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Abstract

This study focuses on periodic event-triggered (PET) cooperative output regulation problem for a class of nonlinear

multi-agent systems. The key feature of PET mechanism is that event-triggered conditions are required to be monitored

only periodically. This approach is beneficial for Zeno behavior exclusion and saving of battery energy of onboard

sensors. At first, new PET distributed observers are proposed to estimate the leader information. We show that the

estimation error converges to zero exponentially with a known convergence rate under asynchronous PET commu-

nication. Second, a novel PET output feedback controller is designed for the underlying strict feedback nonlinear

multi-agent systems. Based on a state transformation technique and a local PET state observer, the cooperative semi-

global output regulation problem can be solved by the proposed new control design technique. Simulation results of

multiple Lorenz systems illustrate that the developed control scheme is effective.

Index Terms

Cooperative output regulation, periodic event-triggered mechanism, multi-agent systems, strict feedback nonlinear

systems

I. INTRODUCTION

Output regulation problem has attracted an increasing attention recently. Output regulation aims to make tracking

error converge to zero while rejecting disturbance. Reference and disturbance signals are produced by an exosystem.

For typical examples, the internal model principle was used for the output regulation of linear multi-variable systems

[1]. [2]–[4] focused on the output regulation problem of nonlinear systems. Different classes of nonlinear systems,

such as first order system, output feedback system and strict feedback system, were considered.

The output regulation theory has also been shown to be a powerful method for multi-agent systems [5]–[9]. On

the basis of this theory, the leader-following problem can be handled effectively despite parametric uncertainties and
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external disturbance. For instance, in [10], [11], the cooperative output regulation problem for linear and nonlinear

multi-agent systems were solved using distributed observer technique.

With the continuous development of embedded microprocessors in engineering system, a critical issue for multi-

agent systems is reducing the communication burden. Apparently, continuous communication may be unrealistic in

most applications because the bandwidth and energy are limited. Event-triggered control strategy has been lately

introduced for the cooperative control of multi-agent systems [12], [13]. The idea of the event-triggered control is

that data transmission is conducted only under some certain conditions. Event-triggered mechanism is an effective

method for resource-limited applications. A number of works on various kinds of event-triggered control methods

[14]–[16] have been conducted.

More recently, in [17], [18], a new periodic event-triggered (PET) control method has been presented. Different

from other event-triggered mechanisms, PET mechanism is required to monitor data communication and triggered

conditions only at discrete sampling instants. This characteristic brings some promising advantages (see [24]). First,

the inter-event time naturally becomes multiples of sampling periods. This condition not only strictly excludes the

Zeno behavior but is also useful for digital implementation where tasks are always executed periodically. Second,

the energy for evaluating the event-triggered condition can also be saved given that no continuous monitoring exists.

This condition is beneficial for saving the battery energy of onboard sensors. However, to the best of our knowledge,

the PET cooperative output regulation problem for nonlinear multi-agent systems has not been fully investigated.

Inspired by the above observation, in this paper we investigate the problem of PET cooperative output regulation

for a class of nonlinear multi-agent systems. The main challenges are as follows:

1) The communication of multi-agent systems is assumed to be asynchronous. That is, each agent may have

different sampling times and transmit data asynchronously. Thus, the existing distributed observers [11], [19], [20]

become invalid;

2) Each agent is described by a high order strict feedback nonlinear system. Moreover, only the output information

of each agent is available. This setup is more general than the existing works [11], [21], [22] (see Remark 2); and

3) Note that the sampled data control can be regarded as a special case of the PET control. However, very few

works have been conducted on sampled data output regulation for nonlinear systems, not to mention the PET control.

In fact, only recently, the PET/sampled data output regulation problem has been solved for linear systems [23],

[24]. The nonlinear dynamics of the considered systems will cause many difficulties to the PET output regulation

problem.

To overcome the these difficulties, we provide our main contributions as follows:

• New PET distributed observers are proposed to estimate the leader information. On the basis of the properties

of time-delay systems, exponential functions and matrix norms, we demonstrate that the estimation error will

converge to zero exponentially with a known convergence rate under asynchronous PET communication.

• A novel PET output feedback controller is presented for the strict feedback nonlinear multi-agent systems.

Based on a state transformation technique and a local PET observer, we show that the proposed PET output

feedback controller can solve the cooperative semi-global output regulation problem. Lyapunov function in

logarithm form and Gronwall’s inequality are skillfully used to prove this result.
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This paper is organized as follows. Section II presents problem formulation and preliminaries. New PET distributed

observer and PET control law are provided in Sections III and IV respectively. In Section V simulation results of

multiple Lorenz systems are presented to demonstrate the effectiveness of the proposed new design scheme. The

conclusion is drawn in Section VI. Detailed proofs are put in the Appendices.

Notations. For a matrix Xi ∈ R
ni×m(i = 1, 2, ..., N), col(X1, X2, ..., XN ) = [XT

1 XT
2 ...XT

N ]T. For A ∈ R
n×m,

vec(A) = col(a1, ..., an) where ai ∈ R
n×1 is the ith column of A. satR(x) : R → R with a positive constant R

represents the saturation function, that is satR(x) = x if |x| ≤ R, satR(x) = R if x > R and satR(x) = −R if

x < −R. Given a time-varying matrix B(t) ∈ R
n×m, define a set E(γ) with a positive constant γ. If B(t) ∈ E(γ)

then ||B(t)|| converges to zero exponentially, that is, ||B|| ≤ ce−γt for ∀t ∈ [0,+∞) where c is a positive constant.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem formulation

The following multi-agent systems consisting of one leader and N followers are considered. The leader is

expressed as:

ν̇ = Aν, (1)

y0= q0(ν) (2)

where ν ∈ R
nν is the reference signal and/or external disturbance with nν ∈ N. y0 ∈ R is the output of the leader.

A is a given system matrix, q0(ν) is a sufficiently smooth function with q0(0) = 0. Meanwhile, assume that there

exists a known compact set V ⊆ R
nν such that ν ∈ V.

The followers are given by strict feedback nonlinear systems:

żi = fi0(zi, xi1, ν, w),

ẋij = fij(zi, xi1, ..., xij , ν, w) + bij(w)xi,j+1 ,

ẋin = fin(zi, xi1, ..., xin, ν, w) + bin(w)ui, (3)

yi = xi1, j = 1, 2, ..., n− 1

where i ∈ {1, 2, ..., N}. n ∈ N is the order of the ith subsystem, zi ∈ R
nzi and xij , xin ∈ R denote the system states

with nzi ∈ N, yi ∈ R is the system output. w ∈ R
nw represents uncertain parameters with nw ∈ N. Also assume that

there exists a known compact set W ⊆ R
nw such that w ∈ W. fi0(·), fij(·), bij(w)(i = 1, ..., N ; j = 1, ..., n) are

sufficiently smooth nonlinear functions with fi0(0, ..., 0, w) = 0, fij(0, ..., 0, w) = 0 and bij(w) > 0 for ∀w ∈ W.

A directed graph G is used to describe the communication for the multi-agent systems. Let G = (V , E) where

V = {1, 2, ..., N} denotes the set of vertices and E ⊆ V ×V represents the set of edges. Matrix Ã = [aij ] ∈ R
N×N

is defined, such that if (j, i) ∈ E then aij = 1, otherwise aij = 0. Laplacian matrix is defined as L = D̃− Ã with

D̃ = diag(d̃1, d̃2, ..., d̃N ) and d̃i =
∑N

j=1 aij(i ∈ V). For communication between the leader and followers, ai0 is

defined such that if the followers can have access to the leader, then ai0 = 1; otherwise ai0 = 0. This indicates

that only a small number of followers can obtain the information of the leader. Finally, we assume that there exists

January 5, 2022 DRAFT



4

a directed spanning tree for the considered graph with the leader as the root. Then, we know −H = −(L+ B̃) is

Hurwitz with B̃ = diag(a10, a20, ..., aN0).

The problem we are going to solve is formulated as follows:

Problem 1. (Cooperative semi-global output regulation problem) Consider the multi-agent systems (1)-(3) with

their corresponding graph G. Suppose that the initial states ν(0), zi(0), xij(0) of the systems belong to a given

compact set. The control objective is to design a PET distributed output feedback control law for each follower

such that

1) All the signals are uniformly bounded for ∀t ∈ [0,+∞); and,

2) The output regulation error ei(t) , yi(t) − y0(t) converges to zero exponentially, i.e., lim
t→+∞

|ei(t)| → 0

∀i ∈ {1, 2, ..., N}.

Remark 1. The signals in Problem 1 are all the signals in the closed-loop control system. They include all the states

xij(i = 1, ..., n; j = 1, ...N) of the followers, the control input ui, the variables ν̂i, ξ̂i in the proposed distributed

observer and state observer in Sections III-IV etc.

Remark 2. Contrary to the existing works, the considered problem is more general and practical. The reasons are

as follows:

1) System (3) is in a high order strict feedback form. The strict feedback nonlinear systems is more general than

many other kinds of nonlinear systems [11], [19], [22], [25], such as linear systems, low order nonlinear systems,

normal form nonlinear systems etc.

2) Different from [20], [21] that deals with state feedback control, we consider output feedback control problem

for nonlinear systems. The problem becomes more involved because only output information of the high order

nonlinear system (3) is available.

3) The PET data transmission is considered. This means that only PET output information is available for the

controller design, which will further complicate the design and analysis process.

