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Policy Synthesis for Switched Linear Systems with Markov Decision
Process Switching

Bo Wu, Murat Cubuktepe, Franck Djeumou, Zhe Xu, and Ufuk Topcu

Abstract—We study the synthesis of mode switching protocols
for a class of discrete-time switched linear systems in which
the mode jumps are governed by Markov decision processes
(MDPs). We call such systems MDP-JLS for brevity. Each state
of the MDP corresponds to a mode in the switched system.
The probabilistic state transitions in the MDP represent the
mode transitions. We focus on finding a policy that selects the
switching actions at each mode such that the switched system
that follows these actions is guaranteed to be stable. Given a
policy in the MDP, the considered MDP-JLS reduces to a Markov
jump linear system (MJLS). We consider both mean-square
stability and stability with probability one. For mean-square
stability, we leverage existing stability conditions for MJLSs and
propose efficient semidefinite programming formulations to find a
stabilizing policy in the MDP. For stability with probability one,
we derive new sufficient conditions and compute a stabilizing
policy using linear programming. We also extend the policy
synthesis results to MDP-JLS with uncertain mode transition
probabilities.

Index Terms—switched systems, Markov decision processes,
optimization

I. INTRODUCTION

Switched linear systems [1], [2] which consist of a set
of modes with linear dynamics and a switching logic that
describes the evolution of the modes, have recently found a
broad range of applications, e.g., in robotics [3], [4], wireless
sensor networks [5], [6], [7], networked control systems [8],
security and privacy [9], [10].

The switching logic for switched systems can be au-
tonomous or controlled [11]. The former may be the result
of the system’s own characteristics or an influence of its
environment, and the latter may be due to the designer’s
deliberate intervention.

In this paper, we study a class of the switched linear
systems, where the switching logic is characterized by Markov
decision processes (MDPs) [12]. We name such systems MDP-
JLS for brevity. The MDP in an MDP-JLS includes a set of
states that correspond to the modes in a switched system, a set
of actions, and a transition relation that defines the probability
of transiting from the current mode to the next under a par-
ticular action. The mode switching in this MDP captures both
deliberate intervention through the action selection and the
environment or system uncertainties through the corresponding
probabilistic mode transitions. Given a policy that selects the
switching actions at each mode, an MDP-JLS reduces to a
Markov jump linear system (MJLS) [13] , where the mode
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switches in the system follow a discrete-time Markov chain
(DTMC).

We are interested in synthesizing a stabilizing policy for
an MDP-JLS and consider both mean-square stability and
stability with probability one of the induced MJLS. We first
show that policies that deterministically select an action in
each mode of the MDP are not sufficient to stabilize an MDP-
JLS.

For mean-square stability, we introduce two approaches to
compute the stabilizing policies based on existing stability
conditions for MJLSs [13], [14], [15], [16]. The first approach
provides a sufficient condition for a policy to stabilize an
MDP-JLS and formulates the policy synthesis problem as a
semidefinite programming problem that results in a simul-
taneous search for both a stabilizing policy and a diagonal
Lyapunov function for each mode. In the second approach, we
partition the variables for the policy and Lyapunov functions
into two groups on which we perform coordinate descent [17],
[18]. We alternate between searching for candidate Lyapunov
functions and searching for a policy that satisfies the stability
conditions by solving a semidefinite programming problem
while fixing the other block of variables.

For stability with probability one, we find stabilizing polices
based on new sufficient stability conditions. These conditions
extend the average dwell-time constraints for the stability
in non-stochastic switched linear systems [19], [11], [20]
to MJLSs. More precisely, comparing with the traditional
average dwell-time constraints, which require that the average
time interval between any two consecutive mode switching
is above a certain threshold, The proposed stability conditions
establish a lower bound for the probability of mode switching.
Such conditions translate into constraints on the stationary
distribution of the induced DTMC, based on which we solve
policy synthesis efficiently as a linear programming problem.
We additionally extend the policy synthesis to MDP-JLSs with
uncertain mode transition probabilities and the optimization of
the expected state-dependent costs.

We illustrate the use of the proposed methodologies with
two examples. For mean-square stability, we show that the
method based on coordinate descent outperforms the semidef-
inite programming method. For stability with probability one,
since mean-square stability implies stability with probability
one, the coordinate descent method is also applicable but
scales poorly with the dimension of the linear dynamical
systems in the modes. On the other hand, we observe in the
numerical examples that the computation time for the linear
programming approach is not sensitive to the dimension of
the dynamics in the modes and thus is more scalable. In oru
experiments, the computation time of the linear programming
approach is only a fraction (as low as 0.02%) of that of the
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coordinate descent method.
Related work. Stability and stabilization are major concerns
for switched linear systems and have been extensively studied
in the literature. The most popular stability analysis approaches
for systems with arbitrary switching include common and
multiple Lyapunov functions [21], [22] and (average) dwell-
time conditions [23], [19], [24]. However, in many practical
systems, switching between modes is often constrained due
to physical limitations, and one usually has control over
switching [25]. As a result, it is of interest to synthesize
controllers that regulate the mode switching to stabilize the
system while respecting constraints on switching. In [26], the
authors studied a switched linear autonomous system where
a finite automaton generates the mode switching sequences.
Such a model considers non-stochastic mode switches gov-
erned by a finite automaton while the model proposed in this
paper considers probabilistic mode switches governed by an
MDP. Furthermore, the focus of [26] is only stability analysis
rather than stabilization. References [27], [28], [29] considered
switching controller synthesis for safety, reachability and tem-
poral logic specifications, though only for switched systems
with non-stochastic switching.

