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Abstract—We address the problem of persistent monitoring,
where a finite set of mobile agents has to persistently visit a
finite set of targets. Each of these targets has an internal state that
evolves with linear stochastic dynamics. The agents can observe
these states, and the observation quality is a function of the
distance between the agent and a given target. The goal is then to
minimize the mean squared estimation error of these target states.
We approach the problem from an infinite horizon perspective,
where we prove that, under some natural assumptions, the
covariance matrix of each target converges to a limit cycle. The
goal, therefore, becomes to minimize the steady state uncertainty.
Assuming that the trajectory is parameterized, we provide tools
for computing the steady state cost gradient. We show that, in
one-dimensional (1D) environments with bounded control and
non-overlapping targets, when an optimal control exists it can
be represented using a finite number of parameters. We also
propose an efficient parameterization of the agent trajectories
for multidimensional settings using Fourier curves. Simulation
results show the efficacy of the proposed technique in 1D, 2D
and 3D scenarios.

I. INTRODUCTION

We consider the problem of multi-agent persistent moni-

toring. This problem consists of using a finite set of agents

to monitor a finite set of targets, more numerous than agents,

which have internal states that evolve over time with dynamics

subject to uncertainty. Therefore, as time goes to infinity,

in order to keep the uncertainty under control, the targets

need to be visited only a finite number of times, but persis-

tently. The goal is to minimize the long-term uncertainty by

designing movement policies that produce the best estimate

possible of the target states. This paradigm finds applications

across a wide range of domains, such as trajectory planning

of underwater vehicles to measure ocean temperature [1]–

[3], surveillance in smart cities [4] and tracking of multiple

microparticles by an optical microscope [5].

This problem is closely related to the Multi Traveling

Salesman Problem (MTSP) [6] and Multi-Vehicle Routing

Problem (MVRP) [7], where, given a set of targets (possibly

constrained to a graph-based structure), the goal is to find a

cycle in which the agents efficiently visit all the targets in order
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to minimize the traveled distance or total travel time. These

problems are proved to be computationally intractable (NP-

hard) and most of the scalable solutions to these problems rely

either on local optimization or heuristics [6]–[8]. The major

difference between the MTSP and MVRP and the problem we

are dealing with in this paper is that the optimization goal we

consider is to minimize the uncertainty rather than distance or

time between two consecutive observations of a given target.

The present work is also closely related to the sensor allocation

problem [9], where a set of sensors can observe a set of

targets, but due to various constraints not all the targets can

be observed at the same time and, therefore, some of the

sensors have to switch among the targets they observe. The

sensor allocation problem, however, assumes that the sensors

are fixed and therefore does not incorporate the effect of the

agent movement (i.e. the mobile sensors) in the formulation.

In the realm of persistent monitoring, significant previ-

ous work has been done. In [1], a variant of the Rapid-

Exploring Random Tree (RRT) algorithm was designed for

cyclic Persistent Monitoring and [2] introduced an optimal

control approach that relied on a solution of the two-point

boundary value problem resulting from a Hamiltonian anal-

ysis. Note that the solution of the two-point value problem

is numerically challenging and computationally expensive. In

[10] the persistent monitoring problem is formulated using

temporal logic to encode target visiting constraints rather than

solving an optimization problem.

The present paper also builds up from significant previous

work by the authors [11]–[13], where the problem of persistent

monitoring was modelled using an uncertainty metric for each

of the targets that either grew linearly with time when the agent

was not observed or decreased linearly when an agent visited

it. A common feature among these previous works and the

present paper is the focus on scalable solutions with respect

to the number of agents, targets and time horizon. Therefore,

instead of looking for globally optimal visiting schedules, we

use a local optimization scheme (gradient descent) even though

the obtained solution is not guaranteed to be globally optimal.

One big challenge in order to use a gradient descent approach

is to efficiently compute the gradients of the cost with respect

to the parameters that define the trajectory.

The current work, unlike some previous work by the au-

thors, considers each target as having an internal state that

evolves with linear stochastic dynamics that can be observed

with a linear observation model. The signal to noise ratio of the

observation is a function of the distance between the agent and

the target. In this setting, the optimal estimator can be proven

to be a Kalman-Bucy filter and the mean estimation error is

directly related to the covariance matrix of this filter. The main

contribution of this paper is to provide tools to efficiently
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represent and optimize the schedules for agents visiting targets.

If we consider finite horizon schedules, as time grows to

infinity, the number of parameters to represent a trajectory also

tends to grow infinitely large. We, however, restrict ourselves

to a periodic trajectory and approach the problem from an

infinite horizon perspective. We show that under some very

natural assumptions the estimation error converges to a limit

cycle and we provide tools for optimizing one period of the

limit cycle trajectory, which usually is represented by only a

small number of parameters.

Although the analysis introduced in this paper is indepen-

dent of the particular parameterization chosen for the trajec-

tory, we discuss two parameterizations that are particularly

interesting. When the targets and agents are constrained to lie

in a one-dimensional environment, we show that, under some

assumptions, an optimal control can always be represented by

a trajectory in which the agent is either moving with full speed

or dwelling at a fixed position. This allows optimal trajectories

to be described as a finite sequence of movement times and

dwelling times, yielding a parameterization. On the other hand,

when the agents and targets operate in a higher dimensional

space (e.g. 2D and 3D), we cannot immediately extend such

properties of an optimal control. We then parameterize the

trajectories using Fourier curves, where the movement of an

agent in each of the coordinates is described by a truncated

Fourier series. Fourier curves are interesting because they are

able to describe very general smooth movement policies with

only a very small number of coefficients.

Recalling the goal of performing local optimization using a

gradient descent scheme, it is particularly important to provide

good initial solutions for the optimization. We thus connect

the persistent monitoring problem with the MTSP and use

a heuristic solution to the MTSP as a basis for the initial

trajectory of the agents in the optimization scheme. We benefit

from the fact that efficient heuristic solutions of the MTSP are

well studied in the scientific literature and that they always

provide an initial trajectory where all the targets are visited.

This is a very important feature for persistent monitoring,

since it prevents the uncertainty of each target from becoming

infinitely large.

Preliminary results of this work have appeared in previous

publications. In [14], the target internal state dynamics and

observation models, as well as the 1D transient analysis were

introduced. The computation of steady state gradients and

infinite horizon analysis was first introduced in [15]. The

extension to multi dimensional environments using Fourier

curves was initially presented in [16]. However, the approach

described in our previous works was heavily dependent on

the specific parameterization and in the present work we

formulate the problem in a general framework that does

not rely on the specific parameterization. Moreover, in Sec.

III we provide a proof that guarantees the convergence and

uniqueness of the steady state covariance matrices and also

we show the soundness of our method to compute the steady

state gradients. On top of that, we provide a stronger claim

than we did in [14] about an optimal parameterization of 1D

trajectories. Previously, we were only able to show that it can

be parameterized, but now we provide an explicit bound on

the number of parameters. Moreover, in Sec. V we include

simulation results that significantly add to the results of our

previous work [16].

The rest of this paper is organized as follows. Section II

describes the models used for the agents and the target internal

states, along with a formulation of the optimal joint control

and estimation problem. Section III presents results on the

convergence of the covariance matrix and the optimization

procedure is given for the periodic, infinite horizon case.

Section IV introduces the 1D parameterization, along with

its properties, optimization initialization and some simulation

results. In Section V, some features of the previous section are

extended to higher dimensions using Fourier curves and 1D,

2D and 3D results are presented. Finally Section VI gives a

conclusion and shares ideas for future works.

II. PROBLEM FORMULATION

Consider an environment with a set of M points of interest

(targets) at fixed positions xi ∈ R
P , i = 1, ...,M . Each of

these targets has an internal state φi ∈ R
Li that needs to be

monitored and that evolves according to linear time-invariant

stochastic dynamics:

φ̇i(t) = Aiφi(t) + wi(t), (1)

where wi(t) is a white noise process distributed according to

wi(t) ∼ N (0, Qi), i = 1, . . . ,M, and wi(t) and wj(t) are

statistically independent if i 6= j.

Suppose that there is a collection of N mobile agents

at positions si(t) ∈ R
P that can move with the following

kinematic model:

ṡj(t) = uj(t), uj(t) ∈ U , j = 1, ..., N, (2)

where uj is an input, and U is the set of admissible inputs.

Even though we assume, for the sake of simplicity, first order

dynamics and that only the speed may be bounded, the results

in this paper could be extended to more complex dynamics

and constraints. For example, [17] explored similar results

in a simplified version of the persistent monitoring problem,

considering double integrator agent dynamics with constraints

both on the speed and the acceleration.