4) The output regulation problem is examined, where reference tracking, disturbance rejection and parametric

uncertainties are simultaneously considered. Our study extends the results in [26], [27], where only reference

tracking problem is studied.

B. Preliminaries

We introduce some basic assumptions and useful results.

1) Leader

For the leader dynamic of (1), assume

Assumption 1. A in (1) is a skew-symmetric matrix whose eigenvalues are semi-simple with zero real parts.

Remark 3. Assumption 1 is standard in output regulation problem [3], [20]. When A is neutrally stable, a large

class of commonly used signals ν, such as sine, cosine and constant signals, can be produced.
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2) Followers

For the nonlinear system (3), we have:

Assumption 2. fi0(zi(ν, w), q0(ν), ν, w)(i = 1, 2, ..., N) satisfies

∂zi(ν, w)

∂ν
Aν = fi0(zi(ν, w), q0(ν), ν, w)

where zi(ν, w) is a smooth function with zi(0, 0) = 0.

Meanwhile, under Assumption 2, one can compute the solution to the regulator equation related to (1) and (3)

(see [3], [21]). The solution is given by:

xi1(ν) = q0(ν),

xi,j+1(ν, w)

=b−1
ij (w)

(
∂xij

∂ν
Aν − fij(zi,xi1, ...,xij , ν, w)

)
,

ui(ν, w) = b−1
in (w)

(
∂xin

∂ν
Aν − fin(zi,xi1, ...,xin, ν, w)

)

where j = 1, 2, ..., n− 1. In addition, define xi,n+1(ν, w) , ui(ν, w).

We also make the following standard assumption for xi1(ν),xi,j+1(ν, w)(j = 1, 2, ..., n).

Assumption 3. Assume that xi1(ν),xi,j+1(ν, w)(j = 1, 2, ..., n) are all polynomials in ν with coefficients depending

on w.

Remark 4. If the considered system (3) is in a polynomial form, Assumption 3 will hold according to [25].

Assumption 3 guarantees the solvability of the output regulation problem.

By resorting to [3], [21], Assumption 3 indicates that for any ν ∈ V, w ∈ W, j = 1, 2, ..., n, we have

dnij
xi,j+1

dtnij
= λi1xi,j+1 + λi2

dxi,j+1

dt
+ · · ·+ λinij

d(nij−1)
xi,j+1

dt(nij−1)

where nij ∈ N. λi1, ..., λinij
are real constants such that the roots of the polynomial pij(s) = snij − λi1 − λi2s−

· · · − λinij
snij−1 are distinct with zero real parts.

Then, given any column vector Nij ∈ R
nij and Hurwitz matrix Mij satisfying (Mij , Nij) are controllable, we

have

TijΨij −MijTij = NijΓij

where Tij is a nonsingular matrix. Γij = [1 0 ... 0],

Ψij =




1

. . .

1

λi1 λi2 · · · λinij



.
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Let θij(ν, w) = Tijcol(xi,j+1,
dxi,j+1

dt
, ...,

d
(nij−1)

xi,j+1

dt
(nij−1) ). Thus, we obtain:

θ̇ij(ν, w) =TijΨijT
−1
ij θij(ν, w),

xi,j+1(ν, w) =Φijθij(ν, w) (4)

where Φij = ΓijT
−1
ij .

It can be seen that (4) generates the steady state xi,j+1(ν, w). Then we can design the following dynamic

compensator:

η̇ij = Mijηij +Nijxi,j+1,

η̇in = Minηin +Ninui (5)

where ηij , ηin are dynamic variables and j = 1, 2, ..., n− 1.

(5) is also called the internal model for system (1) and (3). It plays a pivotal role in solving the output regulation

problem.

Finally, the following change of coordinates is considered for system (3):

zi = zi − zi(ν, w),

xi1 = xi1 − xi1(ν),

xij= xij −Ψi,j−1ηi,j−1 (j = 2, ..., n),

η̃ij= ηij − θij(ν, w)− b−1
ij (w)Nijxij (j = 1, ..., n), (6)

xi,n+1 , ui = ui −Ψinηin. (7)

Then, systems (1) and (3) can be written as:

żi = f i0(zi, x1i, ν, w),

˙̃ηij = Mij η̃ij + gij(zi, η̃i1, ..., η̃i,j−1, xi1, ..., xij , ν, w),

ẋij = f ij(zi, η̃i1, ..., η̃ij , xi1, ..., xij , ν, w) + bij(w)xi,j+1,

ei = xi1, i = 1, 2, ..., N ; j = 1, 2, ..., n (8)

where f i0(·), gij(·), f ij(·)(i = 1, ..., N ; j = 1, ..., n) are sufficiently smooth nonlinear functions with f i0(0, ..., 0, ν, w) =

0, gij(0, ..., 0, ν, w) = 0, f ij(0, ..., 0, ν, w) = 0 for ∀ν ∈ V, ∀w ∈ W.

It is noted that according to the above change of coordinates, the output regulation problem is transformed into

the stabilization problem. Namely, if one can stabilize system (8), i.e., find a controller ui to make xij(t) → 0(i =

1, ..., N ; j = 1, ..., n) as t → +∞, then the error ei will be regulated to zero. Therefore, in the following we will

mainly consider the stabilization problem of system (8).

For the zi-system, we make the following assumption.

Assumption 4. [22], [28] Assume that there exists a C2 positive definite Lyapunov function Vi0(zi) such that

∂Vi0(zi)

∂zi
f i0(zi, 0, ν, w) ≤ −γi0||zi||

2
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where γi0 is a known positive constant.

Remark 5. The zi-subsystem represents the dynamic uncertainty/unmodeled dynamics of the system. The states

of the zi-subsystem may not be available for feedback control. Assumption 4 means that the zero dynamic of the

zi-system is asymptotically stable. It is less conservative than the assumption of input-to-state stability in [25]. As a

result, it is possible to find a control law that does not rely on the states of the zi-subsystem. A lot of real practical

systems satisfy Assumptions 3 and 4, such as Lorenz system, Chua’s circuit, servo motors and robot mainpulators.

3) Useful results

We present some properties of matrix norms and useful inequalities.

Lemma 1. 1) (Property of skew-symmetric matrix) Given any skew-symmetric matrix A ∈ R
n×n and matrix

B ∈ R
n×m, we have ||eA|| = 1 and ||eAB|| = ||B||;

2) [29] For some square matrices A,B ∈ R
n×n, ||eA − eB|| ≤ e||A||+||B−A||||B −A||;

3) (Gronwall’s inequality) Suppose

u(t) ≤ ρ1 +

∫ t

t0

ρ2u(τ)dτ

for ∀t ∈ [t0,+∞) where u(t) : [t0,+∞) → R is a time-varying function, ρ1, ρ2, t0 > 0 are positive constants.

Then, u(t) ≤ ρ1e
ρ2(t−t0);

4) [30] Given u, u∗ ∈ R with u ∈ [−R,R], then |u − satR(u
∗)| ≤ min{|u − u∗|, 2R} where R is a positive

constant.

III. PET DISTRIBUTED OBSERVER

The proposed controller structure is illustrated in Fig. 1 (The switch is on node 1. Section IV-D will discuss

the case when the switch is on node 2). It is composed of a PET distributed observer and a PET control law. The

PET distributed observer is implemented in the sensor side to estimate the leader information. The control law

uses estimated information to generate control signal. PET mechanisms are used for communications between each

connected agent pair and the sensor-to-controller transmission channel in each agent.

Next, we will explain the PET distributed observer in this section, where two different cases are considered. The

control law will be explained in the next section.

A. Case one

In this case, we assume that only a small number of the followers know the information ν of the leader. That

is, only followers connected to the leader have access to ν (For instance, in Fig. 2, among the four followers only

agent 1 know ν). Meanwhile, the matrix A of the leader is known to all the followers. We design the following

distributed observer for agent i(i = 1, 2, ..., N).

˙̂νi = Aν̂i + µ2

N∑

j=0

aij(νj(t, t
j

l′)− νi(t, t
i

l)) (9)

January 5, 2022 DRAFT
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Figure 1. Event-triggered control scheme.

where ν̂i is used to estimate the leader information ν,

νi(t, t
i

l) = eA(t−t
i
l)ν̂i(t

i

l)(i = 1, ..., N) (10)

with ν̂0 , ν, ν0(t, t
0
l ) = eA(t−t0l )ν̂0(t

0
l ) = eA(t−t0l )ν(t0l ) = ν(t). µ2 > 0 is a positive parameter.

The above distributed observer (9) runs with respect to the time t ∈ [0,+∞). Next, we will explain the time

instants t
i

l and t
j

l′ . Let 0 = ti0 < ti1 < · · · < tik < · · · denote the sampling time instants for agent i where tik , kT i

and T i > 0 represents the sampling period. Let T , max
i∈{1,2,...,N}

T i and define set Ωi
T = {ti0, t

i
1, ..., t

i
k, ...}. With

slight abuse of notation, we use tik and tjk′ denote the latest sampling time instants for agent i and j at the current

time t.

Then, let 0 = t
i
0 < t

i
1 < · · · < t

i
l < · · · denote the event-triggered time instants. On time instant t

i
l , agent i will

send ν̂i(t
i

l) to its neighbors. t
i

l is determined by the Periodic Event-Triggered Mechanism A (PETM-A) in Fig. 1,

that is

t
i

l+1 = inf{τ > t
i

l|τ ∈ Ωi
T , h

i
ν(τ, t

i

l) > 0} (11)

where

hi
ν(τ, t

i

l) = ||ν̂i(τ) − νi(τ, t
i

l)|| − ινe
−γντ

with positive constants ιν , γν > 0.

