
A Markovian Incremental Stochastic Subgradient Algorithm

Rafael Massambone∗ Eduardo F. Costa† Elias S. Helou†

August 24, 2021

Abstract

A stochastic incremental subgradient algorithm for the minimization of a sum of convex functions is
introduced. The method sequentially uses partial subgradient information and the sequence of partial
subgradients is determined by a general Markov chain. This makes it suitable to be used in networks
where the path of information flow is stochastically selected. We prove convergence of the algorithm to a
weighted objective function where the weights are given by the Cesàro limiting probability distribution
of the Markov chain. Unlike previous works in the literature, the Cesàro limiting distribution is general
(not necessarily uniform), allowing for general weighted objective functions and flexibility in the method.
keywords: Optimization algorithms, incremental subgradient method, stochastic optimization, Markov
chains.

1 Introduction

Incremental subgradient algorithms [13, 15] can be efficient tools for the minimization of a sum of convex
functions f =

∑m
i=1 fi. These methods use only the subgradient of a summand fi of the objective function

at a time when updating the decision variables and, therefore, need to somehow move along all summands
in order to converge to a minimizer of f . Several schemes have been used for the choice of the sequence of
updates, starting with the most intuitive cyclic scheme [9] going through each summand exactly once before
repeating any. The cyclic scheme can be used with random permutations following each full cycle and this
can be beneficial in practice. Another possibility is to choose uniformly and randomly the summand to be
considered, which also seems to favor convergence speed in practice when compared to a deterministic
cyclic scheme.

A common application of incremental subgradients methods is in optimization in networks. In this
case each summand is processed by a network agent and, in order to avoid extra communication and
processing costs and to take the network topology into consideration, it is usually necessary to impose
restrictions on which summands can be selected for processing after some fi is processed. Usually the
sequence must follow the neighborhood structure of the network, that is, summand fi can be followed by
summand fj if and only if node i is connected to node j. Under these circumstances, the randomizations of
the processing order are not practically implementable without causing an unnecessary load in the network
and, instead, a Markov chain can be used in order to select the next node from all neighbors of the current
one [8, 22]. Another useful application of incremental methods is in computed tomography [4, 14, 15]
where the combination of fast initial convergence and computationally simple iterations is favoured over
several digits accuracy.

These Markovian methods have so far been proven to converge under the hypothesis of uniformity of the
limiting probability distribution of the Markov chain. In the present paper we remove this restriction and

∗State University of Northern Paraná – Centro de Ciências Tecnológicas, C.P. 261, 86360–000, Bandeirantes, PR, Brazil.
email: massambone@uenp.edu.br

†University of São Paulo – Instituto de Ciências Matemáticas e de Computação, C.P. 668, 13560–970, São Carlos, SP,
Brazil. emails: {efcosta,elias}@icmc.usp.br

1

ar
X

iv
:2

10
8.

07
90

0v
2

 [
m

at
h.

O
C

]
 2

2
A

ug
 2

02
1

prove convergence to the minimizer of an averaged objective function
∑m

i=1 ωifi where each ωi correspond
to the Cesàro limiting probability of node i in the Markov chain, as intuitively should happen since fi will
be processed with relative frequency of ωi.

Our setup allows e.g. to consider a Markov chain for which ωj = 0 for some indexes j, so that the
corresponding functions fj play a role in the initialization and initial steps (to speed up the method)
while they do not interfere with the final solution. It is worth a mention that the Markov chain is
usually constructed/designed by the user of the method, so both ωi and the transition probabilities can be
chosen at the user convenience. Not only we provide convergence results for the case of general limiting
probability distributions, but our method is more general than other Markovian incremental algorithms
because it allows parallel processing of certain subsets of summands of the objective function. In this
sense, the proposed algorithm has similarities with the class of string-averaging incremental subgradient
methods [1, 3, 16, 17] for constrained convex optimization problems. Indeed, the proposed method seems
to be the first instance of Markovian string-averaging technique in the literature. Interestingly, here again,
computed tomography is an application for which string-averaging is useful [3, 16, 17].

Such a general setup brings some challenges for the convergence analysis, which demanded for the
development of Lemmas 1 and 2 that are unparalleled in literature. We give more details in Remark 1.
Still, the main convergence result given in Theorem 1 is quite conventional and does not impose restrictive
/ working assumptions. For example, Theorem 1 recovers Theorem 4.3 of [22] in the context considered in
that paper.

The contributions of the present paper are, therefore, threefold: (a) it is shown that Markovian
incremental stochastic subgradient algorithms converge under more general conditions on the Markov
chain and on the stochastic gradient error than previously established in the literature; (b) the Markovian
incremental stochastic subgradient algorithms are generalized to work with many parallel Markov chains
in a string-averaging scheme, and (c) theoretical analysis of global convergence under mild assumptions is
presented. We analyse both diminishing and constant stepsizes. Our approach unifies different algorithms
found in literature, such as the incremental (cyclic) subgradient method, Markov randomized incremental
subgradient method and incremental (randomized) subgradient method [8, 13, 22]. Moreover, we also
provide experimental evidence of the usefulness of the method, although with no intention of pursuing
benchmarking purposes.

The paper is organized as follows: Subsection 2.1 describes precisely the problem we are aiming to
solve. Subsection 2.2 provides a complete description of the algorithm we propose; Section 3 is dedicated
to the theoretical analysis; in Section 4 we examine a numerical example; final considerations are given in
Section 5.

2 Proposed Algorithm

2.1 Problem formulation

We consider a network of m agents that are indexed by {1, . . . ,m}, and we denote I := {1, . . . ,m}. The
network has a static topology that is given by the directed graph G := (I, E), where E ⊂ I2 is the set of
links in the network. We have (i, j) ∈ E if agents i and j can communicate with each other. In this paper,
the network goal is to solve the following optimization problem:

x ∈ arg min f(x)
s.t. x ∈ X ⊆ Rn, (1)

where

(i) f(x) :=
∑
i∈I

ωifi(x), ωi ≥ 0,
∑
i∈I

ωi = 1;

(ii) fi : Rn → R are convex for all i ∈ I.

2

The literature on methods to solve the optimization problem (1) is very wide, so that not only
incremental methods have been studied for this purpose. We can highlight, for example, distributed
computation techniques [7, 10–12, 23] where each agent i minimizes its own objective fi by exchanging
information with other agents on the network. Distributed algorithms and optimization models have
been studied for a long time, mainly due to potential in applications such as sensor networks [19] and
distributed control [20]. One of the main disadvantages of distributed methods compared to the Markovian
Incremental Stochastic Subgradient Algorithm (MISSA) that we propose here is that they require more
sophisticated oracles (the minimizer instead of a stochastic subgradient) which might not always be
available or be practical.

2.2 Algorithm description

The algorithm we propose in this paper, named as MISSA, is presented in this section. Consider M
Markov chains indexed by {1, . . . ,M} and we denote the index set by M = {1, . . . ,M}, so that for each
` ∈M we have that {s`(k), k ≥ 0} is a time-homogeneous Markov chain with state space I and transition
probabilities Prob(s`(k + 1) = j|s`(k) = i) = [P]ij , where P is called the transition probability matrix and
is common to all M Markov chains1. According to [2, Theorem 3.14], a simple re-ordering of the Markov
states allow to obtain the following form for P ,

P =


P1

P2

. . .

PN

Q1 Q2 · · · QN T

 , (2)

where for each v = 1, . . . , N , the matrix Pv is of dimension m(v)×m(v), Qv is a u×m(v) matrix whereas
T is a u× u matrix. The above structure of P makes evident which states are recurrent [2]: the rows of P
corresponding to Pv for a specific v form a set of Markov states that are all recurrent and of same period
[2]; we denote the period by δv and this set of Markov states by Rv. The rows of P corresponding to the
matrix T form a set of transient Markov states, which we denote by T . Note that s`(k) takes values on
I = (

⋃N
v=1Rv) ∪ T . As an example, consider a network composed of 9 agents, so that I := {1, . . . , 9},

and 4 Markov chains s1(k), . . . , s4(k), whose probability matrices are given by a common matrix

P =



0 0 0.5 0.5
0 0 0.3 0.7

0.2 0.8 0 0
1 0 0 0

0 0 1
1 0 0
0 1 0

0 0 0.1 0 0 0.2 0 0.7 0
0.1 0 0 0 0 0 0.9 0 0


.

In this example we have two irreducible sets of recurrent states R1 = {1, 2, 3, 4}, R2 = {5, 6, 7} and a
set of transient states T = {8, 9}. States in R1 are periodic with period δ1 = 2, while states in R2 are
of period δ2 = 3. It is worth mentioning that P δ is the transition probability matrix of an aperiodic
Markov chain, where δ = LCM(δ1, . . . , δN) (where LCM means “least commom multiple”); in the example,
δ = LCM(2, 3) = 6 so that P 6 gives the transition probabilities of an aperiodic chain, or equivalently we
can say that the Markov chains {s1(6k), k ≥ 0}, . . . , {s4(6k), k ≥ 0} are aperiodic. Figure 1 shows the
network topology G of this example.

1P can be seen as a parameter of the method, to be selected by the user aiming at a desired Cesàro limiting distribution
and/or transient states for accelerating the algorithm.

3

R1

1

2

3

4

8

9

R2

5

7

6

Figure 1: A disconnected graph as an example of a network topology containing two recurrent class and
two transient states.

Let us define π0
` ∈ Rm as the initial probability distribution for s`(k), for all ` ∈M, i.e., Prob(s`(0) =

i) = [π0
`]i. We assume that every agent is relevant to the algorithm in the sense that it is visited at

infinitely many iterations k with positive probability (otherwise the agent could be removed from network
with no loss). Returning to the example above, this prevent us from setting, for example, π0

1 = π0
2 =

π0
3 = π0

4 = [0.5, 0.5, 0, . . . , 0]T because the states in R2 = {5, 6, 7} would never be visited by any Markov
chain. An example of valid initial distributions is π0

1 = [0.5, 0.5, 0, . . . , 0]T , π0
2 = [0, 0, 0, 0, 1, 0, 0, 0, 0]T ,

π0
3 = [0, 0, . . . , 1, 0]T and π0

4 = [0, 0, . . . , 0, 1]T .
Some strong hypothesis, like the distribution converging to [1/m, . . . , 1/m]T , are void in our setup - in

fact, we do not require existence nor uniqueness of a limiting distribution for {s`(k)}, ` ∈M. We resort
to the limiting distribution in the sense of Cesàro [21]:

P̄ := lim
k→∞

1

k
(P 0 + P 1 + · · ·+ P k−1). (3)

If we define Mk = (P k+· · ·+P k+δ−1) then the definition given in (3) is equivalent to P̄ = 1
δ limk→∞

1
k (Mδ0+

· · ·+Mδ(k−1)) = 1
δ limk→∞

1
kM0(P 0 + P δ + · · ·+ P δ(k−1)). Since P δ is aperiodic [2, Theorem 3.7, p.162],

then P δk converges, yielding P̄ = 1
δ limk→∞M0P

δk, and this in turn leads to

P̄ = Pδ :=
1

δ
lim
k→∞

(P k + P k+1 + · · ·+ P k+δ−1). (4)

Now we can use equation (4) to obtain for all ` ∈ M and any initial distribution π0
` , a Cesàro limit

distribution π∞` as
(π∞`)T = (π0

`)
TPδ. (5)

Additionally, we define ∆ := limk→∞ P
δk and Φ(k, t) := P k−t with k > 0, t ≥ 0 and k > t.

