
ETH Library

Maximum Likelihood Estimation in
Data-Driven Modeling and Control

Journal Article

Author(s):
Yin, Mingzhou ; Iannelli, Andrea ; Smith, Roy 

Publication date:
2023-01

Permanent link:
https://doi.org/10.3929/ethz-b-000525037

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
IEEE Transactions on Automatic Control 68(1), https://doi.org/10.1109/TAC.2021.3137788

Funding acknowledgement:
178890 - Modeling, Identification and Control of Periodic Systems in Energy Applications (SNF)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-7583-5318
https://orcid.org/0000-0002-1865-6978
https://orcid.org/0000-0002-8139-4683
https://doi.org/10.3929/ethz-b-000525037
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/TAC.2021.3137788
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Maximum Likelihood Estimation in Data-Driven
Modeling and Control

Mingzhou Yin, Andrea Iannelli, and Roy S. Smith, Fellow, IEEE

M. Yin, A. Iannelli and R. S. Smith, “Maximum
Likelihood Estimation in Data-Driven Modeling and
Control,” in IEEE Transactions on Automatic Control, doi:
10.1109/TAC.2021.3137788.

© 2021 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in
other works.

Abstract— Recently, various algorithms for data-driven
simulation and control have been proposed based on
the Willems’ fundamental lemma. However, when collected
data are noisy, these methods lead to ill-conditioned data-
driven model structures. In this work, we present a maxi-
mum likelihood framework to obtain an optimal data-driven
model, the signal matrix model, in the presence of out-
put noise. Data compression and noise level estimation
schemes are also proposed to apply the algorithm effi-
ciently to large datasets and unknown noise level scenar-
ios. Two approaches in system identification and receding
horizon control are developed based on the derived optimal
estimator. The first one identifies a finite impulse response
model. This approach improves the least-squares estimator
with less restrictive assumptions. The second one applies
the signal matrix model as the predictor in predictive con-
trol. The control performance is shown to be better than ex-
isting data-driven predictive control algorithms, especially
under high noise levels. Both approaches demonstrate that
the derived estimator provides a promising framework to
apply data-driven algorithms to noisy data.

Index Terms— Data-driven modeling, maximum likeli-
hood estimation, model predictive control, system identi-
fication.

I. INTRODUCTION

FOLLOWING its remarkable success in artificial intelli-
gence, learning from data is becoming a popular topic in

various engineering domains [1]. This concept is by no means
a new idea for control engineering. The system identification
paradigm has been widely used in control applications, where
data are used to fit an a priori parametrized model [2]. The
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control strategy is then designed with the identified nominal
model based on the certainty equivalence principle.

However, this conventional scheme of learning dynamical
systems is challenged by increasing complexity of systems
and the large amount of data available. In particular, a low-
dimensional model structure that is suitable to design compact,
closed-form control strategies can be very hard and costly to
obtain for complex systems [3]. Therefore, alternative paths
are investigated to facilitate control design directly from raw
measurement data of dynamical systems. For example, rein-
forcement learning techniques are widely applied in this area
[4]. Such approaches typically avoid predicting the behavior
of systems explicitly but aim at the control strategy directly.

In this work, the conventional parametric model is replaced
by a data-driven predictor with a non-parametric structure [5].
In the seminal work from Willems et al. [6], a single input-
output trajectory of the linear system is shown to be able to
characterize all possible trajectories of length up to the order of
persistency of excitation by constructing Hankel matrices from
data. This result is known as the Willems’ fundamental lemma.
With this result, the behavior of the system can be simulated
and thus controlled by selecting a suitable combination of
sections from the known trajectory that satisfies the initial
condition constraints [7]–[9].

This observation is especially suitable for optimal trajectory
tracking. In this regard, model predictive control (MPC) is
known to be very effective when an accurate model of the
system is available [10]. From the Willems’ fundamental
lemma, the output prediction step in MPC can be achieved
by using known trajectories of the system directly, instead
of an explicit model. This data-driven alternative to MPC
algorithms, known as data-enabled predictive control (DeePC)
[11], has lead to multiple successful applications [12]–[14]
with stability and robustness proofs [15]. This framework is
also able to handle online data and parameter variations [16].

These types of “data-driven” approaches differ significantly
from model-free approaches, and act as a surrogate for conven-
tional models in model-based control to provide a description
of system trajectories based on measured data. In fact, with
a low-rank approximation, this approach directly leads to the
intersection algorithm in subspace identification where state-
space models can be derived [17]. The main differences of the
data-driven approach compared to conventional model-based
methods are: 1) the model is implicit with no closed-form
solution in general; 2) the model is over-parametrized in that it
does not impose any assumption on the system structure other
than linearity. In this paper, this implicit and over-parametrized
model is called the data-driven model.



However, it is well-known that when data are noisy, over-
parametrized models may lead to high variances and overfit-
ting [18]. In data-driven modeling, finding a combination of
known trajectory sections that give reliable prediction is an ill-
conditioned problem for datasets with stochastic noise. In cur-
rent data-driven control schemes, empirical regularizers [11],
[15] or least-norm problems [12], [19], [20] are introduced to
select a reasonable combination for prediction. Yet, it is not
clear what is the optimal way to combine a large set of known
trajectory sections to achieve the most reliable prediction.

Another application of data-driven modeling is to sim-
ulate the system response [21], [22]. The main advantage
of applying this approach in system identification is that it
gives the correct estimation of nonparametric models in the
noise-free case. Again in this scenario, the best practice for
solving the underdetermined linear system in the Willems’
fundamental lemma in the noisy case is not understood. For
computational simplicity, the Moore-Penrose pseudoinverse
solution that solves the least-norm problem is often the default
choice [12], leading to the data-driven subspace predictor [20].

As can be seen from the above discussion, one of the
central questions in data-driven approaches based on the
Willems’ fundamental lemma is how to obtain an optimal
data-driven model from a large noise-corrupted dataset [23].
Therefore, in the first part of the paper, we propose a maximum
likelihood estimation (MLE) framework to estimate such an
optimal model with noise in both offline data and online
measurements. This optimal model is named the signal matrix
model (SMM). This framework optimizes the combination of
offline trajectories by maximizing the conditional probability
of observing the predicted output trajectory and the measured
past outputs. The SMM is shown to obtain more accurate
output estimates than the least-norm solution. In addition, a
preconditioning strategy is proposed based on singular value
decomposition (SVD) to compress the data matrix such that
online complexity is fixed for large datasets. When the noise
levels are unknown, they can also be estimated with a data-
driven approach.

