‖ ≤ c∆t for k = 1, . . . ,∞.

Proof. The proof is provided in the appendix.

Lemma 3. Given an initial feasible point x0, there exist

1. {sn}∞n=1 with lim
n→∞

sn = 0 such that each sn is endowed with an AKKT tuple (x0, sn, {xsnk }
∞
k=0),

and

2. a continuously differentiable and uniformly bounded function x̄ : [0, T ]→ Rn that satisfies x̄(0) =

x0,

with the following properties:

lim
n→∞

sup
1≤k≤ T

sn

∥∥xsnk − x̄(ksn)
∥∥ = 0, (29a)

lim
n→∞

sup
1≤k≤ T

sn

∥∥∥∥xsnk − xsnk−1

sn
− ˙̄x(ksn)

∥∥∥∥ = 0. (29b)

Moreover, there exists a universal constant c > 0 such that σmin(J (x̄(t))) ≥ c for every t ∈ [0, T ].

Proof. The proof is provided in the appendix.

Lemma 4. Consider two continuous functions g1 : [0, T ]→ Rn and g2 : [0, T ]→ Rn. We have g1 = g2

if and only if

lim
∆t→0+

sup
0≤k≤d T

∆t
e
‖g1(k∆t)− g2(k∆t)‖ = 0 (30)

Proof. The proof is straightforward and can be found in standard references, e.g., [56].

We now provide the proof for the existence and uniqueness of the solution for (6).

Proof of existence and uniqueness: Consider the sequence {sn}∞n=1 and its corresponding AKKT tuple{
(x0, sn, {xsnk }

T/sn
k=0 )

}∞
n=1

that is introduced in Lemma 3. Due to Assumption 4, the linear independence

constraint qualification (LICQ) holds at xsnk for k = 0, . . . , T/sn and n = 1, . . . ,∞. Therefore, for every
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n, there exists a sequence of Lagrangian vectors {µsnk }
T/sn
k=0 such that

(
{xsnk }

T/sn
k=0 , {µ

sn
k }

T/sn
k=0

)
satisfies

the KKT conditions:

∇xfk(xsnk ) + J (xsnk )>µsnk +
α

sn
(xsnk − x

sn
k−1) = 0 (Stationarity)

hi(x
sn
k ) = di,k (feasibility)

for k = 1, . . . , T/sn, where fk(xsnk ) = f(xsnk , ksn) and di,k = di(ksn). The feasibility condition implies

that for every i, we have

1

sn

(
hi(x

sn
k )− hi(xsnk−1)

)
=
di,k − di,k−1

sn

=⇒ ∇hi(x̃sni,k)
>
(
xsnk − x

sn
k−1

sn

)
=
di,k − di,k−1

sn
(31)

for some x̃sni,k = (1 − αi)x
sn
k + αix

sn
k−1 with αi ∈ [0, 1], where the last implication is due to the

differentiability of hi(x) and the Mean Value Theorem. For simplicity and with a slight abuse of notation,

define

J ({x̃sni,k}
r
i=1) =


∇h1(x̃sn1;k)

>

...

∇hr(x̃snr;k)
>

 , dk =


d1,k

...

dr,k

 (32)

This implies that

J ({x̃sni,k}
r
i=1)

(
xsnk − x

sn
k−1

sn

)
=
dk − dk−1

sn
(33)

Combining this equality with the stationarity condition leads to

J ({x̃sni,k}
r
i=1)∇xfk(xsnk ) + J ({x̃sni,k}

r
i=1)J (xsnk )>λsnk + α

(
dk − dk−1

sn

)
= 0 (34)

Now, note that, due to Assumption 4, σmin(J (xsnk )) ≥ c for some universal constant c > 0. Therefore, for

every y sufficiently close to xsnk , J (y) remains full-row rank. Together with the definition of {x̃sni,k}
r
i=1

and Lemma 7 in the appendix, this implies that J ({x̃sni,k}
r
i=1)J (xk)

> is invertible for sufficiently small

∆t. Therefore,

λsnk =−
(
J ({x̃sni,k}

r
i=1)J (xsnk )>

)−1
×
(
J ({x̃sni,k}

r
i=1)∇xfk(xsnk ) + α

(
di;k − di;k−1

sn

))
.