It can be seen that the set Ωi
ET , {t

i

0, t
i

1, ..., t
i

l , ...} ⊆ Ωi
T . Also let t

i

l and t
j

l′ denote the latest event-triggered

time instants for agent i and j on [tik, t
i
k+1) and [tjk′ , t

j
k′+1) respectively. Then, we have:

Theorem 1. Given the multi-agent systems with the leader (1) and the PET distributed observer (9), there exists a

sufficiently small T such that ν̃i , ν̂i − ν(i = 1, 2, ..., N) converges to zero exponentially. Moreover, ||ν̃i|| ∈ E(γν)

for ∀i = 1, 2, ..., N .

Proof: The proof is given in Appendix B. It is based on the properties of time-delay systems, exponential

functions, and matrix norms.

Remark 6. There are two time sequences for each agent i. That is the sampling time instants tik(k = 0, 1, 2, ...)

and the event-triggered time instants t
i
l(l = 0, 1, 2, ...). Here, we want to emphasize that even though the sampling

January 5, 2022 DRAFT
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period T i = tik+1 − tik > 0 may be small, the inter-event time t
i
l+1 − t

i
l can be large. In fact, from Theorem 1,

we know ν̃i , ν̂i − ν will converges to zero if T i = tik+1 − tik is small enough. There is no special requirement

for t
i
l+1 − t

i
l except for the event-triggered mechanism (11). The inter-event time t

i
l+1 − t

i
l can be made large by

increasing the threshold in the event-triggered condition (11) (see the simulation in Section V in the supplmentary

file).

Based on the proofs in Appendix B and Lemma 4 in Appendix A, we know when T satisfies the following

inequality,

T < min

{
1

6µ2||H||2
−

γν ||P ||

3µ2
2||H||2

,

1

µ2||PH||+ 3µ2
2||PH||+ γν

}
(12)

where P is a positive definite matrix such that PH +HTP = 2I , we have ||ν̃i|| ∈ E(γν) for ∀i = 1, 2, ..., N . By

(12), we can see that by decreasing the values of µ2, γν . the sampling period T can be increased. This also implies

that the communication burden can be reduced.

B. Case two

In this case, we assume that the state ν and matrix A of the leader are known by a portion of the followers.

Then, we design the following distributed observer for agent i(i = 1, 2, ..., N).

˙̂
Ai = µ1

N∑

j=0

aij(Âj(t
j
l′)− Âi(t

i
l)), (13)

˙̂νi = Âi(t
i
l)ν̂i + µ2

N∑

j=0

aij(νj(t, t
j
l′)− νi(t, t

i
l)) (14)

where ν̂i, Âi are used to estimate the leader information ν,A,

νi(t, t
i

l) = eÂi(t
i
l)(t−t

i
l)ν̂i(t

i

l)(i = 1, ..., N) (15)

with ν̂0 , ν, ν0(t, t
0
l ) = eA(t−t0l )ν̂0(t

0
l ) = eA(t−t0l )ν(t0l ) = ν(t). µ1, µ2 are positive parameters.

t
i

l and t
j

l′ are event-triggered time instants similar to the case in Section III-A. They are determined by the

following PET mechanism:

t
i

l+1 = inf{τ > t
i

l |τ ∈ Ωi
T , h

i
A(τ, t

i

l) > 0, hi
ν(τ, t

i

l) > 0} (16)

where

hi
A(τ, t

i

l) = ||Âi(τ) − Âi(t
i

l)|| − ιAe
−γAτ ,

hi
ν(τ, t

i

l) = ||ν̂i(τ) − νi(τ, t
i

l)|| − ινe
−γντ

with positive constants ιA, ιν , γA, γν > 0.

Now we present our second result.
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Theorem 2. Given the multi-agent systems with the leader (1) and the PET distributed observer (13)-(14), there

exists a sufficiently small T such that Ãi , Âi−A and ν̃i , ν̂i− ν(i = 1, 2, ..., N) converge to zero exponentially.

Moreover, ||Ãi|| ∈ E(γA) and ||ν̃i|| ∈ E(min(γA, γν)) for ∀i = 1, 2, ..., N .

Proof: The proof is also put in Appendix B.

Remark 7. For the proposed distributed PET observer, the data transmission and PET condition are required to

be monitored only periodically. Thus, the Zeno behavior is excluded naturally because a minimum positive constant

exists between triggered time instants, i.e., t
i
l+1 − t

i
l ≥ T i. Meanwhile, compared with our previous work [24], the

proposed method has several essential differences: 1) The communication among various agents is asynchronous

because each agent i has a different sampling time T i. This makes the proof of Theorems 1 and 2 quite different

from [24]; 2) The convergence rate for the observer is provided, which will be used in the stability analysis of the

PET controller in Section IV.

Remark 8. Evidently, the distributed observer in Section III-B is more general than that in Section III-A. It can

be used for more complex environment. In the following controller design in Section IV, we assume that the matrix

A is known, i.e., the observer in Section III-A is used. The application of the distributed observer in Section III-B

is similar but out of the scope of this study. One can resort to [19], [20] for more information. This observer can

be used in linear multi-agent systems, multiple Euler-Lagrange systems etc.

IV. PET OUTPUT FEEDBACK CONTROLLER

We will consider the design of PET output feedback controller for the nonlinear multi-agent systems given by

(1)-(3) in this section. The design will be divided into the following steps.

A. System transformation

From Section II-B, it can be seen that the considered Problem 1 can be solved if system (8) is stabilized. That is

we can design a controller ui(i = 1, 2, ..., N) for (8) such that all the states xij → 0(i = 1, 2, ..., N ; j = 1, 2, ..., n).

However, it is not easy to find such a controller ui since only the output ei = xi1 is measurable and system (8)

is in a strict feedback form. In this subsection, we will introduce a coordinate transformation technique for system

(8). This transformation is useful for the subsequent output feedback controller design.

Using (8), define

ξi1 , xi1,

ξi2 , ξ̇i1 = f i1(zi, η̃i1, xi1, ν, w) + bi1(w)xi2, (17)

ξij , ξ̇i,j−1(j = 3, 4, ..., n+ 1).

Note that ξij has the following properties:
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Proposition 1. For i = 1, 2, ..., N ; j = 1, 2, ..., n,

ξij = ξij(zi, η̃i1, ..., η̃i,j−1, xi1, ..., xij , ν, w), (18)

xij = χij(zi, η̃i1, ..., η̃i,j−1, ξi1, ..., ξij , ν, w). (19)

Specifically,

ξi,n+1 = φi(zi, η̃i1, ..., η̃in, ξi1, ..., ξin, ν, w) + bin(w)ui

where ξij(·), χij(·), φi(·) are smooth functions with ξij(0, ..., 0, ν, w) = χij(0, ..., 0, ν, w) = φi(0, ..., 0, ν, w) = 0.

Proof: The proof is put in Appendix B.

On the basis of this transformation, system (8) can be rewritten as follows:

żi = fi0(zi, ξi1, ν, w),

˙̃ηij = Mij η̃ij + hij(·), j = 1, 2, ..., n

ξ̇i1 = ξi2,

ξ̇ij = ξi,j+1, j = 2, ..., n− 1 (20)

ξ̇in = φi(zi, η̃i1, ..., η̃in, ξi1, ..., ξin, ν, w) + bin(w)ui,

ei = ξi1, i = 1, 2, ..., N

where hij(·) = hij(zi, η̃i1, ..., η̃i,j−1, ξi1, ..., ξij , ν, w) is a smooth function with hij(0, ..., 0, ν, w) = 0.

Next, inspired by the backstepping technique, let

ζi1 = ξi1,

ζij = ξij − αi,j−1(j = 2, 3, ..., n) (21)

where

αij = −Qijζij , j = 1, 2, ..., n− 1 (22)

with a positive design parameter Qij > 0.

Using (21), (20) becomes

żi = fi0(zi, ζi1, ν, w),

˙̃ηij = Mij η̃ij + hij(·), j = 1, ..., n

ζ̇i1 = ζi2 + αi1,

ζ̇ij = ζi,j+1 + αij − α̇i,j−1, j = 2, ..., n− 1 (23)

ζ̇in = φi(zi, η̃i1, ..., η̃in, ζi1, ..., ζin, ν, w)− α̇i,n−1 + bin(w)ui,

ei = ζi1, i = 1, 2, ..., N

where hij(·) = hij(zi, η̃i1, ..., η̃i,j−1, ζi1, ..., ζij , ν, w), φi(·) are smooth functions with hij(0, ..., 0, ν, w) = φi(0, ..., 0, ν, w) =

0. Meanwhile, α̇ij has the following property:
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Proposition 2. For i = 1, 2, ..., N ; j = 1, 2, ..., n− 1, there exists a positive constant ϑij(Qi1, Qi2, ..., Qij) related

with Qi1, Qi2, ..., Qij such that |α̇ij | ≤ ϑij(Qi1, Qi2, ..., Qij)(|ζi1|+ · · ·+ |ζij |+ |ζi,j+1|).

Proof: See Appendix C for detailed information.

It is noted that if one can find a controller ui to stabilize the transformed system (20) or (23), then (8) can be

also stabilized. That is if ξij → 0 or ζij → 0, then xij → 0(i = 1, ..., N ; j = 1, ..., n). Hence, in the following we

will consider the stabilization problem of (20) and (23).

