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Abstract

This study focuses on periodic event-triggered (PET) cooperative output regulation problem for a class of nonlinear
multi-agent systems. The key feature of PET mechanism is that event-triggered conditions are required to be monitored
only periodically. This approach is beneficial for Zeno behavior exclusion and saving of battery energy of onboard
sensors. At first, new PET distributed observers are proposed to estimate the leader information. We show that the
estimation error converges to zero exponentially with a known convergence rate under asynchronous PET commu-
nication. Second, a novel PET output feedback controller is designed for the underlying strict feedback nonlinear
multi-agent systems. Based on a state transformation technique and a local PET state observer, the cooperative semi-
global output regulation problem can be solved by the proposed new control design technique. Simulation results of

multiple Lorenz systems illustrate that the developed control scheme is effective.

Index Terms

Cooperative output regulation, periodic event-triggered mechanism, multi-agent systems, strict feedback nonlinear

systems

I. INTRODUCTION

Output regulation problem has attracted an increasing attention recently. Output regulation aims to make tracking
error converge to zero while rejecting disturbance. Reference and disturbance signals are produced by an exosystem.
For typical examples, the internal model principle was used for the output regulation of linear multi-variable systems
[1]]. [2]—[4] focused on the output regulation problem of nonlinear systems. Different classes of nonlinear systems,
such as first order system, output feedback system and strict feedback system, were considered.

The output regulation theory has also been shown to be a powerful method for multi-agent systems [5]-[9]. On

the basis of this theory, the leader-following problem can be handled effectively despite parametric uncertainties and
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external disturbance. For instance, in [10]], [L1], the cooperative output regulation problem for linear and nonlinear
multi-agent systems were solved using distributed observer technique.

With the continuous development of embedded microprocessors in engineering system, a critical issue for multi-
agent systems is reducing the communication burden. Apparently, continuous communication may be unrealistic in
most applications because the bandwidth and energy are limited. Event-triggered control strategy has been lately
introduced for the cooperative control of multi-agent systems [12], [[13]]. The idea of the event-triggered control is
that data transmission is conducted only under some certain conditions. Event-triggered mechanism is an effective
method for resource-limited applications. A number of works on various kinds of event-triggered control methods
[14]-[16] have been conducted.

More recently, in [[17], [[18], a new periodic event-triggered (PET) control method has been presented. Different
from other event-triggered mechanisms, PET mechanism is required to monitor data communication and triggered
conditions only at discrete sampling instants. This characteristic brings some promising advantages (see [24])). First,
the inter-event time naturally becomes multiples of sampling periods. This condition not only strictly excludes the
Zeno behavior but is also useful for digital implementation where tasks are always executed periodically. Second,
the energy for evaluating the event-triggered condition can also be saved given that no continuous monitoring exists.
This condition is beneficial for saving the battery energy of onboard sensors. However, to the best of our knowledge,
the PET cooperative output regulation problem for nonlinear multi-agent systems has not been fully investigated.

Inspired by the above observation, in this paper we investigate the problem of PET cooperative output regulation
for a class of nonlinear multi-agent systems. The main challenges are as follows:

1) The communication of multi-agent systems is assumed to be asynchronous. That is, each agent may have
different sampling times and transmit data asynchronously. Thus, the existing distributed observers [11]], [19], [20]
become invalid;

2) Each agent is described by a high order strict feedback nonlinear system. Moreover, only the output information
of each agent is available. This setup is more general than the existing works [11]], [21]], [22] (see Remark [2); and

3) Note that the sampled data control can be regarded as a special case of the PET control. However, very few
works have been conducted on sampled data output regulation for nonlinear systems, not to mention the PET control.
In fact, only recently, the PET/sampled data output regulation problem has been solved for linear systems [23],
[24]. The nonlinear dynamics of the considered systems will cause many difficulties to the PET output regulation
problem.

To overcome the these difficulties, we provide our main contributions as follows:

o New PET distributed observers are proposed to estimate the leader information. On the basis of the properties
of time-delay systems, exponential functions and matrix norms, we demonstrate that the estimation error will
converge to zero exponentially with a known convergence rate under asynchronous PET communication.

« A novel PET output feedback controller is presented for the strict feedback nonlinear multi-agent systems.
Based on a state transformation technique and a local PET observer, we show that the proposed PET output
feedback controller can solve the cooperative semi-global output regulation problem. Lyapunov function in

logarithm form and Gronwall’s inequality are skillfully used to prove this result.
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This paper is organized as follows. Section II presents problem formulation and preliminaries. New PET distributed
observer and PET control law are provided in Sections III and IV respectively. In Section V simulation results of
multiple Lorenz systems are presented to demonstrate the effectiveness of the proposed new design scheme. The
conclusion is drawn in Section VI. Detailed proofs are put in the Appendices.

Notations. For a matrix X; € R"*™(i = 1,2, ..., N), col(X1, Xa, ..., Xn) = [XT X5 .. X%]T. For A € R™*™,
vec(A) = col(ay, ..., an) where a; € R™*! is the ith column of A. satr(x) : R — R with a positive constant R
represents the saturation function, that is satr(z) = z if |z| < R, satg(x) = R if + > R and satg(z) = —R if
x < —R. Given a time-varying matrix B(t) € R"*™, define a set E(+y) with a positive constant . If B(¢t) € E(v)

then || B(t)|| converges to zero exponentially, that is, || B|| < ce™* for V¢ € [0, +00) where c is a positive constant.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. Problem formulation

The following multi-agent systems consisting of one leader and N followers are considered. The leader is

expressed as:
b= Av, (1)
Yo= qo(v) )

where v € R™ is the reference signal and/or external disturbance with n,, € N. yg € R is the output of the leader.
A is a given system matrix, ¢o(v) is a sufficiently smooth function with go(0) = 0. Meanwhile, assume that there
exists a known compact set V C R™ such that v € V.

The followers are given by strict feedback nonlinear systems:

2 = fio(zi, xi1, v, w),
Tij = fij(2i, i1, ooy Tij, v, w) + by (W) 25 541,
Tin = fin(Zi, Til, s Tin, V, W) + bin (W) uy, (3)

yi:xilaj: 1,2,...,77,—1

where i € {1,2,..., N}. n € N is the order of the ith subsystem, z; € R"™= and Zij, Tin € R denote the system states
with n,, € N, y; € R is the system output. w € R™ represents uncertain parameters with n,, € N. Also assume that
there exists a known compact set W C R™» such that w € W. fio(-), fi;(-), bij(w)( = 1,...,N;5 =1, ...,n) are
sufficiently smooth nonlinear functions with f;y(0,...,0,w) =0, f;;(0,...,0, w) = 0 and b;;(w) > 0 for Yw € W.
A directed graph G is used to describe the communication for the multi-agent systems. Let G = (V, £) where
V ={1,2,..., N} denotes the set of vertices and & C V x V represents the set of edges. Matrix A = [a;;] € RV*N
is defined, such that if (j,7) € £ then a,;; = 1, otherwise a;; = 0. Laplacian matrix is defined as £ = D — A with
D= diag(czl, CZQ, ey JN) and d; = Zivzl a;;(i € V). For communication between the leader and followers, a;q is
defined such that if the followers can have access to the leader, then a;qg = 1; otherwise a;o = 0. This indicates

that only a small number of followers can obtain the information of the leader. Finally, we assume that there exists
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a directed spanning tree for the considered graph with the leader as the root. Then, we know —H = —(L + f?) is
Hurwitz with B = diag(a19, azo, .-, ano)-

The problem we are going to solve is formulated as follows:

Problem 1. (Cooperative semi-global output regulation problem) Consider the multi-agent systems (I)-3) with
their corresponding graph G. Suppose that the initial states v(0), z;(0),z;;(0) of the systems belong to a given
compact set. The control objective is to design a PET distributed output feedback control law for each follower
such that

1) All the signals are uniformly bounded for ¥t € [0, +00), and,

2) The output regulation error e;(t) = y;(t) — yo(t) converges to zero exponentially, i.c., t_li+moo|ei(t)| -0

Vie{1,2,...,N}

Remark 1. The signals in Problem 1 are all the signals in the closed-loop control system. They include all the states
zi(t =1,...,n;j = 1,...IN) of the followers, the control input u;, the variables ﬁi,éi in the proposed distributed

observer and state observer in Sections III-1V etc.