Substituting this into the stationarity condition and performing the necessary simplifications lead to

xsnk −x
sn
k−1

sn
=− 1

α

(
I−J (xsnk )> ×

(
J ({x̃sni,k}

r
i=1)J (xsnk )>

)−1
J ({x̃sni,k}

r
i=1)

)
∇xfk(xsnk )

+ J (xsnk )>
(
J ({x̃sni,k}

r
i=1)J (xsnk )>

)−1
(
dk − dk−1

sn

)
:=g

(
{x̃sni,k}

r
i=1, x

sn
k ,

(
dk − dk−1

sn

))
(35)
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Consider the continuously differentiable function x̄(t) that is introduced in Lemma 3. The above equality

together with (29b) implies that

lim
n→∞

sup
0≤k≤d T

sn
e

∥∥∥∥∥ ˙̄x(ksn)− g
(
{x̃sni,k}

r
i=1, x

sn
k ,
(dk − dk−1

sn

))∥∥∥∥∥ = 0 (36)

Therefore, one can write

lim
n→∞

sup
0≤k≤d T

sn
e

∥∥∥∥∥ ˙̄x(ksn)− g
(
{x̄(ksn)}ri=1, x̄(ksn), ḋ(ksn

)∥∥∥∥∥
≤ lim
n→∞

sup
0≤k≤d T

sn
e

∥∥∥∥∥ ˙̄x(ksn)− g
(
{x̃sni,k}

r
i=1, x

sn
k ,

(
dk − dk−1

sn

))∥∥∥∥∥
+ lim
n→∞

sup
0≤k≤d T

sn
e

∥∥∥∥∥g ({x̄(ksn)}ri=1, x̄(ksn), ḋ(ksn)
)
− g

(
{x̃sni,k}

r
i=1, x

sn
k ,

(
dk − dk−1

sn

))∥∥∥∥∥ (37)

We present the following lemma.

Lemma 5. Given ({x̄i}ri=1, ȳ, z̄) with (
∑r

i=1 ‖x̄i‖) + ‖ȳ‖+ ‖z̄‖ ≤ c1 for some c1 > 0, suppose that

σmin

(
J ({x̄i}ri=1)J (ȳ)>

)
≥ c2 for some c2 > 0. Then, there exist universal constants L, r > 0, such that

g({x̄i}ri=1, ȳ, z̄) is locally L-Lipschitz continuous in a ball B = {({xi}ri=1, y, z) | (
∑r

i=1 ‖x̄i − xi‖) +

‖ȳ − y‖+ ‖z̄ − z‖ ≤ r}.

Proof. Due to the continuous differentiability of J (x) and Lemma 1, it is easy to see that r can be

chosen such that σmin

(
J ({xi}ri=1)J (y)>

)
≥ c2/2 for every ({xi}ri=1, y, z) ∈ B(r). This observation,

together with the definition of g(·, ·, ·) in (35), can be used to complete the proof. The details are omitted

for brevity.

According to Lemma 5, the function g(·, ·, ·) is locally Lipschitz continuous on a ball with nonzero

radius and centered at
(
{x̃sni,k}

r
i=1, x

sn
k ,
(
dk−dk−1

sn

))
for every 0 ≤ k ≤ d T∆te and n = 1, . . . ,∞. This

together with the definition of {x̃sni,k}
r
i=1, the differentiability of d(t), and Lemma 3 implies that for

sufficiently large n (or, equivalently, for sufficiently small sn), there exists a Lipschitz constant L such

that∥∥∥∥∥g ({x̄(ksn)}ri=1, x̄(ksn), ḋ(ksn)
)
− g

(
{x̃sni,k}

r
i=1, x

sn
k ,

(
dk − dk−1

sn

))∥∥∥∥∥
≤L

(
r∑
i=1

‖x̄(ksn)− x̃sni,k‖+ ‖x̄(ksn)− xsnk ‖+

∥∥∥∥ḋ(ksn)−
(
dk − dk−1

sn

)∥∥∥∥
)