In the second part of the paper, we present two scenarios
where the SMM leads to effective algorithms: 1) estimating
finite impulse response (FIR) models in system identifica-
tion; and 2) obtaining a tuning-free data-driven predictive
control scheme. In the first scenario, the impulse response
is conventionally estimated by least-squares regression, which
requires knowing the input history and neglecting truncation
errors. In this work, it is replaced by the signal matrix model
simulated with an impulse, which guarantees an unbiased
estimate. Results show that the model fitting is enhanced when
the transient response is unknown or the truncation error of
the impulse response is large.

In the second scenario, we replace the prediction part in the
DeePC algorithm with the SMM. This predictor is shown to be
superior to the pseudoinverse subspace predictor in predictive
control. The main advantage of the proposed algorithm is
that it avoids the difficult hyperparameter tuning problem in
regularized DeePC. The control performance of the proposed
algorithm is shown to be better than the DeePC algorithm
with optimal hyperparameters when the noise is significant,

and similar in the low noise scenario.
The remainder of the paper is organized as follows. Sec-

tion II defines the notions and preliminaries used in the paper.
Section III reviews the Willems’ fundamental lemma and its
application to deterministic systems. Section IV derives the
signal matrix model with MLE and presents an optimal data-
driven simulation algorithm. Section V discusses the use of
SMM for large datasets and unknown noise levels and analyzes
its performance. This model is then applied to two problems:
Section VI identifies an FIR model using SMM simulation;
Section VII applies the SMM predictor in predictive control.
Section VIII concludes the paper.

II. NOTATION & PRELIMINARIES

For a vector x, the weighted l2-norm (xTPx)
1
2 is denoted

by ‖x‖P . The symbol N (µ,Σ) indicates a Gaussian distri-
bution with mean µ and covariance Σ. The expectation and
the covariance of a random vector x are denoted by E(x)
and cov(x) respectively. For a matrix X , the vectorization
operator stacks its columns in a single vector and is denoted
by vec(X); X† indicates the Moore-Penrose pseudoinverse;
(X)i,j denotes the (i, j)-th entry of X . The symbol Sn++

indicates the set of n-by-n positive definite matrix. For a
sequence of matrices X1, . . . , Xn, we denote [XT

1 . . . XT
n ]T

by col (X1, . . . , Xn). Given a signal x : Z→ Rn, its trajectory
from k to k+N−1 is denoted as (xi)

k+N−1
i=k , and in the vector

form as x = col(xk, . . . , xk+N−1).
Consider a discrete-time linear time-invariant (LTI) system

with output noise, given by{
xt+1 = Axt +But,

yt = Cxt +Dut + wt,
(1)

where xt ∈ Rnx , ut ∈ Rnu , yt ∈ Rny , wt ∈ Rny are
the states, inputs, outputs, and output noise respectively. The
system is denoted compactly by (A,B,C,D). The pair (A,B)
is controllable if [B AB . . . Anx−1B] has full row rank.

The notion of persistency of excitation is defined as follows.
Definition 1: A signal trajectory (xi)

N−1
i=0 ∈ Rn ×

{0, . . . , N − 1} is said to be persistently exciting of order
L if the block Hankel matrix

X =


x0 x1 · · · xM−1

x1 x2 · · · xM
...

...
. . .

...
xL−1 xL · · · xN−1

 ∈ RLn×M (2)

has full row rank, where M = N − L+ 1 [6].
Intuitively, this definition means that sections of length L

of the trajectory span RLn. When used as the input to a
linear dynamical system, it can thus excite all the controllable
behaviors of the system in a window of length L. A necessary
condition of Definition 1 is N ≥ L(n+ 1)− 1, which gives a
lower bound on the trajectory length.

III. DETERMINISTIC DATA-DRIVEN MODELING

In this section, we first review the Willems’ fundamental
lemma and a few related results in a state-space formulation,
followed by an overview of deterministic data-driven simula-
tion and control.



A. Willems’ Fundamental Lemma

Built on the notion of the persistency of excitation, the
Willems’ fundamental lemma shows that all the behavior
of a linear system can be captured by a single persistently
exciting trajectory of the system when no noise is present. This
lemma was originally proposed in the context of behavioral
system theory [6], [24], where systems are characterized by
the subspace that contains all possible trajectories. It was
later reformulated in the state-space context [8], [9]. In the
state-space formulation, the output trajectory is unique to a
particular input trajectory when a sufficiently long past input-
output trajectory is specified as the initial condition. The length
of the past trajectory should not be shorter than the state
dimension. This idea has strong ties with the intersection
algorithm in subspace identification [17], where a low-order
subspace of the data matrices that corresponds to a low state
dimension is sought.

We summarize the available results on data-driven mod-
eling based on the Willems’ fundamental lemma for finite-
dimensional LTI systems, which are the foundation for the
data-driven methods discussed in this paper. These results hold
exactly only when the system is noise-free, i.e., ∀i, wi = 0.

Theorem 1: Consider a finite-dimensional LTI system
(A,B,C,D). Let (udi , x

d
i , y

d
i )N−1
i=0 be a triple of input-state-

output trajectory of the system. If the pair (A,B) is control-
lable and the input is persistently exciting of order (L+ nx),
then

(a) the matrix

[
X
U

]
:=


xd0 xd1 · · · xdM−1

ud0 ud1 · · · udM−1
...

...
. . .

...
udL−1 udL · · · udN−1

 (3)

has full row rank (Corollary 2 in [6], Theorem 1(i) in [9],
Lemma 1 in [8]);

(b) the pair (ui, yi)
L−1
i=0 is an input-output trajectory of the

system iff there exists g, such that



u0

...
uL−1

y0

...
yL−1


=

[
U
Y

]
g :=



ud0 ud1 · · · udM−1
...

...
. . .

...
udL−1 udL · · · udN−1

yd0 yd1 · · · ydM−1
...

...
. . .

...
ydL−1 ydL · · · ydN−1


g

(4)
(Theorem 1 in [6], Theorem 1(ii) in [9], Lemma 2 in [8]);

(c) rank(col(U, Y )) = nx + nuL (Theorem 2 in [17]);
(d) the vector (yi)

L′−1
i=0 is the unique output trajectory of

the system with past trajectory (ui, yi)
−1
i=−L0

and input
trajectory (ui)

L′−1
i=0 , where nyL0 ≥ nx and L′ = L−L0,

iff there exists g, such that

u−L0

...
uL′−1

y−L0

...
yL′−1


=

[
U
Y

]
g :=



ud0 ud1 · · · udM−1
...