Remark 2. Contrary to the existing works, the considered problem is more general and practical. The reasons are
as follows:

1) System is in a high order strict feedback form. The strict feedback nonlinear systems is more general than
many other kinds of nonlinear systems [L1l], [19], [22l], [25], such as linear systems, low order nonlinear systems,
normal form nonlinear systems etc.

2) Different from [20], [21] that deals with state feedback control, we consider output feedback control problem
for nonlinear systems. The problem becomes more involved because only output information of the high order
nonlinear system (3)) is available.

3) The PET data transmission is considered. This means that only PET output information is available for the
controller design, which will further complicate the design and analysis process.

4) The output regulation problem is examined, where reference tracking, disturbance rejection and parametric
uncertainties are simultaneously considered. Our study extends the results in [26l], [27)], where only reference

tracking problem is studied.

B. Preliminaries

We introduce some basic assumptions and useful results.
1) Leader

For the leader dynamic of (I)), assume
Assumption 1. A in is a skew-symmetric matrix whose eigenvalues are semi-simple with zero real parts.

Remark 3. Assumption 1 is standard in output regulation problem [3)], [20]. When A is neutrally stable, a large

class of commonly used signals v, such as sine, cosine and constant signals, can be produced.
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2) Followers

For the nonlinear system (3, we have:

Assumption 2. f;0(z;(v,w),q(v),v,w)(i = 1,2, ..., N) satisfies

0z;(v, w)

ER AV:in(Zi(va)7QO(V)7V’w)

where z;(v,w) is a smooth function with z;(0,0) = 0.

Meanwhile, under Assumption [2] one can compute the solution to the regulator equation related to and (@)

(see [3], [21]). The solution is given by:

Xi1 (V) = qO(V)7

Xi j+1 (v, w)

8X1‘j

=b;;' (w) < 9 Av — [fij(Zi, Xi1, s Xij, Vs w)) :

8Xin

ui(u, ’LU) = b;nl(w) ( 6V AI/ — fin(Zi,Xﬂ, oy Xin, UV, ’LU))

where j = 1,2,...,n — 1. In addition, define X; ,,+1(v, w) = w;(v, w).

We also make the following standard assumption for x;1 (v), x; j+1(v,w)(j = 1,2, ..., n).

Assumption 3. Assume that x;1(v), X, j+1(v,w)(j = 1,2, ...,n) are all polynomials in v with coefficients depending

on w.

Remark 4. If the considered system 3) is in a polynomial form, Assumption Bl will hold according to [23]].

Assumption 3 guarantees the solvability of the output regulation problem.

By resorting to [3]], [21]], Assumption [3] indicates that for any v € V,w € W,j = 1,2, ..., n, we have
d™IXi 541
— =
dtmii

_
dxi j 1 AV,

i1Xi j+1 + Ai2 0t 4+ )\iﬁi]‘ (i —1)

where 7;; € N. Aj1, ..., Ay, are real constants such that the roots of the polynomial pij(s) = i — \ip — Aia§ —
s = Nimy, s™i~1 are distinct with zero real parts.

Then, given any column vector N;; € R™ and Hurwitz matrix M;; satisfying (Ml-j, Nl-j) are controllable, we
have

TijWi; — M;;Tij = NisLyj

where T;; is a nonsingular matrix. I';; = [10... 0],

Ait iz Aimy
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dxijt1 d™i V% 514
dt ’ dtij—1

Let 6;;(v,w) = T;jcol(x; j+1, ). Thus, we obtain:

0 (v, w) =T Wiy T, 045 (v, w),
Xij+1(v, w) =050, (v, w) “)

where (I)ij = FZJT;;1
It can be seen that (@) generates the steady state x; j4+1(v,w). Then we can design the following dynamic

compensator:
Nij = Mijnij + Nijx; ji1,
Nin = MinNin + Nint; (%)
where 7;;, 1;, are dynamic variables and j =1,2,...,n — 1.
@) is also called the internal model for system () and (@). It plays a pivotal role in solving the output regulation

problem.

Finally, the following change of coordinates is considered for system (G):

Zi = Zi — Zi(yu w),
Tl = i — Xa (v),
EU: Lij — \I]i,j—lni,j—l (.7 = 27 "'7”)7

flig=nij — 015 (v, w) — b (W) NyTij (j = 1,...,m), (6)

4L

Tin+1 = Ui = U — YinNin. @)

Then, systems (1) and (@) can be written as:

Ei = fio(ziufliﬂ/u ’U}),
MNij = M’LJT]ZJ + glj(z’u Mi1, "'7ni,jflafi17 7flja v, ’LU),
Tij = [ij(Zi, Mits oo Migs Tits ooy Tigy VW) + bij (W) T 41,

i =Tn,i=1,2..N;j=12 ...n 8)

where fi0(-), 9i; (), fi;(-)(i = 1,..., N; j = 1,...,n) are sufficiently smooth nonlinear functions with f;,(0, ...,0, v, w) =
0,950, ...,0,v,w) = 0, f,;(0,...,0,v,w) = 0 for Vv € V,Yw € W.

It is noted that according to the above change of coordinates, the output regulation problem is transformed into
the stabilization problem. Namely, if one can stabilize system (8)), i.e., find a controller u; to make Ti;(t) = 000 =
1,..,N;j5=1,...,n) as t = +o0, then the error e¢; will be regulated to zero. Therefore, in the following we will
mainly consider the stabilization problem of system (8).

For the Z;-system, we make the following assumption.

Assumption 4. [22], [28] Assume that there exists a C? positive definite Lyapunov function Vi (Zi) such that
IVio(Z:)

Tzi?io(giaou v,w) < —yiolZil|?
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where ;o is a known positive constant.

Remark 5. The z;-subsystem represents the dynamic uncertainty/unmodeled dynamics of the system. The states
of the z;-subsystem may not be available for feedback control. Assumption 4| means that the zero dynamic of the
zi-system is asymptotically stable. It is less conservative than the assumption of input-to-state stability in [25]]. As a
result, it is possible to find a control law that does not rely on the states of the z;-subsystem. A lot of real practical

systems satisfy Assumptions 3| and 4} such as Lorenz system, Chua’s circuit, servo motors and robot mainpulators.

3) Useful results

We present some properties of matrix norms and useful inequalities.

Lemma 1. 1) (Property of skew-symmetric matrix) Given any skew-symmetric matrix A € R"™*" and matrix
B € R™™, we have ||e?|| = 1 and ||e* B|| = ||B||;

2) [29] For some square matrices A, B € R"*", ||eA — eP|| < ellAlIIFIIB=All| B — A||;

3) (Gronwall’s inequality) Suppose
t
u(t) < p1 —i—/ pou(T)dT

to
Sor Yt € [to,+00) where u(t) : [to,+00) — R is a time-varying function, pi1,pa,to > 0 are positive constants.
Then, u(t) < prer(t—to);
4) [30] Given u,u* € R with u € [—R, R], then |u — satg(u*)| < min{|u — u*|,2R} where R is a positive

constant.

III. PET DISTRIBUTED OBSERVER

The proposed controller structure is illustrated in Fig. [l (The switch is on node 1. Section IV-D will discuss
the case when the switch is on node 2). It is composed of a PET distributed observer and a PET control law. The
PET distributed observer is implemented in the sensor side to estimate the leader information. The control law
uses estimated information to generate control signal. PET mechanisms are used for communications between each
connected agent pair and the sensor-to-controller transmission channel in each agent.