Recall that, for a given policy, an MDP-JLS reduces to
an MJLS. For mean-square stability of an MJLS, there exist
conditions that are both necessary and sufficient or only
sufficient[13], [30]. There also exist results for MJLS stability
analysis that involve average dwell-time [31], [32]. However,
the average dwell-time in those papers refers to how frequently
the transition probabilities of the DTMC change. While in
MDP-JLSs, mode transition probabilities do not change over
time and the average dwell-time represents the probability of
mode switching.
Contributions. The contributions of this paper are three-fold.
• We propose MDP-JLS, a new modeling framework for a

class of switched linear systems where MDPs describes
the switching logic.

• To guarantee mean-square stability, we study policy syn-
thesis problems for MDP-JLSs with existing stability
conditions of MJLSs and formulate them as optimization
problems based on semidefinite programming.

• For stability with probability one, we derive new stability
conditions with constraints in the probability of mode
switching. We also consider MDP-JLSs with uncertain
mode transition probabilities and the optimization of the
expected average cost incurred by the switching actions.

We organize the rest of this paper as follows. Section II
introduces the modeling framework and necessary definitions.
Section III formulates the policy synthesis problem. Solutions
are proposed in Section IV and Section V for mean-square
stability and stability with probability one, respectively. Sec-
tion VI provides two examples to show the validity of the
proposed solutions and compare their performances. Section
VII concludes the paper and discusses future directions.

II. PRELIMINARIES

In this section, we describe preliminary notions and defini-
tions used in the sequel.

s1

x(k + 1) = As1x(k)

s2

x(k + 1) = As2x(k)
s3

x(k + 1) = As3x(k)

Fig. 1: An MDP-JLS with three modes. Transition probabilities
and actions are omitted.

Notations: |S| denotes the cardinality of a set S. Given
a real matrix A ∈ Rm×n, A′ denotes its transpose. We use
1 to denote a column vector with all elements equal to 1.
||A||∞ := max1≤i≤m

∑n
j=1 |aij |. If m = n, ρ(A) represents

the spectral radius of A, i.e., ρ(A) := maxi |λi| where
λi, i ∈ {1, . . . , n} are eigenvalues of A. Furthermore, A > 0
(A ≥ 0) denotes that the matrix A is positive definite (positive
semidefinite). E[.] stands for computing the expectation. ⊗ de-
notes the Kronecker product. For Ai ∈ Rn×n, i ∈ {1, . . . , N},
diag(Ai) ∈ RNn×Nn represents the block diagonal matrix
formed with Ai at the diagonal and zero anywhere else, i.e.

diag(Ai) :=

A1 0 0

0
. . . 0

0 0 AN

 .
A. Switched Linear Systems

Mathematically, a discrete-time switched linear system is
described by

x(k + 1) = Askx(k), (1)

where x(k) ∈ Rn is the state vector, Ask ∈ Rn×n implies
a matrix A ∈ {A1, . . . , A|S|}. The linear dynamics of (1) is
given by matrices Ai when sk = i, i.e, the mode that the
system is in at time k.

B. Switched Linear Systems with Markov Decision Process
Switching

The system in (1) in its general form is a hybrid system
where the mode switches could depend on both the continuous
dynamics and discrete mode [1], [33]. In this paper, we
consider a class of switched linear systems, where the mode
switches are governed by a Markov decision process (MDP)
[12] defined as follows.

Definition 1. An MDP is a tuple M = (S, ŝ,Σ, T ) which
includes a finite set S of states, an initial state ŝ, a finite set
Σ of actions. T : S × Σ × S → [0, 1] is the probabilistic
transition function with T (s, σ, s′) := p(s′|s, σ), for s, s′ ∈
S and σ ∈ Σ. We denote the number of modes, i.e., |S| as N .

For simplicity, we denote Tσ ∈ RN×N as the transition
probabilities induced by an action σ ∈ Σ between state pairs.
If σ is not defined on a state si, T (si, σ, sj) = 0 for any sj ∈
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S. For notational simplicity, in the sequel we write T (i, σ, j)
instead of T (si, σ, sj). Then we formally define the system
that we study in this paper as follows.

Definition 2. An MDP-JLS is a switched system defined in
(1) with the mode switches governed by an MDP M =
(S, ŝ,Σ, T ).

We shown an example of an MDP-JLS in Figure 1.There
are three linear dynamics corresponding to three modes, re-
spectively, i.e.

x(k + 1) = Asix(k), for si ∈ S,

where each state s, there is a set of actions available to choose.
The nondeterminism of the action selection is resolved by a
policy π.

Definition 3. A (randomized) policy π : S ×Σ→ [0, 1] of an
MDPM is a function that maps every state action pair (s, σ)
where s ∈ S and σ ∈ Σ with a probability π(s, σ).

By definition, the policy π specifies the probability to take
an action σ at a state s. For notational simplicity, we use
π(i, σ) for π(si, σ). As a result, given a policy π, the MDP
M reduces to a discrete-time Markov chain (DTMC) C =
(S, ŝ, P ). The matrix P represents the transition probabilities
and can be calculated by

P (si, sj) := Pij =
∑
σ∈Σ

T (i, σ, j)π(i, σ),

where Pij is the (i, j) element of P that denotes the probability
of transitioning from si to sj in one step. We can naturally
generalize this definition to n-step transition probabilities
where Pnij denotes the probability of transitioning from si to
sj with n steps, and Pnij is the (i, j) element of Pn :=

∏
n P .

We denote the probability of being in a state si at time step
n as pn(si) which can be computed by Pn and the initial
state. A stationary distribution (if it exists) over the states is
a vector p̄ ∈ R|S| that

p̄(si) =
∑
sj

p̄(sj)Pji.