B. State feedback controller

We will introduce a state feedback controller for system (23) laying the foundation for the design of output

feedback controller in the next subsection. The following Lyapunov function is considered:

Vi =
Vi0(zi)

Li0
+

n∑

j=1

η̃TijPij η̃ij

Lij

+

n∑

j=1

1

2
ζ2ij (24)

where i = 1, ..., N , Vi0(zi) is given in Assumption 4, Pij > 0 are positive definite matrices such that

PijMij +MT
ijPij ≤ −βijI

where βij > 0 is a positive constant. Because Mij is Hurwitz, Pij exists. Li0, Lij ≥ 1 are scaling gains which will

be explained in the proof of Lemma 2.

Let Xi = col(zi, η̃i1, ..., η̃in, ζi1, ..., ζin). Assume

Xi(0) ∈ Br , [r,−r]nXi

where r is a positive constant, nXi
denotes the dimension of Xi.

Then, there exists a constant R > 0 such that

Vi(Xi) ≤ R

for ∀Xi ∈ Br.

Next, define the following set

ΩR = {Xi|Vi(Xi) ≤ R , R+∆R} (25)

where ∆R > 0 is a positive design parameter which will be explained later.

Then, we have:

Lemma 2. For system (23), suppose Xi(0) ∈ Br and belongs to the set ΩR, then there exists a virtual state

feedback control effort u∗
i given by

u∗
i = Ki(R)ζin (26)

such that

V̇i ≤−
γ̃i
2
||zi||

2 −
˜̺i
2

n∑

k=1

||η̃ij ||
2 −

1

4

n∑

j=1

ζ2ij

+ ζinbin(w)(ui − u∗
i ) (27)
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where Ki(R) is a sufficiently large control gain related with R, and γ̃i, ˜̺i are positive constants.

Proof: See Appendix D.

C. Output feedback controller

First, a new PET high gain observer is proposed to estimate the transformed variable ξij and ζij in (17) and (21).

Denote the sampling time instants as 0 = τ i0 < τ i1 < · · · < τ ip < · · · . Let T i = τ ip+1−τ ip denote the sampling period.

Note that the sampling time instants can be asynchronous with the distributed observer developed in Section III. Also

define set Ωi
T = {τ i0, τ

i
1, ..., τ

i
p, ...}. Meanwhile, the PET instants are denoted as: 0 = τ i0 < τ i1 < · · · < τ iq < · · · .

Then the PET high gain observer is given by:

˙̂
ξi1 =ξ̂i2 + Γid1(êi(τ

i
q)− ξ̂i1),

˙̂
ξi2 =ξ̂i3 + Γ2

i d2(êi(τ
i
q)− ξ̂i1),

... (28)

˙̂
ξin =b̂inui + Γn

i dn(êi(τ
i
q)− ξ̂i1)

where êi(t) = xi1(t) − q0(ν̂), Γi ≥ 1, b̂in, dj(j = 1, 2, ..., n) > 0 are positive design parameters. dj are the

coefficients of some Hurwitz polynomial pd(s) = sn + d1s
n−1 + · · ·+ dn−1s+ dn.

The PET time instants are determined by the Periodic Event-Triggered Mechanism B (PETM-B) in Fig. 1, that

is

τ iq+1 = inf{s > τ iq|s ∈ Ωi
T , h

i
e(s, τ

i
q) > 0} (29)

where hi
e(s, τ

i
q) = |êi(s)− êi(τ

i
q)| − ιe|êi(s)| with a positive constant ιe.

Then the estimated values ζ̂i1, ζ̂ij(j = 2, ..., n) are computed by

ζ̂i1 = ξ̂i1,

ζ̂ij = ξ̂ij − α̂i,j−1(j = 2, 3, ..., n),

where

α̂ij = −Qij ζ̂ij , j = 1, 2, ..., n.

Based on the above estimation, ui in (23) is given by

ui = satR(Ki(R)ζ̂in) (30)

where R is a positive design parameter. Ki(R) > 0 is a control gain related with R.

By (7), the actual control effort is computed as:

ui(t) =satR(Ki(R)ζ̂in) + Ψinηin, (31)

η̇in =Minηin +Ninui. (32)

Our third result is as follows.
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Theorem 3. Consider the multi-agent systems (1)-(3) with the output feedback control controller (31)-(32), PET

high gain observer (28) and PET distributed observer (13)-(14). Suppose the initial states Xi(0) ∈ Br and belong

to the set ΩR. Then, there exist a sufficiently large control gain Ki(R) and sufficiently small sampling time periods

T i, T i such that Problem 1 is solvable.

Proof: The proof is put in Appendix E.

Remark 9. The main result and its proof show that there exist sufficiently large control gains and small sampling

periods such that the cooperative semi-global output regulation problem can be solved. Moreover, the controller (31)-

(32) is not complex and easy to be implemented. The detailed tuning method for the control gains and sampling

times is out of the scope of this study. This is a common case for semi-global control problems as shown in

[22], [30]–[32]. In addition, since the considered system (3) may contain some unknown nonlinearities such as

fi0(zi, xi1, ν, w), it is not easy to explicitly give the upper bound for sampling periods like [24], [35].

Some guidelines for the selections of the control parameters are as follows: Larger control gains can result in

rapid response but serious oscillations. Smaller sampling period is beneficial for the stability of the system but may

result in more communication burden. Increasing the parameters ιe, ιν and decreasing γν in the event triggered

condition (29) and (11) can result in a light communication burden but deteriorate the control performance.

It is also noted that from the simulation results in Section V, we can see that the tuning of the control parameters

is not tedious. One can first select a small sampling period and then gradually increase the control gains. It is not

hard to stabilize the closed loop systems. Moreover, the simulation shows that the controller has strong robustness

to the variations of sampling periods.

D. Extension

We give an extension to the proposed results. An extra PET mechanism is used between the controller and

actuator in Fig. 1. That is the switch is on node 2. In this case, the actual control effort is given by

ui(t) =ωi(ς
i
m), t ∈ [ςim, ςim+1), (33)

ωi(t) =satR(Ki(R)ζ̂in) + Ψinηin, (34)

η̇in =Minηin +Ninui (35)

where 0 = ςi0 < ςi1 < · · · < ςim < · · · are the PET time instants. On time instant ςim, the controller will transmit

ωi(ς
i
m) to the actuator. They are given by:

ςim+1 = inf{τ > ςim|τ ∈ Ωi
T , h

i
ω(τ, ς

i
m) > 0} (36)

where hi
ω(τ, ς

i
m) = |ωi(τ) − ωi(ς

i
m)| − ιω |ωi(τ)| with a constant ιω ≥ 0.

Then, we have the last result in this paper.

Theorem 4. Consider the multi-agent systems (1)-(3) with the PET output feedback control controller (33)-(35),

PET high gain observer (28) and PET distributed observer (13)-(14). Suppose the initial states Xi(0) ∈ Br and
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belong to the set ΩR. Then, there exist a sufficiently large control gain Ki(R) and sufficiently small sampling time

periods T i, T i such that

1) All the signals are semi-globally uniformly bounded for ∀t ∈ [0,+∞); and,

2) The output regulation error ei(t) , yi(t) − y0(t) satisfies lim
t→+∞

|ei(t)| ≤ δi(ιe, ιω , T
i) ∀i ∈ {1, 2, ..., N}

where δi(ιe, ιω, T
i) is an increasing function with δi(0, 0, 0) = 0.

Proof: The proof is put in Appendix E.

Remark 10. From the proof in Appendix E, the detail expression of δi(ιe, ιω , T
i) could be complex and may be

conservative. This is a common case when adopting Lyapunov function method [36], [37]. However, according

to the property of δi(ιe, ιω, T
i), we know the regulation error can be made arbitrary small by tuning the design

parameters ιe, ιω , T
i.

V. SIMULATIONS

A group of four Lorenz systems is considered as follows:

żi1 =gi1zi1 + gi2xi1,

żi2 =gi3zi2 + zi1xi1,

ẋi1 =gi4zi1 + gi5xi1 − zi1zi2 + xi2,

ẋi2 =gi6zi1 + gi7zi2xi1 + ui,

yi =xi1, i = 1, 2, 3, 4

where gi1 = −10, gi2 = 10, gi3 = −8/3, gi4 = 1, gi5 = 0, gi6 = 0.2.

The leader is given by

ν̇ = Aν,

y0 = [1 0]ν

where S =



 0 1

−1 0



 . The communication graph is depicted in Fig. 2.

The control structure is composed of three parts, namely, the PET distributed observer (13)-(14), the PET local

observer (28) and the controller (30). The sampling time is set as T 1 = T 1 = 0.01s, T 2 = T 2 = 0.015s,

T 3 = T 3 = 0.02s, T 4 = T 4 = 0.025s. The controller parameters of these three parts are set as µ = 2, d1 = 5,

d2 = 10, Λi = 40, Qi1 = 2, Ki = 30(i = 1, 2, 3, 4). According to [21], Mi2, Ni2(i = 1, 2, 3, 4) in the controller

(32) can be calculated as

Mi2 =




1

1

1

−10 −18 −15 −6



, Ni2 =




1



.
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Figure 3. Performance of the distributed observer.

The performance of the PET distributed observer is shown in Fig. 3. The results demonstrate that each agent can

estimate the information of the leader accurately. Fig. 4(a) shows the event-triggered time instants between each

agent pair. It can be seen that the communication burden has been reduced a lot. In addition, the communication of

the multi-agent systems is asynchronous since the event-triggered time instants among different agents are different.