≤L

(
(r + 1)‖x̄(ksn)− xsnk ‖+ r‖x̄((k − 1)sn)− xsnk−1‖+ r‖x̄(ksn)− x̄((k − 1)sn)‖+

∥∥∥∥ḋ(ksn)−
(
dk − dk−1

sn

)∥∥∥∥
)
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where we used the definition of {x̃sni,k}
r
i=1 and triangle inequality. According to Lemmas 2 and 3, the

right-hand side of (38) converges to zero as n → ∞. Therefore, combining (38) and (36) with (37)

implies that

lim
n→∞

sup
0≤k≤d T

sn
e

∥∥∥∥∥ ˙̄x(ksn)− g
(
{x̄(ksn)}ri=1, x̄(ksn), ḋ(ksn

)∥∥∥∥∥ = 0

Furthermore, due to Lemma 3, J (x̄(t)) is full-row rank at every t ∈ [0, T ] and therefore, g({x̄(t)}ri=1, x̄(t), ḋ(t))

is continuous as a function of t in [0, T ]. Invoking Lemma 4 then leads to

˙̄x(t) = g({x̄(t)}ri=1, x̄(t), ḋ(t)) (38)

at every t ∈ [0, T ]. This shows that x̄ : [0, T ] → Rn is a solution to (6). Finally, due to Lemma 3,

we have σmin(J (x̄(t))) ≥ c for a universal constant c > 0. Therefore, Lemma 5 can be used to verify

the existence of an open and connected set D such that g(·, ·, ·) is locally L-Lipschitz continuous on

D and (x̄(t), t) ∈ D for every t ∈ [0, T ]. Therefore, Theorem 2.2 in [42] can be used to show that

x̄ : [0, T ]→ Rn is the unique solution to (6).

B. Proof of Convergence

Next, we show the validity of the second statement in Theorem 4.

Lemma 6 (Backward Euler Iterations). There exists a universal constant t̄ such that for every ∆t ≤ t̄,

there exists a sequence {y∆t
k }
dT/∆te
k=0 that satisfies the following statements:

- We have y∆t
0 = x0 and

y∆t
k = y∆t

k−1 + ∆t · g
(
{y∆t
k }ri=1, y

∆t
k , ḋ(sk)

)
(39)

for k = 1, . . . , dT/∆te.

- There exists a universal constant c2 > 0 such that ‖y∆t
k − y∆t

k−1‖ ≤ c2∆t for k = 1, . . . , dT/∆te.

- We have

lim
∆t→0+

sup
0≤k≤dT/∆te

‖y∆t
k − x(sk)‖ = 0 (40)

where x : [0, T ]→ Rn is the unique solution to (6).

- We have σmin(J (y∆t
k )) ≥ c1 for some universal c1 and every k = 1, . . . , dT/∆te.

Proof. Note that (39) is the backward Euler iterations for (6) [57]. Furthermore, we have already shown

the existence of a continuously differentiable and uniformly bounded solution to (6). The proof of the

first three statements is immediately followed by the classical results on convergence of the backward
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Euler method; see [57] for more details. To verify the correctness of the last statement, note that we have

shown in the previous subsection that the function x̄ : [0, T ] → Rn introduced in Lemma 3 is indeed

the unique solution to the proposed ODE and we have J (x̄(t)) ≥ c for some universal c > 0 and every

t ∈ [0, T ]. This together with (40) and Lemma 1 concludes the proof.

Proof of convergence: The main idea behind the proof is to show that, given any AKKT tuple(
x0,∆t, {x∆t

k }
dT/∆te
k=1

)
, we have

lim
∆t→0+

sup
0≤k≤dT/∆te

‖y∆t
k − x∆t

k ‖ = 0 (41)

Establishing this equality together with Lemma 6 is enough to complete the proof.