Each of these agents is equipped with sensors that can

observe the targets according to the following model:

zi,j(t) = γj (sj(t)− xi)Hiφi(t) + vi,j(t), (3)

where vi,j(t) is a white noise process distributed according to

vi,j(t) ∼ N (0, Ri) with vi,j(t) independent of vk,l if i 6= k
or j 6= l, and γi,j : R

N 7→ R is a function that captures

the interdependence of measurement quality and the relative

position from a given agent to a target. The intuition behind

this function is that the instantaneous signal to noise ratio

(SNR) can be computed as:

E
[

‖zi,j(t)− vi,j(t)‖
2
]

E[‖vi,j(t)‖
2
]

= γ2
i,j (sj(t)− xi)

‖Hiφi(t)‖
2

tr(Ri)
,

(4)

where tr(·) is the trace of the matrix. Notice that the term

‖Hiφi(t)‖
2
(tr(Ri))

−1 is a deterministic scalar that does not



depend on the relative position between the target and the

agent. Therefore, the function γi,j captures entirely how the

position of the agent affects the quality of the measurement.

It is worth noting that in most of the applications of mobile

agents to sensing there is a limited sensing range or the quality

of the measurement gets worse as the agent moves farther

away from the target. The general model of γi,j is capable of

capturing both the finite range and the dependence between

measurement quality and relative position of the target from

the agent. Even though the analysis in this paper does not

depend on the specific γi,j , for the sake of concreteness we

use the following form:

γi,j(α) =

{

0, ‖α‖ > ri,j ,
√

1− ‖α‖
ri,j

, ‖α‖ ≤ ri,j .
(5)

The intuition behind this specific form is that the best

measurement quality is achieved when the agent’s location

coincides with that of the target, with the SNR decaying

linearly as the agent moves away. When agent is at a distance

larger or equal to its sensing radius ri,j , only noise is observed.

In this paper we approach the problem from a centralized

perspective. Therefore, at a given instant, the combined obser-

vations from all the agents of a single target can be grouped

in a vector z̃(t) as:

zi(t) =
[

z′i,1 ... z′i,N
]′
= H̃i(s1, ..., sn)φi(t) + ṽi(t), (6)

where

H̃i =
[

γ1(s1 − xi)H
′
i · · · γN (sN − xi)H

′
i

]′
, (7)

ṽi(t) =
[

v′i,1(t) ... v′i,N (t)
]′
, (8)

and, since vi,j(t) is independent of vi,k(t) if k 6= j,

E[ṽ′i(t)ṽi(t)] = R̃i =











Ri 0 . . . 0
0 Ri . . . 0
...

...
. . .

...

0 0 . . . Ri











. (9)

The overall goal is to obtain estimators φ̂i(t, z(t)) and

open-loop control inputs uj(t) to minimize the following cost

function:

J =
1

tf

∫ tf

0





M
∑

i=1

E[e′i(ζ)ei(ζ)] + β
N
∑

j=1

u′
j(ζ)uj(ζ)



 dζ,

(10)

where ei(t) = φ̂i(t) − φi(t) and tf is the time horizon. This

cost function represents a weighted sum of the mean squared

estimation error and the control effort; thus, the weighting

factor β is responsible for balancing the importance of these

two optimization goals.

The models in (7) and (8) define a linear time-varying

stochastic system. Based on a similar statement from [2], we

have the following proposition:

Proposition 1. The optimal unbiased estimator φ̂i for the the

cost function (10), dynamics (1), and observation model (3),

is the Kalman-Bucy filter, given by:

˙̂
φi(t) = Aiφ̂i(t) + Ω(t)iH̃

′
i(t)R̃

−1
i

(

z̃i(t)− H̃i(t)φ̂i(t)
)

,

(11a)

Ω̇i(t) = AiΩi(t) + Ωi(t)A
′
i +Qi − Ωi(t)H̃

′
iR̃

−1
i H̃iΩi(t),

(11b)

where Ωi(t) is the covariance matrix of the estimator.

Proof. See Appendix A.

Using (7) and (8), we can rewrite (11b) as:

Ω̇i(t) = AiΩi(t) + Ωi(t)A
′
i +Qi − Ωi(t)GiΩi(t)

N
∑

j=1

γ2
i,j(t),

(12)

where Gi = H ′
iR

−1
i Hi and γi,j(t) = γi,j(sj(t) − xi). Using

the fact that

E [e′i(t)ei(t)] = tr(E [ei(t)e
′
i(t)]) = tr(Ωi(t)),

we can rewrite the cost function in (10) as

J =
1

tf

∫

tf

0





M
∑

i=1

tr(Ωi(ζ)) + β

N
∑

j=1

u′
j(ζ)uj(ζ)



 dζ.

(13)

The goal is then to minimize the cost (13) subject to the

dynamics in (12) and (2). In other words, we aim to design

a trajectory, with constrained controls uj ∈ U , and estimation

error linked to the trajectory through the dynamics of the

covariance matrix of the Kalman-Bucy Filter that minimizes

a weighted sum of the total control effort and the mean

estimation error.

III. OPTIMIZATION OF PARAMETERIZED TRAJECTORIES

A. Finite Horizon Trajectory Optimization

Even though we focus on the optimization of infinite

horizon trajectories, we briefly review the procedure for op-

timizing trajectories with a finite time horizon in order to

later extend to the infinite horizon setting. In this section,

we establish a general formulation, where we assume that

the agent trajectories can be fully defined by a finite set of

parameters. In the following sections we approach specific

settings that show that parameterizations tend to naturally

fit the persistent monitoring problem. Our overall goal is

to compute locally optimal solutions with respect to these

parameters using gradient descent. Therefore, we initially

discuss how to compute the gradients for the finite horizon

version of the problem. We define the set of parameters that

fully describe the trajectory for t ∈ [0, tf ] as Θ = {θ1, ..., θD}.
Recalling the expression for the cost (13), we can compute

the partial derivative with respect to one of the parameters of

the trajectory θd as:

∂J

∂θd
=

1

tf

∫

tf

0





M
∑

i=1

tr

(

∂Ωi

∂θd
(ζ)

)

+ β
N
∑

j=1

∂(u′
juj)

∂θd
(ζ)



 dζ.

(14)



Note further that, given the dynamics of the covariance

matrix in (12), ∂Ωi

∂θd
is the solution of the following ODE:

d

dt

(

∂Ωi(t)

∂θd

)

= Ai
∂Ωi

∂θd
(t) +

∂Ωi(t)

∂θd
A′

i +Qi

−

(

∂Ωi(t)

∂θd
GiΩi(t) + Ωi(t)Gi

∂Ωi(t)

∂θd

) N
∑

j=1

γ2
i,j(t)

− Ωi(t)GiΩi(t)

N
∑

j=1

∂γ2
i,j

∂θd
(t), (15)

with initial conditions ∂Ωi

∂θd
(0) = 0. Also, we know that

∂γ2
i,j(t)

∂θ
=

P
∑

p=1

∂γ2
i,j(t)

∂s
ep
j

∂s
ep
j (t)

∂θd
, (16)

where ep, p = 1, ..., P is the p-th coordinate of the space

where the agents move in. Given the specific definition of γi,j
in (5), we can easily see that

∂γ2
i,j

∂seij
=

{

s
ep
j

−x
ep
i

rj‖sj−xi‖
, if ‖sj − xi‖ < rj ,

0, otherwise.
(17)

The only terms that we have not yet given a procedure

to compute are
∂(u′

juj)

∂θd
(t) and

∂s
ep
j

∂θd
(t). The computation of

both of these terms is intrinsically related to the specific

parameterization chosen and details of their computation will

be discussed in Secs. IV and V. Note that we use the partial

derivatives of the covariance matrices in (14) in order to

compute the gradient of the cost J . The complete procedure

to compute the transient problem gradients is given in Alg. 1.

Algorithm 1 Transient Gradient Computation

1: procedure COMPUTETRANSIENTGRADIENT

2: Input: Θ
3: Compute s1(t), ..., sN (t) from the parameterization

4: for every θ in Θ do

5: Compute ∂
∂θ

∫ tf
0

∑N
j=1 u

′
j(ζ)uj(ζ)dζ according to

the parameterization

6: Compute
∂sj(t)
∂θ according to the parameterization

7: for i ranging from 1 to M do

8: Compute
∂Ωi(t)

∂θ by solving ODE (15)

9: Compute ∂J
∂θ using (14).