In a DTMC C = (S, ŝ, P ), state sj is accessible from si if
Pnij > 0 for some non-negative n <∞. Two states si and sj
are said to communicate if si is accessible from sj and sj is
accessible from si. A state si is said to be recurrent if it is
accessible from all states that are accessible from si. A state
that is not recurrent is called transient. A state si is said to be
aperiodic if gcd({n|Pnii > 0}) = 1 where gcd stands for the
greatest common divisor. A class X ⊆ S is a non-empty set
of states where each si ∈ X communicates with every other
state sj ∈ X and communicates with no state sj /∈ X . An
ergodic class is a class that consists of states that are both
recurrent and aperiodic.

Definition 4. A DTMC is an ergodic unichain if it contains a
single ergodic class and maybe some transient states. An MDP
is an ergodic unichain if every policy π induces a DTMC that
is an ergodic unichain.

If a DTMC is an ergodic unichain, its stationary distribution
p̄ exists and is unique, and limn→∞ pn = p̄ [34].

C. Markov Jump Linear Systems
The Markov jump linear system is defined as follows [13].

Definition 5. A Markov jump linear system (MJLS) is a
switched system defined in (1) with the mode switches gov-
erned by a DTMC C = (S, ŝ, P ).

Given an MDP-JLS with an MDP M = (S, ŝ,Σ, T ) and
a policy π, the resulting system is an MJLS whose mode
switches can be characterized by the DTMC C induced from
the policy π. If the system (1) is in mode si, then the
probability that it switches to mode sj is given by Pij .

For MJLS analysis, stability is one of the major concerns.
Several notions of stability exist in the literature [15]. In this
paper, we are interested in mean-square stability and stability
with probability one as defined below.

Definition 6. [13] An MJLS with the dynamics in (1) is said
to be mean-square stable if

lim
k→∞

||E[x(k)x′(k)]||∞ = 0

for any initial condition x0.

Definition 7. [13] An MJLS with the dynamics in (1) is said
to be stable with probability one if

lim
k→∞

||x(k)||∞ = 0 with probability one

for any initial condition x0.

Mean-square stability is shown to imply stability with
probability one [13].

D. Optimization basics
In this paper, we use optimization problems such as linear

programs (LPs), semidefinite programs (SDPs) and bilinear
matrix inequalities (BMIs) extensively in the policy synthesis.
We briefly define them as follows.

An LP is an optimization problem with a linear objective
and constraints on the variable y ∈ Rn, which is given by

minimize c′y (2)
subject to

Ay = b, (3)
x ≥ 0, (4)

where A ∈ Rm×n is a given matrix, and c ∈ Rn, b ∈ Rm are
given vectors. The LP in this form is also referred to as the
standard form [35, Chapter 4.3]. LPs are convex optimization
problems and can be solved efficiently using interior point
methods [36], [35].

An SDP is an optimization problem with a linear objec-
tive, linear equality constraints and a matrix nonnegativity
constraint on the variable y ∈ Rn, which can be written as

minimize c′y (5)
subject to

Ay = b, (6)
n∑
i=1

yiFi ≥ F0, (7)
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where F0, . . . , Fm ∈ Rp×p, are given symmetric matrices,
A ∈ Rm×n is a given matrix, and c ∈ Rn, b ∈ Rm
are given vectors. SDPs are convex optimization problems,
and is a generalization of LPs. SDPs can also be solved
efficiently [36], [35]. The constraint in (7) is named as a linear
matrix inequality (LMI), and it is a convex constraint in y.

A BMI can be written as the following form:
n∑
i=1

yjFi +

m∑
j=1

zjGj +

n∑
i=1

m∑
j=1

yizjHij ≥ F0,

where Fi, Gj , Hij ∈ Rp×p for i = 1, . . . , n and j = 1, . . . ,m
are given symmetric matrices, and x ∈ Rn, y ∈ Rm are a
vector of variables. A BMI is an LMI in y for fixed z and an
LMI in z for fixed y. The bilinear terms in a BMI make the
feasible set not jointly convex in y and z and it is generally
hard to find a feasible solution to a BMI [37].

III. PROBLEM FORMULATION

In traditional MDP literature, finding a policy for an op-
timized expected cost [12] or to satisfy a specification in
temporal logic [38] is of the primary concern. However, in
this paper, we are interested in synthesizing a policy π in an
MDP that governs the switches of a dynamical system defined
in (1). In this case, the objective is to stabilize an MDP-JLS.

Problem 1 (Synthesis for mean-square stable). Given an
MDP-JLS, find a policy π : S × Σ → [0, 1] such that the
resulting MJLS is mean-square stable.

Problem 2 (Synthesis for stability with probability one).
Given an MDP-JLS, find a policy π : S × Σ → [0, 1] such
that the resulting MJLS is stable with probability one.

IV. MEAN-SQUARE STABILITY GUARANTEED POLICY
SYNTHESIS

This section solves Problem 1. Since an MDP-JLS will
reduce to an MJLS with a policy, we first review some
stability conditions in MJLS that we will leverage to synthesize
policies.

A. Stability Conditions

We give two necessary and sufficient stability conditions for
an MJLS as the following.

Theorem 1. [13] Given an MJLS as defined in (1) whose
mode s ∈ S makes random transitions described by a DTMC
C = (S, ŝ, P ), the following assertions are equivalent.

1) The MJLS is mean-square stable.
2) ρ(A) < 1, where

A = (P ′ ⊗ I)diag(Ai ⊗Ai),

and I is the identity matrix of a proper dimension.
3) There exists a V = (V1, . . . , VN ) ∈ Rn×n with V > 0

such that
V − T (V ) > 0, (8)

where

Tj(V ) =

N∑
i=1

PijAiViA
′
i.

Note that the stability conditions do not depend on either the
initial state ŝ of the MDP or the initial continuous state x(0).
For computational efficiency, we state a sufficient stability
condition as follows.

Corollary 1. [13] Given an MJLS as defined in (1) whose
mode s ∈ S makes transitions following a DTMC C =
(S, ŝ, P ), the MJLS is mean-square stable if there exists
αi > 0 such that the following is satisfied.