...
. . .

...
udL−1 udL · · · udN−1

yd0 yd1 · · · ydM−1
...

...
. . .

...
ydL−1 ydL · · · ydN−1


g

(5)
(Proposition 1 in [7]).

Remark 1: The controllability and the persistency of exci-
tation conditions can be relaxed for the rank condition in part
(c) (Corollary 19 in [25]) or requirements on the initial state
(Theorem 1 in [26]).

In Theorem 1, parts (a) and (b) state the original Willems’
fundamental lemma; part (c) draws the connection between
data-driven modeling and subspace identification methods; and
part (d) further gives the uniqueness of the trajectory by fixing
a sufficiently long past trajectory. Part (d) also allows the
formulation to be applied in simulation and predictive control.

B. Deterministic Data-Driven Simulation and Control
In the noise-free case, the system can be simulated solely

based on a known trajectory by applying Theorem 1(d) [21].
Define

Up =

 ud0 ud1 · · · udM−1
...

...
. . .

...
udL0−1 udL0

· · · udM+L0−2

 ∈ RL0nu×M , (6)

Uf =

 u
d
L0

udL0+1 · · · udM+L0−1
...

...
. . .

...
udL−1 udL · · · udN−1

 ∈ RL
′nu×M , (7)

uini = col (u−L0
, · · · , u−1) ∈ RL0nu , (8)

u = col (u0, · · · , uL′−1) ∈ RL
′nu , (9)

and similarly for Yp, Yf , yini, and y. Then we interpret (5) as
an implicit model of the system trajectory parametrized by g,
namely {

u = Ufg,

y = Yfg,

(10a)
(10b)

subject to the initial condition requirement{
uini = Upg,

yini = Ypg.

(11a)
(11b)

Thus, the system can be simulated by means of a two-step
approach with g as the intermediate parameter as shown in
Algorithm 1. The system identification process is performed
online for a particular input by estimating g. This algorithm
effectively gives an implicit model of the system in the form
of

y = f(u;uini,yini, Up, Uf , Yp, Yf ), (12)

where Up, Uf , Yp, Yf are offline data that describe the behav-
iors of the system, and uini,yini are online data that estimate
the initial condition.



Algorithm 1 Noise-free data-driven simulation [21]
1: Given: Up, Uf , Yp, Yf .
2: Input: uini,yini,u.
3: Solve the linear system

col (uini,yini,u) = col (Up, Yp, Uf ) g (13)

for g.
4: Output: y = Yfg.

Multiple control algorithms have been developed based
on this model structure [7], [8]. In this work, we focus on
the optimal trajectory tracking problem, which optimizes the
following control cost over a horizon of length L′ at each time
instant t [10]:

Jctr(u,y) =

L′−1∑
k=0

(
‖yk − rt+k‖2Q + ‖uk‖2R

)
, (14)

where r is the reference trajectory, and Q and R are the output
and the input cost matrices respectively [10]. At each time
instant, the first entry in the newly optimized input trajectory
is applied to the system in a receding horizon fashion.

Algorithm 1 can be applied as the predictor in place of the
model-based predictor in conventional MPC algorithms. This
leads to the following optimization problem

minimize
u,y,g

Jctr(u,y)

subject to (10), (11),u ∈ U ,y ∈ Y ,
(15)

where U and Y are the constraint sets of the inputs and the
outputs respectively. Vectors uini and yini are the immediate
past input-output measurements online. This method is known
as the unregularized DeePC algorithm [11].

IV. MAXIMUM LIKELIHOOD DATA-DRIVEN MODEL:
SIGNAL MATRIX MODEL

The linear system (13) is highly underdetermined when a
large dataset is available. When the data are noise-free, this
parameter estimation problem is trivial, where any solution to
(13) gives an exact output model of the system, according to
Theorem 1(d).

However, the problem of finding the model (12) becomes ill-
conditioned when the data are noisy. In this case, Theorem 1(c)
is no longer satisfied. Instead, col(U, Y ) has full row rank
almost surely. If we still follow Algorithm 1, any output
trajectory y can be obtained by choosing different solutions
to (13). In fact, Theorem 1(d) does not hold exactly for the
noisy case, so satisfying condition (13) is not guaranteed to be
statistically optimal. An empirical remedy to this problem is
to use the Moore-Penrose pseudoinverse solution of g, namely

gpinv = col (Up, Yp, Uf )
† col (uini,yini,u) , (16)

which solves the least-norm problem

minimize
g

‖g‖22 subject to (13). (17)

This solution is known as the subspace predictor related to
the prediction error method [12], [20]. However, this predictor

fails to appropriately encode the effects of noise in the data
matrices. To the best of our knowledge, there is no existing
statistical framework for estimating g. In what follows, we
will derive a maximum likelihood estimator of g. As opposed
to existing algorithms, this estimator obtains a statistically
optimal data-driven model for systems with noise. Since this
model is expressed purely in terms of matrices of signal
trajectories, we name this model the signal matrix model. For
simplicity of exposition, the results in the section are stated for
the single-input single-output case, but they seamlessly hold
for the multiple-input multiple-output case.

A. Derivation of the Maximum Likelihood Estimator

In this work, we consider a scenario where the output errors
are i.i.d. Gaussian noise for both offline and online data, i.e.,

ydi = yd,0i + wdi , (wdi )N−1
i=0 ∼ N (0, σ2I), (18)

yini = y0
ini + wp, wp ∼ N (0, σ2

pI). (19)

Under this noise model, the equations (10a) and (11a) still
hold exactly, but the past output equation (11b) includes noise
on both sides, which leads to a total least squares problem. In
this work, the maximum likelihood interpretation of the total
least squares problem is used [27].