Next, we will explain the PET distributed observer in this section, where two different cases are considered. The

control law will be explained in the next section.

A. Case one

In this case, we assume that only a small number of the followers know the information v of the leader. That
is, only followers connected to the leader have access to v (For instance, in Fig. 2l among the four followers only
agent 1 know v). Meanwhile, the matrix A of the leader is known to all the followers. We design the following

distributed observer for agent i(i = 1,2,..., N).

N
Iji = AD; + po Z a;; (7, (t,f‘lj/) - ﬁi(t,g)) )
=0

January 5, 2022 DRAFT



Agent: T

Sensor

Actuator

5@ @)
o,z,)
PETM-C
2 4
switch
s Controller  f¢— — — —
Figure 1. Event-triggered control scheme.
where 7; is used to estimate the leader information v,
— <1 AE—TY ~ /7ty -
7i(t, 1) = AW (1) (i = 1,...,N) (10)

with 29 2 v, To(t, 10) = eA0=t) gy (19) = A1)y (19) = w(t). g > 0 is a positive parameter.

The above distributed observer (@) runs with respect to the time ¢ € [0, 4+00). Next, we will explain the time
instants ff and fg/. Let0 =t} <t} <---<ti <. denote the sampling time instants for agent i where ¢} = kT
and 7% > 0 represents the sampling period. Let 7' £ ie{Ln%z}%)N}Ti and define set Q% = {t}, ¢!, ...,t,,...}. With
slight abuse of notation, we use t% and ti, denote the latest sampling time instants for agent ¢ and j at the current
time ¢.

Then, let 0 = fé <%, <.+ <T < denote the event-triggered time instants. On time instant 7, agent i will
send 7; (f;) to its neighbors. ff is determined by the Periodic Event-Triggered Mechanism A (PETM-A) in Fig. [
that is

Ty = inf{r > |7 € Q% b (7,7) > 0} (11)
where

By (r, 1) = 164(r) = Pa(r B = e
with positive constants ¢, vy, > 0.

It can be seen that the set Q% = {fg,fi, N Y Q.. Also let 7, and T}, denote the latest event-triggered

time instants for agent 7 and j on [t;,¢; ;) and [t ], 1) respectively. Then, we have:

Theorem 1. Given the multi-agent systems with the leader () and the PET distributed observer (Q), there exists a

sufficiently small T such that 7; = 0; — v(i = 1,2, ..., N) converges to zero exponentially. Moreover, ||;|| € E(,)

forVi=1,2,...,N.

Proof: The proof is given in Appendix B. It is based on the properties of time-delay systems, exponential

functions, and matrix norms. |

Remark 6. There are two time sequences for each agent i. That is the sampling time instants t}; (k=0,1,2,..)

and the event-triggered time instants fli(l =0,1,2,...). Here, we want to emphasize that even though the sampling
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period T =t} 11— ti > 0 may be small, the inter-event time fli 11— fli can be large. In fact, from Theorem I,
we know ; £ 0y — v will converges to zero if T® = t2+1 — ti is small enough. There is no special requirement
Sor ff b1 f; except for the event-triggered mechanism ([1). The inter-event time ff 41— ff can be made large by
increasing the threshold in the event-triggered condition ([1)) (see the simulation in Section V in the supplmentary
file).

Based on the proofs in Appendix B and Lemma W| in Appendix A, we know when T satisfies the following

inequality,

: 1 Y|Pl
T < mln{ — ,
Gua|[H[12 3u3l|H|[?

1
(12)
pi2| PRI+ 3p3]| PH|| + 7 }
where P is a positive definite matrix such that PH + HT P = 2I, we have ||i;|| € E(v,) for Vi =1,2,...,N. By
(12), we can see that by decreasing the values of ji2,7,. the sampling period T can be increased. This also implies

that the communication burden can be reduced.

B. Case two

In this case, we assume that the state v and matrix A of the leader are known by a portion of the followers.

Then, we design the following distributed observer for agent i(i = 1,2, ..., N).

. N . A~ g
A=Y ai(A;(E) — Ai)), ()
j=0
. R ) N . .
b= AT+ p2 Y ai (75 (6,T) = 7i(t, 1)) 1
j=0

where 7;, A; are used to estimate the leader information v, A,
7i(t, 1) = Mg 7Y (i = 1, ..., N) (15)

with D 2 v, To(t, 1) = eAE=1) 5o (19) = A=D1 (89) = u(t). py, po are positive parameters.
fli and f{, are event-triggered time instants similar to the case in Section III-A. They are determined by the

following PET mechanism:
Ty = inf{r > {|r € Q% by (7, %) > 0,h% (7, 7)) > 0} (16)

where

Ry (1, 8) = || Ai(7) — A (@) — eae™ 77,
RL(7,8) = ||9i(1) — D7, )| | — e 7

with positive constants ¢4, ¢y, v4, Yy > 0.

Now we present our second result.
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Theorem 2. Given the multi-agent systems with the leader (I)) and the PET distributed observer (I3)-(I4), there
exists a sufficiently small T' such that A2 A —Aand i, & 0 — v(i=1,2,...,N) converge to zero exponentially.

|/L|| € E(va) and ||74]| € E(min(vya,v,)) for Vi=1,2,...,N.

Moreover,
Proof: The proof is also put in Appendix B. [ ]

Remark 7. For the proposed distributed PET observer, the data transmission and PET condition are required to
be monitored only periodically. Thus, the Zeno behavior is excluded naturally because a minimum positive constant
exists between triggered time instants, i.c., ff 11— ff > T'. Meanwhile, compared with our previous work [24], the
proposed method has several essential differences: 1) The communication among various agents is asynchronous
because each agent i has a different sampling time T". This makes the proof of Theorems [l and 2 quite different
from [24)]; 2) The convergence rate for the observer is provided, which will be used in the stability analysis of the

PET controller in Section IV.

Remark 8. Evidently, the distributed observer in Section IlII-B is more general than that in Section III-A. It can
be used for more complex environment. In the following controller design in Section IV, we assume that the matrix
A is known, i.e., the observer in Section IlI-A is used. The application of the distributed observer in Section 1II-B
is similar but out of the scope of this study. One can resort to [19|], [20] for more information. This observer can

be used in linear multi-agent systems, multiple Euler-Lagrange systems etc.

IV. PET OUTPUT FEEDBACK CONTROLLER

We will consider the design of PET output feedback controller for the nonlinear multi-agent systems given by

(@-@) in this section. The design will be divided into the following steps.

A. System transformation

From Section II-B, it can be seen that the considered Problem 1 can be solved if system (8] is stabilized. That is
we can design a controller u;(i = 1,2, ..., N) for (8) such that all the states T,; — 0(: = 1,2,...,N;j =1,2,...,n).
However, it is not easy to find such a controller u; since only the output e; = T;; is measurable and system (8)
is in a strict feedback form. In this subsection, we will introduce a coordinate transformation technique for system
(8). This transformation is useful for the subsequent output feedback controller design.