αiI −
N∑
j=1

PijαjAiA
′
i > 0, i ∈ {1, . . . , N}. (9)

The condition given in (8) can be checked by solving an
SDP with Vi as variables. However, the number of variables
for this SDP is n2 ·N , and finding a feasible solution for the
SDP can be time consuming for large n and N . On the other
hand, the condition in (9) can be checked by solving an SDP
with N variables, and the size of the optimization problem is
smaller compared to the optimization problem in (8).

B. Deterministic Policies Are Not Sufficient for Stability

We first show that a deterministic policy, i.e, π : S → A
is not sufficient to guarantee the stability of an MDP-JLS.
It means that there may not exist a deterministic policy to
stabilize an MDP-JLS, but there exists an randomized policy
that achieves stability.

We illustrate this fact by a counterexample. Consider a
switched system with system dynamics in (1)

A1 =

[
0.99 −0.56
−0.19 0.73

]
and A2 =

[
0.38 −0.98
−0.66 −0.66

]
.

The MDP M = (S, ŝ,Σ, T ) where S = {s1, s2} and Σ =
{σ1, σ2}. The transition probabilities induced by action σ1 and
σ2 are

Tσ1
=

[
0.21 0.79
0.90 0.10

]
and Tσ2

=

[
0.71 0.29
0.13 0.87

]
.

The deterministic policy that induces a minimal spectral radius
is selecting σ1 in both mode 1 and 2. The spectral radius ρ(A)
of the MJLS induced by this policy is 1.04 > 1, which makes
the overall system unstable. However, the policy that selects σ1

in mode 1, and selects σ1 in mode 2 with a probability of 0.27
induces an MJLS that has a spectral radius of ρ(A) = 0.90 <
1. So the system is stable according to Theorem 1. Therefore,
we conclude that deterministic policies are not sufficient to
stabilize an MDP-JLS.

C. Policy Synthesis via Bilinear Matrix Inequalities

In this section, we formulate a condition based on bilin-
ear matrix inequalities to synthesize a randomized policy to
stabilize an MDP-JLS. The condition is a straightforward
generalization of the linear matrix inequalities given in (8).
The following result states that we can search for a stabilizing
policy by finding a solution to a set of bilinear matrix
inequalities.
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Theorem 2. Consider an MDP-JLS whose mode s ∈ S
makes transitions following a MDP M = (S, ŝ,Σ, T ) and
the dynamics in each modes as in (1). If there exists matrices
Vi ∈ Rn×n, and π such that the following holds:

Vi > 0, (10)
V − T (V ) > 0, (11)

Tj(V ) =

N∑
i=1

PijAiViA
′

i, (12)

Pij =
∑
σ∈Σ

T (i, σ, j)π(i, σ), (13)∑
σ∈Σ

πi,σ = 1, (14)

π(i, σ) ≥ 0, (15)

for i, j = {1, . . . , N} and σ ∈ Σ, then the induced MJLS is
mean-square stable.

Proof. Constraints (13), (14), (15) construct the induced
DTMC C with transitions governed by Pij . Using the result
of Theorem 1, the constraints (10), (11), and (12) ensure that
the MJLS is mean-square stable with the induced DTMC C.
Hence, the existence of a policy and matrices Vi that satisfies
the constraints (10)–(13) shows that the MJLS is mean-square
stable.

Note that the constraints given in (10)–(15) are BMI con-
straints due to multiplication between variables π and V in
(11)–(13), therefore it is hard in general to find a policy by
solving the BMI directly. In the next section, we propose two
approaches based on convex optimization that are easier to
compute, and discuss their relationship with the BMI in (10)–
(15).

D. Policy Synthesis via Convex Optimization

In this section, we propose two methods to synthesize a
policy that stabilizes an MDP-JLS. The first method is based
on checking feasibility of an SDP, which is an relaxation of
the original stability condition. The second method is based
on applying a coordinate descent on the variables V and π.
We can use coordinate descent in our case efficiently, as the
constraints in (11)–(13) are LMI constraints if V or π is fixed.

1) Semidefinite Relaxation: In the following, we state the
semidefinite relaxation to compute a policy that stabilizes an
MDP-JLS. the relaxation extends the stability condition given
in (9) for an MJLS to a switched system whose mode switches
are governed by an MDP.

Theorem 3. Consider an MDP-JLS whose mode s ∈ S
makes transitions following a MDPM = (S, ŝ,Σ, T ) and the
dynamics in each modes as in (1). If there exists Ki,σ, αi ∈

R > 0 such that

Vi = αiI > 0, (16)
V − T (V ) > 0, (17)

Tj(V ) =

N∑
i=1

∑
σ∈Σ

T (i, σ, j)Ki,σAiA
′
i, (18)∑

σ∈Σ

Ki,σ = αi, (19)

Ki,σ ≥ 0, (20)

for i, j = {1, . . . , N} and σ ∈ Σ, then the MJLS is mean-
square stable.

Proof. Suppose that the condition given by constraints (10)–
(15) is satisfied with Vi = αiI > 0, i = {1, . . . , N}. Then,
the constraint (12) becomes

Tj(V ) =
N∑
i=1

∑
σ∈Σ

T (i, σ, j)π(i, σ)αiAiA
′
i (21)

with variables αi > 0, i = {1, . . . , N} and π. Note that for
a given policy π and the induced DTMC C, the constraint
in (21) is equivalent to the condition given by (9) in Corollary
1. By defining the change of variable Ki,σ = π(i, σ) · αi for
i = {1, . . . , N} and σ ∈ Σ, the constraints (12)–(15) are
equivalent to the constraints in (18)–(20). Finding a feasible
solution that satisfies the constraints in (10)–(15) yields a
policy π(i, σ) = Ki,σ/αi for i = {1, . . . , N} and σ ∈ Σ,
which by construction satisfies the constraints in (10)–(15).
Therefore, the policy π and V ensures that the induced MJLS
is mean-square stable.