It is evident from (35) that the AKKT tuple
(
x0,∆t, {x∆t

k }
dT/∆te
k=1

)
should satisfy

x∆t
k = x∆t

k−1 + ∆tg

(
{x̃∆t

i,k}ri=1, x
∆t
k ,

(
dk − dk−1

∆t

))
(42)

where x̃tni;k = (1− αi)xtnk + αix
tn
k−1 with αi ∈ [0, 1] for i = 1, . . . , n. Combined with the first statement

of Lemma 6, this implies that

x∆t
k −y∆t

k =x∆t
k−1−y∆t

k−1 + ∆t

(
g

(
{x̃∆t

i,k}ri=1, x
∆t
k ,

(
dk − dk−1

∆t

))
− g

(
{y∆t
k }ri=1, y

∆t
k , ḋ(sk)

))
(43)

=x∆t
k−1−y∆t

k−1 +A+B

where

A =∆t×

(
g

(
{x̃∆t

i,k}ri=1, x
∆t
k ,

(
dk−dk−1

∆t

))
−g
(
{y∆t
k−1}ri=1, y

∆t
k−1, ḋ(sk)

))
, (44a)

B =∆t×

(
g
(
{y∆t
k−1}ri=1, y

∆t
k−1, ḋ(sk)

)
− g

(
{y∆t
k }ri=1, y

∆t
k , ḋ(sk)

))
. (44b)

Define Ek = ‖x∆t
k −y∆t

k ‖ as the error at time-step k. Note that, due to the Lemmas 3, 6, and 5, as well

as the construction of {x̃∆t
i,k}ri=1, there exist universal constants L, c̄, t̄ > 0 such that, for every ∆t ≤ t̄,

g(·, ·, ·) is locally L-Lipschitz continuous in the balls

B1 =

{
({xi}ri=1, y, z)

∣∣∣∣∣
(

r∑
i=1

‖x̃∆t
i,k − xi‖

)
+ ‖x̃∆t

k − y‖+

∥∥∥∥(dk − dk−1

∆t

)
− z
∥∥∥∥ ≤ c̄

}
, (45)

and

B2 =

{
({xi}ri=1, y, z)

∣∣∣∣∣
(

r∑
i=1

‖y∆t
k − xi‖

)
+ ‖y∆t

k − y‖+
∥∥∥ḋ(sk)− z

∥∥∥ ≤ c̄}. (46)
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To simplify the notation, we denote
∥∥∥(dk−dk−1

∆t

)
− ḋ(sk)

∥∥∥ as D. The following chain of inequalities will

be useful in bounding the expression A in (43):(
r∑
i=1

∥∥x̃∆t
i,k − y∆t

k−1

∥∥)+
∥∥x∆t

k − y∆t
k−1

∥∥+D

≤ r
∥∥x∆t

k−1 − y∆t
k−1

∥∥+ (r + 1)
∥∥x∆t

k − y∆t
k−1

∥∥+D

≤ r
∥∥x∆t

k−1 − y∆t
k−1

∥∥+ (r + 1)
∥∥x∆t

k − x∆t
k−1

∥∥
+ (r + 1)

∥∥x∆t
k−1 − y∆t

k−1

∥∥+D

= (2r + 1)Ek−1 + (r + 1)
∥∥x∆t

k − x∆t
k−1

∥∥+D

≤ (2r + 1)Ek−1 + (r + 1)c1∆t+ c2∆t2

≤ (2r + 1)Ek−1 + ((r + 1)c1 + c2)∆t (47)

provided that ∆t ≤ t̄1, where t̄1, c1, c2 > 0 are constants. Note that the last two inequalities are due to

Lemma 2 and the twice differentiability of d(t).