10: Output: ∇J

B. Steady State Persistent Monitoring

For a persistent monitoring task to be successful, it is

necessary that targets are visited infinitely often as time goes

to infinity, because otherwise their uncertainty can become

unbounded. Periodicity naturally fits into the persistent moni-

toring paradigm, since targets need to be visited infinitely often

and, although a periodic structure of the solution is not nec-

essarily optimal, simulation results in the transient case show

that the trajectories tend to converge to oscillatory behavior

[14]. On top of that, periodicity provides an upper bound to

the inter-visit time. Moreover, if periodicity is assumed, the

infinite horizon trajectory is fully defined by the trajectory of

a single period. This often leads to needing only a very small

number of parameters to describe the infinite horizon trajectory

and, as a consequence, only a small number of parameters

have to be optimized in order to generate efficient trajectories.

With that in mind, in this section we explore the properties of

periodic solutions to the persistent monitoring problem when

the system fulfills the following very natural assumptions.

Assumption 1. The pair (Ai, Hi) is detectable, for every i ∈
{1, ...,M}.

Assumption 2. Qi and the initial covariance matrix Σi(0)
are positive definite, for every i ∈ {1, ...,M}.

The intuition behind the first assumption is that it ensures

that sensing can guarantee that the uncertainty of each target

will be bounded even for long horizons. The second one

ensures that the covariance matrix will always be positive

definite, a fact that will be used to prove Prop. 3. The results in

this paper would likely still hold if Assumption 2 was relaxed,

even though the proof of Prop. 3 could become more complex.

Under these assumptions, first we explore conditions under

which the convergence of the covariance matrix is achieved.

For the sake of notational conciseness, we define

ηi(t) =

N
∑

j=1

γ2
i,j(t), (18)

which represents the instantaneous power level of the sensed

signal, combining all the agents’ observations of the same

target i. Using a procedure similar to the one used in the proof

of Lemma 9 in [9], we establish the following proposition:

Proposition 2. If ηi(t) is T -periodic and ηi(t) > 0 for some

non-degenerate interval [a, b] ∈ [0, T ], then, under Assumption

1, there exists a unique non-negative stabilizing T -periodic

solution to (12).

Proof. According to [18, p. 130], a pair (Ai, ηi(t)Hi) of a

periodic system is detectable if and only if for every eigenpair

(x, λ) with x 6= 0,

Aix = λx =⇒ ∃ [a, b] ∈ [0, T ] s.t. ηi(t)e
λtHix 6= 0, (19)

∀t ∈ [a, b] and [a, b] is non-degenerate. Notice that, due to

Assumption 1, for any eigenvector x of Ai, Hix 6= 0. There-

fore, when ηi(t) > 0 (i.e. any t ∈ [a, b]), ηi(t)e
λtHix 6= 0,

which implies that (Ai, ηi(t)Hi) is detectable. Therefore, the

collorary to Theorem 3 in [19, p. 95] shows that there exists

a non negative T -periodic solution to (12), Ω̄i(t), and

lim
t→∞

(Ωi(t)− Ω̄i(t)) = 0

for any solution Ωi(t) with positive definite initial condition

Ωi(0).

Prop. 2 implies that, if ηi(t) is periodic, given any initial

covariance matrix Ωi(0), the estimation covariance for target

i converges to a T -periodic matrix Ω̄i(t), as long as target i



is visited for some non-zero amount of time in the periodic

trajectory. Therefore,

∀δ > 0, ∃ t0 s.t. |Ω̃i(t)− Ωi(t)| ≤ δ, ∀t ≥ t0,

which implies that

lim
t→∞

1

t

∫ t

0

|tr(Ω̃i(t
′)− Ωi(t

′))| dt′ ≤ δ. (20)

This discussion implies that, if we run a periodic trajectory

for long enough, the mean estimation error will become

arbitrarily close to the mean steady state estimation error.

Therefore, if we plan only (one period of) the steady state

trajectory, the actual estimation error will be arbitrarily close

to that of the planned trajectory as time goes to infinity.

Even though Prop. 2 states that the solution of the periodic

Riccati equation is globally attractive, it does not provide any

convergence rate for its numerical computation. However, the

problem of computing numerical solutions to this equation has

been studied in other works and we refer the reader to [20]

for a good review and discussion of these methods.

Similarly as in the transient case, we intend to optimize the

trajectory of the agents using gradient descent. However, the

computation of the steady state gradients of the covariance

matrix is more challenging than the transient case discussed

in Subsec. III-A. In the sequel, we provide the procedure to

compute these gradients when they exist.

C. Steady State Gradients

Assuming that the trajectory is periodic and all the targets

are visited, we introduce the change of variable q = t/T ,

where T is the period of the trajectory. The steady state cost

can be rewritten as:

J =

∫

1

0





M
∑

i=1

tr(Ω̄i(q)) + β

N
∑

j=1

ū′
j(q)ūj(q)



 dq, (21)

where ū(q) = u(qT ). Similar to (14), we know that, given

some parameter θd ∈ Θ:

∂J

∂θd
=

∫

1

0





M
∑

i=1

tr

(

∂Ω̄i(q)

∂θ

)

+ β
N
∑

j=1

∂(ū′
jūj)(q)

∂θd



 dq.

(22)

Ω̄i(q), when it exists, is defined by the following dynamics

˙̄Ωi(q) =
dΩ̄i(q)

dq
= T (AΩ̄i(q) + Ω̄i(q)A

′ +Q

− ηi(q)Ω̄i(q)GΩ̄i(q)), (23)

along with the periodicity condition Ω̄i(0) = Ω̄i(1). Now,

suppose that the gradient of Ω̄i(q) with respect to a parameter

θd exists. Then, this gradient is the solution of the following

differential equation (note that the period may be a function

of the parameters or a parameter itself):

Σ̇(q)− T

(

AΣ(q) + Σ(q)A′ − ηi(q)Ω̄i(q)GΣ(q)

−ηi(q)Σ(q)GiΩ̄i(q)

)

= T
∂ηi(q)

∂θd
Ω̄i(q)GiΩ̄i(q)+

∂T

∂θd

˙̄Ωi

T
,

(24)

with periodicity conditions Σ(0) = Σ(1). In order to study

the computation of Σ(q), we define the following auxiliary

problems:

Σ̇H − T
(

A− ηiΩ̄iG
)

ΣH = 0, ΣH(0) = I, (25)

Σ̇ZI − T
(

A− ηiΩ̄iG
)

ΣZI − TΣ′
ZI

(

A− ηiΩ̄iG
)′

= T
∂ηi
∂θ

Ω̄iGΩ̄i +
∂T

∂θd

Ω̇i

T
, ΣZI(0) = 0, (26)

where the time dependence of ηi(q), Ωi(q),ΣZI(q) and

ΣH(q) was omited for conciseness. Then, in the following

Proposition we exploit these auxiliary problems for computing

Σ(q).

Proposition 3. Suppose ΣH is a solution of (25), ΣZI is a

solution of (26), Assumptions 1 and 2 hold, and that target i
is observed at least once in the period T . Then, the equation

Λ = ΣH(1)ΛΣ′
H(1) + ΣZI(1) (27)

has a unique solution Λ. Additionally, when
∂Ω̄i(q)
∂θd

exists,

∂Ω̄i(q)

∂θd
= Σ(q) = Σ′

H(q)ΛΣH(q) + ΣZI(q). (28)

Proof. Suppose Λ and Λ̃ are solutions of (25), then

Λ− Λ̃ = ΣH(1)
(

Λ− Λ̃
)

Σ′
H(1) (29)

which is equivalent to

vec
(

Λ − Λ̃
)

= (ΣH(1)⊗ ΣH(1)) vec
(

Λ− Λ̃
)

, (30)

where vec(·) is the operator the performs the matrix vec-

torization and ⊗ represents the matrix Kronecker product.

Notice that Λ = Λ̃ is a solution of (30). This solution is

the unique solution if and only if 1 is not an eigenvalue

of ΣH(1) ⊗ ΣH(1). On the other hand, the eigenvalues of

ΣH(1) ⊗ ΣH(1) are all in the form µ1µ2, where µ1 and µ2

are distinct eigenvalues of ΣH(1) [21].

In the following we show that all the eigenvalues of ΣH(1)
have absolute value lower than one. For that, first notice that

since Q is positive definite, Ω̄i is also positive definite and

hence, invertible. Define

W = Ω̄−1
i ,

and, since Ẇ = −Ω̄−1
i

˙̄ΩiΩ̄
−1
i = −W ˙̄ΩiW , using (12) and

(18), the dynamics of W can be expressed as:

Ẇ = −T (WA+A′W +WQW − ηiG). (31)

Therefore, if we define the Lyapunov Function V =
Σ′

HWΣH , we have that:

d

dq
(Σ′

HWΣH) = Σ′
H

(

TWA+ TA′W + TηiG+ Ẇ
)

ΣH

= −TΣ′
HWQWΣH .