The constraints in (16)–(20) are LMIs in the variables K
and α. Finding a feasible solution of a set of LMIs can be done
by solving an SDP. However, this condition is only a sufficient
as we restrict the structure of the matrix V , therefore we may
not be able to certify the stability of an MJLS even though
there may exists a policy that ensures that the induced MJLS
is mean-square stable.

2) Coordinate Descent: In this section we discuss the
coordinate descent (CD) approach and the differences with
a basic CD algorithm. Recall that a BMI is an LMI if one the
variables is fixed, and we can check if the constraints in (10)–
(15) are feasible for a fixed V or π. However, applying the
basic CD on V and π requires the problems to be feasible for
a fixed V or π, which is not necessarily true in our case. If the
initial problem is feasible, then we know that π stabilizes the
induced MJLS. Therefore, we assume that the initial policy
does not stabilize the system.

Our implementation differs from a basic coordinate descent
algorithm in the addition of the slack variables to the constraint
in (11), which ensures that the resulting LMI is feasible for a
fixed set of variables, and we use a proximal update between
the variables instead of the original update method between V
and π. Details about the proximal update and the convergence
guarantees can be found in [39].
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We start with an initial guess of the variables V 0 and π0.
Then in each iteration k, we solve the following SDP for a
fixed πk:

minimize − γ +

N∑
i=1

L||Vi − V k−1
i ||2 (22)

subject to
Vi > 0, (23)
V − T (V ) ≥ γI, (24)

Tj(V ) =

N∑
i=1

PijAiViA
′
i, (25)

Pij =
∑
σ∈Σ

T (i, σ, j)πk(i, σ), (26)

where Vi ∈ Rn×n, i = {1, . . . , N} and γ ∈ R are variables,
and L ∈ R is a small positive constant. After we get V from
(22)–(26), the SDP we solve for a fixed V k = V is given as
follows:

minimize − γ +

N∑
i=1

∑
σ∈Σ

L||π(i, σ)− πk−1(i, σ)||2 (27)

subject to

V k − T (V k) ≥ γI, (28)

Tj(V ) =

N∑
i=1

PijAiV
k
i A
′
i, (29)

Pij =
∑
σ∈Σ

T (i, σ, j)π(i, σ), (30)∑
σ∈Σ

πi,σ = 1, (31)

π(i, σ) ≥ 0 (32)

with variables π for i = {1, . . . , N} and σ ∈ Σ, and γ ∈
R. After solving each SDP, we update the variables until we
converge to a solution or we obtain a solution with γ > 0.
If we can find a solution with γ > 0, the conditions (24)
and (28) implies the condition given in (11), and the rest of the
conditions in (10)–(15) are already satisfied in either SDPs that
we solve during CD. In this case, we stop the algorithm as the
solution given by V and π guarantees that the MJLS is mean-
square stable. Note that our method is guaranteed to converge
as we use the update (1.3b) in [39], however the procedure
can converge to a solution with γ ≤ 0, which implies that the
CD method cannot certify if the MJLS is mean-square stable.

V. POLICY SYNTHESIS FOR STABILITY WITH
PROBABILITY ONE

This section solves Problem 2. We assume that M is
an ergodic unichain MDP which has a unique stationary
distribution for every DTMC induced by a policy π. For a
stationary distribution p∞, the probability to jump to state s
from a different state in one time step denoted as −→ps is given
by

−→ps =
∑
s′ 6=s

P (s′, s)p∞s′ . (33)

Furthermore, the event that there is a mode jump is Bernoulli
distributed such that

Pjump = 1−
∑
s

p∞s P (s, s) =
∑
s

−→ps , (34)

where Pjump denotes the probability of a mode jump.

A. Stability with Mode-Independent Conditions

Theorem 4. Consider an MDP-JLS whose mode s ∈ S
makes transitions following a MDP M = (S, ŝ,Σ, T ) and
the dynamics in each modes as in (1) with given constants
0 < α < 1 and µ > 1. Assume there exists a Lyapunov
function candidate V (x) = {Vs(x), s ∈ S} that satisfies the
following for any pair of s, s′ ∈ S.

Vs(xk+1)− Vs(xk) ≤ −αVs(xk), and (35)
Vs(xk) ≤ µVs′(xk), (36)

where xk := x(k) for simplicity. Given a policy σ and if the
induced DTMC has a stationary distribution, then the system
is stable with probability one if

Pjump <
ln( 1

1−α )

ln(µ)
. (37)

Proof. For a time horizon k, suppose there are m mode jumps
so far at time instants ki, i ∈ {1, ...,m} such that ski 6= ski−1,
i.e., ki is the time instant that the i-th jump just occurred. Then
we have

Vsk(xk) ≤ (1− α)k−kmVskm
(xkm) (38)

from equation (35) since the mode remains the same during
the time interval [km, k], i.e. st = sk for all t ∈ [km, k].
Together with equations (35) and (36), we have

Vsk(xk) ≤ (1− α)k−kmµVskm−1
(xkm)

≤ (1− α)k−kmµ(1− α)km−km−1µVskm−1−1
(xkm−1

),

≤ · · · ≤ (1− α)kµmVŝ(x0)

= ((1− α)µ
m
k )kVŝ(x0).

(39)

To prove the system is stable with probability one, we need
to prove that

P ( lim
k→∞

((1− α)µ
m
k )k = 0) = 1,

which implies that

P ( lim
k→∞

(1− α)µ
m
k < 1) = 1

⇐⇒ P ( lim
k→∞

m

k
<

ln( 1
1−α )

ln(µ)
) = 1.