Subsequently, the next inequality will be used to bound the expression B in (43). In particular, Lemma 6

can be used to show the existence of constants c3, t̄2 > 0 such that

(r + 1)‖y∆t
k−1 − y∆t

k ‖ ≤ c3∆t (48)

provided that ∆t ≤ t̄2. Given the inequalities (47) and (48), we prove the validity of (28) by proving the

following statements:

1. There exists a universal constant t̄3 such that for every ∆t ≤ t̄3 and k = 0, . . . , T/∆t, (47) and (48)

will be upper bounded by c̄ which is defined as the radius of the balls (45) and (46). This together

with the locally L-Lipschitz continuity of g(·, ·, ·) within the balls B1 and B2 leads to

‖A‖ ≤ (2r + 1)L∆tEk−1 + ((r + 1)c1 + c2)L∆t2 (49a)

‖B‖ ≤ c3L∆t2 (49b)

Combining these inequalities with (43) results in the following recursive inequality:

Ek ≤(1 + (2r + 1)L∆t)Ek−1 + ((r + 1)c1 + c2 + c3)L∆t2 (50)

2. We have lim∆t→0+ sup0≤k≤T/∆tEk = 0.
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We prove the first statement using an inductive argument on k. In particular, we show that if the following

inequality holds

∆t ≤ min

{
t̄1, t̄2,

√
c̄

((r + 1)c1 + c2 + c3)L
,

(2r + 1)c̄

((r + 1)c1 + c2 + c3)(e(2r+1)TL − 1)

}

= t̄3 (51)

then (47) and (48) remain in the balls B1 and B2, respectively and hence, (50) holds for k = 0, . . . , T/∆t.

Base case: k = 1. Note that in this case, E0 = 0 and therefore, based on (51), we have ∆t ≤ t̄1 and

∆t ≤ t̄2. This implies that both (47) and (48) are upper bounded by c̄ and, based on (50), we have

E1 ≤ (1 + (2r + 1)L∆t)E0 + ((r + 1)c1 + c2 + c3)L∆t2

= ((r + 1)c1 + c2 + c3)L∆t2 ≤ c̄ (52)

where the last inequality is due to (51).

Inductive step. Suppose that we have

(2r + 1)Ek−1 + ((r + 1)c1 + c2)∆t ≤ c̄ (53a)

c3∆t ≤ c̄ (53b)

for k = 0, . . . ,m− 1. This implies that (50) holds for k = 1, . . . ,m. With some algebra, one can verify

that

Em ≤ ((r + 1)c1 + c2 + c3)L∆t2
m−1∑
i=0

(1 + (2r + 1)L∆t)i

≤ ((r + 1)c1 + c2 + c3)L∆t2 · (1 + (2r + 1)L∆t)m − 1

(2r + 1)L∆t

≤ (r + 1)c1 + c2 + c3

2r + 1

(
(1 + (2r + 1)L∆t)T/∆t − 1

)
∆t

≤ (r + 1)c1 + c2 + c3

2r + 1

(
e(2r+1)LT − 1

)
∆t ≤ c̄ (54)

which completes the proof of the first statement. To prove the second statement, note that the above

analysis leads to

sup
0≤k≤T/∆t

Ek ≤
(r + 1)c1 + c2 + c3

2r + 1

(
e(2r+1)LT − 1

)
∆t

assuming that ∆t ≤ t̄3. Due to the fact that t̄3 > 0 and is independent of ∆t, we have

lim
∆t→0+

sup
0≤k≤T/∆t

Ek = 0 (55)

thereby completing the proof of the convergence.
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VI. PROPERTIES OF SYSTEM’S JACOBIAN

In this section, we additionally assume that the objective function f(x, t) is twice continuously dif-

ferentiable in x. For the constraint functions h = (h1, h2, . . . , hm), the corresponding Hessian matrices

H1, H2, . . . ,Hm ∈ Rn×n are the second partial derivative of h with respect to x. The second-order

derivative operator of h, denoted by H , is now regarded as the m-tuple H = (H1, . . . ,Hm). For µ ∈ Rm

and x ∈ Rn, µH denotes µ1H1 + . . . + µmHm and x>Hx denotes x>H1x + . . . + x>Hmx. For

M1,M2 ∈ Rn×n, M1HM2x denotes [M1H1M2x, . . . ,M1HmM2x]. In addition, we have the identity

µx>Hx = x>µHx.