(32)

By integrating the previous relation, we have

Σ′
H(1)W(1)ΣH(1)− ΣH(0)W(0)ΣH(0) =

− T

∫ 1

0

Φ(q, 0)′WQWΦ(q, 0) dq, (33)



where Φ(q1, q2) is the transition matrix of the system (25)

betwen times q1 and q2. Moreover, since Ω̄i(q) is periodic

with period one and ΣH(0) = I , we have that

Σ′
H(1)W(0)ΣH(1)−W(0)

= −T

∫ 1

0

Φ(q, 0)′WQWΦ(q, 0) dq. (34)

Note that WΦ(q, 0) is full rank on a nontrivial set, since W
is positive definite and Φ(q, 0) is full rank for at least a non-

degenerate interval due to Assumption 1 and the fact that target

i is observed at least once in an period. This, along with the

fact that Q is positive definite, implies that the integral in (34)

will be a positive definite matrix. Therefore,

Σ′
H(1)W(0)ΣH(1)−W(0) ≺ 0. (35)

Consequently, one can see that

(ΣH(1)x)′W(0)(ΣH(1)x)

x′W(0)x
< 1, (36)

for every nonzero x. Since W(0) is positive definite, (36)

shows that the norm of the matrix ΣH(1) induced by W(0)
(i.e., ‖ΣH(1)‖W (0)) is less than 1, therefore its spectral

radius is smaller than 1. This implies that the absolute value

of all the eigenvalues of ΣH(1) are smaller than 1. Hence,

ΣH(1)⊗ΣH(1) is stable, and Λ = Λ̃. Moreover, (27) has one

solution given by

Λ =

∞
∑

j=1

(ΣH(1))
j
ΣZI(1) (ΣH(1)′)

j
. (37)

We point out that the sum in (37) converges, since the absolute

value of the eigenvalues of ΣH(1) are all lower than 1.

Now, note that (24) is a first order linear matrix differential

equation and its general solution is given by

Σ(q) = Σ′
H(q)Σ(0)ΣH(q) + ΣZI(q). (38)

Since there is a unique solution to (38), and when ∂Ω̄i(q)/∂θd
exists it must satisfy (38), we know that Σ(q) = ∂Ω̄i(q)/∂θd.

The usefulness of Prop. 3 for persistent monitoring ap-

plications is contingent on the existence of the derivatives

Σ(q) = ∂Ω̄i(q)/∂θd. In Appendix B we discuss the existence

of these derivatives and show that they indeed exist in most

practical situations.

Also, note that the Lyapunov equation in (25) can be

efficiently solved for low-dimensional systems using the al-

gorithm proposed in [22] and implemented in the MATLAB

function dlyap. We also highlight that, in order to compute the

gradient, the partial derivatives of the steady state covariance

matrices must be computed using the procedure in Prop. 3.

Then, these partial derivatives are used along with (22) to

compute the partial derivatives of the cost, which compose

the gradient ∇J . Algorithm 2 summarizes the procedure to

compute the steady state gradients.

In order to locally optimize the trajectories, the gradient

computation needs to be used along with some gradient

descent scheme. We describe the optimization procedure we

Algorithm 2 Steady State Gradient Computation

1: procedure COMPUTESTEADYSTATEGRADIENT

2: Input: Θ
3: Compute s1(q), ..., sN (q) from the parameterization

4: for i ranging from 1 to M do

5: Compute the steady state covariance Ω̄i(q)

6: Compute ∂
∂θ

∫ tf
0

∑N
j=1 u

′
j(ζ)uj(ζ)dζ according to the

parameterization

7: Compute
∂sj(t)
∂θ and ∂T

∂θ according to the parameteri-

zation

8: for every θ in Θ do

9: for i ranging from 1 to M do

10: Compute
∂Ωi(q)

∂θ as indicated in Prop. 3.

11: Compute ∂J
∂θ using (22)

12: Output: ∇J

used in Alg. 3, where κl is a scalar positive gain, and the

proj operator projects the parameters into the set of feasible

parameters (uj(t) ∈ U). As a side note, this projection might

be difficult to compute in general and, therefore when choosing

a parameterization it is important to make sure that there are

efficient ways to compute this projection numerically.

Algorithm 3 Gradient Descent

1: procedure GRADIENT DESCENT

2: Input: Θ0,

3: ||∇J || ← ∞
4: l ← 0
5: while ||∇J || > ǫ do

6: ∇J ←ComputeGradient(Θl)

7: Θl+1 ← proj(Θl − κl∇J)
8: l← l+ 1

9: Output: Θl

IV. PARAMETERIZATION OF AN OPTIMAL TRAJECTORY IN

1-D WITH SPEED BOUNDS

When the agents and targets are constrained to a line, a

particularly interesting case is the one where the absolute

value of controls is bounded (U = {u ∈ R | |u| < umax})
and there is no penalty for control effort in the optimization

cost J (i.e. β = 0). In this case we can represent optimized

controls using a simple parameterization that could even

lead to global optimality. It is worth noticing that in many

real-world applications of persistent monitoring agents are

constrained to (possibly multiple) uni-dimensional mobility

paths, such as powerline inspection agents, cars on streets,

and autonomous vehicles in rivers.

Assuming proper rescaling, we can consider −1 ≤ uj ≤ 1,

i.e., U = [−1, 1]. In the remainder of this section, we derive

properties of the optimal control, establish a parameterization

that is able to represent an optimal control, and then compute

the gradients necessary in order to optimize the trajectories.



A. Properties of an Optimal Control

In order to derive the properties of an optimal control, we

first introduce the following lemma. The intuition behind it is

that if a target is observed for a longer time (or with better

quality), its uncertainty will be lower. We note that, although

this lemma is introduced in this Section, it is not restricted to

the 1D setting with bounded input.

Lemma 1. Given Ω1(t) and Ω2(t), two bounded covariance

matrices under the dynamics in (12) with A = A1 = A2,

G = G1 = G2, Q = Q1 = Q2, then if Ω1(0) − Ω2(0) is

negative semi-definite and η1(t) ≥ η2(t) ∀t, then Ω1(t)−Ω2(t)
is a negative semi definite matrix for all t ≥ 0.

Proof. Define β = Ω1(t) − Ω2(t). The dynamics of β is

described by the following equation.

β̇(t) = Aβ(t) + βA′ − η1(t)Ω1(t)GΩ1(t)

+ η2(t)Ω2(t)GΩ2(t). (39)

Adding and subtracting the terms η1(t)Ω2(t)GΩ2(t) and

η1(t)Ω1(t)GΩ2(t) to the equation, we can rewrite (39) as:

β̇(t) = Aβ(t) + βA′ − η1(t) [Ω1(t)Gβ(t) + β(t)GΩ2(t)]

+ [η2(t)− η1(t)] Ω2(t)GΩ2(t). (40)

From Thm. 1.e in [23], since β(t) is a C1 matrix, its

eigenvalues can be C1 time parameterized. Let µn denote the

nth eigenvalue of β(t) and xn(t) the corresponding unit norm

eigenvector. Then, from Thm. 5 in [24] we have that

µ̇n = x′
nβ̇xn.

Also, notice that by using (40) and the fact that

λmin

(

D+D′

2

)

≤ x′Dx
‖x‖ ≤ λmax

(

D+D′

2

)

= ‖D‖, for any

square matrix D,

µ̇n ≤ ‖A‖µn − η1βµn + [η2 − η1]x
′
nΩ2GΩ2xn

≤ ‖A‖µn − η1βµn,

where β = λmin ((Ω1 +Ω2)G+G(Ω1 +Ω2)). Using Gron-

wall’s inequality [25] and the fact that the solution of a first

order linear homogeneous ODE does not change sign, we

conclude that µn(t) ≤ 0, ∀ t ∈ [0, T ] and, therefore, β(t)
is negative semidefinite.

In Lemma 1, Ω1 and Ω2 can also be understood as covari-

ance matrices for the same target but under different agent

trajectories.

Before proceeding to the proposition about an optimal

control structure, a few definitions are necessary. We define

an isolated target i as a target such that

min
k 6=i
|xi − xk| > 2rmax, rmax = max

i,j
{ri,j}.

Therefore, an isolated target is a target for which an agent

cannot see another target when visiting it. Referring to the

regions in space where an agent can sense a target as “visible

areas”, the minimum distance between visible areas dmin is

defined as:

dmin = min
i,k
|xi − xk| − 2rmax > 0,

and the finite time cost is defined as

J(u1, ..., uN , t) =
1

t

∫ t

0

(

M
∑

i=1

tr (Ωi(β))

)

dβ. (41)

We can then claim the following proposition.