Using the law of total probability and conditional probability,
we have that

P ( lim
k→∞

m

k
<

ln( 1
1−α )

ln(µ)
|B)P (B)

+ P ( lim
k→∞

m

k
<

ln( 1
1−α )

ln(µ)
|B̄)P (B̄) = 1,

(40)
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where B represents the event that limk→∞
m
k = Pjump and B̄

represents the event that limk→∞
m
k 6= Pjump. According to

the law of large numbers [40], we know that

P (B) = P ( lim
k→∞

m

k
= Pjump) = 1 and P (B̄) = 0.

Therefore we have that

P ( lim
k→∞

m

k
<

ln( 1
1−α )

ln(µ)
|B̄)P (B̄) = 0. (41)

Thus from (40) we require

P ( lim
k→∞

m

k
<

ln( 1
1−α )

ln(µ)
|B)P (B)

= P ( lim
k→∞

m

k
<

ln( 1
1−α )

ln(µ)
| lim
k→∞

m

k
= Pjump)

= P [Pjump <
ln( 1

1−α )

ln(µ)
] = 1.

(42)

Since given a policy π, Pjump is a constant, equivalently we
require that

Pjump <
ln( 1

1−α )

ln(µ)
.

B. Stability with Mode-Dependent Conditions

From Theorem 4, we find a sufficient condition for the
policy of the MDP to satisfy, such that the stability can be
guaranteed. However, the conditions (35) and (36) in Theorem
4 are mode-independent, which may introduce conservative-
ness because the same pair of α and µ has to be satisfied by
all the modes. Therefore, inspired by [20] we introduce the
following theorem where the parameters such as α and µ in
(35) and (36) are mode-dependent.

Theorem 5. Consider an MDP-JLS whose mode s ∈ S
makes transitions following a MDP M = (S, ŝ,Σ, T ) and
the dynamics in each modes as in (1) with given constants
0 < αs < 1 and µs > 1 for all s ∈ S. Assume there exists
a Lyapunov function candidate V (x) = {Vs(x), s ∈ S} that
satisfies the following for any pair of s, s′ ∈ S.

Vs(xk+1)− Vs(xk) ≤ −αsVs(xk), and (43)
Vs(xk) ≤ µsVs′(xk), (44)

where xk := x(k) for simplicity. Given a policy σ and if the
induced DTMC has a unique stationary distribution, then the
system is stable with probability one if∑

s

−→ps lnµs + p∞s ln(1− αs) < 0. (45)

Proof. We start the proof similar to that of Theorem 4. For
a time horizon k, suppose there are m mode jumps so far at
time instants ki, i ∈ {1, ...,m} such that ski 6= ski−1, i.e., ki
is the time instant that the i-th jump just occurred. Then we
have

Vsk(xk) ≤ (1− αskm
)k−kmVskm

(xkm), (46)

from equation (43) since the mode remains the same during
the time interval [km, k], i.e. st = sk for all t ∈ [km, k].
Applying equations (43) and (44) recursively, we have

Vsk(xk) ≤ (1− αskm
)k−kmµskm

Vskm−1
(xkm)

≤ (1− αsk)k−kmµsk

× (1− αskm−1
)km−km−1µskm−1

Vskm−1−1
(xkm−1

)

≤ · · · ≤ Vŝ(x0)

m∏
i=0

(1− αski
)ki+1−kiµski

,

(47)

where km+1 = k, k0 = 0 and µsk0
= 1. Among the m number

of jumps, we denote ms as the number of jumps to mode s
from a different mode. It is immediate that

∑
sms = m.

Furthermore, we denote the time that the system spends in
mode s up to k as ks. By definition,

∑
s ks = k. Then from

(47) we have

Vsk(xk) ≤ Vŝ(x0)

m∏
i=0

(1− αski
)ki+1−kiµski

= Vŝ(x0)

N∏
s=1

µms
s (1− αs)ks

= Vŝ(x0)(

N∏
s=1

µ
ms
k
s (1− αs)

ks
k )k.

(48)

Similar to the proof of Theorem 4, to prove the system is
stable with probability one, we need to show that

P [ lim
k→∞

(

N∏
s=1

µ
ms
k
s (1− αs)

ks
k )k = 0] = 1,

which implies that

P [ lim
k→∞

N∏
s=1

µ
ms
k
s (1− αs)

ks
k < 1] = 1

⇐⇒P [ lim
k→∞

∑
s

ms

k
ln(µs) +

ks
k

ln(1− αs) < 0] = 1.

(49)

According to the law of large numbers [40], we know that

P [ lim
k→∞

ms

k
= −→ps ] = 1, and

P [ lim
k→∞

ks
k

= p∞s ] = 1.

Therefore, from (49) and similar derivations that reach (42),
we prove that if (45) holds, the system is stable with proba-
bility one.

It is worth noticing that if µs = µ and αs = α for any
mode s, then condition (42) becomes∑

s

−→ps lnµ+ p∞s ln(1− α) < 0. (50)

Since
∑
s
−→ps = Pjump and

∑
s p
∞
s = 1, equation (50) reduces

to
Pjump lnµ+ ln(1− α) < 0.

Therefore, we recover the stability condition from Theorem 4.
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C. Computation of α and µ

The stability conditions in Theorem 4 and Theorem 5 hinge
on the existence of multiple Lyapunov functions for each
mode s as well as constants α and µ or αs and µs. This
subsection gives an algorithm to find these Lyapunov functions
and constants.