Define

ŷ =

[
εy
y

]
= Y g −

[
yini
0

]
, (20)

where εy := Ypg−yini is the residual of the past output relation
(11b). Then we want to construct an estimator that maximizes
the conditional probability of observing the realization ŷ corre-
sponding to the available data given g. Applying vectorization
on Y g in (20), we have

ŷ =
(
gT ⊗ I

)
vec(Y )−

[
yini
0

]
, (21)

where we make use of the property of the Kronecker product

vec(ABC) = (CT ⊗A)vec(B). (22)

Denote the noise-free version of Yp and Yf by Y 0
p and Y 0

f

respectively. Then for a given g, we have

E(ŷ|g) = E(Y )g −
[
E(yini)

0

]
=

[
Y 0
p g − y0

ini
Y 0
f g

]
=

[
0
Y 0
f g

]
,

cov(ŷ|g) =
(
gT ⊗ I

)
Σyd (g ⊗ I) +

[
σ2
pI 0
0 0

]
=: Σy,

(23)
where Σyd = cov (vec(Y )). According to the noise model of(
ydi
)

and accounting for the Hankel structure of Y , we have

(Σyd)i,j =

{
σ2, (vec(Y ))i = (vec(Y ))j
0, otherwise

. (24)

Then, Σy can be calculated as

(Σy)i,j = σ2

M−|i−j|∑
k=1

gkgk+|i−j|+

{
σ2
p, i = j ≤ L0

0, otherwise
. (25)



where gk denotes the k-th entry of g. The derivation is
given in Appendix I. Thus, due to the linearity of the normal
distribution, we have

ŷ|g ∼ N
([

0
Y 0
f g

]
,Σy

)
, (26)

which has the probability density

p(ŷ|g) =(2π)−
L
2 det (Σy)

− 1
2

exp

(
−1

2

[
Ypg − yini
Yfg − Y 0

f g

]T
Σ−1
y

[
Ypg − yini
Yfg − Y 0

f g

])
.

(27)

Note that here the true output data matrix Y 0
f is also unknown,

and can be estimated with the maximum likelihood approach.
In this way, we are ready to derive the signal matrix model
by solving the following optimization problem.

minimize
g∈G,Y 0

f

− log p(ŷ|g, Y 0
f ), (28)

where G =
{
g ∈ RM | col (Up, Uf ) g = col (uini,u)

}
is the

parameter space defined by the known noise-free input trajec-
tory.

Substituting (27) into (28), we have the equivalent optimiza-
tion problem,

minimize
g∈G,Y 0

f

logdet(Σy(g))

+

[
Ypg − yini
Yfg − Y 0

f g

]T
Σ−1
y (g)

[
Ypg − yini
Yfg − Y 0

f g

]
.

(29)

It is easy to see that the optimal value of Y 0
f is Yf regardless

of the choice of g. So (29) is equivalent to

minimize
g∈G

logdet(Σy(g))+

[
Ypg − yini

0

]T
Σ−1
y (g)

[
Ypg − yini

0

]
.

(30)
In this objective function, the first term indicates how accurate
the output estimates are. The second term represents how much
the estimate deviates from the past output observations.

B. Iterative Computation of the Estimator

To find a computationally efficient algorithm to solve (30),
we relax the problem and solve it with sequential quadratic
programming (SQP) [28]. First, the covariance matrix Σy is
approximated with its diagonal part, denoted by Σ̄y , i.e.,

(
Σ̄y
)
i,j

=

{
(Σy)i,j , i = j

0, i 6= j
. (31)

Remark 2: This approximation holds exactly when the data
matrices are constructed by truncating (udi , y

d
i )N−1
i=0 into sec-

tions of length L with no overlap, or using multiple inde-
pendent trajectories of length L, instead of forming Hankel
structures. This construction is known as the Page matrix [29]
and it was shown in [9] that similar results to Theorem 1
still hold for Page matrices. The Hankel construction is able
to use the data more efficiently, but leads to complex noise
correlation, which is reflected in the non-diagonal structure of
Σy . The comparison between the Hankel construction and the

Page construction is, however, beyond the scope of this paper.
See [25], [30] for more on this topic.

Remark 3: This approximation gives an upper bound on the
log-det terms. According to Hadamard’s inequality, since Σy ∈
SL++, we have logdet(Σy(g)) ≤ logdet(Σ̄y(g)).

In this way, problem (30) is approximated as

minimize
g∈G

L′ log
(
‖g‖22

)
+ L0 log

(
σ2 ‖g‖22 + σ2

p

)
+

1

σ2 ‖g‖22 + σ2
p

‖Ypg − yini‖22 .
(32)

This problem can be readily solved by SQP. For each iteration,
the following quadratic programming problem is solved.

gk+1 = argmin
g

λ(gk) ‖g‖22 + ‖Ypg − yini‖22

subject to
[
Up
Uf

]
g =

[
uini
u

]
,

(33)

where λ(gk) = L′σ2
p

/∥∥gk∥∥2

2
+ Lσ2. The objective function

in (32) is approximated by a quadratic function around gk,
making use of the local expansion log x ≈ log x0+ 1

x0
(x−x0).

The optimality conditions of (33) are:[
F (gk) UT

U 0

] [
gk+1

νk+1

]
=

[
Y T
p yini

ũ

]
, (34)

where ũ = col(uini,u), F (gk) = λ(gk)I+Y T
p Yp, and νk+1 ∈

RL is the Lagrange multiplier. The closed-form solution is
thus given by

gk+1 =
(
F−1 − F−1UT(UF−1UT)−1UF−1

)
Y T
p yini

+ F−1UT(UF−1UT)−1ũ

=: P(gk)yini +Q(gk)ũ.
(35)

This algorithm converges to a local minimum of problem (32).
Remark 4: Following similar derivations, this algorithm can

be extended to the case where i.i.d. Gaussian input errors also
exist in offline and online data,, which leads to an additional
input regularization term ‖Ug − ũ‖22 in the iterative algorithm.

C. Maximum Likelihood Data-Driven Simulation

Based on the derived maximum likelihood estimator of g,
the step of solving the linear system (13) in Algorithm 1 can be
replaced by solving the SQP problem (33). For simulation, the
SQP problem can be initialized at the pseudoinverse solution
gpinv (16). This leads to the following algorithm for maximum
likelihood data-driven simulation.

This algorithm gives the signal matrix model in the form
of (12). The approximate maximum likelihood estimator (33)
has the same ‖g‖22-penalization term as the least-norm problem
(17). However, the estimate gSMM does not lie in the solution
space of the underdetermined system (13). The total least
squares structure in (11b) leads to the penalization term
‖Ypg − yini‖22 in place of the hard constraint in (13).