Using (), define

&1 2 T,
iz & 6 = [ (Zi, Tiin, Tin, v, w) + bia (w)Tia, a7
517 £ éi,j—l(j = 3747 N+ 1)

Note that &;; has the following properties:
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Proposition 1. For i =1,2,....N; j=1,2,...,n,
&j = Eij(ziuﬁila s MiGm1, Tily ooy Ty Yy W), (18)
Tij = Xij (Zi, Wity ooy i1, &ity -oes &ij, V, W). (19)
Specifically,
Eint1 = Oi(Zis ity ooy Nins Eits ooy Simy Vs W) + i (W)
where ZZJ(), Xij (), ¢i(+) are smooth functions with Eij 0,...,0,v,w) = x;;(0, ...,0,v,w) = ¢; (0, ...,0,v,w) = 0.
Proof: The proof is put in Appendix B. [ ]
On the basis of this transformation, system (8) can be rewritten as follows:
Zi = fio(Zi, &, v w),
i = Mijfij + hig(-), 5= 1,2, ...,n
i = &,
ij =&ijr1, J=2,n—1 (20)
Ein = 0i(Zi, ity oo Tin, Eit s oor iy Vs W) + bi (W),

€ = 51'17 i = 1727"'7N

where hw() = hij(gh/f]ilu ey ﬁi,j—17§i17 '--7§ij7 v, w) is a smooth function with hij(O, ., 0, w) =0.

Next, inspired by the backstepping technique, let

G = &1,

Cij =& — i j—1( =2,3,...,n) (21)
where

i = —QiGj, 7 =1,2,..,n—1 (22)

with a positive design parameter @;; > 0.
Using @), 20) becomes
Zi = fio(Zi, G, vy w),
iy = Mijiij +hij(-), j =1, .m0
i = G + vin,
Cij =G+ ij — i1, j=2,.,n—1 (23)
Cin = Gi(Zis ity ooos Tliny Gity +oes Giny Vs W) — Cip—1 + by (W),
ei=Cn,i=1,2..,N

where EZ]() = Eij (Ei, il eees ﬁi,j—l7 City oens <ij7 v, w), az() are smooth functions with Eij (0, .., 0, w) = 51(0, ., 0, w) =

0. Meanwhile, ¢;; has the following property:
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Proposition 2. Fori=1,2,....N; j =1,2,...,n—1, there exists a positive constant ¥;;(Q;1, Qiz, ..., Qqj) related
with Qi1, Qiz, ..., Qij such that || < 9i5(Qir, Qi s Qig)([Cin| + -+ + |Cigl + G j+1])-

Proof: See Appendix C for detailed information. [ ]
It is noted that if one can find a controller u; to stabilize the transformed system @20) or 23)), then (8) can be
also stabilized. That is if &;; — 0 or {;; — 0, then T;; — 0(i =1, ..., N;j = 1,...,n). Hence, in the following we

will consider the stabilization problem of (20) and 23).

B. State feedback controller

We will introduce a state feedback controller for system (23) laying the foundation for the design of output

feedback controller in the next subsection. The following Lyapunov function is considered:

n

Vio (Z:) ﬁ£ Py =1,
V; = —(z 24
+3 T+ ; 5<i (24)

Lio =
where i = 1,..., N, Vio(Z;) is given in Assumption (4] P;; > 0 are positive definite matrices such that
T
PijMij + M Pij < =i
where 3;; > 0 is a positive constant. Because M;; is Hurwitz, P;; exists. Lo, L;; > 1 are scaling gains which will
be explained in the proof of Lemma
Let X; = col(Zi, Ti1s s Tiny City -+, Cin ). Assume

X;(0) € B, & [r, —r]"%i

where 7 is a positive constant, nx, denotes the dimension of X;.

Then, there exists a constant R > 0 such that
Vi(X;) <R

for VX; € B,.

Next, define the following set
Qr = {X;|V;(X;) < R2 R+ Ag} (25)

where Ar > 0 is a positive design parameter which will be explained later.

Then, we have:

Lemma 2. For system (23), suppose X;(0) € B, and belongs to the set Qg, then there exists a virtual state
Sfeedback control effort w; given by
u; = Ki(R)Cin (26)

such that
. i i 1
Vi <= SlElP =5 3 l® - 5 26
k=1 j=1

+ Cinbin (W) (w; —uy) 27)
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where K;(R) is a sufficiently large control gain related with R, and #;, 8; are positive constants.

Proof: See Appendix D.

C. Output feedback controller

13

First, a new PET high gain observer is proposed to estimate the transformed variable &;; and ¢;; in (I7) and 2I).

Denote the sampling time instants as 0 = 7§ < 7 < --- <7, < ---.Let T = 7., —7} denote the sampling period.

Note that the sampling time instants can be asynchronous with the distributed observer developed in Section III. Also

define set Q% = {7§,7{, ..., 75, ...}. Meanwhile, the PET instants are denoted as: 0 =7 <7} < -~ <7, < --- .

Then the PET high gain observer is given by:
i1 =iz + Did1 (&:(FL) — &),
€z =Eis + T2da(&5(F)) — &),

Ein =binTi + Tdy (&5(FL) — &)

(28)

where &;(t) = za(t) — qo(@), Ti > 1, bin,dj(j = 1,2,....,n) > 0 are positive design parameters. d; are the

coefficients of some Hurwitz polynomial pg(s) = s™ + dys" 1t + -+ + d,,_15 + dp.

The PET time instants are determined by the Periodic Event-Triggered Mechanism B (PETM-B) in Fig. [1 that

is
Toy1 = inf{s > 7h|s € O, hl(s,Ty) > 0}
where hl(s,7T;) = [€:(s) — &i(T})| — te|éi(s)| with a positive constant ¢.
Then the estimated values (1, éij (j =2,...,n) are computed by

i = &,

Gij = &ij = Qig—1(j = 2,3,..,m),
where

qij = —QiiCijy § = 1,2,y

Based on the above estimation, u; in (23) is given by

u; = satr (K;(R)Cin)

where R is a positive design parameter. K;(R) > 0 is a control gain related with R.

By (@), the actual control effort is computed as:
u;(t) =satr (Ki(R)Cin) + Yintin,
Nin. =MinNin + Ninti.

Our third result is as follows.

January 5, 2022
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Theorem 3. Consider the multi-agent systems ((I)-B) with the output feedback control controller (31)-([32), PET
high gain observer (28) and PET distributed observer (I3)-(I4). Suppose the initial states X;(0) € B, and belong

to the set Qg. Then, there exist a sufficiently large control gain K;(R) and sufficiently small sampling time periods
T, T such that Problem [ is solvable.

Proof: The proof is put in Appendix E. [ ]

Remark 9. The main result and its proof show that there exist sufficiently large control gains and small sampling
periods such that the cooperative semi-global output regulation problem can be solved. Moreover; the controller (31)-
(32) is not complex and easy to be implemented. The detailed tuning method for the control gains and sampling
times is out of the scope of this study. This is a common case for semi-global control problems as shown in
(221, [30]-[32]]. In addition, since the considered system (3) may contain some unknown nonlinearities such as
fio(zi, 2i1, v, w), it is not easy to explicitly give the upper bound for sampling periods like [24], [33]].

Some guidelines for the selections of the control parameters are as follows: Larger control gains can result in
rapid response but serious oscillations. Smaller sampling period is beneficial for the stability of the system but may
result in more communication burden. Increasing the parameters L., ., and decreasing v, in the event triggered
condition 29 and (1) can result in a light communication burden but deteriorate the control performance.

It is also noted that from the simulation results in Section V, we can see that the tuning of the control parameters
is not tedious. One can first select a small sampling period and then gradually increase the control gains. It is not
hard to stabilize the closed loop systems. Moreover, the simulation shows that the controller has strong robustness

to the variations of sampling periods.

D. Extension

We give an extension to the proposed results. An extra PET mechanism is used between the controller and

actuator in Fig. [l That is the switch is on node 2. In this case, the actual control effort is given by

ui(t) =wi(S), t € [ Sngn)s (33)

w;(t) :satR(Ki(R)ém) + Vinin, (34)

Nin. =MinMin + Nint; (35)

where 0 = fg < €§ < e < ?in < ... are the PET time instants. On time instant ffn, the controller will transmit

w;(3¢ ) to the actuator. They are given by:
Snr = Inf{r > S| € O B (7,5,,) > 0} (36)

where ! (7,50) = |w;i(T) — wi(3,)| — tw|wi(7)| with a constant ¢, > 0.