Summarizing the method we propose, at iteration k, we compute ` independent subiterations by using
a stochastic subgradient of fs`(k) and then we perform an averaging of these subiterations. It is useful to
remark that although averaging is a possibility encompassed by our method, it is not mandatory. Indeed,
if |M| = 1 we recover the fully incremental method and still in this case our convergence results are novel
because of the generality of the allowed Markov chain. The method Markovian Incremental Stochastic
Subgradient Algorithm (MISSA) is detailed in Algorithm 1.

4

Algorithm 1: Markovian Incremental Stochastic Subgradient Algorithm - MISSA

input :An integer K > 0; an initial vector x0 ∈ X; a set {s`(k)} of Markov chains (with
transition probability matrix P given by (2)); a sequence {λk} of positive stepsizes.

for k = 0 to K do
For each ` ∈M, compute

xk+1
` = xk − λk(gks`(k+1) + εk+1

s`(k+1)), (6)

where gks`(k+1) ∈ ∂fs`(k+1)(x
k) and εk+1

s`(k+1) is a random noise vector.

Use the subiterations xk+1
` obtained in (6) to compute:

xk+1 = PX

(
1

|M|
∑
`∈M

xk+1
`

)
, (7)

where PX is the Euclidean projection onto X.

return xK+1.

3 Convergence analysis

3.1 Assumptions

Notations : Let x ∈ Rn, then we will use the notations ‖x‖ :=
√∑n

i=1 |xi|2 and ‖x‖∞ := maxi∈{1,2,...,n} |xi|.
For any x ∈ R, dxe is the smallest integer larger than or equal x. For matrices A ∈ Rm×n, we use the
induced norms ‖A‖ := sup‖x‖=1 ‖Ax‖ and ‖A‖∞ := sup‖x‖∞=1 ‖Ax‖∞. We analyze the Algorithm 1 under
the following assumptions.

Assumption 1. X is nonempty, convex and compact. 4
Assumption 1 and convexity of each fi over Rn imply that the subgradients of fi are bounded over X

for each i ∈ I, i.e., there is C > 0 such that for all x ∈ X and i ∈ I:

‖gi‖ ≤ C, gi ∈ ∂fi(x). (8)

The stochastic error when computing a subgradient gki is denoted by εk+1
i . We define Gk as the

σ-algebra generated by x0, the subgradient errors {ε1
1, . . . , ε

k
m} and {s`(1), . . . , s`(k)} for all ` ∈ M. In

our analysis, we suppose that the second moments of the subgradient errors are bounded uniformly over
the agents, conditionally on the available information until iteration k (and represented by Gk).
Assumption 2. There is a scalar sequence {νk} such that E[‖εk+1

i ‖2| Gk] ≤ ν2
k+1 for all i ∈ I and k ≥ 0

with probability 1. 4
The main convergence result requires additional hypotheses on the bounds of the subgradient errors,

which can be seen as a natural extension of the ones in [22, Theorem 4.3] to the case of periodic Markov
chains.

Assumption 3. Consider the scalar sequence {νk} given in Assumption 2. We assume that

ν := sup
k≥0

νk <∞, (9)

and for any 2/3 < ξ ≤ 1, we have

∞∑
k=0

νδk+δ−q+1

(k + 1)ξ
<∞, ∀ q = 1, . . . , δ. (10)

4

5

3.2 Analysis

In the remainder of this section, we analyze the convergence of MISSA in order to solve problem (1) with
a specific choice for scalars ωi. We define for each i ∈ I,

ωi =
1

|M|
∑
`∈M

[π∞`]i, (11)

where π∞` is the Cesàro limit distribution given by equation (5). This means that we are establishing
larger weights for the local functions fi associated to the agents i with higher probability of use for long
iterations k, that is, when k →∞. As a consequence, we have that the u transient states do not affect
the objective function f , because ωj = 0 for all j = 1, . . . , u. Our main results are given in the following
theorems. Define

f∗ = inf
x∈X

f(x) and X∗ = {x ∈ X | f(x) = f∗}.

Theorem 1. Suppose that Assumptions 1–3 hold. Consider that for any t ∈ N,

λδt = λδt+1 = · · · = λδ(t+1)−1 =
a

(t+ 1)ξ
, (12)

where a > 0 and 2/3 < ξ ≤ 1. Then, if {xk} is generated by Algorithm 1 we have, with probability 1,

lim
k→∞

inf f(xδk) = f∗ and lim
k→∞

inf d(xδk, X∗) = 0,

where d(x, X∗) := ‖x− PX∗(x)‖.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Consider that for any k ∈ N,

λk ≡ λ > 0, and ν ≥ νk,

thus, if {xk} is generated by Algorithm 1 then, for small λ,

lim inf
k→∞

E[f(xδk)− f∗] ≤ δ(ν + C)

θ
λ ln

1

λ
+Aλ+Mν,

for some positive scalars A,M and θ. For large λ we have

lim inf
k→∞

E[f(xδk)− f∗] ≤ λ
[
δ(C + ν)

θ
+

(C + ν)2

2

]
%e−θ +Mν.

Before we proceed to prove these theorems, we need two important auxiliary results. The first of these
results shows that the averaged expected value over Rv of any parcel fi, i ∈ Rv of the objective function
at a given iteration becomes less dependent of the next state of the Markov chain as iterations proceed.
For that, we define the vector πδ,v as any row of Pδ such that the index of the row corresponds to some
state in Rv. Notice that, by the definition of Pδ in (4), all these rows are equal. With such definition, for
any v = 1, . . . , N and h ∈ Rv,

eTh [Pδ]i = [πδ,v]i, i ∈ {1, 2, . . . ,m}, (13)

where eh is the vector with 1 in the h coordinate and zero in the others and [Pδ]i denotes the i-th column
of Pδ.

6

Lemma 1. Let k be a non-negative integer and consider another integer n(k) ∈ [0, k − 1]. Define for each
q = 1, . . . , δ, j(q) = δ − q + 1. For a given ` ∈M and a given v, 1 ≤ v ≤ N , there are positive scalars η
and β such that, for any y ∈ X, we have

δ∑
q=1

∑
i,h∈Rv

E[(fi(x
δn(k))− fi(y))1{s`(δn(k)+1)=h,s`(δn(k))∈Rv}][P

δ(k−n(k))+j(q)−1]hi ≥ −ηe−β(k−n(k))

+ δ
∑
i∈Rv

E
[
(fi(x

δn(k))− fi(y))1{s`(δn(k))∈Rv}

]
[πδ,v]i.

Proof. For ease of notation in this proof we write (keeping fixed k > 0):

Pk
δ = P δ(k−n(k))−1,

Θk
`,v =

δ∑
q=1

∑
i,h∈Rv

E[(fi(x
δn(k))− fi(y))1{s`(δn(k)+1)=h,s`(δn(k))∈Rv}][P

δ(k−n(k))+j(q)−1]hi.

If we note that
∑δ

q=1[P δ(k−n(k))+j(q)−1]hi =
∑δ

q=1 e
T
h [Pk

δP
j(q)]i = eTh [Pk

δ

∑δ
q=1 P

j(q)]i, we can write

Θk
`,v =

∑
i,h∈Rv

E
[
(fi(x

δn(k))− fi(y))1{s`(δn(k)+1)=h,s`(δn(k))∈Rv}

]
eTh [Pk

δ

δ∑
q=1

P j(q)]i

=
∑

i,h∈Rv

E
[
(fi(x

δn(k))− fi(y))1{s`(δn(k)+1)=h,s`(δn(k))∈Rv}

](
eTh

[
Pk
δ

δ∑
q=1

P j(q)
]
i
+ eTh [δPδ]i − eTh [δPδ]i

)
thus leading to

Θk
`,v =

∑
i,h∈Rv

E
[
(fi(x

δn(k))− fi(y))1{s`(δn(k))+1=h,s`(δn(k))∈Rv}

]
eTh [δPδ]i

+
∑

i,h∈Rv

E
[
(fi(x

δn(k))− fi(y))1{s`(δn(k))+1=h,s`(δn(k))∈Rv}

](
eTh

[
Pk
δ

δ∑
q=1

P j(q)
]
i
− eTh [δPδ]i

)
.

Then,

Θk
`,v ≥

∑
i,h∈Rv

E
[
(fi(x

δn(k))− fi(y))1{s`(δn(k))+1=h,s`(δn(k))∈Rv}

]
eTh [δPδ]i

−
∑

i,h∈Rv

∣∣∣E[(fi(xδn(k))− fi(y))1{s`(δn(k))+1=h,s`(δn(k))∈Rv}

]∣∣∣∣∣∣eTh [Pk
δ

δ∑
q=1

P j(q)
]
i
− eTh [δPδ]i

∣∣∣.
Notice that∣∣∣eTh [Pk

δ

δ∑
q=1

P j(q)
]
i
− eTh [δPδ]i

∣∣∣ ≤ ‖eh‖∞∥∥∥Pk
δ

δ∑
q=1

P j(q) − δPδ
∥∥∥
∞

=
∥∥∥Pk

δ

δ∑
q=1

P j(q) −∆
δ∑
q=1

P j(q)
∥∥∥
∞

=
∥∥∥ δ∑
q=1

Φ(δ(k − n(k))− 1 + j(q), δ0 + 0)−∆P j(q)
∥∥∥
∞

≤
δ∑
q=1

αe−β(k−n(k)), (α, β > 0),

7

where α and β are due to Lemma 5-(ii) (see Appendix). Therefore, by using (13), rearranging the terms
and substituting above,

Θk
`,v ≥ δ[πδ,v]i

∑
i,h∈Rv

E
[
(fi(x

δn(k))− fi(y))1{s`(δn(k)+1)=h,s`(δn(k))∈Rv}

]
−
∑

i,h∈Rv

∣∣∣E[(fi(xδn(k))− fi(y))1{s`(δn(k)+1)=h,s`(δn(k))∈Rv}

]∣∣∣αδe−β(k−n(k))

≥ δ[πδ,v]i
∑
i∈Rv

E
[
(fi(x

δn(k))− fi(y))
∑
h∈Rv

1{s`(δn(k)+1)=h,s`(δn(k))∈Rv}

]
−
∑

i,h∈Rv

M̄αδe−β(k−n(k)),

where we have used the compactness of X and convexity of fi to guarantee the existence of M̄ > 0 such
that |fi(xδn(k))− fi(y)| ≤ M̄ , yielding∣∣∣E[(fi(xδn(k))− fi(y))1{s`(δn(k)+1)=h,s`(δn(k))∈Rv}

]∣∣∣ ≤ E
[∣∣∣(fi(xδn(k))− fi(y))1{s`(δn(k)+1)=h,s`(δn(k))∈Rv}

∣∣∣]
≤ M̄E

[
1{s`(δn(k)+1)=h,s`(δn(k))∈Rv}

]
≤ M̄.