Fig. 4(b) shows the inter-event times for agent 3. The inter-event times are much larger than the sampling period.

Meanwhile, they are multiples of the sampling time T i. This implies that not only the Zeno behavior is excluded,

but also the data transmission is periodically triggered. All these verify the advantages of the developed distributed

observer.

The control performance of the entire multi-agent systems is shown in Fig. 5. It can be seen that the regulation

error rapidly becomes zero in a very short time. Table I shows the event-triggered times. The table shows that the

data transmission of the PET controller is much less than that of the sampled-data control strategy.

VI. CONCLUSIONS

In this paper, the PET cooperative output regulation problem is considered for strict feedback nonlinear multi-

agent systems. We propose a new PET distributed observer and a PET output feedback control law for this problem.

The communication between various agents can be asynchronous. Future works include considering PET output
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Figure 5. Control performance.

Table I

EVENT-TRIGGERED TIMES FOR PETM-B UNDER DIFFERENT ιe .

ιe = 0.05 ιe = 0.1 ιe = 0.2

sampled data 800 800 800

PET 390 324 271
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regulation for non-strict feedback nonlinear systems. For non-strict feedback nonlinear systems, the control effort

and the states may be coupled with each other. This will make the problem more challenging.

VII. APPENDIX

A. Two lemmas

In this section, we will present two key lemmas which will be used the in the proof of Theorems 1-2.

Lemma 3. Consider the following system

ẋ =− µΛ1xd + µΛ2xd + Λ3x+ µΛ4 + Λ5 (37)

where x = (x1, x2, ..., xN )T ∈ R
N , xd = (x1(t − d1(t)), x2(t − d2(t)), ..., xN (t − dN (t)))T ∈ R

N . di(t)(i =

1, 2, ..., N) ∈ R are time-varying delays such that 0 < di(t) ≤ T with a positive constant T . µ > 0 is a positive

constant. If −Λ1 is a Hurwitz matrix and Λj(j = 2, 3, 4, 5) ∈ E(γ) with a positive constant γ, then there exist a

sufficiently large µ and small T such that x ∈ E(γ).

Proof: (37) can be written as:

ẋ =− µΛ1x+ µΛ2x+ µΛ1η − µΛ2η

+ Λ3x+ µΛ4 + Λ5 (38)

where η(t) = col(η1(t), η2(t), ..., ηN (t)) with ηi(t) =
∫ t

t−di(t)
ẋi(s)ds.

Consider the following Lyapunov-Krasovskii function

V =
1

2
xTPx+

∫ t

t−T

(s− t+ T )||ẋ(s)||2ds (39)

where P is a positive definite matrix such that PΛ1 + ΛT
1 P = 2I .

Using (38), the derivative of V is computed as:

V̇ ≤xTP (−µΛ1x+ µΛ2x+ µΛ1η − µΛ2η)

+ xTP (Λ3x+ µΛ4 + Λ5)

+ T ||ẋ(t)||2 −

∫ t

t−T

||ẋ(s)||2ds

=− µ||x||2 + xT(µPΛ2 + PΛ3)x

+ xTP (µΛ1η − µΛ2η) + xTP (µΛ4 + Λ5)

+ T ||ẋ(t)||2 −

∫ t

t−T

||ẋ(s)||2ds.
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Noting that Λj(j = 2, 3, 4, 5) ∈ E(γ) and using Young’s inequality, we have

V̇ ≤− µ||x||2 + µc1e
−γt||x||2

+
µ

4
||x||2 + c2µ||η||

2

+
µ

4
||x||2 + µc3e

−2γt

+ T ||ẋ(t)||2 −

∫ t

t−T

||ẋ(s)||2ds (40)

where µ =
√
µ2 + 1 and c1, c2, c3 are some positive constants.

Meanwhile, using (38) for ||ẋ(t)||2 and Young’s inequality,

||ẋ(t)||2 ≤ c4µ
2||x||2 + c5µ

2||η||2 + c6µ
2e−2γt (41)

where c4, c5, c6 are some positive constants.

For η, by Jensen’s inequality [34], we have

η2i (t) =

(∫ t

t−di(t)

ẋi(s)ds

)2

≤ T

∫ t

t−T

||ẋi(s)||
2ds,

then

||η||2 ≤ T

∫ t

t−T

||ẋ(s)||2ds. (42)

Substituting (41) and (42) into (40), we get

V̇ ≤−
(µ
2
− µc1e

−γt − Tc4µ
2
)
||x||2

− (1− Tc2µ− Tc5µ
2)

∫ t

t−T

||ẋ(s)||2ds

+ µc3e
−2γt + Tc6µ

2e−2γt.

Then, for a positive constant γ, we have

V̇ + γV ≤−
(µ
2
− µc1e

−γt − Tc4µ
2 − γ||P ||

)
||x||2

− (1− Tc2µ− Tc5µ
2 − γT )

∫ t

t−T

||ẋ(s)||2ds

+ µc3e
−2γt + Tc6µ

2e−2γt. (43)

Next, we will show V does not exhibit finite time escape. From (43), we have

V̇ ≤αV + β

where α, β are positive constants.

This means

V ≤ V (0)eαt −
β

α
(1−eαt).

Therefore, V is bounded on finite time interval.
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Moreover, on a finite time interval [0, t0) ⊂ [0,+∞), we have

V ≤V (0)e(α+γ)te−γt −
β

α
(1− eαt)eγte−γt

≤max{V (0)e(α+γ)t0 ,
β

α
(1− eαt0)eγt0}e−γt

≤c7e
−γt (44)

where c7 is a positive constant.

On the other hand, for (43), there exists a finite time instant t0, µ and T such that

µ

2
− µc1e

−γt0 − Tc4µ
2 − γ||P || > 0,

1− Tc2µ− Tc5µ
2 − γT > 0.

Therefore,

V̇ ≤− γV + c8e
−2γt (45)

for ∀t ∈ [t0,+∞) where c8 is a positive constant.

Then, by solving the above inequality,

V ≤V (t0)e
−γ(t−t0) −

c8
γ
e−2γ(t−t0) +

c8
γ
e−γt0e−γt

≤max{V (t0),
c8
γ
}e−γt ≤ c9e

−γt (46)

for ∀t ∈ [t0,+∞) where c9 is a positive constant.

Then by combining (44) and (46), we can complete the proof.

Lemma 4. Consider the system (37) in a special form by letting Λ2 = Λ3 = Λ5 = 0. That is

ẋ =− µΛ1xd + µΛ4 (47)

where −Λ1 is a Hurwitz matrix, Λ4 ∈ E(γ) with a positive constant γ. If µ, T satisfy

T < min

{
1

6µ||Λ1||2
−

γ||P ||

3µ2||Λ1||2
,

1

µ||PΛ1||+ 3µ2||PΛ1||+ γ

}
(48)

where P is a positive definite matrix such that PΛ1 + ΛT
1 P = 2I , then x ∈ E(γ).

Proof: The proof follows the line of the proof of 1). Under the assumption that Λ2 = Λ3 = Λ5 = 0, (37) can

be written as:

ẋ =− µΛ1x+ µΛ1η + µΛ4 (49)

where η(t) = col(η1(t), η2(t), ..., ηN (t)) with ηi(t) =
∫ t

t−di(t)
ẋi(s)ds.
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Consider a Lyapunov-Krasovskii function in the form of (39). By (49), we have

V̇ ≤xTP (−µΛ1x+ µΛ1η + µΛ4)

+ T ||ẋ(t)||2 −

∫ t

t−T

||ẋ(s)||2ds.

By Young’s inequality, we get

V̇ ≤− µ||x||2

+
µ

4
||x||2 + µ||PΛ1|| · ||η||

2

+
µ

4
||x||2 + µc10e

−2γt

+ T ||ẋ(t)||2 −

∫ t

t−T

||ẋ(s)||2ds (50)

where c10 is a positive constant.

Meanwhile, using (49) for ||ẋ(t)||2 and by Young’s inequality

||ẋ(t)||2 ≤ 3µ2||Λ1||
2||x||2 + 3µ2||Λ1||

2||η||2 + c11µ
2e−2γt (51)

where c11 is a positive constant.

Substituting (51) into (50),

V̇ ≤−
(µ
2
− 3Tµ2||Λ1||

2
)
||x||2

− (1− Tµ||PΛ1|| − 3Tµ2||Λ1||
2)

∫ t

t−T

||ẋ(s)||2ds

+ µc10e
−2γt + Tc11µ

2e−2γt.

Then, for a positive constant γ, we have

V̇ + γV

≤−
(µ
2
− 3Tµ2||Λ1||

2 − γ||P ||
)
||x||2

− (1− Tµ||PΛ1|| − 3Tµ2||Λ1||
2 − γT )

∫ t

t−T

||ẋ(s)||2ds

+ µc10e
−2γt + Tc11µ

2e−2γt. (52)

If the following inequality holds
µ

2
− 3Tµ2||Λ1||

2 − γ||P || > 0, (53)

1− Tµ||PΛ1|| − 3Tµ2||Λ1||
2 − γT > 0, (54)

then we have

V̇ ≤− γV + µc10e
−2γt + Tc11µ

2e−2γt.

By solving the above inequality, we can show x ∈ E(γ). Finally, note that (53)-(54) are equivalent to (48). This

completes the proof.
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B. Proof of Theorems 1 and 2

Proof: We will first prove Theorem 2. The proof is divided into the following two steps.