Consider the time-invariant optimization problem:

inf
x∈Rn

f(x) s.t. h(x) = d (56)

where h(x) = [h1(x), . . . , hm(x)]T and d = [d1, . . . , dm]T . The corresponding ODE is given by

ẋ = − 1

α

[
I − J (x)>(J (x)J (x)>)−1J (x)

]
∇f(x). (57)

Let z be a local minimum of (56) satisfying the first-order necessary and second-order sufficient optimality

conditions:

h(z) = d, J (z)J (z)> is invertible (58a)

∇f(z) + µJ (z) = 0, w>
(
∇2f(z) + µH(z)

)
w > 0 (58b)

for some µ ∈ Rm and every nonzero vector w such that J (z)>w = 0. Note that z is an equilibrium

point of the system (57). Let the right-hand side of (57) be denoted by p(x):

p(x) := − 1

α
P(x)∇xf(x) (59)

where P(x) = I − J (x)>(J (x)J (x)>)−1J (x) and let Jp(z) denote the Jacobian of p(x).

Theorem 5. It holds that

Jp(z) = − 1

α

(
∇2f(z) + µH(z)

)
P(z). (60)

Moreover, Jp(z) has n−m eigenvalues with negative real parts and m zero eigenvalues.

Proof. The equation (60) follows from Corollary 1 in [58]. To study the eigenvalues of Jp(z), note

that Jp(z)J (z)> = 0. Therefore, Jp(z) has at least m zero eigenvalues. Let w ∈ Rn be an arbitrary

nonzero vector in the tangent plane of the manifold {x : h(x) = d} at the point x = z. This
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means that J (z)>w = 0. On the other hand, the second-order sufficient optimality condition states that

w>
(
∇2f(z) + µH(z)

)
w > 0. Therefore, we have w>Ωw > 0, where

Ω =P(z)
(
∇2f(z) + µH(z)

)
P(z). (61)

Since J (z) is in the null space of the symmetric matrix Ω and w>Ωw > 0 for every w that is orthogonal

of J (z), it can be concluded that Ω has n−m eigenvalues with positive real parts. On the other hands,

the eigenvalues of Ω are the same of the eigenvalues of the matrix(
∇2f(z) + µH(z)

)
P2(x) =

(
∇2f(z) + µH(z)

)
P(z) (62)

which is the identical to −αJp(z).

As shown above, the eigenvalues of the Jacobian only have non-positive real parts. This explains

why spurious solutions of a time-invariant optimization problem cannot be escaped using gradient-based

methods, such as the ODE (57). Now, consider its time-varying counterpart problem (4) and associated

ODE (6). Let z(t) : [0, T ] → Rn be a local solution of (4) that satisfies the first-order necessary and

second-order sufficient optimality conditions for all t ∈ [0, T ]. Let µ(t) denote the corresponding Lagrange

multiplier and Q(z(t)) denote J (z(t))>(J (z(t))J (z(t))>)−1. Since z(t) is generally not the solution

of the ODE (6), we make a change of variables e(t) = x(t)− z(t) to measure the distance between x(t)

and z(t). Then, the ODE (6) can be rewritten as

ė(t) = − 1

α
η(e(t) + z(t), t) + θ(e(t) + z(t))ḋ− ż(t) (63)

Let Jq(z(t)) denote the Jacobian of the right-hand side of (63) at the point e(t) = 0. By taking the

first-order approximation of (63) around z(t), we have

ė(t) = Jq(z(t))e(t) +O(e2(t))− ż(t). (64)

Theorem 6. It holds that

Jq(z(t)) = K1(t) +K2(t) (65)

where

K1(t) =− 1

α

(
∇2f(z(t)) + µ(t)H(z(t))

)
P(z(t)), (66a)

K2(t) =
(
P (z(t))H(z(t))

(
J (z(t))J (z(t))>

)−1
−Q(z(t))H(z(t))Q(z(t))

)
ḋ(t). (66b)
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Proof. The computation of K1(t) is similar to that of Theorem 5. Because of the tensor nature of H it is

convenient to differentiate with respect to each component separately. For the component z1(t), we have

d

dz1(t)
Q(z(t))ḋ(t)

=H1(z(t))
(
J (z(t))J (z(t))>

)−1
ḋ(t)

− J (z(t))>
(
J (z(t))J (z(t))>

)−1 (
H1(z(t))J (z(t))> + J (z(t))H1(z(t))

)(
J (z(t))J (z(t))>

)
ḋ(t)

=
(
P (z(t))H1(z(t))

(
J (z(t))J (z(t))>

)−1
−Q(z(t))H1(z(t))Q(z(t))

)
ḋ(t).