The fact that Rv is a closed set of Markov states yields∑
h∈Rv

1{s`(δn(k)+1)=h,s`(δn(k))∈Rv} = 1{s`(δn(k))∈Rv},

hence
Θk
`,v ≥

∑
i∈Rv

E
[
(fi(x

δn(k))− fi(y))1{s`(δn(k))∈Rv}

]
δ[πδ,v]i −

∑
i,h∈Rv

M̄αδe−β(k−n(k))

≥
∑
i∈Rv

E
[
(fi(x

δn(k))− fi(y))1{s`(δn(k))∈Rv}

]
δ[πδ,v]i − ηe−β(k−n(k)),

where η = m2M̄αδ.

Notice that we select two iterations, namely k and a previous one n(k), and then base our argument in
comparing iteration xδk with iteration xδn(k). The reason why we do so is that we need to perform the
analysis on later iterations, that is, we need that both k →∞ and n(k)→∞ (such as when comparing
iteration k against iteration k − 1 in regular non-stochastic convergence analysis for subgradient methods),
but this is not sufficient because the convergence in the markovian method also depends on analysing a
long enough part of the chain, that is, the argument also requires k − n(k)→∞ in a specific way, as seen
in the proof of Theorem 1.

The next lemma provides an important estimate for convergence analysis of the Algorithm 1. It gives
means to establish an expected reduction in distance from the current point to any other given point with
smaller objective function value as long as the stepsize is large enough, the stochastic error in subgradient
computation is small and we have made sufficient passes over the Markov chain.

Lemma 2. Suppose that Assumptions 1 and 2 hold. Consider that the stepsizes satisfy, for all k ≥ 0

λδ(k+1)−q = λδk, ∀ q = 1, . . . , δ. (14)

Let n(k) be a nonnegative integer sequence satisfying n(k) ≤ k for all k ≥ 0. If {xk} is the sequence

8

generated by Algorithm 1 then, for all y ∈ X, there are positive scalars θ, % and C such that

E[‖xδ(k+1) − y‖2] ≤ E[‖xδk − y‖2] + 2λδk

δ∑
q=1

δ(k+1)−q−1∑
p=δn(k)

λp(C + νp+1)− 2δλδkE[f(xδn(k))− f(y)]

+ 2%δλδk(e
−θn(k) + e−θ(k−n(k))) + 2λδk

δ∑
q=1

νδk+j(q)E[‖xδ(k+1)−q − y‖]

+ λ2
δk

δ∑
q=1

(νδk+j(q) + C)2. (15)

Proof. Initially, due the non-expansivity of the projection PX, equation (7) and convexity of squared norm
we have

‖xk+δ − y‖2 ≤ 1

|M|
∑
`∈M
‖xk+δ

` − y‖2.

Using (6) we obtain

‖xk+δ − y‖2 ≤ 1

|M|
∑
`∈M
‖xk+δ−1 − λk+δ−1(gk+δ−1

s`(k+δ) + εk+δ
s`(k+δ))− y‖2

=
1

|M|
∑
`∈M

[‖xk+δ−1 − y‖2 − 2λk+δ−1(gk+δ−1
s`(k+δ) + εk+δ

s`(k+δ))
T (xk+δ−1 − y)

+ λ2
k+δ−1‖gk+δ−1

s`(k+δ) + εk+δ
s`(k+δ)‖

2]

= ‖xk+δ−1 − y‖2 − 2λk+δ−1
1

|M|
∑
`∈M

(gk+δ−1
s`(k+δ) + εk+δ

s`(k+δ))
T (xk+δ−1 − y)

+ λ2
k+δ−1

1

|M|
∑
`∈M
‖gk+δ−1

s`(k+δ) + εk+δ
s`(k+δ)‖

2.

Repeating the same procedure for ‖xk+δ−1 − y‖2, next for ‖xk+δ−2 − y‖2, . . . , we obtain, after δ steps

‖xk+δ − y‖2 ≤ ‖xk − y‖2 − 2

|M|

δ∑
q=1

λk+δ−q

×
∑
`∈M

(
gk+δ−q
s`(k+δ−q+1) + εk+δ−q+1

s`(k+δ−q+1)

)T
(xk+δ−q − y)

+
1

|M|

δ∑
q=1

λ2
k+δ−q

∑
`∈M
‖gk+δ−q

s`(k+δ−q+1) + εk+δ−q+1
s`(k+δ−q+1)‖

2.

Using the definition of subdifferential sets and remembering that j(q) = δ − q + 1, we have

‖xk+δ − y‖2 ≤ ‖xk − y‖2 − 2

|M|
∑
`∈M

 δ∑
q=1

λk+δ−q(fs`(k+j(q))(x
k+δ−q)− fs`(k+j(q))(y))

+
δ∑
q=1

λk+δ−q

(
ε
k+j(q)
s`(k+j(q))

)T
(xk+δ−q − y)

+
1

|M|
∑
`∈M

δ∑
q=1

λ2
k+δ−q‖g

k+δ−q
s`(k+j(q)) + ε

k+j(q)
s`(k+j(q))‖

2,

9

and, alternatively

‖xk+δ − y‖2 ≤ ‖xk − y‖2 − 2

|M|
∑
`∈M

 δ∑
q=1

λk+δ−q(fs`(k+j(q))(x
k+δ−q)− fs`(k+j(q))(x

δn(d k
δ
e)))

+
δ∑
q=1

λk+δ−q(fs`(k+j(q))(x
δn(d k

δ
e))− fs`(k+j(q))(y)) +

δ∑
q=1

λk+δ−q

(
ε
k+j(q)
s`(k+j(q))

)T
(xk+δ−q − y)


+

1

|M|
∑
`∈M

δ∑
q=1

λ2
k+δ−q‖g

k+δ−q
s`(k+j(q)) + ε

k+j(q)
s`(k+j(q))‖

2.

By Assumption 1 (and using (8)), we have

‖xk+δ − y‖2 ≤ ‖xk − y‖2 − 2

|M|
∑
`∈M

 δ∑
q=1

λk+δ−q(fs`(k+j(q))(x
k+δ−q)− fs`(k+j(q))(x

δn(d k
δ
e)))

+
δ∑
q=1

λk+δ−q(fs`(k+j(q))(x
δn(d k

δ
e))− fs`(k+j(q))(y)) +

δ∑
q=1

λk+δ−q

(
ε
k+j(q)
s`(k+j(q))

)T
(xk+δ−q − y)


+

1

|M|
∑
`∈M

δ∑
q=1

λ2
k+δ−q(C

2 + 2C‖εk+j(q)
s`(k+j(q))‖+ ‖εk+j(q)

s`(k+j(q))‖
2).

By analyzing the previous inequality over the iterates δk we have

‖xδ(k+1) − y‖2 ≤ ‖xδk − y‖2 − 2

|M|
∑
`∈M

 δ∑
q=1

λδ(k+1)−q(fs`(δk+j(q))(x
δ(k+1)−q)− fs`(δk+j(q))(x

δn(k)))

+

δ∑
q=1

λδ(k+1)−q(fs`(δk+j(q))(x
δn(k))− fs`(δk+j(q))(y))

+
δ∑
q=1

λδ(k+1)−q

(
ε
δk+j(q)
s`(δk+j(q))

)T
(xδ(k+1)−q − y)


+

1

|M|
∑
`∈M

δ∑
q=1

λ2
δ(k+1)−q(C

2 + 2C‖εδk+j(q)
s`(δk+j(q))‖+ ‖εδk+j(q)

s`(δk+j(q))‖
2).

By equation (14) and taking conditional expectations with respect to Gδn(k), we have

E[‖xδ(k+1) − y‖2|Gδn(k)] ≤ E[‖xδk − y‖2|Gδn(k)]−
2λδk
|M|

∑
`∈M

δ∑
q=1

E[fs`(δk+j(q))(x
δ(k+1)−q) (16)

− fs`(δk+j(q))(x
δn(k))|Gδn(k)]

− 2λδk
|M|

∑
`∈M

δ∑
q=1

E[fs`(δk+j(q))(x
δn(k))− fs`(δk+j(q))(y)|Gδn(k)]

− 2λδk
|M|

∑
`∈M

δ∑
q=1

E
[(
ε
δk+j(q)
s`(δk+j(q))

)T
(xδ(k+1)−q − y)|Gδn(k)

]

+
λ2
δk

|M|
∑
`∈M

δ∑
q=1

(C2
` + 2C`E[‖εδk+j(q)

s`(δk+j(q))‖|Gδn(k)] + E[‖εδk+j(q)
s`(δk+j(q))‖

2|Gδn(k)]).

10

For each q = 1, . . . , δ define g̃s`(δk+j(q)) ∈ ∂fs`(δk+j(q))(x
δn(k)). Then, using Cauchy-Schwarz inequality

and Assumption 1, we can estimate the second term from the right-hand side of (16), for each ` ∈M and
q = 1, . . . , δ, as

E[fs`(δk+j(q))(x
δ(k+1)−q)− fs`(δk+j(q))(x

δn(k))|Gδn(k)] ≥ E[−(g̃s`(δk+j(q)))
T (xδn(k) − xδ(k+1)−q)|Gδn(k)]

≥ E[−‖g̃s`(δk+j(q))‖‖xδn(k) − xδ(k+1)−q‖|Gδn(k)]

≥ −CE[‖xδn(k) − xδ(k+1)−q‖|Gδn(k)]. (17)

Now, we need to find an estimate for E[‖xδn(k) − xδ(k+1)−q‖|Gδn(k)]. To this end, we use (7) and non-
expansivity of the projection to obtain, for each ` ∈M and q = 1, . . . , δ

E[‖xδn(k) − xδ(k+1)−q‖|Gδn(k)] ≤ E

δ(k+1)−q−1∑
p=δn(k)

‖xp+1 − xp‖|Gδn(k)


=

δ(k+1)−q−1∑
p=δn(k)

E

[∥∥∥∥∥PX
(

1

|M|
∑
`∈M

xp+1
`

)
− xp

∥∥∥∥∥ |Gδn(k)

]

≤
δ(k+1)−q−1∑
p=δn(k)

E

[∥∥∥∥∥ 1

|M|
∑
`∈M

xp+1
` − xp

∥∥∥∥∥ |Gδn(k)

]

≤
δ(k+1)−q−1∑
p=δn(k)

E

[
1

|M|
∑
`∈M
‖xp+1

` − xp‖|Gδn(k)

]
.