Step 1. Show Ãi , Âi −A(i = 1, 2, ..., N) converges to zero exponentially.

Note that (13) can be transformed into

˙̃A = −µ1(H � I)(Â(tl)−A)

= −µ1(H � I)(Â(tl)− Â(tk) + Ã(tk)) (55)

where A = col(A,A, ..., A), Â = col(Â1, Â2, ..., ÂN ), Ã = Â − A. Â(tl) = col(Â1(t
1
l′), Â2(t

2
l′), ..., ÂN (t

N

l′ )),

Â(tk) = col(Â1(t
1
k′), Â2(t

2
k′), ..., ÂN (tNk′)), Ã(tk) = Â(tk)−A.

Let α = vec(A), α̂ = vec(Â), α̃ = vec(Ã), α̂(tl) = vec(Â(tl)), α̂(tk) = vec(Â(tk)) and α̃(tk) = vec(Ã(tk)),

(55) becomes

˙̃α = −µ1(I � H � I)(α̂(t
i

l)− α̂(tk) + α̃(tk)).

It follows that

˙̃α = −µ1(I � H � I)α̃(tk) + µ1ΛA (56)

where ΛA = (I � H � I)(α̂(tl)− α̂(tk)).

From the event-triggered condition (16), we know ΛA ∈ E(γA). Then, let di(t) = t− tik in (56) and use Lemma

3 in Appendix A, we can show α̃ ∈ E(γA), i.e., Ãi ∈ E(γA)(i = 1, 2, ..., N).

Step 2. Show ν̃i , ν̂i − ν(i = 1, 2, ..., N) converges to zero exponentially.

Let

zi(t) = e−Atν̂i(t)(i = 0, 1, ..., n) (57)

where z0(t) = e−Atν̂0(t) = e−Atν(t) = ν(0).

Then, (14) can be expressed as:

żi =− e−AtAν̂i(t) + e−AtÂiν̂i(t)

+ e−Atµ2

N∑

j=0

aij(νj(t, t
j

l′)− νi(t, t
i

l)).

The above inequality can be written as:

żi =∆1
i + µ2

N∑

j=0

aij
(
∆2

j −∆2
i

)

+ µ2

N∑

j=0

aij
(
∆3

j −∆3
i

)

+ µ2

N∑

j=0

aij(zj(t
j
k′)− zi(t

i
k))

where

∆1
i = e−AtÂiν̂i(t)− e−AtAν̂i(t), (58)
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∆2
i = e−At

(
eÂi(t

i
l)(t−t

i
l)ν̂i(t

i
l)− eÂi(t

i
l)(t−tik)ν̂i(t

i
k)
)
, (59)

∆3
i = e−At

(
eÂi(t

i
l)(t−tik)ν̂i(t

i
k)− eA(t−tik)ν̂i(t

i
k)
)
. (60)

By considering agent i = 1, 2, ..., N , we have

˙̃z =− µ2(H � I)z̃(tk)

+ ∆1 − µ2(H � I)∆2 − µ2(H � I)∆3 (61)

where z̃(tk) = col(z1(t
1
k′ ), z2(t

2
k′), ..., zN (tNk′ )), ∆1 = col(∆1

1,∆
1
2, ...,∆

1
N ), ∆2 = col(∆2

1,∆
2
2, ...,∆

2
N ), ∆3 =

col(∆3
1,∆

3
2, ...,∆

3
N ).

In the following, we will have an analysis on ∆1,∆2 and ∆3.

For ∆1
i in ∆1, we have

∆1
i = e−AtÂiν̂i(t)− e−AtAν̂i(t)

= e−AtÃie
Atz̃i + e−AtÃie

Atz0.

This implies that

∆1 = Λ1z̃ + Λ1z̄ (62)

where Λ1 = diag(e−AtÃ1e
At, e−AtÃ2e

At, ..., e−AtÃNeAt), z̄ = col(z0, z0, ..., z0).

For i = 1, 2, ..., N , using the result in Step 1 and Lemma 1-1), we get

||e−AtÃie
At|| ≤ ||e−At|| · ||Ãi|| · ||e

−At|| = ||Ãi|| ∈ E(γA).

This implies that ||Λ1|| ∈ E(γA) and ||Λ1z̄|| ∈ E(γA).

For ∆2
i in ∆2, according to (59), we have

∆2
i = e−AteÂi(t

i
l)(t−tik)

(
eÂi(t

i
l)(t

i
k−t

i
l)ν̂i(t

i

l)− ν̂i(t
i
k)
)
.

Note that ||e−AteÂi(t
i
l)(t−tik)|| are bounded by Lemma 1-1). According to (16), we get ||∆2

i || ∈ E(γν). Thus,

||(H � I)∆2|| ∈ E(γν).

For ∆3
i in ∆3, according to (60), we have

∆3
i = e−At

(
eÂi(t−tik) − eA(t−tik)

)
eAtikzi(t

i
k).

This indicates that

∆3 = Λ2z̃(tk) + Λ2z̄ (63)

where z̄ = col(z0, z0, ..., z0), Λ2 = diag(e−At(eÂ1(t−t1
k′ ) − eA(t−t1

k′ ))eAt1
k′ , ..., e−At(eÂN (t−tN

k′ ) − eA(t−tN
k′ ))eAtN

k′ ).

Note that for any entry in Λ2, using Lemma 1-2), we have

||e−At(eÂi(t−tik) − eA(t−tik))eAtik ||

≤||e−At|| · ||eÂi(t−tik) − eA(t−tik)|| · ||eAtik ||

≤||Âi −A||e||(Âi−A)(t−tik)||+||A(t−tik)|| ∈ E(γA).
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This implies that ||Λ2|| ∈ E(γA) and ||Λ2z̄|| ∈ E(γA).

Based on (62) and (63), (61) becomes

˙̃z =− µ2(H � I)z̃(tk)

+ Λ1z̃ + Λ1z̄ − µ2(H � I)∆2

− µ2(H � I)(Λ2z̃(tk) + Λ2z̄)

=− µ2(H � I)z̃(tk)− µ2(H � I)Λ2z̃(tk) + Λ1z̃

− µ2(H � I)∆2 − µ2(H � I)Λ2z̄ + Λ1z̄. (64)

Let H � I = Λ1, −µ2(H � I)Λ2 = Λ2, Λ1 = Λ3, −(H � I)∆2 − (H � I)Λ2z̄ = Λ4, Λ1z̄ = Λ5.

Then, (64) is expressed as

˙̃z =− µ2Λ1z̃(tk) + µ2Λ2z̃(tk) + Λ3z̃

+ µ2Λ4 + Λ5

where Λ2,Λ3,Λ4,Λ5 ∈ E(min(γA, γν)).

Using Lemma 3 in Appendix A, we can show z̃ ∈ E(min(γA, γν)). Note that

||ν̃i|| = ||e−Atν̃i|| ≤ ||z̃|| ∈ E(min(γA, γν))

for i = 1, 2, ..., N . Therefore, Theorem 2 is proved.

Next, we will prove Theorem 1. The proof follows the line of Step 2 by using the real value of A instead of Âi.

In this case, (61) becomes

˙̃z =− µ2(H � I)z̃(tk) + µ2Λ4

where Λ4 ∈ E(γν).

Then, by Lemma 4, we can show ||ν̃i|| = ||e−Atν̃i|| ≤ ||z̃|| ∈ E(γν) if T satisfies (12). This completes the proof.

C. Proof of Proposition 1

Proof: First, from (17), we know

ξi2 = f i1(zi, η̃i1, xi1, ν, w) + bi1(w)xi2

, ξi2(zi, η̃i1, xi1, xi2, ν, w).

This shows (18) holds with j = 2. Meanwhile, we have

xi2 = (ξi2 − f i1(zi, η̃i1, ξi1, ν, w))/bi1(w)

, χi2(zi, η̃i1, ξi1, ξi2, ν, w).

This shows (19) holds with j = 2.
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For j = 3, by (17) and (8), we know

ξi3 , ξ̇i2 =
∂ξi2
∂zi

f i0 +
∂ξi2
∂η̃i1

(Mij η̃ij + gij)

+
∂ξi2
∂xi1

(
f i1 + bi1(w)xi2

)

+
∂ξi2
∂xi2

(
f i2 + bi2(w)xi3

)
+

∂ξi2
∂ν

Aν

,ξi3(zi, η̃i1, η̃i2, xi1, xi2, xi3, ν, w).

This shows (18) holds with j = 3. Similarly, we can show (19) holds with j ≥ 4. This completes the proof.

D. Proof of Proposition 2

Proof: For j = 1, we have

α̇i1 = −Qi1ζ̇i1 = −Qi1(ζi2 −Qi1ζi1) ≤ ϑi1(Qi1)(|ζi1|+ |ζi2|).

For j = 2, using the above inequality, we have

α̇i2 = −Qi2ζ̇i2 = −Qi2(ζi3 + αi2 − α̇i1)

= −Qi2(ζi3 −Qi2ζi2 − α̇i1)

≤ ϑi2(Qi1, Qi2)(|ζi1|+ |ζi2|+ |ζi3|).

By repeating the above procedures for j = 3, 4, ..., n, we can complete the proof.

E. Proof of Lemma 2

Proof: The proof is divided into the following steps. We will analyze each term in the Lyapunov function (24).

Step 1). Analysis of Vi0(zi).