Proposition 4. In an environment where all the targets are

isolated, given any policy uj(β), j = 1, ..., N , then there

is a policy ũj(β) with ũj(β) ∈ {−1, 0, 1} ∀β ∈ [0, t]
and with the number of control switches for each agent (i.e.

discontinuities in ũj(β)) upper bounded by 2 t
dmin

+ 4 such

that J(u1, ..., uN , t) ≥ J(ũ1, ..., ũN , t).

Proof. We prove this result by construction: given a policy

uj(t
′) with ηi(t

′) associated to it (as defined by (18)), we will

construct an alternative policy ũj(t
′) associated with η̃i(t

′)
such that η̃i(t

′) ≥ ηi(t
′) ∀t′ ∈ [0, t] and i = 1, ...,M , and

then use Prop. 1, along with the definition of the cost (41), to

show that the alternative policy has lower or equal cost than

the original one.

Initially, we focus on the policy uj(t
′). We say that an agent

j “visits” a target i if at some time t′, |sj(t′)−xi(t
′)| < rj . For

every agent in the policy uj(t
′), there is an ordered collection

of targets it visits in [0, t]. Therefore, there must exist a set of

indices of all the targets visited by agent j: {yj0, ..., y
j
Kj
} ∈

{1, ...,M}, such that yjp 6= yjp−1 and agent j visited no other

target in the time between visiting targets yjp and yjp−1. This is

the sequence of all the targets that agent j visited over [0, t],
not considering consecutive visits to the same target. In other

words, the same target can be present more than once in the

sequence {yj0, ..., y
j
Kj
} but, if that is the case, it will not be in

consecutive positions.

For each of these visits, we can define the initial visiting

time tjp for p = 1, ...,Kj as

tjp = inf{t′|t′ > tjp−1 and agent j visits target yjp at time t′},

and tj0 = 0 and tjKj+1 = t. Also note that while t′ ∈ [tjp−1, t
j
p),

agent j only influences the value of ηi(j) of the target it is

currently visiting. We propose the following alternative policy,

where ũj(t
′) for t′ ∈ [tjp−1, t

j
p) is such that:

ũj(t
′) =































sj(t
j
p)−sj(t

′)

|sj(t
j
p)−sj(t′)|

, if
|sj(t

j
p)−sj(t

′)|

tjp−t′
≤ 1,

x
y
j
p
−sj(t

′)

|x
y
j
p
−sj(t′)|

, if
|sj(t

j
p)−sj(t

′)|

tjp−t′
> 1 and

sj(t
′) 6= xyj

p
.

0, otherwise.

Notice that this construction provides a feasible trajectory,

since the original trajectory is assumed feasible. Also, in the

alternative policy ũj(t
′) ∈ {−1, 0, 1} ∀t′ ∈ [0, t], since the

speed is either zero or a scalar divided by its absolute value.

The intuition behind the proposed alternative policy is that

at the beginning of each visit, the agent moves with maximum

speed towards the target yjp and if it reaches the target, it dwells

on top of it. However, it must move in a way such that it begins

the next visit at the same time as in the original policy, i.e., the

positions of agent j associated to the alternative policy s̃j(t
′)

is such that s̃j(t
j
p) = sj(t

j
p).



Also, for time t′ ∈ [tjp, t
j
p+1] both the original and the

alternative policies only influence the value of ηi for i = yjp,

since in the alternative policy the agent is closer (or at least

as close) to the currently visited target. Thus, from (18) we

have that

η̃i(t
′) ≥ ηi(t

′), ∀t′ ∈ [0, t], i ∈ {1, ...,M}.

Therefore, using Lemma 1 and the cost definition (41), we get

that

J(ũ1, ..., ũN , t)− J(u1, ..., uN , t) =

1

t

∫ t

0

M
∑

i=1

tr
(

Ω̃i(t
′)− Ωi(t

′)
)

≤ 0.

which shows that the alternative policy has a lower or equal

cost compared to the original one. Note that, due to velocity

constraints, in both the original and the alternative policy there

is a maximum of t
dmin

+1 visits to targets per agent. Moreover,

in the alternative policy, an agent has at most 2 velocity

switches at each target visit. Therefore, at most 2 t
dmin

+ 4
velocity switches can happen due to target visits, plus one

switch to match the initial position of the original policy and

another to match the terminal position of the original policy.

This implies that the maximum number of velocity switches

in the alternative policy is 2 t
dmin

+ 4.

One way to interpret this proposition is that if one looks

ahead at the next T units of time (where T is the period of

a periodic solution or the prediction horizon, in the transient

case), any trajectory can be improved (or at least, maintain

same cost) by adequately selecting its controls uj(t) in the set

{−1, 0, 1}. Also, notice that even though we were not able so

far to prove that the same result holds when the targets are

not necessarily isolated, the same structure can still be used

but without the guarantee of optimality.

B. Parameterization of an Optimal 1D Trajectory

The result in Prop. 4 implies that when the targets are

isolated, there is no loss of performance if we restrict ourselves

to controls of the form uj(t) ∈ {−1, 0, 1} ∀t > 0, with a

bounded number of control switches. This property allows the

optimal trajectory to be described by a finite set of parameters,

similar to optimal control results in previous work by the

authors [11], [14]. Here, in particular, we are looking into

periodic trajectories and, hence, this property implies that the

movement in each period of agent j consists of a sequence

of dwelling at the same position for some duration of time

followed by moving at maximum speed to another location.

Therefore, one period of the trajectory of an agent j can fully

be described by the following set of parameters:

1) T , the period of the trajectory.

2) sj(0), the initial position.

3) ωj,p, p = 1, ..., Pj , the normalized dwelling times for

agent j, i.e., the agent dwells for ωj,pT units of time

before it moves with maximum speed for the p-th time

in the cycle.

4) τj,p, p = 1, ..., Pj , the normalized movement times for

agent j, i.e., the agent j moves for τj,pT units of time

to the right (if p is odd) or to the left (if p is even) after

dwelling for ωj,pT units of time in the same position.

To enforce consistency of the trajectory, we add the follow-

ing constraints:

τj,m ≥ 0, ωj,m ≥ 0, T ≥ 0. (42)

Notice that this description does not exclude transitions of uj

of the kind ±1 → ∓1 and ±1 → 0 → ±1, since it allows

ωj,m = 0 and τj,m = 0. In addition to the constraints in

(42), in order to ensure periodicity, we need to make sure that

the sum of the movement times and dwelling times does not

exceed one period and that the total time spent moving to the

left is equal to the total time spent moving to the right over one

period (i.e. the agent returns to its initial position at the end

of the period). Therefore, we have the additional constraints:

Pj
∑

m=1

(τj,m + ωj,m) ≤ 1,

Pj
∑

m=1

(−1)mτj,m = 0. (43)

This parameterization defines a hybrid system in which the

dynamics of the agents remain unchanged between events and

abruptly switch when an event occurs. Events are given by

a change in control value at completion of movement and

dwell times. Note that these may occur simultaneously, for

instance, if the dwell time is zero (representing a switch of

control from ±1 to ∓1). This parameterization also applies to

the aperiodic transient case, with minor modifications to the

constraints imposed to the parameters. Although we do not

explore all the details for the sake of readability, we refer the

interested reader to [14].

C. Position Gradients

Given this parameterization, we use the procedure given in

Sec. III to optimize the cost. However, one item missing in Sec.

III for computing the gradient of the covariance matrix was the

gradient of the agent position with respect to the parameters

defining the trajectory.

The movement and dwelling time parameterization defines,

along with the uncertainty metric, a hybrid system. For such

systems, Infinitesimal Perturbation Analysis (IPA) can be used

to compute an event-driven online estimate of the stochastic

gradient of the system. An important feature of IPA is that the

unbiased gradient estimate can be computed online using only

the data observed along the trajectory. Even though we do not

discuss in this paper the details of the IPA interpretation of

the equations in this subsection, we refer the reader to [11],

[26] for more information about IPA.

One can see that the position of agent j at normalized time

q, after the k-th event and before the k + 1-th is

sj(q)−sj(0) =























T

(

(−1)k/2+1

(

q −
∑k/2−1

p=1 (τj,p + ωj,p)

+ ωj, k
2

)

+
∑k/2

p=1(−1)
p+1τp

)

, k even,

T
∑

k−1

2

p=1 (−1)
p+1τj,p, k odd.