Then, we have the last result in this paper.

Theorem 4. Consider the multi-agent systems ((I)-([3) with the PET output feedback control controller (33)-(33),
PET high gain observer (28) and PET distributed observer (I3)-(I4). Suppose the initial states X;(0) € B, and
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belong to the set Q. Then, there exist a sufficiently large control gain K;(R) and sufficiently small sampling time
periods T, T such that

1) All the signals are semi-globally uniformly bounded for ¥t € [0, +00); and,

2) The output regulation error e;(t) = y;(t) — yo(t) satisfies t_liinoo|ei(t)| < 6i(testw, TY Vi € {1,2,..,N}

where 6;(Le, Ly, T") is an increasing function with §;(0,0,0) = 0.
Proof: The proof is put in Appendix E. [ ]

Remark 10. From the proof in Appendix E, the detail expression of §;(te, ., T*) could be complex and may be
conservative. This is a common case when adopting Lyapunov function method [36l], [37]. However, according
to the property of §;(te, L, T?), we know the regulation error can be made arbitrary small by tuning the design

parameters L, L., T "

V. SIMULATIONS

A group of four Lorenz systems is considered as follows:
Zi1 =ginzi1 + giaTit,
Zio =Gi3zi2 + Zi1Ti1,
Ti1 =Giazi1 + GisTi1 — Zi1Zi2 + Tiz,
T2 =giczi1 + GirZi2aTi1 + Ug,
Yi =41, 1= 1,2,3,4

where g;1 = —10, g2 = 10, gi3 = —8/3, gia = 1, gi5 = 0, gic = 0.2.
The leader is given by

v = Av,
yo = [10]v
1 I . P
where S = . The communication graph is depicted in Fig.

-1 0
The control structure is composed of three parts, namely, the PET distributed observer (I3)-(14), the PET local

observer (28) and the controller (30). The sampling time is set as 7' = 7! = 0.01s, 7% = T2 = 0.015s,
T3 =73 =0.02s, T* = T* = 0.025s. The controller parameters of these three parts are set as y = 2, d; = 5,
dy =10, A; =40, Qi = 2, K; =30(¢ = 1,2,3,4). According to [21]], M;2, N;2(i = 1,2,3,4) in the controller
(B2) can be calculated as

1
-10 -18 -15 -6 1
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Figure 3. Performance of the distributed observer.

The performance of the PET distributed observer is shown in Fig. Bl The results demonstrate that each agent can
estimate the information of the leader accurately. Fig. (a) shows the event-triggered time instants between each
agent pair. It can be seen that the communication burden has been reduced a lot. In addition, the communication of
the multi-agent systems is asynchronous since the event-triggered time instants among different agents are different.
Fig. dlb) shows the inter-event times for agent 3. The inter-event times are much larger than the sampling period.
Meanwhile, they are multiples of the sampling time 7. This implies that not only the Zeno behavior is excluded,
but also the data transmission is periodically triggered. All these verify the advantages of the developed distributed
observer.

The control performance of the entire multi-agent systems is shown in Fig. [5l It can be seen that the regulation
error rapidly becomes zero in a very short time. Table I shows the event-triggered times. The table shows that the

data transmission of the PET controller is much less than that of the sampled-data control strategy.

VI. CONCLUSIONS

In this paper, the PET cooperative output regulation problem is considered for strict feedback nonlinear multi-
agent systems. We propose a new PET distributed observer and a PET output feedback control law for this problem.

The communication between various agents can be asynchronous. Future works include considering PET output
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Table I

EVENT-TRIGGERED TIMES FOR PETM-B UNDER DIFFERENT ¢¢.

te = 0.05 e =0.1 te = 0.2
sampled data 800 800 800
PET 390 324 271
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regulation for non-strict feedback nonlinear systems. For non-strict feedback nonlinear systems, the control effort

and the states may be coupled with each other. This will make the problem more challenging.

VII. APPENDIX
A. Two lemmas
In this section, we will present two key lemmas which will be used the in the proof of Theorems 1-2.
Lemma 3. Consider the following system
T =— phixg + phoxg + Asx 4+ pAy + As 37

where ¥ = (71,22, ....,o8)T € RY, x4 = (21(t — d1(t)), 72(t — da(t)),...,zn(t — dn ()T € RN, d;(#)(i =
1,2,...,N) € R are time-varying delays such that 0 < d;(t) < T with a positive constant T. p > 0 is a positive
constant. If —Aq is a Hurwitz matrix and A;(j = 2,3,4,5) € E(y) with a positive constant vy, then there exist a

sufficiently large v and small T such that x € E(y).

Proof: (37) can be written as:
& =— phix + phox + pAin — phAon
4+ Asx + puAy + As (38)

where 7(t) = col(ny(t), n2(t), ...,nn (t)) with n;(t) = f:ﬁdi(t) x;(s)ds.

Consider the following Lyapunov-Krasovskii function
L ! : 2
V= 52 Pz + (s —t+T)||z(s)||*ds (39)
t—T

where P is a positive definite matrix such that PA; + ATP = 21.

Using (38), the derivative of V' is computed as:
V <aTP(—pAix 4 phox + pAin — phAon)
+ 2T P(Agz + phy + As)
t
T - [ ki) Pds
t—T

— — pllall? + 2 (uPAs + PAg)a

+ 2" P(uA1n — pAon) + 2" P(uhy + As)

+TYeE = [ llate)Pas.
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Noting that A;(j = 2,3,4,5) € E(y) and using Young’s inequality, we have
V < — pllel|? + mere " |z ?
o
+ 112l + caln]®
a2 e
t
]2 . 2
RO - [ flao]Pds
t—T

where T = /12 + 1 and ¢y, ¢o, c3 are some positive constants.
Meanwhile, using (38) for ||2(¢)||* and Young’s inequality,

IO < cap®||z||* + csp®|Inl|* + com”e ™"

where cq4, c5, cg are some positive constants.

For n, by Jensen’s inequality [34], we have
t 2 t
BO= ([ ads) <7 [ i)
t—d;(t) t—T

t
MWST/ i(s)|ds.
t—T

Substituting @I) and @2)) into @Q), we get

then

V< - (4§ - mee " = Teq?) |Jo]?
t
4knw4mm/an%
t—T
+ Ticze™ 7 + Tegme™ 20,
Then, for a positive constant v, we have
Vv <= (8 —Fiewe™ = Teqa® = 1||PI)) [z
t
— (1 = Tegp — Tesp? —”YT)/ ||2:(s)|[*ds
t—T
+ Ticze™ 2 ¢ Tegme ™20,
Next, we will show V' does not exhibit finite time escape. From (3), we have
V<aV +8

where «, 5 are positive constants.

This means
at ﬂ at
V <V(0)e* — E(l—e ).

Therefore, V is bounded on finite time interval.

January 5, 2022
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Moreover, on a finite time interval [0,%y) C [0, +00), we have

B

V <V (0)elet e — Z(1 — ¢¥)ete ™
a

B

< max{V (0)el@+ o (] — et0)erto e
«
<cpe”

where c; is a positive constant.

On the other hand, for (#3), there exists a finite time instant tg, p and 7' such that
£ —Fiere 1" = Teyii® = 1|P|| > 0,

1 —Teop — Tesp?® —~yT > 0.
Therefore,

V <=V 4 cge™ 2

for V¢t € [tg, +00) where cg is a positive constant.

Then, by solving the above inequality,

7 Sv(to)e*’y(t*%) _ 0_86*2’7(*750) + C_ge*’ytoe*'vt
8l 8l

<max{V(ty), Z}e~ " < coe
0

for Vt € [to, +00) where ¢y is a positive constant.

Then by combining (@4) and (@6), we can complete the proof.