The law of iterated expectations, equation (6) and Assumptions 1-2 provide

E[‖xδn(k) − xδ(k+1)−q‖|Gδn(k)] ≤
δ(k+1)−q−1∑
p=δn(k)

λp
1

|M|
∑
`∈M

E[‖gps`(p+1)‖+ ‖εp+1
s`(p+1)‖|Gδn(k)]

≤
δ(k+1)−q−1∑
p=δn(k)

λp
1

|M|
∑
`∈M

(E[‖grs`(p+1)‖|Gδn(k)] + E[E[‖εp+1
s`(p+1)‖|Gp]|Gδn(k)])

≤
δ(k+1)−q−1∑
p=δn(k)

λp
1

|M|
∑
`∈M

(C + νp+1), (18)

which holds with probability 1. Combining (17) and (18), we can rewrite (16) as follows,

E[‖xδ(k+1) − y‖2|Gδn(k)] ≤ E[‖xδk − y‖2|Gδn(k)] +
2λδk
|M|

∑
`∈M

δ∑
q=1

δ(k+1)−q−1∑
p=δn(k)

λp(C + νp+1)

− 2λδk
|M|

∑
`∈M

δ∑
q=1

E[fs`(δk+j(q))(x
δn(k))− fs`(δk+j(q))(y)|Gδn(k)]

− 2λδk
|M|

∑
`∈M

δ∑
q=1

E
[(
ε
δk+j(q)
s`(δk+j(q))

)T
(xδ(k+1)−q − y)|Gδn(k)

]

+
λ2
δk

|M|
∑
`∈M

δ∑
q=1

(νδk+j(q) + C)2, a.s. (19)

11

where in the last term we use Assumption 2. Since Gδn(k) ⊂ Gδ(k+1)−q ⊂ Gδk+j(q) for any q = 1, . . . , δ, we
use again the law of iterated expectations and Assumption 2 to estimate for each ` ∈M and q = 1, . . . , δ

−E
[(
ε
k+j(q)
s`(k+j(q))

)T
(xk+δ−q − y)|Gδn(k)

]
= −E[E

[(
ε
δk+j(q)
s`(δk+j(q))

)T
(xδ(k+1)−q − y)|Gδ(k+1)−q

]
|Gδn(k)]

= E[E
[
ε
δk+j(q)
s`(δk+j(q))|Gδ(k+1)−q

]T
(y − xδ(k+1)−q)|Gδn(k)]

≤ E[‖E[ε
δk+j(q)
s`(δk+j(q))|Gδ(k+1)−q]‖‖xδ(k+1)−q − y‖|Gδn(k)]

≤ νδk+j(q)E[‖xδ(k+1)−q − y‖|Gδn(k)] a.s.

and replacing in (19), we have with probability 1

E[‖xδ(k+1) − y‖2|Gδn(k)] ≤ E[‖xδk − y‖2|Gδn(k)] + 2λδk

δ∑
q=1

δ(k+1)−q−1∑
p=δn(k)

λp(C + νp+1)

− 2λδk
|M|

∑
`∈M

δ∑
q=1

E[fs`(δk+j(q))(x
δn(k))− fs`(δk+j(q))(y)|Gδn(k)]

+ 2λδk

δ∑
q=1

νδk+j(q)E[‖xδ(k+1)−q − y‖|Gδn(k)] + λ2
δk

δ∑
q=1

(νδk+j(q) + C)2.

Taking expectations, we have

E[‖xδ(k+1) − y‖2] ≤ E[‖xδk − y‖2] + 2λδk

δ∑
q=1

δ(k+1)−q−1∑
p=δn(k)

λp(C + νp+1)

− 2λδk
|M|

∑
`∈M

δ∑
q=1

E[fs`(δk+j(q))(x
δn(k))− fs`(δk+j(q))(y)]

+ 2λδk

δ∑
q=1

νδk+j(q)E[‖xδ(k+1)−q − y‖] + λ2
δk

δ∑
q=1

(νδk+j(q) + C)2. (20)

As regards E[fs`(δk+j(q))(x
δn(k))− fs`(δk+j(q))(y)], we have for each ` ∈M and q = 1, . . . , δ,

E[fs`(δk+j(q))(x
δn(k))− fs`(δk+j(q))(y)] =

N∑
v=1

E[(fs`(δk+j(q))(x
δn(k))− fs`(δk+j(q))(y))1{s`(δn(k))∈Rv}]

+ E[(fs`(δk+j(q))(x
δn(k))− fs`(δk+j(q))(y))1{s`(δn(k))∈T }]

=
N∑
v=1

∑
i∈Rv

E[(fi(x
δn(k))− fi(y))1{s`(δk+j(q))=i, s`(δn(k))∈Rv}]

+ E[(fs`(δk+j(q))(x
δn(k))− fs`(δk+j(q))(y))1{s`(δn(k))∈T }]. (21)

Let us denote

o`,q(k) = E[(fs`(δk+j(q))(x
δn(k))− fs`(δk+j(q))(y))1{s`(δn(k))∈T }]

and rewrite (21) as

E[fs`(δk+j(q))(x
δn(k))− fs`(δk+j(q))(y)] =

N∑
v=1

∑
i,h∈Rv

E[(fi(x
δn(k))− fi(y))

× 1{s`(δk+j(q))=i, s`(δn(k))∈Rv , s`(δn(k)+1)=h}] + o`,q(k).

12

Let us also denote

τ`, q(k, i, h) = Prob(s`(δk + j(q)) = i, s`(δn(k) + 1) = h, s`(δn(k)) ∈ Rv) and

τ̃`, q(k, i, h) = Prob(s`(δk + j(q)) = i | s`(δn(k) + 1) = h, s`(δn(k)) ∈ Rv),

and then we have for each ` ∈M and q = 1, . . . , δ,

E[fs`(δk+j(q))(x
δn(k))− fs`(δk+j(q))(y)]− o`,q(k) =

N∑
v=1

∑
i,h∈Rv

E[(fi(x
δn(k))− fi(y))

× 1{s`(δk+j(q))=i, s`(δn(k)+1)=h,s`(δn(k))∈Rv}]

=
N∑
v=1

∑
i,h∈Rv

E[(fi(x
δn(k))− fi(y)) | s`(δk + j(q)) = i,

s`(δn(k) + 1) = h, s`(δn(k)) ∈ Rv]τ`, q(k, i, h)

=

N∑
v=1

∑
i,h∈Rv

E[(fi(x
δn(k))− fi(y)) | s`(δn(k) + 1) = h,

s`(δn(k)) ∈ Rv]τ`, q(k, i, h),

where the last equality follows from δk + j(q) ≥ δn(k) + 1 for all q = 1, . . . , δ. Since τ`, q(k, i, h) =
τ̃`, q(k, i, h)Prob(s`(δn(k) + 1) = h, s`(δn(k)) ∈ Rv), then we can write the preceding equation as

E[fs`(δk+j(q))(x
δn(k))− fs`(δk+j(q))(y)]− o`,q(k) =

N∑
v=1

∑
i,h∈Rv

E[(fi(x
δn(k))− fi(y))

× 1{s`(δn(k)+1)=h,s`(δn(k))∈Rv}]τ̃`, q(k, i, h)

=
N∑
v=1

∑
i,h∈Rv

E[(fi(x
δn(k))− fi(y))

× 1{s`(δn(k)+1)=h,s`(δn(k))∈Rv}][P
δ(k−n(k))+j(q)−1]hi.

Now we can use Lemma 1 to ensure that there are positive scalars η and β such that, for each ` ∈M

δ∑
q=1

(
E[fs`(δk+j(q))(x

δn(k))− fs`(δk+j(q))(y)]− o`,q(k)
)

=
N∑
v=1

δ∑
q=1

∑
i,h∈Rv

E[(fi(x
δn(k))− fi(y))1{s`(δn(k)+1)=h,s`(δn(k))∈Rv}][P

δ(k−n(k))+j(q)−1]hi

≥
N∑
v=1

{
− ηe−β(k−n(k)) + δ

∑
i∈Rv

E
[
(fi(x

δn(k))− fi(y))1s`(δn(k))∈Rv

]
[πδ,v]i

}

≥ −Nηe−β(k−n(k)) + δ

N∑
v=1

∑
i∈Rv

E
[
(fi(x

δn(k))− fi(y))1{s`(δn(k))∈Rv}

]
[πδ,v]i

≥ −Nηe−β(k−n(k)) + δ

N∑
v=1

∑
i∈Rv

(
Prob(s`(δn(k)) ∈ Rv)[πδ,v]iE[fi(x

δn(k))− fi(y)|s`(δn(k)) ∈ Rv]
)
.

13

Taking expectations we have

E

[
δ∑
q=1

(
E[fs`(δk+j(q))(x

δn(k))− fs`(δk+j(q))(y)]− o`,q(k)
)]

≥ E

[
−Nηe−β(k−n(k)) + δ

N∑
v=1

∑
i∈Rv

(
Prob(s`(δn(k)) ∈ Rv)[πδ,v]iE[fi(x

δn(k))− fi(y)|s`(δn(k)) ∈ Rv]
)]

= −Nηe−β(k−n(k)) + δ
N∑
v=1

∑
i∈Rv

(
Prob(s`(δn(k)) ∈ Rv)[πδ,v]iE

[
E[fi(x

δn(k))− fi(y)|s`(δn(k)) ∈ Rv]
])
,

leading to

δ∑
q=1

(
E[fs`(δk+j(q))(x

δn(k))− fs`(δk+j(q))(y)]− o`,q(k)
)

≥ −Nηe−β(k−n(k)) + δ

N∑
v=1

∑
i∈Rv

(
Prob(s`(δn(k)) ∈ Rv)[πδ,v]iE[fi(x

δn(k))− fi(y)]
)
.