The Lyapunov function in mode s can be formed as follows:

Vs(x) = x′Msx, (51)

where Ms is a positive definite matrix.
We have

Vs(xk+1) = x′k+1Msxk+1

≤ (1− αs)Vs(xk) = (1− αs)x′kMsxk, (52)

where xk := x(k) for simplicity.
Therefore, Ms and the largest αs can be computed from the

following bilinear optimization problem:

max
αs,Ms

αs

s.t. M ′s = Ms � I,
A′sMsAs � (1− αs)Ms,

(53)

where I is the identity matrix.
When the state jump from mode s to mode s′ (s′ 6= s), we

have

Vs(xk) = x′kMsxk ≤ µs,s′Vs′(xs) = µs,s′x
′
kMs′xk. (54)

After Ms is computed for every mode s using (53), the
smallest µs,s′ can be computed from the following SDP
problem:

min
µs,s′

µs,s′

s.t. µs,s′ > 1

Ms � µs,s′Ms′ .

(55)

D. Policy Synthesis for Stability With Probability One

This subsection introduces computation approach to find a
policy such that an MDP-JLS is guaranteed to be stable with
probability one, based on stability conditions in Theorem 4 and
Theorem 5. In addition to stability, we assign a cost function
c : S → R to each mode, such that the stabilizing policy
should also minimize a cost

∑
s c(s)p

∞
s , which represents an

average cost over states when the underlying DTMC reaches
its stationary distribution. We start with policy synthesis fol-
lowing stability conditions stated in Theorem 4.

Theorem 6. In case of perfect model knowledge of the MDP,
given stability constants 0 < α < 1, µ > 1 and given small
ε > 0, Problem 2 can be formulated as the linear optimization
problem

minimize
π̂,p∞,P̂

∑
s

c(s)p∞s (56)

subject to π̂1 = p∞, 1′p∞ = 1, (57)

P̂ ′1 = p∞, (58)

P̂ij =
∑
σ

T (i, σ, j)π̂(i, σ) ∀i, j ∈ S, (59)

1− Tr(P̂ ) <
ln( 1

1−α )

ln(µ)
, (60)

π̂ ≥ 0, p∞ ≥ ε, (61)

where P̂ ∈ R|S|×|S|, p∞ ∈ R|S| and π̂ ∈ R|S|×|Σ|. If
we denote by π̂opt, p∞opt, P̂opt the optimal solutions, then the
policy π, the induced Markov matrix P and the stationary
distribution p∞ solutions of problem 2 are given by

π = diag(p∞opt)
−1π̂opt,

P = diag(p∞opt)
−1P̂opt, and

p∞ = p∞opt.

Proof. This LP formulation comes immediately from the
change of variables

P̂ = diag(p∞)P, and
π̂ = diag(p∞)π.

Observe that ∀i, j ∈ S, P̂ij = p∞i Pij and ∀σ ∈ Σ, π̂ik =
p∞i πiσ .

By definition p∞ > 0 and π ≥ 0 is equivalent to π̂ ≥ 0 and
p∞ ≥ ε for a fixed small ε > 0. This gives constraint (61).
π1 = 1⇐⇒ π̂1 = p∞ by left multiplication with invertible

matrix diag(p∞). Since p∞ is a probability distribution,
1′p∞ = 1. This proves constraint (57).

By definition of the stationary distribution p∞, we have∑
i

p∞i Pij =
∑
i

P̂ij = p∞j for all j ∈ S.

Therefore (π∞)′P = (π∞)′ ⇐⇒ 1′P̂ = (π∞)′. This gives
constraint (58).

Since p∞ > 0, the constraint (59) is given by

Pij =
∑
σ

T (i, σ, j)π(i, σ)

⇐⇒p∞i Pij =
∑
σ

T (i, σ, j)(p∞i π(i, σ))

⇐⇒P̂ij =
∑
σ

T (i, σ, j)π̂(i, σ),

for all i, j ∈ S.
Finally, constraint (60) is given by Theorem 4

Pjump = 1−
∑
i

p∞i Pii = 1− Tr(P̂ ) <
ln( 1

1−α )

ln(µ)
.

Given the mode-dependent stability coefficients αs and µs,
Theorem 5 can be formulated as another LP where a feasible
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solution contains a policy that guarantees stability of the
system with probability one.

Theorem 7. Consider an MDP-JLS whose mode s ∈ S
makes transitions following a MDPM = (S, ŝ,Σ, T ) and the
dynamics in each modes as in (1) with given mode-dependent
constants 0 < αs < 1 and µs > 1 for all s ∈ S. Given small
ε > 0, Problem 2 can be formulated as the linear optimization
problem

minimize
π̂,π∞,P̂

∑
s

c(s)p∞s (62)

s.t π̂1 = p∞, 1′p∞ = 1, (63)

P̂ ′1 = p∞, (64)

P̂ij =
∑
σ

T (i, σ, j)π̂(i, σ) ∀i, j ∈ S, (65)∑
i

(
∑
j 6=i

P̂ji)ln(1− µi) + p∞i ln(1− αi) < 0,

(66)
π̂ ≥ 0, p∞ ≥ ε, (67)

where c : S → R is an optimization criteria over the set of
solutions, P̂ ∈ R|S|×|S|, p∞ ∈ R|S| and π̂ ∈ R|S|×|Σ|. If
π̂opt, p

∞
opt, P̂opt are optimal solutions, then the policy π, the

induced Markov matrix P and the stationary distribution p∞

solutions of problem 2 are given by

π = diag(p∞opt)
−1π̂opt,

P = diag(p∞opt)
−1P̂opt, and

p∞ = p∞opt.

Proof. This is an immediate consequence of Theorem 5.
Observe that ∀i, j ∈ S, P̂ij = p∞i Pij . Therefore, −→ps =∑
s′ 6=s P (s′, s)p∞s′ =

∑
s′ 6=s P̂ (s′, s). The constraint (66) is

immediately obtained from the last observation and Theorem
5.

The others inequalities constraints can be derived using the
same proof sketch as in Theorem 6.

If the state-based cost is not of interest, then a feasibility
program with the constraints from (57) to (61) or from (63)
to (67) can be solved instead.