Algorithm 2 Maximum likelihood data-driven simulation: the
signal matrix model

1: Given: Up, Uf , Yp, Yf , σ, σp, ε.
2: Input: uini,yini,u.
3: k ← 0, g0 ← gpinv from (16)
4: repeat
5: Calculate gk+1 with (35).
6: k ← k + 1
7: until

∥∥gk − gk−1
∥∥ < ε

∥∥gk−1
∥∥

8: Output: gSMM = gk, y = Yfg
k.

V. PRACTICAL ASPECTS AND ANALYSIS OF THE SIGNAL
MATRIX MODEL

In this section, we first discuss practical scenarios where the
dimension of the signal matrix is very large and the noise level
information required in formulating the signal matrix model is
unknown. Then, the effectiveness of the proposed maximum
likelihood framework is analyzed by numerical comparison
and covariance analysis.

A. Preconditioning of Data Matrices
In data-driven applications, it is usually assumed that abun-

dant data are available, i.e., N � L. Under this scenario,
the dimension of the parameter vector g ∈ RM , which
needs to be optimized online, would be much larger than
the length of the predicted output trajectory. This leads to
high online computational complexity even to estimate a very
short trajectory. On the other hand, only 2L independent basis
vectors are needed to describe all the possible input-output
trajectories of length L. It is possible to precondition the data
matrices such that only 2L basis trajectories are used.

To do this, we propose the following strategy based on the
SVD to compress the data such that the dimension of the
parameter vector g is 2L regardless of the raw data length.
Let col(U, Y ) = WSV T ∈ R2L×M be the SVD of the data
matrix. Define the compressed data matrices Ũp, Ỹp ∈ RL0×2L

and Ũf , Ỹf ∈ RL′×2L such that

col
(
Ũp, Ũf , Ỹp, Ỹf

)
= WS2L ∈ R2L×2L, (36)

where S2L is the first 2L columns of S.
It is shown in the following proposition that Algorithm 2

with compressed data matrices obtains exactly the same output
trajectory y as with raw data matrices.

Proposition 1: Let the simulated trajectories with data ma-
trices (Up, Yp, Uf , Yf ) and (Ũp, Ỹp, Ũf , Ỹf ) from Algorithm 2
be y and ỹ respectively. Then we have ỹ = y.

Proof: Define transformed data matrices Ūp, Ȳp, Ūf , and
Ȳf such that col

(
Ūp, Ȳp, Ūf , Ȳf

)
= WS. Then the relations

between the data matrices are given by

col (Up, Yp, Uf , Yf ) = col
(
Ũp, Ũf , Ỹp, Ỹf

)
V T

2L,

col (Up, Yp, Uf , Yf ) = col
(
Ūp, Ȳp, Ūf , Ȳf

)
V T,

col
(
Ūp, Ȳp, Ūf , Ȳf

)
=
[
col
(
Ũp, Ũf , Ỹp, Ỹf

)
0
]
.

(37)

where V2L denotes the first 2L columns of V .

Denote the variables with the compressed data matrices by
a tilde, and the variables with the transformed data matrices
by a bar. Since V T

2LV2L = I, we have gpinv = V2L g̃pinv. This
leads to ‖gpinv‖22 = ‖g̃pinv‖22, and thus λ(g0) = λ(g̃0).

Suppose at the k-th iteration, λ(gk) = λ(g̃k). Due to the
orthogonality of V and the sparsity structure of Ū and Ȳp, we
have gk+1 = V ḡk+1, ḡk+1 = col

(
g̃k+1,0

)
. This leads to

gk+1 = V2L g̃
k+1,

∥∥gk+1
∥∥2

2
=
∥∥g̃k+1

∥∥2

2
. (38)

Thus for all k, we have gk = V2L g̃
k. Therefore, the simulated

trajectory satisfies y = Yfg
k = Ỹf g̃

k = ỹ.
Remark 5: It can be seen from the proof that Σ̄y(g) =

Σ̄y(g̃). So with compressed data matrices, the output trajectory
estimate has the same covariance as the raw data matrices
when Page matrices are used, and the same diagonal compo-
nents when Hankel matrices are used.

B. Data-driven Noise Level Estimation
When the noise level σ2 in the output signal matrix Y

is unknown, it can be directly estimated from the singular
values of a projected signal matrix. In detail, let Π⊥U =
I−U>(UU>)−1U span the null space of the noise-free matrix
U , and Y 0 be the noise-free version of Y . Then according to
the persistency of excitation requirement and Theorem 1(c),
rank(Y 0Π⊥U ) = nx, and thus YΠ⊥U is a perturbed rank-nx
matrix. We apply the robust noise level estimator for perturbed
low-rank matrices presented in Section III-E of [31]

σ̂2 =
s2

med

Mµ(L/M)
, (39)

where smed is the median of the singular values of YΠ⊥U and
µ(β) is the median of the Marchenko-Pastur distribution with
aspect ratio β. This estimator compares the perturbed singular
values with the ideal distribution of the noise singular values
to estimate σ2. It is applicable when smed comes purely from
noise, i.e., L > 2nx.

The noise level of online data σ2
p can be set to zero when

initial conditions are known exactly, or to σ2 when the same
sensor is used for offline and online measurements. Otherwise,
online measurements can be taken beforehand and σ2

p can be
estimated similarly to σ2.

C. Comparison of Data-Driven Predictors
The performance of Algorithm 2 is analyzed numerically by

comparing the accuracy of the simulated output y measured
by fitting metric

W = 100 ·

1−

[∑L′

i=1(yi − ŷi)2∑L′

i=1(yi − ȳ)2

]1/2
 , (40)

where yi are the true outputs, ŷi are the estimated outputs,
and ȳ is the mean of the true outputs. We compare 1) pinv:
the least-norm solution (16), 2) exact: the SQP solution of
problem (30) initialized at gpinv, 3) SMM-1: the solution after
one iteration of Algorithm 2, and 4) SMM: Algorithm 2.

Consider random single-input single-output systems with
state dimensions between 2 and 10 (generated by MATLAB



function drss). The following parameters are used: L0 = nx,
L′ = 10. Inputs for the identification data (udi )

N−1
i=0 and

simulation conditions uini, yini, u are all unit i.i.d. Gaussian.
For each analysis, 100 Monte Carlo simulations are conducted.

The simulation accuracy of different MLE algorithms are
plotted in Figure 1(a) for different data sizes N . It can be
seen that for small data sizes, the exact estimate obtains very
similar performance to the SMM estimates. This indicates that
the approximate solution obtains a close match to the original
MLE problem. For larger data sizes, due to the increasing
dimension of g, the performance of exact, where the data
compression scheme does not apply, becomes worse. On the
other hand, Algorithm 2 converges very quickly as the one-
iteration solution SMM-1 obtains almost identical performance
to the converged solution SMM at all data sizes.
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Fig. 1. Comparison of simulation accuracy with different data-driven
predictors.