For simplicity, let us write

1

|M|
∑
`∈M

δ∑
q=1

E[fs`(δk+j(q))(x
δn(k))− fs`(δk+j(q))(y)] ≥ −Nηe−β(k−n(k)) + o(k) (22)

+ δ
N∑
v=1

∑
i∈Rv

(
1

|M|
∑
`∈M

[π∞`]iE[fi(x
δn(k))− fi(y)]

)
,

where

o(k) =
1

|M|
∑
`∈M

 δ∑
q=1

o`,q(k) + δ
N∑
v=1

∑
i∈Rv

[
(Prob(s`(δn(k)) ∈ Rv)[πδ,v]i − [π∞`]i)E[fi(x

δn(k))− fi(y)]
] .

(23)

By using (11) and (1)-(i), we can rewrite (22) as

1

|M|
∑
`∈M

δ∑
q=1

E[fs`(δk+j(q))(x
δn(k))− fs`(δk+j(q))(y)] ≥ −Nηe−β(k−n(k)) + o(k)

+ δ

N∑
v=1

∑
i∈Rv

(
1

|M|
∑
`∈M

[π∞`]i

)
E[fi(x

δn(k))− fi(y)]

= −Nηe−β(k−n(k)) + o(k)

+ δ

N∑
v=1

∑
i∈Rv

ωiE[fi(x
δn(k))− fi(y)]

= −Nηe−β(k−n(k)) + o(k)

+ δ

N∑
v=1

E[
∑
i∈Rv

ωi(fi(x
δn(k))− fi(y))]

= −Nηe−β(k−n(k)) + δE[f(xδn(k))− f(y)] + o(k).
(24)

14

At this juncture we move back to the evaluation of the term o(k). The compactness of X and convexity
of fi guarantee the existence of M̄ > 0 such that |fs`(δk+j(q))(x

δn(k))− fs`(δk+j(q))(y)| ≤ M̄ a.s.; this and
statement (i) of Corollary 1 yield∣∣∣E[(fs`(δk+j(q))(x

δn(k))− fs`(δk+j(q))(y))1{s`(δn(k))∈T }

]∣∣∣
≤ E

[∣∣∣(fs`(δk+j(q))(x
δn(k))− fs`(δk+j(q))(y))1{s`(δn(k))∈T }

∣∣∣]
≤ M̄E

[
1{s`(δn(k))∈T }

]
≤ M̄ᾱe−β̄n(k)

or, equivalently, |o`,q(k)| ≤ M̄ᾱe−β̄n(k), so that o`,q(k) ≥ −M̄ᾱe−β̄n(k). Next we substitute this inequality
in (23) and we use statement (ii) of Corollary 1 and the fact that the same M̄ as above provides
|fi(xδn(k))− fi(y)| ≤ M̄ a.s., and we obtain

o(k) ≥ 1

|M|
∑
`∈M

 δ∑
q=1

(−M̄)ᾱe−β̄n(k) − M̄δ
N∑
v=1

∑
i∈Rv

[
Prob(s`(δn(k)) ∈ Rv)[πδ,v]i − [π∞`]i

]
≥ −δM̄
|M|

∑
`∈M

(
ᾱe−β̄n(k) +

N∑
v=1

∑
i∈Rv

ᾱe−β̄n(k)

)

≥ −δM̄ |M|(1 +m)

|M|
ᾱe−β̄n(k)

= −δM̄(1 +m)ᾱe−β̄n(k)

and from (24),

1

|M|
∑
`∈M

δ∑
q=1

E[fs`(δk+j(q))(x
δn(k))− fs`(δk+j(q))(y)] ≥ −%(e−θ(k−n(k)) + e−θn(k)) + δE[f(xδn(k))− f(y)],

where we defined % = max(Nη, δM̄(1 +m)ᾱ) and θ = min(β, β̄). The above and equation (20) lead to
(15), completing the proof.

We can now approach the proof of our main result.

Proof of Theorem 1. Since X is compact and f is convex over Rn (therefore, also continuous), the optimal
set X∗ is nonempty, compact and convex. Define n(0) = 0 and n(k) = k + 1 − dkγe (k ≥ 1) with
1− ξ < γ < 2ξ− 1. Notice that n(k) ≤ k for all k ≥ 0. Therefore, we can use Lemma 2 with this particular
choice for n(k). Taking y ∈ X∗, Lemma 2 provides

E[‖xδ(k+1) − y‖2] ≤ E[‖xδk − y‖2] +
2a

(k + 1)ξ

δ∑
q=1

δ(k+1)−q−1∑
p=δn(k)

λp

(
C + max

p=δn(k),...,δ(k+1)−q−1
νp+1

)
− 2aδ

(k + 1)ξ
E[f(xδn(k))− f∗] +

2a%δ

(k + 1)ξ

(
e−θn(k) + e−θ(k−n(k))

)
+

2a

(k + 1)ξ

δ∑
q=1

νδk+j(q)E[‖xδ(k+1)−q − y‖] +
a2

(k + 1)2ξ

δ∑
q=1

(νδk+j(q) + C)2. (25)

Define dX = maxx, z∈X ‖x− z‖ and

ρk =
2a(C + ν)

(k + 1)ξ

δ∑
q=1

δ(k+1)−q−1∑
p=δn(k)

λp +
2a%δ

(k + 1)ξ

(
e−θn(k) + e−θ(k−n(k))

)
+

2adX
(k + 1)ξ

δ∑
q=1

νδk+j(q)

+
δa2(ν + C)2

(k + 1)2ξ
.

15

We can rewrite the inequality (25) as

E[‖xδ(k+1) − y‖2] ≤ E[‖xδk − y‖2]− 2aδ

(k + 1)ξ
E[f(xδn(k))− f∗] + ρk. (26)

We next show that
∑∞

k=0 ρk <∞. Notice that,

1

(k + 1)ξ

δ∑
q=1

δ(k+1)−q−1∑
p=δn(k)

λp =
1

(k + 1)ξ

[
(

q=1︷ ︸︸ ︷
λδn(k) + · · ·+ λδk+δ−2 + · · ·+

q=δ︷ ︸︸ ︷
λδn(k) + · · ·+ λδk−1)

]
≤ 1

(k + 1)ξ

[
(λδn(k)−1 + · · ·+ λδn(k)−1 + · · ·+ λδn(k)−1 + · · ·+ λδn(k)−1)

]
,

because δ ≥ 1 and n(k) ≤ k. Due to equation (12), we have

λδn(k)−1 = λδ(n(k)−1) =
a

n(k)ξ
=

a

(k + 1− dkγe)ξ
.

Therefore,

1

(k + 1)ξ

δ∑
q=1

δ(k+1)−q−1∑
p=δn(k)

λp ≤
1

(k + 1)ξ
a

(k + 1− dkγe)ξ
δ∑
q=1

(δ(k − n(k) + 1)− q − 1)

< aδ2 dkγe
(k + 1)ξ(k + 1− dkγe)ξ

, (27)

because −q − 1 < 0. Notice that dkγe − 1 < kγ for all k ≥ 0 and thus

dkγe
(k + 1)ξ(k + 1− dkγe)ξ

<
kγ + 1

kξ(k − kγ)ξ

=
kγ + 1

k2ξ(1− kγ−1)ξ

≤ kγ + 1

k2ξ(1− 2γ−1)ξ
,

holds for all k ≥ 2 since γ − 1 < 0. Hence, for all k ≥ 2 we have

dkγe
(k + 1)ξ(k + 1− dkγe)ξ

<
1

(1− 2γ−1)ξ
kγ + 1

k2ξ

=
1

(1− 2γ−1)ξ

(
1

k2ξ−γ +
1

k2ξ

)
and together with inequality (27) we conclude that

∞∑
k=2

 1

(k + 1)ξ

δ∑
q=1

δ(k+1)−q−1∑
p=δn(k)

λp

 <
aδ2

(1− 2γ−1)ξ

(∞∑
k=2

1

k2ξ−γ +

∞∑
k=2

1

k2ξ

)
<∞,

because 2ξ − γ > 1. Furthermore, since 0 < γ < 1, there is k̄ > 0 such that k ≥ k̄ ⇒ k + 1− dkγe ≥ dkγe
and thus

2a%δ
∞∑
k=k̄

1

(k + 1)ξ

(
e−θn(k) + e−θ(k−n(k)))

)
< 2a%δ

∞∑
k=k̄

(
1

kξeθ(k+1−dkγe) +
eθ

kξeθ(dkγe)

)
<∞,

16

because ex > x ∀x ∈ R, dkγe > kγ and ξ + γ > 1. By assumption (10) and noticing that 2ξ > 1,
we conclude that

∑∞
k=0 ρk < ∞. Denoting ak := ‖xδk − y‖2, bk ≡ 0 and ck := 2aδ

(k+1)ξ
(f(xδn(k)) − f∗),

inequality (26) provides

E[ak+1] ≤ (1 + bk)E[ak]− E[ck] + E[ρk].

We can use Lemma 3 (in the surely sense) to conclude that E[ak] converges to a non-negative scalar and

∞∑
k=0

E[ck] = 2aδ

∞∑
k=0

1

(k + 1)ξ
E[f(xδn(k))− f∗] <∞.

Since
∑∞

k=0 1/(k + 1)ξ =∞ and f(xδn(k)) ≥ f∗, we have

lim
k→∞

inf E[f(xδn(k))] = f∗. (28)

The function f(x) is bounded on X (because f is convex over Rn and X is bounded), thus

lim
k→∞

inf f(xδn(k)) ≥ f∗,

and from Fatou’s lemma we obtain

E[lim
k→∞

inf f(xδn(k))] ≤ lim
k→∞

inf E[f(xδn(k))] = f∗.

The two preceding inequalities imply that limk→∞ inf f(xδn(k)) = f∗ with probability 1. This relation,
together with the continuity of f and boundedness of X, implies that limk→∞ inf d(xδn(k),X∗) = 0 with
probability 1.

Proof of Theorem 2. Notice that Lemma 2 with λk ≡ λ > 0 gives

1

λ
E[‖xδ(k+1) − y‖2] ≤ 1

λ
E[‖xδk − y‖2] + 2λ

δ∑
q=1

δ(k+1)−q−1∑
p=δn(k)

(C + νp+1)− 2δE[f(xδn(k))− f(y)]

+ 2
δ∑
q=1

νδk+j(q)E[‖xδ(k+1)−q − y‖] + λ
δ∑
q=1

(νδk+j(q) + C)2

+ 2%δ(e−θn(k) + e−θ(k−n(k))).