(44)



Therefore, we can compute the following gradients,

∂sj
∂τj,m

=















(

(−1)
k
2 + (−1)m+1

)

T, m < k
2 , k even,

(−1)m+1T, m ≤ k−1
2 , k odd,

0, otherwise,

(45a)

∂sj
∂ωj,m

=

{

T, m ≤ k
2 , k even,

0 , otherwise,
(45b)

∂sj(q)

∂T
=

sj(q)− sj(0)

T
, (45c)

∂sj
∂sj(0)

= 1. (45d)

D. Initial Trajectory for the Optimization

While we use a gradient descent approach in Alg. 3 to

locally minimize the cost function, it is necessary to find

an initial parameter configuration. Therefore, we propose a

method to efficiently compute a starting point for the opti-

mization.

Proposition 2 states that if every target is visited at least once

in a periodic trajectory, then the steady-state covariance matrix

exists. However, if in a periodic trajectory one of the targets is

never visited and its internal state dynamics is unstable, then

the estimation error will grow without bound as time goes

to infinity. Also, when a target is not visited in the initial

trajectory, the gradient descent optimization may converge to

undesired solutions, a problem known as the “lack of event

excitation” and discussed in depth in [27]. Therefore, this kind

of initial trajectory will not be considered in this work.

In this section, we discuss a method for finding these

initial trajectories that will always lead to a feasible initial

configuration. Note that due to the local nature of our op-

timization procedure, different initial conditions can lead to

different local optima. We, therefore, leverage intuition about

the problem to provide reasonable initial solutions with the

hope that they will converge to good local optima.

The idea of finding a schedule where all the targets are

visited fits naturally into a graph search paradigm, where the

targets are modelled as nodes and the edge weights between

nodes are the distances between the targets. The problem

of finding a feasible schedule can be translated to one of

finding N sequences (that represent the schedule of each

agent) of nodes where each target belongs to at least one

of these sequences. One can add to that a cost function that

guides the way in which these sequences are created. A goal

that intuitively will lead to reasonable initial solutions is to

minimize the distance of the agent that has the longest travel

path. This is the well known MTSP (see [6] for a good

overview of this problem and approaches to solve it). It is

worth mentioning that the MTSP is NP-hard, and, therefore,

intractable. However, meta-heuristic approaches can provide

feasible, though not necessarily optimal, solutions. In this

work, we use the genetic algorithm described in [28] to find

heuristic solutions. This approach is interesting because it

finds a feasible solution in the first iteration and refines it as

the number of iterations increases. Therefore, one can decide

how much computation time to spend, leveraging the tradeoff

between optimality and computation effort spent in generating

this initial trajectory.

The MTSP problem finds a minimal length cycle and

therefore can be immediately converted to parameters that

represent one period of the steady state solution. We choose

the dwelling times to be initially zero.

E. 1D Simulation Results

In the simulations, we have chosen to highlight interesting

aspects of the solution, rather than simply give an example

of the techniques discussed in this paper. We have analyzed a

steady state problem with 2 agents and 5 targets. We used the

following matrices in the state evolution model

Ai =

[

−1 −0.1
−0.1 0.01

]

, Qi = diag(1, 1),

and the following parameters for the observation model

Hi = diag(1, 1), Ri = diag(1, 1), rj = 0.9.

Instead of using the initialization method proposed in Subsec.

IV-D, we used the following set of parameters:

s01(0) = 2.7, s2(0) = 6.8, T 0 = 6,

τ01 = τ02 = 0.1[1, 0.1, 1, 1, 0.1, 1, 0.1, 1, 1, 0.1, 1],

ω0
1 = ω0

2 = 0.0125[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

The goal of using these initialization parameters was to

have both agents share one target in the first iteration of the

optimization process and then explore whether or not they

would remain sharing the target after the local optimization

procedure. The gradient descent step size was set to be

constant, κ0 = κl = 0.02.

Figure 1 shows the results of the optimization in this

scenario. Notice that even though both agents and all the

targets have the same dynamic models, the solution at the last

iteration of the optimization was such that one of the agents

visits three of the targets and the other two of them. One

interesting aspect of the trajectories of the targets in Fig. 1b

is that in the period between times 6 and 8 agent 1 makes a

movement with small amplitude around target 1. The effects

of this oscillatory movement are hard to notice in the trace of

the covariance of target 1 in Fig. 1c, which implies that the

difference in performance is negligible. Therefore, even though

it is intuitively clear that staying still rather than moving with

this oscillatory behavior will lead to a lower cost solution,

the difference in terms of cost is minor. Also, notice that the

solution has not yet fully converged, as can be seen in Fig.

1a and further iterations would remove this small oscillatory

behavior.

Finally, we point out that while the maximum number of

switches in a direction allowed to each agent was set to 11,

the final solution appears to have fewer because some of the

movement and dwelling times in the final solution are zero.
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Fig. 1: Results of a simulation with two agents and five targets. (a) Evolution of the overall cost as a function of iteration

number on the gradient descent. (b) Trajectories of the agents at the final iteration. The dashed lines indicate the positions of

the targets and the grey shaded area the visibility region of the agent. (c) Evolution of the trace of the estimation covariance

matrices of the five targets.

V. FOURIER CURVES FOR MULTI-DIMENSIONAL

PERSISTENT MONITORING WITH UNBOUNDED SPEED

For the 1D case we derived a parameterization with a finite

number of parameters of the optimal solution. Unfortunately,

the same result does not extend to multi-dimensional persistent

monitoring problems. Therefore, instead of looking for an

exact representation of the optimal trajectory, we focus on

a family of parameterized curves that can approximate very

general curves. We pick as an illustration the case where speed

is not bounded, in part because the projection operation in line

7 of Alg. 3 becomes trivial. Note that whenever the constant

that weights the control effort penalization is not zero, i.e.

β 6= 0 as defined in (21), the fact that the control effort is

considered in the total cost will not allow the control to be

unbounded. An appropriate choice of β can provide adequate

speed bounds for any given dynamics of the system. As a side

note, we highlight that bounded speeds can also be handled in

this framework, however the projection operator in the gradient

descent optimization becomes more complex.

Since periodicity is an essential feature of the steady-state

analysis discussed in this work, a natural choice is to use

a truncated Fourier series to represent the movement of the

agents in each of the coordinates ep, p = 1, ..., P , i.e.

s
ep
j (q) = s

ep
j,0 +

K
∑

k=1

a
ep
j,k sin(2πfkq) + b

ep
j,k(cos(2πfkq)− 1),

(46)

where fk are integer frequencies and, therefore, s
ep
j (q)

is periodic with period 1. The set of parameters that

fully characterize all the agents trajectories is Θ =
{{a

ep
j,k}, {b

ep
j,k}, {s

ep
j,0}, T }, j = 1, .., N , p = 1, ..., P , k =

1, ...,K . As in the 1D case, in order to compute the derivative

of the covariance matrix, we need to give a procedure to

compute ∂sk
∂θ . For any parameter θ ∈ Θ,

∂s
ep
j

∂aerm,k

=

{

sin(2πfkq), if j = m and p = r,

0, otherwise,
(47a)

∂s
ep
j

∂berm,k

=

{

cos(2πfkq)− 1, if j = m and p = r,

0, otherwise,
(47b)

∂s
ep
j

∂serm,0

=

{

1, if j = m and p = r,

0, otherwise,
(47c)

∂s
ep
j

∂T
= 0. (47d)

The derivatives in (47) give enough information to compute

the partial derivatives of the steady state covariance matrix as

indicated in Prop. 3. In order to compute the gradient of the

cost function, the following expression can be used:

∂J

∂θ
=

∫ 1

0

N
∑

i=1

tr

(

∂Ωi

∂θ

)

dq+β
∂

∂θ

N
∑

j=1

∫ 1

0

∥

∥

∥

∥

dsj
dt

∥

∥

∥

∥

2

dq. (48)

Note that

dsj
dq

= T
dsj
dt

. (49)

Using (46), we can compute

N
∑

j=1

∫ 1

0

∥

∥

∥

∥

dsj
dt

∥

∥

∥

∥

2

dq =

N
∑

j=1

P
∑

p=1

K
∑

k=1

(2πfk)
2

2T 2

(

(

a
ep
j,k

)2

+
(

b
ep
j,k

)2
)

, (50)



and, therefore,

∂

∂a
ep
j,k

N
∑

j=1

∫ 1

0

∥

∥

∥

∥

dsj
dt

∥

∥

∥

∥

2

dq =
(2πfk)

2

2T 2
a
ep
j,k, (51a)

∂

∂b
ep
j,k

N
∑

j=1

∫ 1

0

∥

∥

∥

∥

dsj
dt

∥

∥

∥

∥

2

dq =
(2πfk)

2

2T 2
b
ep
j,k, (51b)

∂

∂s
ep
j,0

N
∑

j=1

∫ 1

0

∥

∥

∥

∥

dsj
dt

∥

∥

∥

∥

2

dq = 0, (51c)

∂

∂T

N
∑

j=1

∫ 1

0

∥

∥

∥

∥

dsj
dt

∥

∥

∥

∥

2

dq =

N
∑

j=1

P
∑

p=1

K
∑

k=1

−(2πfk)2

T 3

(

(

a
ep
j,k

)2

+
(

b
ep
j,k

)2
)

. (51d)

A. Optimization Initialization

In the multi-dimensinal optimization, we still use the sub-

optimal solution of the MTSP problem as a starting point.