The SMM estimate is compared against pinv in Figure 1(b)
for different online noise levels σ2

p. It is showcased that SMM
is more accurate than pinv due to the inclusion of the correct
noise model. In particular, this performance improvement is
more significant when σ2

p is large. In order to assess the
general validity of the results shown in Figure 1(b), it is
demonstrated theoretically in the following proposition that
the signal matrix model obtains a smaller covariance than the
least-norm solution when noise is present only in yini.

Proposition 2: Let gpinv and gSMM be the estimates from the
least-norm solution (16) and Algorithm 2 respectively. When
σ2 = 0, we have tr(cov(gSMM)) < tr(cov(gpinv)).

Proof: See Appendix II.

VI. IMPULSE RESPONSE ESTIMATION WITH THE SIGNAL
MATRIX MODEL

We propose here a system identification method that identi-
fies an FIR model of the system by signal matrix model sim-
ulation. Numerical tests show that model fitting is improved
compared to the conventional least-squares estimate, when the
truncation error is large or the input history is unknown.

A. Impulse Response Estimation

Consider the problem of estimating the impulse response
model (hi)

∞
i=0 of a system from data. The output yt is given

by

yt =

∞∑
i=0

hiut−i. (41)

The conventional approach is to formulate a linear regression
to estimate a finite truncation of the impulse response

yd0
yd1
...

ydN−1


︸ ︷︷ ︸

yN

=


ud0 ud−1 · · · ud1−n
ud1 ud0 · · · ud2−n
...

...
. . .

...
udN−1 udN−2 · · · udN−n


︸ ︷︷ ︸

ΦN


h0

h1

...
hn−1


︸ ︷︷ ︸

h

, (42)

where n is the length of the impulse response to be estimated.
The regression problem can then be solved by least squares
with the closed-form solution

ĥLS =
(
ΦT
NΦN

)−1
ΦT
NyN . (43)

There are two main assumptions underlying this formulation:
1) the truncation error of the finite impulse response is
negligible, i.e., hi ≈ 0 for all i ≥ n; and 2) additional
input measurements (udi )

−1
i=1−n are available. With these two

assumptions, the least-squares solution is known to be the best
unbiased estimator with i.i.d. Gaussian output noise [2].

However, these assumptions may not be satisfied in practice.
When the internal dynamics matrix A has a large condition
number, a very long impulse response sequence is needed to
remove the truncation error even for a low-order system. In
this case, the least-squares algorithm may become impractical
due to limited data length and/or computation power. If the
truncation error is not negligible, the estimator is not correct,
i.e., in the noise-free case, the estimate does not coincide
with the true system. When the input history is unknown, the
first (n − 1) input measurements have to be used solely for
initial condition estimation, in which case the data efficiency
is substantially affected when a large n is needed.

In this work, we propose using the signal matrix model to
estimate the impulse response by finding the length-n response
to a pulse input from zero initial conditions, i.e.,

uini = 0, yini = 0, u = col(1,0), L′ = n. (44)

Since the initial condition is known exactly, we have σp = 0.
Then the output trajectory y is an estimate of the impulse
response h of length n of the system [21]. This approach re-
quires neither of the assumptions for the least-squares method.
Instead of requiring a length-(n − 1) input history sequence,
this approach only uses the first L0 entries of the data to
estimate the initial condition. In fact, the estimator is correct
and unbiased for an arbitrary length n and unknown input
history as shown in Theorem 1(d), as long as the persistency
of excitation condition is satisfied.

B. Numerical Results
In this subsection, the proposed algorithm is tested against

the least-squares estimate by applying it to numerical exam-
ples. We compare the proposed signal matrix model estimate
SMM (Algorithm 2 with (44)) with the least-squares estimate
LS (43). The parameters used in the simulation are N =



50, L0 = 4, n = L′ = 11, σ2 = 0.01. In SMM, the noise
level σ2 is estimated using (39). The identification data are
generated with unit i.i.d. Gaussian input signals. For each case,
1000 Monte Carlo simulations are conducted.

In the first example, we consider the following fourth-order
LTI system tested in [32]

G1(z) =
0.1159(z3 + 0.5z)

z4 − 2.2z3 + 2.42z2 − 1.87z + 0.7225
. (45)

This system is relatively slow. The truncation error is sig-
nificant when n = 11 is selected. First, the LS and SMM
algorithms are compared under the noise-free case, and the
results are shown in Figure 2(a). It can be clearly seen that LS
is not correct due to the presence of truncation errors, whereas
the SMM estimator is correct. When the noise is present, the
LS and SMM algorithms are compared in Figure 2(b). The
SMM estimator have smaller variance compared to LS.
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Fig. 2. Comparison of impulse response estimation with truncation
errors. Colored area: estimates within two standard deviations.

In the second example, we focus on the effect of unknown
input history by investigating a faster LTI system used in [32]

G2(z) =
0.9183z

z2 + 0.24z + 0.36
. (46)

In this case, the truncation error is already negligible at n =
11, but we assume the input history is unknown. The results
of the estimation are illustrated in Figure 3. The result of the
SMM algorithm is shown to be more accurate than the LS
algorithm, especially for the first four coefficients.

To quantitatively assess the performance of different algo-
rithms, we quantify the model fitting by the metric W (40)
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Fig. 3. Comparison of impulse response estimation with unknown input
history. Colored area: estimates within two standard deviations.

with impulse response estimates. The boxplots of model fitting
for both examples are plotted in Figure 4. For comparison, the
case with known input history is also plotted for example 2.
The SMM algorithm performs better than the LS algorithm
when the truncation error is large or the input history is
unknown. In example 1, the LS model fitting is similar for the
noisy and noise-free cases, which indicates that the truncation
error is the main source of error here. However, when both
assumptions of the least squares are satisfied, LS performs
slightly better than SMM. This is due to the fact that part of
the data is used to estimate the initial condition in Algorithm 2,
whereas it is known for the LS algorithm.

(a) Example 1 (b) Example 2

Fig. 4. Box plots of model fitting for both examples with 1000 simula-
tions. In (a), magenta: noisy data, blue: noise-free data. In (b), yellow:
unknown input history, cyan: known input history.