Recall that ν ≥ νk for all k ∈ N and that, from Assumption 1, we know that there is M ≥ ‖x− y‖ for all
x, y ∈ X. Then, letting n(k) = k − ζ (we will soon specify ζ), we have

1

2λδ
E[‖xδ(k+1) − y‖2] ≤ 1

2λδ
E[‖xδk − y‖2] + λζδ(C + ν) + %e−θζ − E[f(xδn(k))− f(y)] + %e−θn(k)

+Mν +
λ

2
(ν + C)2.

We select ζ as a function of the scalars λ, δ, C, ν, %, and θ in a way to (almost) minimize the error
estimate as follows. Let us define

φ(ζ) := λζδ(ν + C) + %e−θζ .

If % > 0, then φ is strictly convex and has the minimizer

ζ∗ = −
ln λδ(ν+C)

θ%

θ
.

17

Notice that if λ is small enough, then ζ∗ > 0. For ζ∗ > 0, we may instead use ζ = dζ∗e. Notice that
ζ∗ ≤ ζ < ζ∗ + 1, therefore, φ(ζ) < φ(ζ∗ + 1). Thus,

1

2λδ
E[‖xδ(k+1) − y‖2] ≤ 1

2λδ
E[‖xδk − y‖2] + λ(ζ∗ + 1)δ(C + ν) + %e−θ(ζ

∗+1) − E[f(xδn(k))− f(y)]

+ %e−θn(k) +Mν +
λ

2
(ν + C)2,

that is

1

2λδ
E[‖xδ(k+1) − y‖2] ≤ 1

2λδ
E[‖xδk − y‖2] + %e−θn(k) +

δ(ν + C)

θ
λ ln

1

λ
+Aλ

+Mν − E[f(xδn(k))− f(y)],

(29)

where A = δ(ν+C)
θ

(
− ln δ(ν+C)

θ% + θ + e−θ
)

+ (ν+C)2

2 .

Now, assume for contradiction that

lim inf
k→∞

E[f(xδk)− f∗] > δ(ν + C)

θ
λ ln

1

λ
+Aλ+Mν.

Then, for some ε > 0 and k0 ∈ N, we have that for all k ≥ k0

E[f(xδn(k))− f∗] > δ(ν + C)

θ
λ ln

1

λ
+Aλ+Mν + ε. (30)

Moreover, we can also assume that k0 is large enough such that %e−θn(k) ≤ ε/2 for k ≥ k0. Putting this
and (30) in (29), we get

1

2λδ
E[‖xδ(k+1) − y‖2] ≤ 1

2λδ
E[‖xδk − y‖2]− ε

2
. (31)

Iterating and rearranging we get

E[‖xδ(k+n) − y‖2] ≤ E[‖xδk − y‖2]− nλδε, (32)

which is a contradiction because the right-hand side is negative for large enough n. If λ is not sufficiently
small and we have ζ∗ ≤ 0, the result is proven using ζ = 1 and following a similar reasoning.

Remark 1. If we consider ergodic Markov chains with uniform limiting distribution (i.e., ωi = 1/m
for all i ∈ I) and |M| = 1, then Theorem 1 recovers Theorem 4.3 of [22]. However, the evaluations
behind our main result are different from the ones in [22]. The use of more general Markov chains makes
several passages of the convergence analysis considerably more complex in comparison with the analysis
of the method with ergodic Markov chains. We had to consider some extra terms in the proof of Lemma
2 (when compared e.g. with [22, Lemma 4.2] in the simplified scenario of ωi = 1/m and |M| = 1), see
equation (21), that concerns the inclusion of recurrent periodic and transient states and all subsequent
equations. Corollary 1 and Lemma 5 given in the Appendix and all related evaluations are not required in
simplified scenarios.

4 Experimental results

In this section, we report the numerical results of a simple example to illustrate a possible situation we
can handle when using Algorithm 1: we consider minimizing the `1-norm of the residual associated to

18

the linear system Ax = b. We choose a matrix A = (ai,j) (7× 20) with a high degree of sparsity and a
feasible set X given by box constraints. The nonzero entries of A are given by:

a1,2 = 0.5; a1,3 = 0.1; a1,4 = 0.2; a1,14 = 0.25; a1,15 = 0.1;

a2,6 = 0.4; a2,7 = 0.15; a2,12 = 0.3; a2,16 = 0.45;

a2,19 = 0.1; a2,20 = 0.2;

a3,13 = 0.02; a3,14 = 0.06;

a4,1 = 0.12; a4,2 = 0.21; a4,3 = 0.3; a4,7 = 0.5; a4,13 = 0.4;

a4,14 = 0.1; a4,15 = 0.18; a4,19 = 0.1; a4,20 = 0.14;

a5,1 = 0.8; a5,2 = 0.4; a5,8 = 1.2; a5,9 = 1.0; a5,10 = 0.85;

a5,17 = 0.4; a5,18 = 0.7; a5,19 = 0.1;

a6,2 = 0.25; a6,3 = 0.34; a6,8 = 0.45; a6,9 = 0.35;

a6,13 = 0.18; a6,14 = 0.22;

a7,13 = 0.05; a7,14 = 0.08.

The feasible set is such that
x ∈ X⇔ lj ≤ xj ≤ uj , ∀j = 1, . . . 20,

with lj , xj and uj denoting the jth component of l, x and u, respectively. The vectors l and u were chosen
as

l = [−1, −0.5, −1.5, −1.3, 0, 0.1, 0.3, −0.2, −1.0, 0,

− 0.25, −0.1, 0.3, 0.1, 0, −1.1, 0.35, 0.15, 0, −0.45]T

and

u = [2.0, 1.5, 2.3, 3.0, 2.0, 1.8, 2.25, 1.7, 1.5, 2.0,

2.8, 1.75, 2.35, 1.95, 2.0, 1.0, 2.5, 1.35, 2.0, 3.0]T .

In order for the optimal set X∗ to be nonempty, we set a vector y ∈ X and compute b = Ay. We have
constructed the transition probability matrix

P =



0 0 0.2 0.8 0 0 0
0 0 0.15 0.85 0 0 0

0.4 0.6 0 0 0 0 0
0.5 0.5 0 0 0 0 0
0 0 0 0 0 0.8 0.2
0 0 0 0 0.8 0 0.2
0 0 0 0 0.6 0.4 0


.

Following the notation of (2), we can note that P = diag(P1, P2) and we have two irreducible sets of
recurrent states: R1 = {1, 2, 3, 4} and R2 = {5, 6, 7}. States in R1 are of period δ1 = 2, while states in R2

are aperiodic (δ2 = 1) and thus, P 2 is the transition probability matrix of an aperiodic Markov chain. We
test Algorithm 1 with two Markov chains, s1 and s2, with initial distributions

π0
1 = [1, 0, 0, 0, 0, 0, 0]T and

π0
2 = [0, 0, 0, 0, 1, 0, 0]T ,

respectively. By using equation (11) we compute the weights ωi:

ω := [ω1, . . . , ω7]T

≈ [0.121, 0.129, 0.043, 0.206, 0.213, 0.203, 0.083]T ,

19

in such a way we have a correspondence between the entries of ω and the rows of A: the larger is the
norm of the i-th row of A, the larger is ωi.

Define W = diag(ω1, . . . , ω7). We have Ax∗ = b iff WAx∗ = Wb. Thus, we can consider the equivalent
optimization problem:

x ∈ arg min f(x) = ‖WAx−Wb‖1
s.t. x ∈ X,

which has the same form that problem (1). In fact,

f(x) =
7∑
i=1

ωi|aTi x− bi|,

where aTi represents the ith row of A. The subgradients gi of fi(x) = |aTi x− bi| can be computed by the
rule:

gi =


ai, if aTi x− bi > 0,
−ai, if aTi x− bi < 0,
0, otherwise,

because AT sgn(Ax− b) ∈ ∂‖Ax− b‖1 (see, e.g., [6]), where sgn is the sign function.
We compare the performance of Algorithm 1 with three other methods: the incremental (cyclic)

subgradient method, Markov randomized incremental subgradient method and incremental (randomized)
subgradient method ([13], [22] and [8]). All of them are particular cases of the Algorithm 1 when
|M| = 1 (i.e., when we use just one Markov chain), with specific transition probability matrices. Note
that these methods must consider subgradients of hi(x) := ωifi(x). For ease of notation, we label the
methods – Algorithm 1 (MISSA), Markov randomized incremental subgradient method, incremental
(cyclic) subgradient method and incremental (randomized) subgradient method – by M1, M2, M3 and
M4 respectively. The transition probability matrix for M3, denoted by PM3, is given by [PM3]i,i+1 = 1,
i = 1, . . . , 6, [PM3]7,1 = 1 and [PM3]i,j = 0 for all other entries. The transition probability matrix for M4,
denoted by PM4, is given by [PM4]i,j = 1/7 for all i, j ∈ {1, . . . , 7}. Moreover, the initial distributions for
M3 and M4 are [1, 0, . . . , 0]T and [1/7, 1/7, . . . , 1/7]T , respectively. For the method M2, the transition
probability matrix (or all matrices P (k) in [22]), denoted by PM2, must satisfy some assumptions that we
do not consider in Algorithm 1, among them, irreducibility, aperiodicity and uniform limiting distribution.
In our tests, we consider one of the suggested rules in [22] (equal probability scheme):

[PM2]i,j =


1/7, if j 6= i and j ∈ Ni,

1− |Ni|7 , if j = i,
0, otherwise,

where Ni ⊂ {1, . . . , 7} is the set of neighbors of an agent i. We set N1 = {2, 3}, N2 = {1, 3, 7},
N3 = {1, 2, 6}, N4 = {5, 6}, N5 = {4}, N6 = {3, 4, 7} and N7 = {2, 6}, besides an initial distribution equals
to [0, 0, 0, 0, 1, 0, 0]T , aiming to get higher probabilities of reaching agent 5 (the row of A with larger
norm) in the initial iterations.

Regarding the stochastic errors εki of the subgradients for the agent i, we tested six different possibilities
in order to study the effect of the Assumption 2 and (10) (see similar assumptions for M2 and M3 in
[22]) on the performance of the methods. In what follows, U(0, 1) denotes the uniform distribution in the
interval [0, 1] and N (0, 1) the normal distribution with zero mean and unit variance. In all cases, [εki]j and
[εk
′
i′]j , i 6= i′, k 6= k′, j = 1, . . . , 20, are independent random variables with distributions given in Table 1.