According to Lemma 11.1 in [3], we know when Xi ∈ ΩR, there exists a positive constant gain µi0(R) related

with R such that
∥∥∥∥
∂Vi0

∂zi

∥∥∥∥ · ||f i0(zi, ζ1i, ν, w)− f i0(zi, 0, ν, w)||

≤µi0(R)||zi|| · |ζ1i|.

Then, using Assumption 4 and Young’s inequality, the derivative of Vi0 can be computed as:

V̇i0(zi) =
∂Vi0

∂zi
f i0(zi, ζ1i, ν, w)

=
∂Vi0

∂zi
f i0(zi, 0, ν, w)

+
∂Vi0

∂zi
(f i0(zi, ζ1i, ν, w)− f i0(zi, 0, ν, w))

≤− γi0||zi||
2 + µi0(R)||zi|| · |ζ1i|

≤ −
γi0|

2
|zi||

2 + µi0(R)ζ21i
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where µi0(R) is a positive constant related with R.

Then, let V z
i = Vi0(zi)

Li0
, we have

V̇ z
i (zi) ≤−

γi0
2Li0

||zi||
2 +

µi0(R)

Li0
ζ21i.

Step 2). Analysis of
η̃T
ijPij η̃ij

Lij
.

Consider the following Lyapunov function V η
ij =

η̃T
ijPij η̃ij

Lij
. Then using Lemma 11.1 in [3] and the transformed

system (23), the derivative of V η
ij is

V̇ η
ij =

1

Lij

η̃Tij(PijMij +MT
ijPij)η̃ij

+
1

Lij

η̃TijPijhij(zi, η̃i1, ..., η̃i,j−1, ζi1, ..., ζij , ν, w)

≤−
βij

2Lij

||η̃ij ||
2 +

γij(zi)

Lij

||zi||
2 +

j−1∑

k=1

̺ijk(η̃ik)

Lij

||η̃ik||
2

+

j∑

k=1

µijk(ζik)

Lij

ζ2ik (65)

where γij(zi), ̺ijk(η̃ik), µijk(ζik) are continuous functions.

Note that by (25), for ∀Xi ∈ ΩR,

cPij
||η̃ij ||

2 ≤ η̃TijPij η̃ij ≤ LijR
2

where cPij
> 0 denotes the minimum eigenvalue of matrix Pij .

Hence, (65) can be expressed as:

V̇ η
ij ≤−

βij

2Lij

||η̃ij ||
2 +

γij(R)

Lij

||zi||
2 +

j−1∑

k=1

̺ijk(RLik)

Lij

||η̃ik||
2

+
µij(R)

Lij

j∑

k=1

ζ2ik

where γij(R), ̺ij(RLik), µij(R) are positive gains related with R and Lik.

Step 3). Analysis of V z
i and V η

ij .

Consider the following Lyapunov function

Wi , V z
i +

n∑

j=1

V η
ij .
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We can obtain

Ẇi =V̇ z
i (zi) +

n∑

j=1

V̇ η
ij

≤−


 γi0
2Li0

−
n∑

j=1

γij(R)

Lij


 ||zi||

2

−

n∑

j=1


 βij

2Lij

−

n∑

k=j+1

̺ijk(RLik)

Lik


 ||η̃ij ||

2

+




n∑

j=0

µij(R)

Lij


 ζ2i1 +

n∑

k=2




n∑

j=k

µij(R)

Lij


 ζ2ik. (66)

Thus there exist sufficiently large scaling gains Lij and positive constants γ̃i, ˜̺i such that

γi0
2Li0

−

n∑

j=1

γij(R)

Lij

≥ γ̃i,

βij

2Lij

−

n∑

k=j+1

̺ijk(RLij)

Lik

≥ ˜̺i, j = 1, ..., n,

n∑

j=0

µij(R)

Lij

≤
1

4
.

Hence, we have

Ẇi ≤ −γ̃i||zi||
2 − ˜̺i

j∑

k=1

||η̃ij ||
2 +

1

4

n∑

j=1

ζ2ij .

Step 4). Analysis of 1
2ζ

2
ij .

Consider Lyapunov function V ζ
ij =

1
2ζ

2
ij . By (23), (22) and Proposition 2, we have for j = 1, ..., n− 1,

V̇ ζ
ij =ζij(ζi,j+1 −Qijζij − α̇i,j−1)

≤ −Qijζ
2
ij + ζijζi,j+1

+ |ζij |ϑij(Qi1, Qi2, ..., Qi,j−1)(|ζi1|+ · · ·+ |ζij |)

≤ −
(
Qij − ϑij(Qi1, ..., Qi,j−1)

)
ζ2ij

+
ζ2i,j+1

2
+

j−1∑

k=1

ζ2ik

where ϑij(Qi1, ..., Qi,j−1) is a positive constant depending on Qi1, ..., Qi,j−1.

Let

Qij = ϑij(Qi1, ..., Qi,j−1) + n.

We obtain

V̇ ζ
ij ≤− nζ2ij +

ζ2i,j+1

2
+

j−1∑

k=1

ζ2ik(j = 1, ..., n− 1).
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Then let V ζ
i =

∑n
j=1

ζ2
ij

2 and use (23). We have

V̇ ζ
i ≤−

n−1∑

j=1

ζ2ij + ζin(φi − α̇i,n−1 + bin(w)ui).

Using Proposition 2 and Young’s inequality, for ∀Xi ∈ ΩR, we obtain

V̇ ζ
i ≤−

1

2

n−1∑

j=1

ζ2ij + ζinbin(w)ui

+
γ̃i
2
||zi||

2 +
˜̺i
2

n−1∑

j=1

||η̃ij ||
2 + µ∗

i (R)ζ2in (67)

where µ∗
i (R) is a positive constant related with R.

5) Analysis of Vi.

Finally, based on (66) and (67), the derivative of Vi can be computed as

V̇i ≤−
γ̃i
2
||zi||

2 −
˜̺i
2

j∑

k=1

||η̃ij ||
2 −

1

4

n−1∑

j=1

ζ2ij

− (bin(w)Ki(R)− µ∗
i (R))ζ2in

+ ζinbin(w)(ui − u∗
i )

where u∗
i is given by (26).

Hence, if

Ki(R) > µ∗
i (R)/bin(w)

we obtain (27). The proof is completed.

F. Proof of Theorems 3 and 4

Proof: We only provide the proof for Theorem 4. The proof of Theorem 3 follows. The proof is divided into

the following steps.

Step 1). Construction of the estimation error system.

Using the transformed system (20) and the observer (28), define the estimation error as ξ̃ij = ξij − ξ̂ij(i =

1, 2, ..., N ; j = 1, 2, ..., n). Then, the estimation error system is constructed as:

˙̃
ξi1 =ξ̃i2 − Γid1ξ̃i1 + Γid1(êi(τ

i
q)− ei),

˙̃
ξi2 =ξ̃i3 − Γ2

i d2ξ̃i1 + Γ2
i d2(êi(τ

i
q)− ei),

...

˙̃ξin =− Γn
i dnξ̃i1 + Γn

i dn(êi(τ
i
q)− ei)

+ φi + (bin(w)− b̂in)ui.

Let ǫij = Γn−j
i ξ̃ij(j = 1, 2, ..., n). It follows that

ǫ̇i = ΓiDǫǫi +Hi (68)
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where ǫi = col(ǫi1, ǫi2, ..., ǫin),

Dǫ =




−d1 1
...

. . .

−dn−1 1

−dn



,

Hi = Hi1 +Hi2

with

Hi1 = Γn
i (êi(τ

i
q)− ei(t))col(d1, ..., dn),

Hi2 = col(0, 0, ..., φi + (bin(w)− b̂in)ui).

Step 2). Construction of the Lyapunov functions.

Note that since the design parameters d1, ..., dn are the coefficients of some Hurwitz polynomial sn + d1s
n−1 +

· · ·+dn−1s+dn, Dǫ is Hurwtiz. This indicates that we can find a positive definite matrix P such that PDǫ+DT
ǫ P ≤

−I . Then, take the following Lyapunov function V ǫ
i = ǫTi Pǫi. The derivative of V ǫ

i is given by

V̇ ǫ
i =− Γi||ǫi||

2 + 2ǫTi PHi1 + 2ǫTi PHi2. (69)

For ǫTi PHi1, by Young’s inequality and (29), we have

ǫTi PHi1 ≤
Γi

5
||ǫi||

2 + σi1(Γi)(êi(τ
i
q)− ei(t))

2 (70)

where σi1(Γi) is a positive constant related with Γi.

For ǫTi PHi2, note that φi(0, ..., 0, ν, w) = 0. Then when Xi ∈ ΩR we have

ǫTi PHi2 ≤
Γi

5
||ǫi||

2 + σi2(R)(z2i +
n∑

j=1

(η̃2ij + ζ2ij))

+ σi2(R)(ui − u∗
i )

2 (71)

where σi2(Ri) is a positive constant related with Ri.

Finally, consider the following Lyapunov function in logarithm form

Vi = Vi +
ln(1 + V ǫ

i )

ln(1 + ςi(Γi))
. (72)

Assume V ǫ
i (0) ≤ Rǫ for ∀Xi ∈ Br with a positive constant Rǫ. Then ςi(Γi) is selected to be a polynomial function

with respect to Γi such that
ln(1+Rǫ)

ln(1+ςi(Γi))
≤ ∆R

2 .