VII. DATA-DRIVEN PREDICTIVE CONTROL WITH THE
SIGNAL MATRIX MODEL

In this section, the signal matrix model is used as the
predictor in receding horizon predictive control. As discussed
in Section IV, the predictor in the unregularized DeePC
problem (15) becomes ill-conditioned when noise is present.
In the following subsections, we will present two existing
methods to remedy this problem, and compare the control
performance with the optimal predictor proposed in this paper.



A. Pseudoinverse and Regularized Algorithms
There are mainly two types of existing algorithms to extend

(15) to the noisy case: the data-driven subspace predictive
control and the regularized DeePC algorithm.

The subspace predictive control approach [20] uses the
pseudoinverse solution of g in the predictor instead of the
underdetermined linear equality constraints as follows

minimize
u,y

Jctr(u,y)

subject to y = Yf gpinv(u;uini,yini),u ∈ U ,y ∈ Y ,
(47)

where gpinv(·) is defined in (16). Multiple applications have
been studied with similar algorithms (e.g., [33], [34]). How-
ever, as discussed in Section IV, gpinv(·) is not guaranteed to
be an effective choice of g for systems with noise.

The regularized DeePC algorithm [11] adds additional reg-
ularization terms in the objective in order to regularize both
the norm of g and the slack variable needed to satisfy (11b):

minimize
u,y,g,ŷini

Jctr(u,y) + λg ‖g‖pp + λy ‖ŷini − yini‖pp

subject to col (Up, Yp, Uf , Yf ) g = col (uini, ŷini,u,y) ,

u ∈ U ,y ∈ Y ,
(48)

where p is usually selected as 1 or 2. This algorithm can
be interpreted as an MPC algorithm acting on the implicit
parametric model structure (10) and (11), where the objective
is a trade-off between the control performance objective Jctl
and the parameter estimation objective

Jid,DeePC := λ ‖g‖pp + ‖ŷini − yini‖pp , λ = λg/λy. (49)

The set of underdetermined model parameters (g, ŷini) are then
estimated adaptively in the MPC algorithm. The estimated
trajectory in this algorithm is not associated with a fixed
input-output mapping, but is biased towards those that predict
better control performance. This algorithm is also shown to be
effective in multiple applications (e.g., [12], [13]). However,
tuning of the regularization parameters is a very hard problem.
To the best of our knowledge, there is no practical approach
proposed to tune λg and λy beforehand, and unfortunately
the control performance is known to be very sensitive to the
regularization parameters [12].

Remark 6: The same data compression scheme as discussed
in V-A is applicable to these two algorithms as well.

B. An Optimal Tuning-Free Approach
To address the concerns regarding the two existing methods

discussed in the previous subsection, we propose a receding
horizon predictive control scheme with the signal matrix model
as the predictor. This directly leads to

minimize
u,y

Jctr(u,y)

subject to y = Yf gSMM(u;uini,yini),u ∈ U ,y ∈ Y ,
(50)

where gSMM(·) is obtained by Algorithm 2. However, unlike
the pseudoinverse predictor where gpinv(·) is linear with respect
to u, the maximum likelihood predictor gSMM(·) involves an
iterative algorithm which cannot be expressed as an equality
constraint explicitly.

To solve this problem, we notice that the l2-norm of g does
not change much throughout the receding horizon control, and
the algorithm is only iterative with respect to ‖g‖22. So in a
receding horizon context, it makes sense to warm-start the
optimization problem from the ‖g‖22-value at the previous time
instant. Then, gSMM(·) can be closely approximated by the
solution of (35) after the first iteration, i.e.,

gt(u;uini,yini, g
t−1) = P(gt−1)yini +Q(gt−1) ũ, (51)

where, with an abuse of notation, gt(·) denotes the approxi-
mation of gSMM(·) with one iteration at time instant t. In this
way, the SMM predictor is approximated by a linear equality
constraint that can be efficiently solved within a quadratic
program. Thus, the proposed approach solves the following
optimization problem at each time step

minimize
u,y

Jctr(u,y)

subject to gt = P(gt−1)yini +Q(gt−1) ũ,

y = Yf g
t,u ∈ U ,y ∈ Y .

(52)

The parameter estimation part (49) in regularized DeePC
has the same form as the maximum likelihood estimator (33)
with p = 2, which leads to the predictor in (52). However,
our proposed method isolates the parameter estimation part
from the control performance objective. More importantly,
the problem of hyperparameter tuning is avoided by deriving
the coefficients statistically, which requires only information
about the noise levels of the offline data σ2 and the online
measurements σ2

p.

C. Numerical Results

In this subsection, we compare the control performance of
three receding horizon predictive control algorithms: 1) Sub-
PC: subspace predictive control (47), 2) DeePC: regularized
DeePC (48), and 3) SMM-PC: predictive control with the sig-
nal matrix model (52). In DeePC, the algorithm is tested on a
nine-point logarithmic grid of λg between 10 and 1000. In this
example, the control performance is found to not be sensitive
to the value of λy , so a fixed value of λy = 1000 is used. In
SMM-PC, the noise level σ2 is estimated using (39). Assuming
the same sensor for offline and online measurements, we select
σ2 = σ2

p. To benchmark the performance, we also consider
the ideal MPC algorithm (denoted by MPC), where both the
true state-space model and the noise-free state measurements
are available. The result of this benchmark algorithm is thus
deterministic and gives the best possible control performance
with receding horizon predictive control.

In this example, we consider the LTI system (45). Unless
otherwise specified, the following parameters are used in the
simulation: N = 200, L0 = 4, L′ = 11, σ2 = σ2

p = 1, Q =
R = 1. No input and output constraints are enforced, i.e., U =
RL′nu and Y = RL′ny . A square-wave reference trajectory
labeled Ref in Figure 7(a) is to be tracked. The offline data are
generated with unit i.i.d. Gaussian input signals. For each case,
100 Monte Carlo simulations are conducted. In each run, 60
time steps are simulated. The control performance is assessed



by the true stage cost over all time steps, i.e.,

J =

Nc−1∑
k=0

(∥∥y0
k − rk

∥∥2

Q
+ ‖uk‖2R

)
, (53)

where Nc = 60 and y0
k is the true output at time k.