We initially present results using a diminishing stepsize rule. The initial guess was chosen as
PX([0, 0, . . . , 0]T) for all methods. We run all methods during 10,000,000 iterations. The stepsizes
for the algorithms M2, M3 and M4 was chosen as in Theorem 4.3 in [22] and are similar to the sequence
(12) adopted for M1 (with the exception of the periodicity δ). The parameters a and ξ were tuned for

20

Tests Description (for any k > 0 and j = 1, . . . , 20)

Test 1 εki = [0, 0, . . . , 0]T for all i ∈ I.
Test 2 [εki]j ∼ U(0, k−1) for all i ∈ I.
Test 3 [εki]j ∼ 0.1U(0, 1) for all i ∈ I.
Test 4 [εki]j ∼ 0.01U(0, 1) for all i ∈ I.
Test 5 [εki]j ∼ 0.1N (0, 1) for all i ∈ I.
Test 6 [εki]j ∼ 0.01N (0, 1) for all i ∈ I.

Table 1: Description of the stochastic errors used in the tests.

Method a ξ

M1 2.0 0.7
M2 2.0 0.7
M3 2.5 0.667
M4 2.5 0.667

Table 2: Parameters used in the stepsizes of the methods.

each method, with a ∈ {1.0, 1.5, 2.0, 2.5, 3.0} and ξ ∈ {0.667, 0.7, 0.8, 0.9, 1} and running the methods for
test 1 (without random errors). Table 2 shows the parameters used in all tests for each method.

All tests were run on a computer with an Intel(R) Core(TM) i3-4005U CPU @ 1.70GHz × 4 processor
and 4GB of RAM. We run M1 in parallel, following the procedure of allocating a thread for each Markov
chain. It is natural to expect the CPU time per iteration to be greater for M1 than for M2, M3 and M4.
Although the subiterations in (6) are computed in parallel for M1 (in our implementation, we use the
std::thread library (C++11) and the code was compiled by the g++ compiler of GCC – version 7.5.0)
we need to compute, as we can see in (7), the average of the subiterations before calculating the projection.
The average is not required for the other methods, as they only use one Markov chain, i.e., |M| = 1. For
example, in test 2, the CPU time per iteration for M1 is about 5.2e−05 seconds, while for M2, M3 and
M4 it is approximately 3.4e−05 seconds.

Figure 2 illustrates the behavior of f(xk) for the methods M1, M2, M3 and M4 in tests from 1 to 6
by using diminishing stepsizes. For all methods, we draw a thicker line that follows the graph k × f(xk),
representing the smallest f(xk) obtained up to iteration k. In Fig. 2–(a), we can notice that M1 produces
a sequence {xk} such that f(xk) decreases faster in the initial iterations in comparison to the other
methods. When observing a longer time horizon, M3 and M4 produce {xk} such that f(xk) are closer to
the values obtained by M1. Apparently, the choice of PM2 does not produce good results for M2. Other
neighborhood schemes could be explored, or even other transition matrices (such as min–equal neighbor
scheme or weighted Metropolis–Hastings scheme that also satisfy Assumption 5 in [22]). For M1, M3 and
M4, we draw a dashed horizontal line for the first occurrence of f(xk) < 1.0e−03 (note that these lines
are very close). For M1, this occurs at iteration k = 1,955 and 0.12 seconds of CPU time. For M3, this
occurs at iteration k = 101,303 and 3.34 seconds of CPU time. For M4, this occurs at iteration k = 98,833
and 3.34 seconds of CPU time. Dashed vertical lines passing through such values of k are also shown in
the Fig. 2–(a). In addition, we insert a dashed horizontal line at the smallest value of f(xk) obtained by
M4 during all optimization process, namely fmin

M4 ≈ 8.7126e−07, and a vertical dashed line in the iteration
where this occurs, namely k = 9,969,686. Such solution was obtained with CPU time equal to 337.72
seconds. A horizontal dashed line passing through the first occurrence of f(xk) < fmin

M4 for the method M1
is also included. This occurs with f(xk) ≈ 8.0886e−07 at iteration k = 5,122,533 with CPU time equal to
267.23 seconds.

In Fig. 2–(b), a similar behavior occurs for the initial iterations: M1 generates a sequence {xk}

21

(a) Test 1 (b) Test 2 (c) Test 3

(d) Test 4 (e) Test 5 (f) Test 6

Figure 2: Simulation results for the tests from 1 to 6 using a diminishing stepsize rule are shown in (a)–(f).
For each method, a thicker line that follows the graph k × f(xk) is shown, representing the smallest f(xk)
obtained up to iteration k.

(a) Test 1 (b) Test 2 (c) Test 5

Figure 3: Simulation results for the tests 1, 2 and 5 using λk ≡ λ > 0 are shown in (a)–(c). The values of
λ that provided the best results for each method in test 1 (and then were also used in tests 2 and 5) were:
λ = 5× 10−4 for M1 and λ = 10−3 for M2, M3 and M4. For each method, a thicker line that follows the
graph k × f(xk) is shown, representing the smallest f(xk) obtained up to iteration k.

such that f(xk) decreases faster in comparison to the values obtained by the other methods. However,
after approximately 40,000 iterations, M3 and M4 produce sequences {xk} with smaller values for f(xk)
compared to the values generated by M1. At the end of 10,000,000 iterations, M3 and M4 reach values of
f(xk) slightly smaller than those produced by M1.

Note that tests 1 and 2 are perfectly compatible with what is predicted by Theorem 1 for all considered
methods M1–M4. In order to explore different types of random errors, tests from 3 to 6 shown in Fig.
2 (c)–(f), unlike tests 1 and 2, aim to visualize the behavior of incremental subgradient methods when
Assumption 3 does not hold. Such situations are interesting because they can be related to practical
contexts where the error does not tend to zero. Furthermore, they can be studied from the point of view
of approximating the sequence {xk} to some neighborhood of X∗ when we use a constant stepsize strategy
and adopt νk ≡ ν > 0 in Assumption 2. Note that tests 3 and 4 have the same type of error, however

22

the error in test 4 is one order of magnitude smaller. In this sense, the value of ν can be chosen smaller
in test 4 and, by Theorem 2, a better error bound can be obtained. Despite the difficulties imposed on
tests 3 and 4, which clearly impact the performance of the methods running with diminishing stepsizes,
M1 achieved an interesting performance being able to provide more accentuated decrease in the objective
function compared to the other methods. In both cases, M1 generates a sequence {xk} such that f(xk) is
decreased up to a certain number of iterations, after which the sequence {xk} produces less oscillation for
f(xk) and stabilizes. Such evidence suggests that MISSA benefited from the action of the Markov chains
used, allowing indexes of rows of A with higher norm (in the subgradient calculation) to be chosen with
higher frequency over the iterations, and this might have accelerated the method.

In tests 5 and 6 shown in Fig. 2 (e)–(f), all methods performed better than in tests 3 and 4. In test 5,
the curve with the smallest values obtained for f(xk) with the sequence {xk} generated by M1 remains
below the other curves generated by M2, M3 and M4 during the entire execution. In test 6, similarly to
what occurred in test 2, M1 has better performance in the initial iterations. After about 10,000 iterations,
methods M3 and M4 generate {xk} with f(xk) smaller compared to the values obtained by M1. However,
until the end of the execution, all three methods achieve similar values for f(xk).

Figure 3 shows the performance of the methods during 10,000,000 iterations using a constant stepsize
λ > 0 in three of the tests described in Table 1, namely tests 1, 2 and 5. We choose λ ∈ {10−4, 5 ×
10−4, 10−3, 5 × 10−3, 10−2, 5 × 102, 10−1} for each method, following the criterion of using the one that
generates the best decrease for f(xk) until the end of the 10,000,000 iterations in test 1. In all tests, M1
seems to approach a neighborhood of X∗ faster compared to the other methods. In test 1, we compare the
minimum value reached by f(xk) for the methods M1 and M4 and a dashed vertical line in the iteration
k where such a value occurs. For M1, this occurs with f(xk) ≈ 7.1875e−06 at iteration k = 174,492 and
8.92 seconds of CPU time. For M4, this occurs with f(xk) ≈ 9.9261e−06 at iteration k = 515,357 and
17.71 seconds of CPU time.

5 Conclusions

In this paper, we have introduced a new method for minimizing a weighted sum of convex functions
based on incremental subgradient algorithms with subgradients chosen through Markov chains. No special
condition is imposed on the Markov chain, allowing for transient states and periodicity, which makes
MISSA flexible enough as to contain other methods, as the incremental cyclic subgradient method and the
other methods considered in Section IV. This paves the way for exploring new situations that might benefit
incremental methods. Certain large-scale optimization problems can be addressed with the method we
have presented, especially taking advantage of the flexibility of parallel processing. Future work may move
toward exploring the inclusion of transient states in the construction of the transition probability matrix
and using them over a given time horizon (which is established through their own transition probabilities)
in order to accelerate the convergence without changing the objective function f . Also interesting is to
investigate how theoretical convergence rates can be optimized and how to build more efficient Markov
chains for incremental methods.

Acknowledgment

This work was supported by CNPq Grant 310877/2017-2, CNPq-Universal 421486/2016-3, FAPESP
2017/20934-9 and FAPESP-CEPID 2013/07375-0.

A Preliminary results

In this appendix we collect preliminary claims used in the convergence analysis and, when necessary, their
proofs.

23

Lemma 3. (Robbins-Siegmund, [18] - Lemma 11, p.50) Let (Ω, F,P) be a probability space and {Fk} a
sequence of sub-σ algebras of F . Let {ak}, {ck} and {ρk} be non-negative random sequences and let {bk}
be a deterministic sequence. Suppose that

∑∞
k=0 bk <∞,

∑∞
k=0 ρk <∞ and

E [ak+1|Fk] ≤ (1 + bk)ak − ck + ρk,

holds with probability 1. Then, with probability 1, the sequence {ak} converges to a non-negative random
variable and

∑∞
k=0 ck <∞.

Proposition 1. Let A ∈ Rm×m and consider the linear system zk+1 = Azk. If for a given initial condition
z0 the sequence {zk} converges to zero, then there exist α, β > 0, such that

‖zk‖ ≤ αe−βk‖z0‖.

Proof. Consider the subset Es of Rm comprised of all initial conditions z0 such that the solution {zk}
of the linear system converges to zero. Es is a vector subspace because the system is linear, and it is
A-invariant because the system is time-invariant so its solution starting from any such zk converges to zero.
Let us “restrict” A into Es by constructing a (possibly) lower dimensional linear mapping Ã : Es → Es

such that Ãx = Ax for all x ∈ Es. The linear system zk+1 = Ãzk, zk ∈ Es, constructed in this way is
asymptotically stable. From the equivalence between asymptotic and exponential stability given in [5,
Theorem 8.4] we have that there exist positive constants α and β such that

‖Ãk‖ ≤ αe−βk, for all k ≥ 0.

This yields
‖zk‖ = ‖Akz0‖ = ‖Ãkz0‖ ≤ αe−βk‖z0‖,

for all k ≥ 0.