Lemma 4. Consider the system (37) in a special form by letting Ay = A3 = A5 = 0. That is
T =— ILLAl.’I}d + /LA4

where — A1 is a Hurwitz matrix, Ay € E() with a positive constant ~. If u,T satisfy

10|
GullAal® 3p2[|Agl]>

T<min{

1
pAPAL] + 3p2 ][ PA4 ] +7}
where P is a positive definite matrix such that PAy + AT P = 21, then = € E(v).

20

(44)

(45)

(46)

(47)

(48)

Proof: The proof follows the line of the proof of 1). Under the assumption that Ao = A3 = A5 = 0, (32 can

be written as:
T =— phix 4+ pAin + pAy

where 7(t) = col(ny(t), n2(t), ...,nn (t)) with n;(t) = ftt_di(t) x;(s)ds.

January 5, 2022
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Consider a Lyapunov-Krasovskii function in the form of (39). By (49), we have
V <aTP(—phiz + pAin + pAy)
t
(2 . 2
+TEOF - [ ) Pds.
t—T
By Young’s inequality, we get
V < — pll])?
H 2 PALl - 2
+ 7l + pllPAL - inll
+ %H%H2 + perge >
t
T - [ JliGs)|Pds
t—T

where cj¢ is a positive constant.

Meanwhile, using @9) for ||4(¢)||*> and by Young’s inequality
O < 32 A2l + 32 A2l + exy e

where cp; is a positive constant.

Substituting (31) into (&0),

V< (G = 3Tu?l|AlP) [Jal
~ (= TulPal - sy [ eas
+ perge” D 4 Tepp?e 0

Then, for a positive constant vy, we have
V4+AV
<~ (§ = sTw?lIAnl® =111 el
~ (= TulPM 3TN =T [ el
+ perpe” 2" + Teppe .

If the following inequality holds
I
L — 3T |A12 =11 > 0,

L= Tu||PA|| = 3T 12| Ma]|* = 4T > 0,
then we have

V S - ’}/V + ,ucloefht + TcuuQe*Q'yt.

21

(50)

(51

(52)

(53)

(54)

By solving the above inequality, we can show x € E(v). Finally, note that (33)-(34) are equivalent to (@8). This

completes the proof.
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B. Proof of Theorems [Il and
Proof: We will first prove Theorem 2l The proof is divided into the following two steps.
Step 1. Show A; £ A; — A(i =1,2,...,N) converges to zero exponentially.

Note that (I3) can be transformed into

= — (M I)(A®H) — A(tr) + Altr)) (55)

Let @ = vec(A4), & = vec(

(33) becomes

D})
S~—
o)
Il
<
@
o
—~
b
S~—
Q>
—
)
Il
<
@
o
—~
S
—
<t
S~—
S~—
Q
—~
-
>
S—
|
<
@
@]
—
p
—
-
>
S~—
S~—
&
=
o
o}l
—
~
>
S~—
Il
<
@
o
—~
N
—
~
>
S~—
S~—

It follows that
a=—u(IQHIDéa(ty) + piha (56)

where Ay = (I Q@ HQI)(a(t) — a(ty)).

From the event-triggered condition (I6), we know A4 € E(v4). Then, let d;(t) =t —t% in (36) and use Lemma
Blin Appendix A, we can show & € E(y4), i.e., A; € E(ya)(i = 1,2,...,N).

Step 2. Show 7; £ ; — v(i = 1,2, ..., N) converges to zero exponentially.

Let
zi(t) = e M (t)(i = 0,1,...,n) (57)

where z(t) = e~y (t) = e~ 4w (t) = v(0).

Then, (I4) can be expressed as:
Z.Ii = — eiAtAI)i(t) + eiAtAiI}i(t)
N . .
e Mup Y ay((tE) = 7t ).
§=0

The above inequality can be written as:
N

2 =A] + pio Zaij (A? — A7)
=0
N
+p Y ai; (A% — AP)
=0
N . .
+ g Z aij(z;(th,) — zi(t},))
=0
where
Al = e 4,0,(t) — e A Aby(1), (58)
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A2 = =4t (eAiGi)(t—fh,;i(gli) _ eAi(ﬁ)(t—ti)ﬁi(ng)> : (59)
AY = oAt (At 5y (1) — A p(1}) ). (60)
By considering agent ¢ = 1,2, ..., N, we have
Z=—pua(H®Iz(ty)
+ A — s (H @ I)A? — jip(H @ I)A3 (61)
where Z(t,) = col(z1(th)), 22(t3 ), oy 2n (ED)), Al = col(Af, AL ..., AN), A? = col(A2, A%, ..., A%), A3 =
col(A3, A3, ..., AY).

In the following, we will have an analysis on A, A% and A3.

For Al in Al, we have
Al = e M A0,(t) — e M A (1)
=e MAeMz + e M AeM 2.
This implies that
At =ANZ+ Az (62)
where A = diag(e” A A et e At Ayt . e~ At Ayert), Z = col(zo, 20, ..., 20)-
For i = 1,2, ..., N, using the result in Step 1 and Lemma[I}1), we get

[le™ 4 Age|| < [le™ (| - [|Aall - lle™ Il = [|Aill € E(ya).
This implies that ||A1]| € E(y4) and ||A1Z]| € E(ya).
For A? in A2, according to (39), we have
A2 = e~ AteAi(@)(—t) (eAi@%)(t;;—%z')ﬁi(g;‘) _ ﬁi(t;c)) ,
Note that ||e’AteAi(f§)(t*t;c)|| are bounded by Lemma [I}1). According to (I6), we get ||A?|| € E(y,). Thus,

|(H ® I)A?|| € (7).
For A? in A3, according to (60), we have

2

A3 — o—At (eAi(t—t;;) _ eA(t—t;)) eAtzzi(t};).
This indicates that
A3 = ApZ(ty) + Aoz (63)
where z = col(z, 2, ..., 20), A2 = diag(e=At(ed1(t—th) — eAl—ti) oAt o= At(eAN(I=t7) _ gA(t=t7))eAl)).
Note that for any entry in Ao, using Lemma[1l2), we have
||e*At(eAi(t*t§c) _ eA(tfti))eAti I

<[l At [t — AUt | At

|- Ile

<[|A; — Al[ell(Ai=DE—EIHIACEII ¢ E(y 4).
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This implies that ||As|| € E(y4) and ||A2Z]| € E(ya).
Based on (62) and (63), (61) becomes

= —pp(H®IDz(t)
+AZ+ M2 — (R @A
— ua(H @ I(A2z(ty) + A22)
=—pp(H®Z(ty) — pa(H ® I)A22(tg) + A1 2
— pa(H ® NA? — o (H @ I)AoZ + Aq 2. (64)

Let H® I = Kl, —ILLQ(H ® I)AQ = KQ, A = Kg, —(H ® I)A2 — (7‘[ ® I)AQE = K4, ANz = K5.
Then, (64) is expressed as

F=— w1 Z(ty) + peAaz(ty) + A32
+ ,u2K4 +As

where Aa, Az, Ay, As € E(min(ya,v,))-
Using Lemma 3] in Appendix A, we can show Z € E(min(vy4,,)). Note that

~ At ~ ~ .
173l = lle™*4]| < [|Z]] € E(min(ya,7))
for i = 1,2,..., N. Therefore, Theorem 2] is proved.

Next, we will prove Theorem Il The proof follows the line of Step 2 by using the real value of A instead of A;.

In this case, (61)) becomes
Z=—pp(H®ID2(ty) + pahy

where Ay € E(7,).
Then, by Lemma[] we can show ||7;|| = ||le”4%;|| < ||Z|| € E(y,,) if T satisfies (I2). This completes the proof.
|

C. Proof of Proposition [1]
Proof: First, from (7)), we know
Ciz = fir (Zi, i1, Tir, v, w) + by (W) T
£ &i0(Zi, i1, Tit, Tia, v, w).
This shows (I8) holds with j = 2. Meanwhile, we have
Tio = (&2 — [11(Ziy 1, €, vy w)) [bia (w)
£ Xi2(Zi, i1, &1, iz, vy w).