However, unlike the 1-D scenario with the movement and

dwelling time parameterization, the heuristic solution of the

MTSP problem cannot be directly converted to a Fourier Curve

trajectory. The solution of the MTSP problem gives, for each

agent j, a cyclic schedule of targets Sj = {y1j , ..., y
Yj

j , y1j }
and, therefore, it is still necessary to obtain the parameters

Θ = {{a
ep
j,k}, {b

ep
j,k}, {s

ep
j,0}, T } from this schedule. We define

dmj as the cumulative distance that the agent has traveled when

it reaches the m-th target in the schedule Sj , and Dj as the

total distance traveled by an agent in one cycle. We then look

for a feasible truncated Fourier series trajectory such that at

the normalized time q = dmj /(DjT ), the agent is at a distance

lower or equal to the sensing radius (multiplied by a factor

1− δ, 0 < δ < 1, in order to give some distance margin) from

the target. The position of the agent at the beginning of the

cycle is set to be the position of the first target in the schedule

Sj .The period T can be set to any positive number. For each

of the agents, the following optimization problem gives a set

of feasible {a
ep
j,k}, {b

ep
j,k}.

min
a
ep
j,k, b

ep
j,k

P
∑

p=1

K
∑

k=1

fk|a
ep
j,k|+ fk|b

ep
j,k|

s.t.

∥

∥

∥

∥

sj

(

dmj
Dj

)

− xym
j

∥

∥

∥

∥

2

≤ (1 − δ)ri,j , m = 1, .., Yj

(52)

Note that if we substitute the definition (46) into the con-

straint (52), this optimization can be formulated as a Quadrat-

ically Constrained Program, which is a convex optimization

problem that can be solved efficiently. From our experience,

minimizing a weighted sum of absolute values in the objective

function of (52) has led to smooth initial trajectories. However,

other optimization objectives could be used.

It is worth observing that for each of the agents, the

trajectory generated by the heuristic solution of the MTSP

problem consists of segments of straight lines that visit each

of the targets in the schedule Sj . Note that this trajectory, as

a function of time, composed by sequence of straight lines

can be projected in each of the axis ep and the projection in

that axis will still be a sequence of segments of straight lines.

Since piecewise linear functions can be represented by Fourier

series, there always exist a K large enough such that there is

a solution to (52) because for that K there is a representation

of the trajectory that would be close enough to the original

MTSP solution such that it is able to satisfy the constraint in

(52). Therefore, we can always find feasible solutions to (52)

if we have a MTSP solution.

B. 2D Simulation Results

In this section, we demonstrate the results of the algorithm

in two simulated 2D scenarios, one with one agent and three

targets and the other one with three agents and 15 targets. All

the internal states of the targets have the same state dynamics,

evolving according to (1) with

Ai =

[

−1 −0.1
−0.1 0.01

]

, Qi = diag(1, 1),

and the agent observation models are given by (3) with

Hi = Ri = diag(1, 1), rj = 0.5, η = 10−3.

For each of the agents, their trajectories had the first five

harmonics in each axis, i.e., fk = k, k = 1, ..., 5, ∀ j.

In the initial step of the optimization, the period T was

set to 1. The initial coefficients a
ep
j,k, b

ep
j,k were obtained by

solving the optimization problem in (52). The MTSP solution

was obtained after 3000 iterations of the genetic algorithm

proposed in [28] for solving the associated MTSP. The initial

position of each agent was set to coincide with the position of

the first target in the solution of the MTSP. A constant descent

stepsize κl = 10−4 was used in the gradient descent.

In the first scenario (with one agent and three targets),

targets were located at positions x1 = (0, 0.5), x2 = (0.5, 0)
and x3 = (−0.5, 0). Figures 2-4 show the results we obtained.

Figure 2a highlights how the trajectory changed from the

initial one (an ellipse) to one with an almost triangular shape.

Note, however, that not only the geometry of the trajectory

is being optimized, but also the speed of the agent along the

trajectory. From Fig. 2b we can see that the agent moves with

higher speed when it is not visiting any target and at reduced

speed (and the speed even completely vanishes) when it is

close to the targets. Also, we can note that the trajectory in

the last step of the optimization had a period lower than 1,

which was the period on the initial optimization step. The

mean estimation error over time for each of the targets is

displayed in Fig. 3 and the cost along the optimization process

is shown in Fig. 4.

In the second scenario, the positions of the targets were

generated randomly from independent uniform distributions

ranging from −5 to 5 in both axes. Fig. 5 compares the

trajectories of the agents in the first and last step of the gradient

descent optimization, while Fig. 6 shows the evolution of the

cost as a function of the gradient descent step. The results of

the optimization show that the solution of (52) led to smoother
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Fig. 2: Simulation results with one agent and three targets. (a) Comparison of the 2-D trajectory of the agents in the initial

(red) and final (blue) trajectories. The targets are marked in black and the gray area is the region where an agent can sense

that target. (b) Agent trajectories at the final iteration in the x (blue) and y (red) directions. (c) Agent velocities at the final

iteration in the x (blue) and y (red) directions and the resulting agent speed (yellow).
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Fig. 3: Trace of the covariance for each target at the final step

of the optimization in the scenario with one agent and three

targets.

500 1000 1500 2000 2500 3000 3500 4000
Iteration

5

6

7

8

9

10

11

12

13

14

C
os

t

Fig. 4: Evolution of the cost function in the gradient descent

optimization in the scenario with 3 targets and 1 agent.

trajectories that still visited all the targets. The gradient descent

changed the geometry of the trajectories but did not change

the visiting order. As can be observed in Fig. 6, the cost

has an abrupt reduction in the beginning of the optimization

and then the convergence speed reduces significantly. The

optimization process leads to very significant reductions of

the cost, reducing it to less than one third of its initial value.
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Fig. 5: Trajectories of the targets in the first (red dashed

line) and last (blue continuous line) iterations of the gradient

descent optimization on the scenario with 15 targets and 3

agents. The target’s locations are marked in black and the

grey shaded are represent the regions where the target can be

sensed by an agent.
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Fig. 6: Evolution of the cost function in the gradient descent

optimization in the scenario with 15 targets and 3 agents.



C. 3D Simulations Results

In order to illustrate the extension of techniques proposed in

this paper to higher dimensions, we present a result in a 3D en-

vironment, with 2 agents and 10 targets. The Ai, Qi, Hi, Ri

matrices and rj are the same as in the 2D simulations. A

constant gradient descent stepsize κl = 10−2 was used. The

target locations were drawn from a uniform distribution in the

cube with coordinates ranging from [−5, 5] in each axis. The

trajectories after 4000 gradient descent iterations are shown in

Fig. 7 and the evolution of the cost is diplayed in Fig. 8.

Fig. 7: Simulation results in a 3D environment with two targets

and ten agents. In red, the initial trajectory in the gradient

descent optimization, in blue, the trajectory at the end of the

optimization. The projection of the final agent trajectories in

three planes is plotted in dashed purple.
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Fig. 8: Evolution of the cost function in the gradient descent

optimization in the 3D scenario.

The 3D results follow a very similar trend of the 2D ones.

The trajectories provided by the initialization procedure tend

to be smoother, while the shape of the optimized ones are

stiffer.

VI. CONCLUSION AND FUTURE WORK

We have addressed the problem of persistent monitoring

from an infinite horizon perspective. We used a model that

captures internal states of the targets evolving with linear

stochastic dynamics and an observation model where the

observation quality varies with distance. We derived necessary

conditions for the convergence of the covariance matrix to

a limit cycle as time goes to infinity. We also provided an

algorithm for computing the cost gradient with respect to the

parameters that define the trajectory. For a 1D environment,

we showed that under some assumptions it is possible to fully

characterize an optimal control by a finite set of parameters

and used this as a basis for constructing an efficient param-

eterization. In higher dimensions, we proposed the use of

Fourier curves for representing the trajectory. Our simulations

illustrated the application of the proposed techniques in 1D,

2D and 3D scenarios, considering finite and infinite horizons

for the cost.