Lemma 4. Consider an aperiodic finite state space Markov chain and let π∞(π0) = limk→∞(π0)TP k be
the limiting distribution for a given initial distribution π0. Then, there exist ᾱ, β̄ > 0 such that for any
initial distribution π0 we have that πk converges exponentially to π∞(π0) in the sense that

‖dk‖ ≤ ᾱe−β̄k,

where dk := πk − π∞(πk).

Proof. The existence of π∞(π0) for aperiodic Markov chains with finitely many states follow directly from
the computation of limk→∞ P

k via Theorem 5.3.2 and Corollary 2.11 in [2]: π∞(π0) = π0 limk→∞ P
k. We

shall write dk(π
0) = πk(π0) − π∞(π0) to emphasize the dependence on the initial distribution. Then,

we have that dk(π
0) → 0 as k → ∞, and since dk+1(π0)T = dk(π

0)TP , Proposition 1 (taking AT = P)
provides

‖dk(π0)‖∞ ≤ αe−βk‖d0(π0)‖∞ ≤ αe−βk,

where α, β > 0 may depend on π0 (notice that the result in Proposition 1 does not depend on the choice
of the norm). We want to obtain a bound that is independent of choice of π0. For that, let {e1, . . . , em}
be the canonical basis of Rm. Again, Proposition 1 ensures that there are αi, βi > 0 such that

‖dk(ei)‖∞ ≤ αie−βik, i = 1, . . . ,m, (33)

24

where αi, βi are parameters linked with the initial distribution ei. Further, since πk(π0)T = (π0)TP k and
π∞(π0)T = (π0)T limk→∞ P

k, then we have for any π0 = π0
1e1 + · · ·+ π0

mem

dk(π
0)T = (π0

1e1 + · · ·+ π0
mem)TP k − (π0

1e1 + · · ·+ π0
mem)T lim

k→∞
P k

= π0
1e
T
1 P

k + · · ·+ π0
me

T
mP

k −
(
π0

1e
T
1 lim
k→∞

P k + · · ·+ π0
me

T
m lim
k→∞

P k
)

= πk(π0
1e1)T − π∞(π0

1e1)T + · · ·+ πk(π0
mem)T − π∞(π0

mem)T

=

m∑
i=1

dk(π
0
i ei)

T .

Therefore, by the previous equality and equation (33), we have

‖dk(π0)‖∞ =
∥∥∥ m∑
i=1

dk(π
0
i ei)

∥∥∥
∞

≤
m∑
i=1

|π0
i |‖dk(ei)‖∞

≤
m∑
i=1

|π0
i |αie−βik ≤

m∑
i=1

|π0
i | max
j=1,...,m

(αj)e
max

j=1,...,m
(−βj)k

≤ m max
j=1,...,m

(αj)e
max

j=1,...,m
(−βj)k

.

Since π0 was taken arbitrarily, the result follows taking ᾱ = mmaxj=1,...,m(αj) and β̄ = minj=1,...,m(βj).

Corollary 1. There exist ᾱ and β̄ such that
(i) Prob (s`(δk) ∈ T) ≤ ᾱe−β̄k and
(ii) Prob (s`(δk) ∈ Rv) [πδ,v]i − [π∞`]i ≤ ᾱe−β̄k.

Proof. Lemma 4 applies to P δ because the δ-step chain {s`(δk), k ≥ 0} is aperiodic. The limiting
probability of a transient state i is always zero, that is, [limk→∞(π0

`)
TP δk]i = 0, and Lemma 4 establishes

that convergence is exponentially fast (with uniform parameters ᾱ and β̄), which leads to (i). Similarly,
Prob (s`(δk) ∈ Rv) converges exponentially fast to a limiting constant c =

∑
i∈Rv [limk→∞(π0

`)
TP δk]i, and

c[πδ,v]i − [π∞`]i = 0, and some algebra leads to (ii).

We point out that the Markov chain with transition probability matrix P δ is an aperiodic chain [2,
Theorem 3.7] and in this case ∆ = limk→∞ P

δk can be computed via Theorem 5.3.2 and Corollary 2.11 in
[2].

Lemma 5. Consider a time-homogeneous Markov chain with finite state space and probability transition
matrix P . Let δ > 0 be the period of this chain, Φ(k, t) = P k−t with k > 0, t ≥ 0, k > t and
∆ = limk→∞ P

δk. Then, there exist α, β > 0 such that

(i) ‖Φ(δk, δt)−∆‖∞ ≤ αe−β(k−t);

(ii) ‖Φ(δk + i, δt+ j)−∆P (i−j)‖∞ ≤ αe−β(k−t) for all i, j ≥ 0 with i ≥ j.

Proof. (i) We denote πδ∞(π0)T = (π0)T∆ and thus

dδk(π
0)T = πδk(π0)T − πδ∞(π0)T

= (π0)T (P δk −∆)→ 0,

25

as k → ∞ and by noticing that dδ(k+1)(π
0)T = dδk(π

0)TP δ, we can apply Proposition 1 and Lemma 4

and obtain geometric convergence for the sequence {dδk(π0)} for any π0. By observing that πδk(ei) is the
i-th row of the matrix P δk and πδ∞(ei) is the i-th row of ∆, then dδk(ei) is the i-th row of the matrix
P δk −∆ = Φ(δk + 1, 1)−∆. Bringing this and Lemma 4 together yields

‖Φ(δk + 1, 1)−∆‖∞ = max
i=1,...,m

‖dδk(ei)‖1

≤ max
i=1,...,m

(m‖dδk(ei)‖∞)

≤ max
i=1,...,m

(mᾱe−β̄δk) = αe−βk,

where α = mᾱ > 0 and β = δβ̄ > 0. The result follows by noticing that Φ(δk, δt) = Φ(δ(k − t) + 1, 1).
(ii) It is sufficient note that

‖Φ(δk + i, δt+ j)−∆P (i−j)‖∞ = ‖P δ(k−t)+i−j −∆P (i−j)‖∞
= ‖(P δ(k−s) −∆)P (i−j)‖∞
≤ ‖Φ(δk, δt)−∆‖∞‖P (i−j)‖∞
≤ αe−β(k−t),

where we use (i) and ‖P k‖∞ ≤ 1 for all k ≥ 0.

References

[1] Yair Censor and Alexander J Zaslavski. String-averaging projected subgradient methods for constrained
minimization. Optimization Methods & Software, 29(3):658–670, 2014.

[2] E. Cinlar. Introduction to Stochastic Processes. Dover Books on Mathematics Series. Dover Publica-
tions, Incorporated, 2013.

[3] Elias S. Helou, Yair Censor, Tai-Been Chen, I-Liang Chern, Álvaro R. De Pierro, Ming Jiang, and
Henry H.-S. Lu. String-averaging expectation-maximization for maximum likelihood estimation in
emission tomography. Inverse Problems, 30(5):055003, 2014.

[4] Gabor T Herman. Fundamentals of computerized tomography: image reconstruction from projections.
Advances in Computer Vision and Pattern Recognition. Springer-Verlag London, 2009.

[5] J.P. Hespanha. Linear Systems Theory. Princeton University Press, 2009.

[6] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex Analysis and Minimization Algorithms
I. Fundamentals., volume 305 of A Series of Comprehensive Studies in Mathematics. Springer-Verlag,
Berlin, 1993.

[7] D. Jakovetić, J. Xavier, and J. M. F. Moura. Fast distributed gradient methods. IEEE Transactions
on Automatic Control, 59(5):1131–1146, May 2014.

[8] Bjorn Johansson, Maben Rabi, and Mikael Johansson. A randomized incremental subgradient method
for distributed optimization in networked systems. SIAM Journal on Optimization, 20(3):1157–1170,
2010.

[9] V M Kibardin. Decomposition into functions in the minimization problem. Avtomatika i Telemekhanika,
(9):66–79, 1979.

26

[10] A. Nedić and A. Olshevsky. Distributed optimization over time-varying directed graphs. IEEE
Transactions on Automatic Control, 60(3):601–615, March 2015.

[11] A. Nedić and A. Ozdaglar. Distributed subgradient methods for multi-agent optimization. IEEE
Transactions on Automatic Control, 54(1):48–61, Jan 2009.

[12] A. Nedić, A. Ozdaglar, and P. A. Parrilo. Constrained consensus and optimization in multi-agent
networks. IEEE Transactions on Automatic Control, 55(4):922–938, April 2010.

[13] Angelia Nedić and Dimitri P Bertsekas. Incremental subgradient methods for nondifferentiable
optimization. SIAM Journal on Optimization, 12(1):109–138, 2001.

[14] Elias Salomão Helou Neto and Alvaro Rodolfo De Pierro. Convergence results for scaled gradient
algorithms in positron emission tomography. Inverse problems, 21:1905, 2005.

[15] Elias Salomão Helou Neto and Álvaro Rodolfo De Pierro. Incremental subgradients for constrained
convex optimization: a unified framework and new methods. SIAM Journal on Optimization,
20(3):1547–1572, 2009.

[16] R. M. Oliveira, E. S. Helou, and E. F. Costa. String-averaging incremental stochastic subgradient
algorithms. Optimization Methods and Software, 34(3):665–692, 2019.

[17] Rafael M Oliveira, Elias S Helou, and Eduardo F Costa. String-averaging incremental subgradients for
constrained convex optimization with applications to reconstruction of tomographic images. Inverse
Problems, 32(11):115014, 2016.

[18] Boris T Polyak. Introduction to optimization. 1987. Optimization Software, Inc, New York.

[19] M. Rabbat and R. Nowak. Distributed optimization in sensor networks. In Third International
Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004, pages 20–27, April
2004.

[20] S. S. Ram, V. V. Veeravalli, and A. Nedic. Distributed non-autonomous power control through
distributed convex optimization. In IEEE INFOCOM 2009, pages 3001–3005, April 2009.

[21] Dieter Spreen. On some properties of the cesàro limit of a stochastic matrix. Linear Algebra and its
Applications, 41:81–91, 1981.

[22] S Sundhar Ram, A Nedić, and Venugopal V Veeravalli. Incremental stochastic subgradient algorithms
for convex optimization. SIAM Journal on Optimization, 20(2):691–717, 2009.

[23] S Sundhar Ram, A Nedić, and Venugopal V Veeravalli. Distributed stochastic subgradient projection
algorithms for convex optimization. Journal of optimization theory and applications, 147(3):516–545,
2010.

27

	1 Introduction
	2 Proposed Algorithm
	2.1 Problem formulation
	2.2 Algorithm description

	3 Convergence analysis
	3.1 Assumptions
	3.2 Analysis

	4 Experimental results
	5 Conclusions
	A Preliminary results