Similar expressions apply to derivatives with respect to other components. These columns can be combined

into the matrix [ d

dz1(t)
Q(z(t)), . . . ,

d

dzn(t)
Q(z(t))

]
ḋ(t).

This matrix is K2(t).

Notice that K1(t) has only eigenvalues with non-positive reals (due to Theorem 5) but K2(t) may have

eigenvalues with positive reals depending on the time-variation. Thus, the time variation could potentially

make the linear system ˙̄e(t) = Jq(z(t))ē(t) unstable. If O(e2(t))− ż(t) is not large, we may expect that

the solution of (64) will behavior similarly to ˙̄e(t) = Jq(z(t))ē(t) and cannot stay around the point 0.

Thus, the time-variation may provide the opportunity to escape the spurious local trajectory z(t). Note

that the linearization does not always provide a concrete answer for time-varying ODEs, but this result

offers an insight into how the data variation changes the eigenvalues of the Jacobian along a trajectory

close to a KKT trajectory.

VII. CONCLUSION

In this work, we study the landscape of time-varying nonconvex optimization problems. We introduce

the notion of spurious local trajectory as a counterpart to the notion of spurious local minima in the

time-invariant optimization. The key insight to this new notion is the fact that a regularized version of

the time-varying optimization problem is naturally endowed with an ordinary differential equation (ODE)

at its limit. This close interplay enables us to study the solutions of this ODE to certify the absence of

the spurious local trajectories in the problem. Through different case studies and theoretical results, we

show that a time-varying optimization can have multiple spurious local minima, and yet its landscape can

be free of spurious local trajectories. We further show that the variation of the landscape over time is the

main reason behind the absence of spurious local trajectories. We also study the Jacobian of the ODE

along a local minimum trajectory and show how its eigenvalues change in response to the data variation.
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(a) Inequalities in function of α, β guarantee-

ing absence of spurious trajectories.

(b) Sufficient condition in blue in function of

α, β for absence of spurious trajectories.

(c) Non-spurious trajectory for α = 0.4 and

β = 10.

(d) Spurious trajectory for α = 0.2 and β = 5.

Fig. 4: Analysis of Example 1.

Avenues for future work include the extension of the notion of spurious local trajectories to time-varying

optimization over an infinite-time horizon. Furthermore, it would be worthwhile to derive necessary and

sufficient conditions for the absence of spurious local trajectories in more general settings.

APPENDIX

Lemma 7. We have ‖x∆t
k − x∆t

k−1‖ = O(
√

∆t) for every k = 0, . . . , dT/∆te.

Proof. Note that f(x, t) is uniformly bounded from below. Furthermore, for every AKKT tuple
(
x0,∆t, {x∆t

k }
dT/∆te
k=0

)
,

the sequence {x∆t
k }
dT/∆te
k=0 is assumed to be uniformly bounded. This together with Assumption 1 implies

that

f(x∆t
k , tk) +

α

2∆t
‖x∆t

k − x∆t
k−1‖2 ≤ R (67)
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for some R < ∞. Since f(x∆t
k , tk) is assumed to be uniformly bounded from below, this leads to

α
2∆t‖x

∆t
k − x∆t

k−1‖2 ≤ R′ for some R′ <∞, which in turn yields ‖x∆t
k − x∆t

k−1‖ = O(
√

∆t).