When comparing the closed-loop performance, the best
choices of λg in DeePC are selected with an oracle for each
run as plotted in Figure 5 (green) for different noise levels. It
can be seen that, even for the same control task, the optimal
value of this hyperparameter is not only sensitive to the noise
level but also to the specific realization of the noise. This
makes the tuning process difficult in practice. The optimal
value of λg is used in all the following simulations. On the
other hand, the noise level estimator (39) used in SMM-PC is
very effective in estimating σ2 as demonstrated in Figure 5
(yellow).
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Fig. 5. Hyperparameter tuning in DeePC (λg) and SMM-PC (σ2)
for different noise levels. Colored area: values within one standard
deviation. The dashed line shows the true noise level.

The optimization problems are all formulated as quadratic
programming problems and solved by MOSEK. The com-
putation time for all three algorithms is similar. The effect
of the proposed data compression scheme in Section V-A
is illustrated in Figure 6 with the example of SMM-PC.
By applying the preconditioning, the online computational
complexity no longer depends on the data size N .
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The closed-loop input-output trajectories of different control
algorithms are plotted in Figure 7. The closed-loop trajectories

are characterized by the range within one standard deviation of
the Monte-Carlo simulation. The SMM-PC algorithm obtains
the closest match to the benchmark trajectory MPC. Sub-PC
applies more aggressive control inputs which results in much
larger input costs, whereas the control strategy in DeePC
is more conservative which results in larger tracking errors.
SMM-PC also has the smallest variance of input trajectories
against different noise realizations. The boxplot of the control
performance measure J is shown in Figure 8, which confirms
that SMM-PC performs better than Sub-PC and DeePC in this
control task, even when the optimal tuning of λg , which is not
realistic in practice, is used.

The effects of different offline data sizes N and noise levels
σ2, σ2

p are investigated in Figure 9. As shown in Figure 9(a),
the control performance of SMM-PC is not sensitive to the
number of datapoints and performs uniformly better among
the three algorithms. In fact, good performance is already
obtained at only N = 75. DeePC does not perform very
well with small data sizes but gets a similar performance to
SMM-PC for large N . Sub-PC cannot achieve a satisfying
result even with a large data size because, as discussed in
Section V-C, the subspace predictor is problematic to deal
with online measurement noise σ2

p, which cannot be averaged
out by a large N . Figure 9(b) shows that all three algorithms
perform similarly at low noise levels as they are all stochastic
variants of the noise-free algorithm (15). SMM-PC obtains
slightly worse results under low noise levels (σ2 = σ2

p < 0.05)
compared to the optimally tuned DeePC with an oracle, but
the performance improvement of SMM-PC is significant for
higher noise levels.

VIII. CONCLUSIONS

In this work, we propose a novel statistical framework to es-
timate data-driven models from large noise-corrupted datasets.
This is formulated as a maximum likelihood estimation prob-
lem. The problem is solved efficiently by approximating it
as a sequential quadratic program with data compression and
data-driven noise level estimation. This framework extends
the current works on data-driven methods to noisy data by
providing an optimal solution to the underdetermined implicit
model structure and establishing the signal matrix model.

With the signal matrix model, two approaches in system
identification and receding horizon control are developed.
They obtain an impulse response estimate with less restrictive
assumptions and an effective tuning-free data-driven receding
horizon control algorithm respectively. The results from these
two approaches demonstrate that the proposed framework
can improve the state-of-the-art methods in both data-driven
simulation and control in the presence of noisy data.

APPENDIX I
DERIVATION OF Σy

Let ζi ∈ RL, i = 1, . . . , LM be the i-th column of(
gT ⊗ I

)
, S =

{
(i, j)

∣∣∣(vec(Y ))i = (vec(Y ))j

}
, and Σy1 =
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costs J with different control algorithms with 100 simulations (σ2 =
σ2
p = 1, N = 200).

(
gT ⊗ I

)
Σyd (g ⊗ I). According to (24), we have

Σy1 = σ2
∑

(i,j)∈S
ζiζ

T
j . (54)

Let the i-th and the j-th entries of vec(Y ) correspond to the
(q, r)-th and the (s, t)-th entries of Y respectively, i.e., i =
(r−1)L+q, j = (t−1)L+s. From the Hankel structure, the
pair (i, j) ∈ S iff q+ r = s+ t. According to the structure of(
gT ⊗ I

)
, we have ζi = greq , ζj = gtes, where eq ∈ RL is

the unit vector with q-th non-zero entry, and similarly for es.
Thus,

Σy1 = σ2
∑

q+r=s+t

grgteqe
T
s . (55)

So the (q, s)-th entry of Σy1 is given by

(Σy1)q,s = σ2
∑

q+r=s+t

grgt, (56)

which directly leads to (25).

APPENDIX II
PROOF OF PROPOSITION 2

Let Kλ = F−1 − F−1UT(UF−1UT)−1UF−1 and gλ =
KλY

T
p yini +Qũ. From the structure of (33), when λ→ 0, gλ

converges to gpinv. When λ = L′σ2
p/ ‖gλ‖

2
2, gλ = gSMM. Then

102 103
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6

8

J
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(a) Performance as a function of the number of datapoints
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(b) Performance as a function of the noise level

Fig. 9. The effect of different offline data sizes and noise levels on the
control performance.

we have cov(gλ) = σ2
p(KλY

T
p )(KλY

T
p )T. The derivative of

tr(cov(gλ)) with respect to λ is calculated as follows.

∂ tr(cov(gλ))

∂ (F−1)i,j
= tr

[(
∂ tr(cov(gλ))

∂Kλ

)T
∂Kλ

∂ (F−1)i,j

]
= 2σ2

p tr
[(
Y T
p YpKλ

)T
KλF∆(i, j)FKλ

]
,

(57)



where the (i, j)-th element of ∆(i, j) ∈ RM×M is 1 and the
other elements are 0. Then,

∂ tr(cov(gλ))

∂λ
= tr

[(
∂ tr(cov(gλ))

∂F−1

)T
∂F−1

∂λ

]

= −2σ2
p tr
[(
FKλ

(
Y T
p YpKλ

)T
KλF

)T
F−2

]
= −2σ2

p tr
(
KλY

T
p YpKλKλ

)
,

(58)
According to the Schur complement, since[

F−1 F−1UT

UF−1 UF−1UT

]
=

[
I
U

]
F−1

[
I UT

]
� 0, (59)

we have Kλ � 0. Together with KλY
T
p YpKλ � 0, we

have ∂ tr(cov(gλ))/∂λ < 0 for all λ. This directly leads to
Proposition 2.
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