This shows (19) holds with j = 2.
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For j = 3, by (1) and (8), we know

. o€ € ~
Cis & & = 5 i0 iz 2 (Mijiiij + 9i5)

8~.
a o
aﬁi (Fir + bir(w)Tiz)

€
832 (fi2 + bia(w)Tiz) +

+

3
ov

+

Av
AF (= ~ ~ = =
—51‘3(21',771'17771'2,Ii1,$i2,17i371/,w)-

This shows (I8) holds with j = 3. Similarly, we can show (I9) holds with j > 4. This completes the proof. M

D. Proof of Proposition
Proof: For j =1, we have
i1 = Qi1 = — Qi1 (G2 — QirGin) < Vi1 (Qar) (|G| + | Gizl).-
For j = 2, using the above inequality, we have
diz = —QinCiz = —Qi2(Gis + a2 — dar)
= —Qi2(Giz — Qi2Giz — 1)
< i2(Qir, Qi) (|G| + [Giz| + [Gisl)-

By repeating the above procedures for j = 3,4, ...,n, we can complete the proof.

E. Proof of Lemma

Proof: The proof is divided into the following steps. We will analyze each term in the Lyapunov function 24).
Step 1). Analysis of Vio(Z;).

According to Lemma 11.1 in [3]], we know when X; € Qp, there exists a positive constant gain 7,,(R) related
with R such that

|7

azi . ||7i0(2’i;<1’i5u7 U]) _71'0(21'70;”7 U])H

<To (R)|[Z:l| - [Cail-

Then, using Assumption [ and Young’s inequality, the derivative of V;y can be computed as:

- Wi
Vio(Z:) =5 Fio(Zi: i v w)

_OVip—
S R

aV; =

+ 6zo(f10(zlvcllvyw) in(Zia()vVaw))
< —7iol[Zil1* + Tio (R)[|Z:]| - ¢4l

Yiol| -
<= Bl 4 (R,
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where p;0(R) is a positive constant related with R.

Then. e ;7 = 5452 we e
77 (% o ( )
VZz:) <— o 0z 12 + e
Step 2). Analysis of M
N = M-
comer e followine Lyapunov function VZ? - 7;]157]77] Then using Lemma 11.1 in [3] and the transformed
: >

system (23), the derivative of V7 is

: 1 3
Vg L nlj(PlJMlJ—i_MzEPij)nij
1 v = N
+Fnijpijhij(ziunila'-'777i,j—17Ci17-'-uCijuyaw)
ij
Bz 71 ( ) _ QZ ik Thk
< : || mil[* + =1z ||2+Z Il I*
4 Fijr (Gik) o
+Y G (65)
k= K

where %, (Z:), 05 (7ik ), 51, (Cix) are continuous functions.
Note that by 23), for VX; € Qg,
CPinﬁin < WUPU% < LUR

where cp,; > 0 denotes the minimum eigenvalue of matrix P;;.

Hence, (63) can be expressed as:

/B’L '-Yz( ) Q’LkRL’Lk)
Vﬁ J i 2 J Z; 2 J : 2
3 <= e lll + L2 Z—LU Vel

:uZJ i

z] h—1

k=1

where v;;(R), 0;5(RLix), 1i;(R) are positive gains related with R and L;j.
Step 3). Analysis of V;7 and Vg

Consider the following Lyapunov function

A vz 7
Wi =V, +ZVZJ
j=1
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We can obtain

o Z TS
n

Bi
2o -

j=1 Lij

Z Qz]k(Rsz) || ||2
L i
ik
k=j+1

Z# (R) <11+Z Z,UZJR ka-
j=0 k=2 \j=

Thus there exist sufficiently large scaling gains L;; and positive constants 7;, 9; such that

v xR

2L;o e
Bij ~ 0ik(RLij) _ .
P _ Qigk\ M) 5 i1, m,
2L;; Z Ly = o) "
k=j+1
Zﬂij(R) < l
— Lij 4
7=0

Hence, we have

J
Wi < =%l[Zl1* — 6 > > +
k=1

RNy

2
> ¢
=1
Step 4). Analysis of % fj

Consider Lyapunov function VC = 3¢ By @3), @2) and Proposition 2 we have for j = 1,.

Vs =Gij(Cij1 — QijGij — dvij—1)
<- QZJ i+ GigiGi+1
+1Gij 935 (Qi1, Qizy oy Qii—1) (|Gin | 4+ - - - + [Gij])
<= (Qij = 03§ (Qins - Qij—1)) &y
B
R
k=1
where 5ij(Qn, .., Qi j—1) is a positive constant depending on Q;1, ..., Qi j—1.
Let
Q'LJ = 51] (Qilv sy Q’L‘,jfl) +n
We obtain
) 1
Vigg—n? ]+ —I—Z Gj=1,..,n—-1).
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2
Then let V¢ = > C;j and use (23). We have

Z i+ Czn di,n—l + bin (w)ﬂz)

Using Proposition [2] and Young’s 1nequa11ty, for VX, € Qr, we obtain

Z i+ Czn 1n )U1

i
|| zil|* + lemgll“ruz( )Cin (67)

where pf(R) is a positive constant related with R.
5) Analysis of V.
Finally, based on (66) and (&7), the derivative of V; can be computed as

i i ) 1 n—1
Vi< —|| #l =5 Y il = 7 > ¢h
k=1 j=1
— (bin (W) Ki(R) — 1 (R))CZ,
+ Cinbin(w) (W; — ;)

where u} is given by 28).
Hence, if

Ki(R) > 11 (R)/bin (w)

we obtain (27). The proof is completed. [ |

F. Proof of Theorems 3l and

Proof: We only provide the proof for Theorem [l The proof of Theorem [l follows. The proof is divided into
the following steps.
Step 1). Construction of the estimation error system.
Using the transformed system (20) and the observer (28), define the estimation error as éij =&j — éij (i =

. N;j=1,2,...,n). Then, the estimation error system is constructed as:
in =&io — Didi&n + Tidi (6(F)) — ei),

§i2 =Gis — T da&in + T da(&(T) — e2),

€in = = T}dnin + T}'dn(&(T,) — &)
Let €;j = T777€,;(j = 1,2,...,n). It follows that

é =1Dce; + H; (68)
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where €, = COl(Eil,EiQ, ceey Ein)’

—d; 1
.l)E = )
—dp—1 1
—d,
H; = Hj; + Hpo

with
Hi1 =T} (ei(7,) — ei(t))col(dy, ..., dn),

Hiz = c0l(0,0, ..., §; + (bin(w) — bin )Us).

Step 2). Construction of the Lyapunov functions.
Note that since the design parameters d, ..., d,, are the coefficients of some Hurwitz polynomial s™ + dys™ 1 +
-+-+dp,_18+dy, D, is Hurwtiz. This indicates that we can find a positive definite matrix P such that PD.+DI P <

—1I. Then, take the following Lyapunov function V¢ = €I Pe;. The derivative of V¢ is given by

Ve = —Ty||ei||? + 2¢f PHyy 4 2€} PH. (69)
For € PH;1, by Young’s inequality and (29), we have
I .
e; PHyy < g||6i||2 + o (i) (é(7)) — ei(t)? (70)

where o1 (T';) is a positive constant related with T';.