Some challenges still remain for the framework presented

in this paper. In ongoing research, we are studying how

to efficiently select the gradient descent stepsize and also

the feasibility and efficiency of local optimization methods

other than gradient descent. We intend to study initialization

methods that directly use uncertainty (instead of distance)

as a criterion for generating initial schedules. We also plan

to extend this paradigm to discrete time formulations and

to investigate the feasiblity of distributed solutions. Lastly,

we plan to study this problem when targets can also move,

including movement models that are not fully deterministic.
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APPENDIX A

PROOF OF OPTIMALITY OF KALMAN BUCY FILTER ON THE

PERSISTENT MONITORING PROBLEM WITH UNCERTAIN

STATES

The set of all unbiased estimators φ̂i(t) of φi(t), as dis-

cussed in Sec. IV of [29], is:

˙̂
φi(t) =

(

Ai −Gi(t)H̃i(t)
)

φ̂i(t) +Gi(t)z̃i(t), (53)

with E[φ̂i](0) = E[φi(0)] and G(t) a gain function that should

be considered an input for the sake of optimality analysis. If

Ωi(t) = E[ei(t)e
′
i(t)], where ei = φ̂i(t)− φi(t), then

Ω̇i(t) =
(

Ai −Gi(t)H̃i(t)
)

Ωi(t) +Gi(t)R̃iG
′
i(t)

+Qi +Ωi(t)
(

A′
i − H̃i(t)

′G′
i(t)
) (54)

and Ωi(0) = Ωi,0. Defining the following cost:

J =

∫ tf

0

(

M
∑

i=1

tr (Ωi(t
′)) + βu′(t′)u(t′)

)

dt′ (55)

The Hamiltonian is then

H =

M
∑

i=1

tr (Ωi(t)) + βu′(t)u(t)

+

M
∑

i=1

tr
(

Γi(t)Ω̇i(t)
)

+

N
∑

j=1

αj(r)sj(t), (56)

where Γi is the costate of Ωi. Using Pontryagin’s minimum

principle, at an optimal trajectory, since Gi is unconstrained,

we have
∂H⋆

∂Gi
= 0. (57)

Substituting the dynamics of the covariance matrix (54) on

(57), we get

− ΓiΩiH̃
′
i − Γ′

iΩiH̃
′
i + Γ′

iGiR̃i + ΓiGiR̃i = 0. (58)

Now, again from the minimum principle,

Γ̇i = −
∂H

∂Ωi
− (Ai−GiH̃i)

′Γi−Γi(Ai−GiH̃i)− I. (59)

Since Γi(tf ) = 0 due to the boundary conditions of Pontrya-

gin’s minimum principle, the symmetric nature of this ODE

allow us to see that Γi will be symmetric for t ∈ [0, tf ].
Moreover, note that the ODE is linear and the single non-

homogeneous term is -I. Since Γi(tf ) = 0,

Γi(t) =−

∫ t

tf

Φ′(t, tf )Φ(t, tf )dt,

Φ(a, b) = exp

(

∫ b

a

(Ai −G(β)H̃i(β))dβ

)

.

(60)

This implies that Γi(t) ≻ 0 for t ∈ [0, tf). Therefore, since

Γi(t) is invertible and symmetric, Eq. (58) can be reduced to

ΩiH̃
′
i +Ω′

iH̃
′
i = 2GiR̃i. (61)

Since the covariance matrix Ωi is also symmetric,

Gi(t) = Ωi(t)H̃i(t)R̃
−1
i (t) (62)

Plugging in this expression on (54) and (53), we get the usual

Kalman-Bucy filter equations, which along with the initial

conditions Ωi(0) = Ωi,0 and φ̂i(0) = E[φi(0)], have unique

solutions.

APPENDIX B

EXISTENCE OF STEADY STATE COVARIANCE DERIVATIVES

In this appendix, we discuss the existence of the gradients

of the steady state covariance matrix. Note that, if in a periodic

trajectory ηi(q) = 0 ∀q ∈ [0, 1] (i.e., target i is never visited),

the existence of the steady state covariance matrix is not

guaranteed by Prop. 2. Obviously, if the steady state covariance

does not exist, its derivative will also not exist. This illustrates

the fact that the existence ∂Ω̄i

∂θ is not guaranteed. What we



show in this appendix is that, under very natural assumptions,

the derivative ∂Ω̄i

∂θ exists for the parameters that belong to the

interior of the set of parameters that will lead to convergence

of the steady state covariance, except for a set of zero measure.

Since here we analyze the behavior of the steady state

covariance with respect to parameter variations, we will use a

notation that explicitly shows the dependence of the variables

with the parameters. For example, Ω̄i is a function of q and of

the parameters Θ and, hence, it will be denoted as Ω̄i(q; Θ).

We define the set of parameters for which the steady state

covariance is guaranteed to exist as:

ϑ = {Θ | ηi(q, Θ̃) > 0

for some non-degenerate interval q ∈ [a, b]}, (63)

and Ψ as the interior of the set ϑ.

Our goal is to show that, for any Θ ∈ Ψ, the partial

derivatives
∂Ω̄i(q;Θ)

∂θd
exist locally. From Prop. 3, we know that,

when this partial derivative exists, it is equal to Σ(q; Θ). We

also know that Σ(q; Θ) is well defined for any θ ∈ Ψ. We now

make the following assumption about the regularity of Σ:

Assumption 3. Σ(q; Θ) is locally Riemann integrable for Θ ∈
Ψ.

In light of Proposition 3, Assumption 3 means that the

parameterizations that we consider do not allow for an infinite

number of discontinuities of Σh(q; Θ) and ΣZI(q; θ). Note

that, due to the linear nature of their underlying differen-

tial equations, Σh(q; Θ) and ΣZI(q; θ) are bounded for any

Θ ∈ Ψ. Therefore, Σ(q; Θ) is also bounded.

Proposition 5. Under Assumptions 1, 2 and 3, the partial

derivative
∂Ω̄i(q;Θ)

∂θd
, q ∈ [0, 1] and Θ ∈ Ψ, exists almost

everywhere in [0, 1]×Ψ.

Proof. By construction, we pick two parameter sets Θ1 and

Θ2, such that any convex combination of Θ1 and Θ2 belongs

to Ψ. Additionally, since our goal is to compute the partial

derivative with respect to θd, we pick Θ2 such that it differs

from Θ1 only in its d-th coordinate. Since the set Ψ is open,

if we pick any Θ1 ∈ Ψ, we can always find a Θ2 that fullfills

the aforementioned properties.

We define the function Υ(q; Θ2) (which later we will show

Υ(q; Θ2) = Ω̄i(q; Θ2)) as:

Υ(q; Θ2) = Ω̄i(q; Θ1)+

∫ 1

0

Σ(q; Θ1+ ξ(Θ2−Θ1))dξ. (64)

Note that, if Υ(q; Θ2) = Ω̄i(q; Θ2) for generic Θ1,Θ2, then

Σ(q; Θ) = ∂Ω̄i(q;Θ)
∂θd

almost everywhere, since Σ(q; Θ) plays

the role of a partial derivative in Eq. (64).

Ω̄i(q; Θ2) is uniquely defined by satisfying the differential

equation (23) and being periodic with period one. We then

show that Υ(q,Θ2) also satisfies both of these properties,

which imply that indeed Υ(q,Θ2) = Ω̄i(q; Θ2).

First, notice that Υ(0;Θ2) = Υ(1;Θ2) since Ω̄i(0;Θ1) =
Ω̄i(1;Θ1) and Σ(0,Θ) = Σ(1,Θ), for any Θ ∈ Ψ. Also, since

Σ(q; Θ) is a solution of (24),

∫ 1

0

Σ̇(q; Θ1 + ξ(Θ2 −Θ1))dξ = ˙̄Ωi(q,Θ2)−
˙̄Ωi(q,Θ1).

(65)

Therefore, taking the derivative of (64) with respect to q and

substituting (65), we get

Υ̇(q,Θ2) =
˙̄Ωi(q,Θ2). (66)

Hence we conclude that Υ(q,Θ2) = Ω̄i(q; Θ2), and, as a

consequence,
∂Ω̄i(q;Θ)

∂θd
exists almost everywhere in Ψ. Ad-

ditionally, as already stated in Prop. 3,
∂Ω̄i(q;Θ)

∂θd
= Σ(q,Θ)

wherever it exists.
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