Based on Lemma 2 and (69)-(71), the derivative of Vi is computed as:

V̇i ≤− γ̃i||zi||
2 − ˜̺i

n∑

j=1

||η̃ij ||
2 −

n∑

j=1

ζ2ij

+Υi1 +Υi2 +Υi3 +Υi4 (73)
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where

Υi1 =−
Γi

5 ln(1 + ςi(Γi))

||ǫi ||
2

1 + ||P ||||ǫi ||2

+
2σi2(R)(ũi − u∗

i )
2

ln(1 + ςi(Γi))
,

Υi2 =
2σi2(R)

(
z2i +

∑2
j=1(η̃

2
ij + ζ2ij)

)

ln(1 + ςi(Γi))
,

Υi3 =
2σi2(R)(ui − ũi)

2

ln(1 + ςi(Γi))
,

Υi4 =
2σi1(Γi)(êi(τ

i
q)− ei(t))

2

ln(1 + ςi(Γi))
,

ũi = ωi(t)−Ψinηin(t) = satR(Ki(R)ζ̂in(t)),

ui = ui(t)−Ψinηin(t).

From (26), (30) and Lemma 1, we know there exists a positive constant σi3(R) and sufficient large R such that

(ũi − u∗
i )

2 ≤σi3(R)min{||ǫi ||
2, 1} ≤

σi3(R)||ǫi ||
2

1 + ||P ||||ǫi ||2
.

Using this for (73) and noting that ςi(Γi) is a polynomial function with respect to Γi, there exists a sufficiently

large Γi such that

V̇i ≤−
γ̃i
2
||zi||

2 −
˜̺i
2

n∑

k=1

||η̃ij ||
2 −

1

2

n∑

j=1

ζ2ij − σi4||ǫi ||
2

+Υi3 +Υi4 (74)

where σi4 is a positive constant.

Step 3). Taking the PET mechanism into consideration

We will have an analysis on the terms Υi3,Υi4 in (74) by taking the PET mechanism into consideration. In the

following, we suppose t ∈ [τ ip, τ
i
p+1).

Using (33)-(34), ui − ũi in Υi3 is computed as:

ui − ũi = ωi(ς
i
m)− ωi(t) = ωi(ς

i
m)− ωi(τ

i
p) + ωi(τ

i
p)− ωi(t)

where ςim denotes the latest event-triggered time instant for the data transmission between the controller and the

plant.

By the event triggered condition (36), we have

|ui − ũi| ≤ ιω|ωi(τ
i
p)|+ |ωi(τ

i
p)− ωi(t)|

≤ (1 + ιω)|ωi(τ
i
p)− ωi(t)|+ ιω |ωi(t)|. (75)
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Meanwhile, by (29) and Theorem 1, êi(τ
i
q)− ei(t) in Υi4 is computed as:

|êi(τ
i
q)− ei(t)|

≤|êi(τ
i
q)− êi(τ

i
p)|+ |êi(τ

i
p)− ei(τ

i
p)|+ |ei(τ

i
p)− ei(t)|

≤ιe|êi(τ
i
p)|+ e−γντ

i
p + |ei(τ

i
p)− ei(t)|, (76)

|êi(τ
i
p)| ≤ |êi(τ

i
p)− ei(τ

i
p)|+ |ei(τ

i
p)− ei(t)|+ |ei(t)|

≤ e−γντ
i
p + |ei(τ

i
p)− ei(t)|+ |ei(t)| (77)

where τ iq denotes the latest event-triggered time instant for the data transmission between the sensor and the plant.

Using (75)-(77) for Υi3,Υi4 in (74), we have

V̇i ≤−
γ̃i
2
||zi||

2 −
˜̺i
2

2∑

k=1

||η̃ij ||
2 −

1

2

n∑

j=1

ζ2ij − σi4||ǫi ||
2

+ σi5(R)
(
(ωi(τ

i
p)− ωi(t))

2 + ι2ωω
2
i (t)

)

+ σi6(Γi)
(
(ei(τ

i
p)− ei(t))

2 + ι2ee
2
i (t) + e−2γνt

)
(78)

where σi5(R), σi6(Γi) are positive constants related with R,Γi.

Step 4). Convergence analysis

Let Xi = col(zi, η̃i1, η̃in, ζi1, ..., ζin, ǫi). From (23) and (68), we have

Ẋi =AiXi + Bi(ωi(ς
i
m)− ωi(τ

i
p)) + Bi(ωi(τ

i
p)− ωi(t))

+ Ci(êi(τ
i
q)− êi(τ

i
p)) + Ci(êi(τ

i
p)− ei(τ

i
p))

+ Ci(ei(τ
i
p)− ei(t))

+Di(Xi) (79)

where Ai,Bi, Ci are constant matrices, Di(Xi) is a nonlinear function with respect to Xi such that

||Di(Xi)|| ≤ c1||Xi|| (80)

for bounded Xi where c1 > 0 is a positive constant.

For ωi(ς
i
m)− ωi(τ

i
p) and ωi(τ

i
p)− ωi(t) in (79), using (36), (34) and (6), we have

|ωi(ς
i
m)− ωi(τ

i
p)| ≤ ιω|ωi(τ

i
p)|, (81)

|ωi(τ
i
p)| =|satR(Ki(R)ζ̂in(τ

i
p))

+ Ψin(η̃ij(τ
i
p) + θij(ν(τ

i
p), w) + b−1Nijxij(τ

i
p))|

≤c2||Xi(τ
i
p)||+ c3, (82)
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|ωi(τ
i
p)− ωi(t)|

=|satR(Ki(R)ζ̂in(τ
i
p)) + Ψinηin(τ

i
p)

− (satR(Ki(R)ζ̂in) + Ψinηin)|

≤c4||Xi −Xi(τ
i
p)||+ |Ψin(η̃ij + θij(ν, w) + b−1Nijxij)

−Ψin(η̃ij(τ
i
p) + θij(ν(τ

i
p), w) + b−1Nijxij(τ

i
p))|

≤c5||Xi −Xi(τ
i
p)||+ δi1(T

i) (83)

where c2, c3, c4, c5 are positive constants, δi1(T
i) is an increasing function with δi1(0) = 0.

For êi(τ
i
q)−êi(τ

i
p), êi(τ

i
p)−ei(τ

i
p) and ei(τ

i
p)−ei(t) in (79), from (29) and Theorem 2, noting that ζi1 = ξi1 = ei,

we have

|(êi(τ
i
q)− êi(τ

i
p)) + (êi(τ

i
p)− ei(τ

i
p))|

≤c6ιe|êi(τ
i
p)|+ c6e

−γνt

≤c6ιe|êi(τ
i
p)− ei(τ

i
p)|+ c6ιe|ei(τ

i
p)|+ c6e

−γνt

≤c7ιe||Xi(τ
i
p)||+ c7e

−γνt, (84)

|ei(τ
i
p)− ei(t)| ≤ c8||Xi(t)−Xi(τ

i
p)|| (85)

where c6, c7, c8 > 0 are positive constants.

Then, integrating (79) on time interval [τ ip, τ
i
p+1) and using (81)-(85), we have

||Xi(t)−Xi(τ
i
p)||

≤

∫ t

τ i
p

c9||Xi(τ)−Xi(τ
i
p)||dτ + T ic10||Xi(τ

i
p)||

+ c11e
−γντ

i
p + δi2(T

i)

where c9, c10, c11 > 0 are positive constants and δi2(T
i) is an increasing function with δi2(0) = 0.

Using Gronwall’s inequality, we have

||Xi(t)−Xi(τ
i
p)||

≤(T ic10||Xi(τ
i
p)||+ c11e

−γντ
i
p + δi2(T

i))e−c9T
i

.

It follows that

||Xi(t)−Xi(τ
i
p)||

≤T ic10e
−c9T

i

||Xi(t)−Xi(τ
i
p)||

+ T ic10e
−c9T

i

||Xi(t)||+ c11e
−γντ

i
pe−c9T

i

+ δi2(T
i)e−c9T

i

.

January 5, 2022 DRAFT



33

Then, when T i is small enough, we have

||Xi(t)−Xi(τ
i
p)||

≤Ξi(T
i)||Xi(t)||+ c12e

−γντ
i
p + δi3(T

i)

where Ξi(T
i) is an increasing function with Ξi(0) = 0, c12 is a positive constant and δi3(T

i) is an increasing

function with δi3(0) = 0.

Next, using the above inequality for ωi(τ
i
p)− ωi(t) and ei(τ

i
p)− ei(t) in (78), we can conclude that there exists

a sufficiently small sampling period T i and ιe, ιω such that

V̇i ≤−
γ̃i
4
||zi||

2 −
˜̺i
4

n∑

k=1

||η̃ij ||
2 −

1

4

n∑

j=1

ζ2ij −
σi6

2
||ǫi ||

2

+ c13e
−2γνt + δi4(ιe, ιω, T

i)

≤− c14Vi + c13e
−2γνt + δi4(ιe, ιω , T

i) (86)

where c13, c14 > 0 are positive constants and δi4(ιe, ιω, T
i) is an increasing function with δi4(0, 0, 0) = 0.

By solving the above equation, we have

Vi(t) ≤ Vi(0) + c15

(
1

2γν
+ δi4(ιe, ιω , T

i)

)

where c15 is a positive constant. This means that there exists a sufficient large γν and small ιe, ιω , T
i such that

Vi(t) ≤ R+∆R = R. Therefore, Xi will always remain in the set ΩR. Meanwhile, Vi(t) will converge to the set

δi4(ιe, ιω, T
i)/c14 exponentially. This completes the proof.
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