For €I’ PH;5, note that ¢;(0, ...,0,v,w) = 0. Then when X; € Qr we have
T _ ~
¢; PHj Sg||€i||2 +oi(R)Z + (7 +¢)
j=1

+ 04 (R)(u; —u})? (71)

where 0;2(R;) is a positive constant related with R;.
Finally, consider the following Lyapunov function in logarithm form

In(1+ V)
In(1 + ¢(Ty))

Assume V£(0) < R, for VX; € B, with a positive constant R.. Then ¢;(T';) is selected to be a polynomial function

In(1+R.) < Agp
In(1+¢;(T;) = 2 °

Based on Lemma 2] and (69)-(Z1), the derivative of V; is computed as:
n n
Vi < = llzlP = o Y ligll? =Y ¢
j=1 j=1

+ YT+ Yo+ Tis+ Tis (73)

V=V, + (72)

with respect to I'; such that
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where
. il
: 5In(1 + (') 1+ || P]|[|es] |
201'2(R)(ﬂi — ﬂr)2
In(1+¢(Ty)
L 2oal®) (3 + S0 + 6)
2 In(1 + ¢;(T)) ’
T- - 20’12(R)(ﬂl — 1’11)2
8 In(1+¢(Ty)
2031 (L3) (6 () — eq(t))?
Tis =

In(1 4+ ¢(T;)) ’

Ui = wi(t) — Winnin (t) = satr (Ki(R)(in (1)),
From 26), (30) and Lemma[Il we know there exists a positive constant o;3(R) and sufficient large R such that

. : oi3(R)][eil
(@ —a;)* <ois(R)min{]|ei]|* 1} < :
L+ [|P[[l]es]?
Using this for (73) and noting that ¢;(T';) is a polynomial function with respect to T';, there exists a sufficiently

large T'; such that

n
. Yi i . B
Vi§_§|2i||2_ Zz:||77ij||2_
k=1

|sz

[N}
DN | =

n
> ¢ = oiallel”
j=1

+Tiz+ T (74)

where 04 is a positive constant.
Step 3). Taking the PET mechanism into consideration
We will have an analysis on the terms Y3, Y;4 in {Z4) by taking the PET mechanism into consideration. In the
following, we suppose ¢ € [, 7%, ).
Using (33)-B4), u; — u; in Y;3 is computed as:
Ui — Ui = wi(Sy,) — wi(t) = wi(Sy,) — wi(7,) +wi(7,) — wi(t)
where ¢ denotes the latest event-triggered time instant for the data transmission between the controller and the

plant.

By the event triggered condition (38), we have
[w; — w;| < Lw|Wi(T;;)| + |Wi(7‘;;) — w;(t)]

< (14 ) wi(7) — wil®)] + talwi(t)]. (75)
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Meanwhile, by 29) and Theorem [Tl é;(7.) — e;(t) in Yis is computed as:
li(7y) — ei(t)]
<|e:i(Th) — éi(ry)| + |éi(ry) — ei(rp)| + lei(ry) — ei(t)]

<telei (T + e 4 |ei(7h) — es(t)], (76)

&s(m))| < lei(r)) — es(Tp)| + lei(r)) — ea(t)] + |es(t))]
< e 4 lei(r) — ei(t)] + Jes(t)] (77)

where Ffl denotes the latest event-triggered time instant for the data transmission between the sensor and the plant.

Using (A)-(72) for Y;3, T;4 in (Z4), we have
~ ~ 2 n
‘ Vi - 0 _ 1
Vis—5 2] — 5} > s |? = 3 > ¢ - oullal?
k=1 j=1

+ 0i5(R) ((wi(7)) — wi(t))® + 12w (1))
+0i6(Ts) ((ei(r)) — ei(t))® + 2ef(t) +e7277) (78)

where 0;5(R), 0;6(I";) are positive constants related with R, T';.
Step 4). Convergence analysis

Let X; = col(Zi, Ti1, Tlins Cits -+, Cin, €;)- From 23) and (68), we have
Xy =AiX; + Bi(wi(5h,) — wi(7)) + Bi(wi(rh) — wilt))
FCi(E(Th) — &y(rh)) + Ciléi(r) — eal)))
+Ci(ei()) — es(t))
+ Di(X;) (79)
where A;, B;,C; are constant matrices, D;(X;) is a nonlinear function with respect to X; such that
[[Di(X)|| < el | Xil| (80)

for bounded X; where c¢; > 0 is a positive constant.

For w;(5},) — w;(7}) and wi(7}) — wi(t) in (Z9), using (36), (34) and (G), we have

|wi(55) — wi(Th)] < twlwi(Ty), 1)

|wi (72)] =[satr (Ki(R)Cin(7}))
+ Win (7735 (1)) + 05 (v (75), w) + b~ "Ny (7))

<ea|| X ()] + s, (82)
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jwi(rp) — wilt)]
=[satr (Ki(R)Cin(72)) + Winnin (10
— (satr (Ki(R)Cin) + Wintin)|
<cy||X; — Xi(T;)H + [ Uin (i + 055 (v, w) + bilNijfij)
— Wi (733 (ry) + 055 (1(7y), w) + b~ NijTij ()|
<es|| X — Xi(mp)|| + 60 (T) (83)
where ¢, c3, ¢4, c5 are positive constants, d;1(7*) is an increasing function with §;;(0) = 0.
For é;(7})—é:(7}), é;(7}) —ei(7}) and e;(7}) —e;(t) in (Z9), from (29) and Theorem 2] noting that (i1 = &1 = e,
we have
|(6:(75) — i) + (éi(my) — ei(7y)]
<coteléi(T))| + coe !

SCﬁLeléi(Tg) — 61‘(7';;” + 06L6|ei(7';)| + cge vt

<ertel| X (TH|| + cre M, (84)
les(77) — ei(t)] < esl|X;(t) — Xi(rp)| (85)

where cg, c7,cg > 0 are positive constants.

Then, integrating (Z9) on time interval [7‘;, 7';; +1) and using (8I)-(83), we have

1%:(t) — Xi(7,)]

t
S/VC9||Xi(T) — Xi(1p)|ldT + T"ciol|Xi (7)) ]|

+ e T 4 6i(T)

where cg, 19, c11 > 0 are positive constants and §;2(7 ) is an increasing function with 6;2(0) = 0.

Using Gronwall’s inequality, we have

1%:(t) — Xi(mp)l

(T erol| X ()| + erre™ 7 4 6in(T))e ™7
It follows that

1%:(t) — Xi(m)l

p

<T'croe” 7 "[|X;(t) — X;(7))]]

+ TiClOG?CQTi || ()] + 01167"”56769# + 5i2(7i)67697i.
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Then, when 7 is small enough, we have

[1(t) — Xi(7,)]

p

<E(THNX O] + crze™ ™™ + 6;5(T7)

where Z;(7") is an increasing function with Z;(0) = 0, cjo is a positive constant and §;3(7°) is an increasing
function with §;3(0) = 0.
Next, using the above inequality for w;(7})) — w;(t) and e;(7},) — e;(t) in (Z8), we can conclude that there exists

a sufficiently small sampling period 7 and ¢, ¢, such that
y :Yi—2§in~21n2‘7i6 2
Vi< — Z”ZiH - ZZ ||77:511° = ZZ i~ 7||€z'||
k=1 Jj=1
+ 0136_27Vt + dia (L€7 lw, Tl)

< —c1aVi +eize 2 4 G tey b, TY) (86)

where c¢13,c14 > 0 are positive constants and ;4 (e, tw, 7°) is an increasing function with §;4(0,0,0) = 0.

By solving the above equation, we have

1 _
Vi(t) <Vi(0) + 15 (g + Gia(tes b, TZ))

where c;5 is a positive constant. This means that there exists a sufficient large ~,, and small ¢, tw, T* such that
Vi(t) < R+ Agr = R. Therefore, X; will always remain in the set Q. Meanwhile, V;(t) will converge to the set

8ia(te, tw, T?)/c14 exponentially. This completes the proof. [ |
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