Proof of Lemma 2. Due to Lemma 7 and the fact that J (x) is continuously differentiable, one can

invoke Lemma 1 to show that there exist constants t̄, c1, c2 > 0 such that the following statements hold,

provided that ∆t ≤ t̄:

1. Consider a sequence {x̃∆t
i,k}ri=1 constructed similar to (33). Due to Assumption 4 and Lemma 7, it

can be verified that there exist t̄, c1 > 0 such that σmin(J ({x̃∆t
i,k}ri=1)J (x∆t

k )>) ≥ c1 for all ∆t ≤ t̄.

This implies that the function g
(
{x̃∆t

i,k}ri=1, x
∆t
k ,
(
dk−dk−1

∆t

))
introduced in (35) is well-defined and

continuous for all ∆t ≤ t̄.

2. Assumption 3 and twice differentiability of d with respect to t imply that
{
{x̃∆t

i,k}ri=1, x
∆t
k

}
and(

dk−dk−1

∆t

)
belong to a compact set. Combined with the continuity of g(·), this implies that∥∥∥∥g({x̃∆t

i,k}ri=1, x
∆t
k ,

(
dk − dk−1

∆t

))∥∥∥∥ ≤ c2 (68)

for some c2 > 0.

3. Similar to (35), one can verify that the following equality holds:

x∆t
k − x∆t

k−1

∆t
= g

(
{x̃∆t

i,k}ri=1, x
∆t
k ,

(
dk − dk−1

∆t

))
Combined with (68), this implies that ‖x∆t

k − x∆t
k−1‖ ≤ c2∆t and the proof is complete. �

Proof of Lemma 3. Consider a sequence {sn}∞n=1 such that sn > 0 and limn→∞ sn = 0. Furthermore,

without loss of generality, we assume that T/sn is a natural number for every n = 1, . . . ,∞. Given

any n, consider a AKKT tuple (x0, sn, {xsnk }
∞
k=0) and define a vector-valued function x̃sn : [0, T ]→ Rn

whose ith element is the spline interpolation of the ith elements of the vectors {xsn0 , x
sn
1 , . . . , x

sn
T/sn
}.

Notice that this interpolation can be made in such a way that x̃sn is continuously differentiable.

We prove this lemma by showing that there exist a continuously differentiable function x̄ and a

subsequence {x̃tnr
}∞r=1 of {x̃sn}∞n=1 such that {x̃tnr

}∞r=1 and { ˙̃xtnr
}∞r=1 converge uniformly to x̄ and

˙̄x, respectively. Note that x̃sn is continuous for n = 1, . . . ,∞, due to Lemma 2. Consider the class of

functions X = {x̃sn | n = 1, . . . ,∞}. X is uniformly bounded (due to Assumption 4) and equicontinuous.

Therefore, the Arzelà-Ascoli theorem can be invoked to show the existence of a uniformly convergent

subsequence {x̃tnk
}∞k=1. Let x̄ : [0, T ] → Rn be the limit of {x̃tnk

}∞k=1. Now, consider the sequence

{ ˙̃xtnk
}∞k=1. Notice that, due to the construction, { ˙̃xtnk

}∞k=1 is continuous. Consider the class of functions

X̄ = { ˙̃xtnk
| k = 1, . . . ,∞}. Similar to the previous case, X̄ is uniformly bounded and equicontinuous.

Therefore, another application of Arzelà - Ascoli theorem implies that { ˙̃xtnk
}∞k=1 has a subsequence
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{ ˙̃xtnr
}∞r=1 that converges uniformly to a function y : [0, T ] → Rn. Since {nr}∞r=1 ⊆ {nk}∞k=1, we have

that {x̃tnr
}∞r=1 converges uniformly to x̄. Therefore, due to Theorem 7.17 of [57], we have ˙̄x = y.

Finally, recall that {xsnk }
∞
n=1 is uniformly bounded and there exists a universal constant c such that

J (xsnk ) ≥ c for k = 0, . . . , T/sn and n = 1, . . . ,∞. This implies that the function sequence {x̃tnr
}∞r=1

is also uniformly bounded and since they converge uniformly to x̄, one can invoke Lemma 1 to verify

the existence of a universal c′ > 0 such that c ≥ c′ and J (x̄(t)) ≥ c′ for every t ∈ [0, T ]. �
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