E. Stability Guarantee With Imperfect Model Knowledge

In many cases, the true MDP M that governs the switch
dynamics may not be precisely known but can only be
estimated through statistical experiments. As a result, it may
only be possible to obtain an approximated model M̄ such
that the transition probabilities in M is known to lie in
some neighborhood of that in M̄. To make such notion of
approximation more precise, we first define ∆−approximation
in MDPs [41].

Definition 8. Let M = (S, ŝ,Σ, T ) and M̄ = (S̄, ¯̂s, Σ̄, T̄ ) be
two MDPs. M̄ is a ∆−approximation of M if

• S = S̄, ŝ = ¯̂s, Σ = Σ̄. That is, they share the same state
space, initial condition and action space;

• |T (s, σ, s′)− T̄ (s, σ, s′)| ≤ ∆ for any s, s′ and σ;
• T (s, σ, s′) > 0 if and only if T̄ (s, σ, s′) > 0 for any s, s′

and σ.

By definition, it is not hard to see that if M̄ is a
∆−approximation of M, then with the same policy π,
we have that C, the induced Markov chain from M is a
∆−approximation of C̄, the induced Markov chain from M̄.

When the transition probabilities of two DTMCs are close to
each other, their stationary distribution is also close as shown
the following theorem.

Theorem 8. [42] Let C̄ and C be two DTMCs both with
N states, and transition matrices are P̄ and P = P̄ − F ,
respectively. Then the stationary distribution p∞ and p̄∞

satisfy

|p∞i − p̄∞i | ≤ ||F ||∞max
j
|h#
ij |, for each i ∈ {1, ..., N} (68)

where N = |S|, p∞i := p(si)
∞, h#

ij is the (i, j) entry of a
matrix H# which is the group inverse of H = I − P̄ .

The group inverse H# of a matrix H , if it exists, can
be uniquely determined by three equations HH#H =
H,H#HH# = H#, and HH# = H#H [42]. For a
transition matrix P , H# always exists and can be computed
as the following [43]. We can write H as

H =

[
U c
d′ α

]
,

where U ∈ R(N−1)×(N−1), and

h′ = d′U−1, δ = −h′U−11N−1, β = 1−h′1N−1, G = U−1− δ
β
I.

Here, δ and β are nonzero scalars. Then H# can be calculated
by

H# =

[
U−1 + U−11N−1h

′U−1

δ − G1N−1h
′G

δ −G1N−1

β
h′G
β

δ
β2

]
,

(69)
The following lemma is a direct application of Theorem 8 and
the definition of ∆−approximation.

Lemma 1. Given two DTMCs C and C̄ with N states,
transition matrices P and P̄ , respectively. If C̄ is a
∆−approximation of C, then their stationary distribution p∞

and p̄∞ satisfy

|p∞i − p̄∞i | ≤ N∆ max
j
|h#
ij |, (70)

Suppose we have a ∆−approximation M̄ of the underlying
MDP M. Since it is not possible to know M precisely, we
can only find some policy π based on the estimated model M̄
and apply it to the true MDP M. As illustrated in Theorem
4, to be able to guarantee the stability of the system, we have
to bound the difference between Pjump and P̄jump, which are
probabilities of mode jumps in the M and M̄, respectively.

Recall that Pjump = 1 −
∑
i p
∞
i Pii and P̄jump = 1 −∑

i p̄
∞
i P̄ii. Let Pii = P̄ii + δi and p∞i = p̄∞i + εi. Once we
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have the estimated model M̄ which is a ∆−approximation of
M, given any policy π, it is possible to obtain the transition
matrix P̄ and the stationary distribution p̄∞. Furthermore, by
the definition of ∆−approximation and Lemma 1, we know
that

−∆ ≤δi ≤ ∆, and

−N∆ max
j
|h#
ij | ≤εi ≤ N∆ max

j
|h#
ij |.

(71)

Then we have

Pjump − P̄jump =
∑
i

p∞i Pii − p̄∞i P̄ii

=
∑
i

(p̄∞i + εi)(P̄ii + δi)− p̄∞i P̄ii

=
∑
i

p̄∞i δi + P̄iiεi + εiδi

≤
∑
i

p̄∞i ∆ + P̄iiN∆ max
j
|h#
ij |+N∆2 max

j
|h#
ij |.

(72)

Therefore, we have the following theorem to guarantee the
policy we find from the estimated model M̄ is able to stabilize
the switched system whose switching is governed by the true
model M.

Theorem 9. Let M = (S, ŝ,Σ, T ) and M̄ = (S, ŝ,Σ, T̄ )
be two MDPs where M̄ is a ∆−approximation of M. A
policy π incurs two DTMCs C = (S, ŝ, P ) and C̄ = (S, ŝ, P̄ ),
respectively. Then the system is stable with probability one
with the policy π if conditions (35) and (36) are satisfied and

P̄jump +
∑
i

p̄∞i ∆ + P̄iiN∆ max
j
|h#
ij |+N∆2 max

j
|h#
ij |

<
ln( 1

1−α )

ln(µ)
.

(73)

Proof. This is a direct result of Theorem 4 and equation (72).

As a result, to synthesize a policy π from the MDP M̄, the
requirement for P̄jump is changed to

P̄jump <
ln( 1

1−α )

ln(µ)
−
∑
i

p̄∞i ∆

+ P̄iiN∆ max
j
|h#
ij |+N∆2 max

j
|h#
ij |.

(74)

Similar theorem can also be derived for mode-dependent
stability conditions in (43),(44) and (45). First we denote −→̄pi
as the probability to jump to si for the estimated MDP M
with some policy π, we observe from (33) that
−→pi −

−→̄
pi =

∑
j 6=i

Pjip
∞
j − P̄jip̄∞j ,

≤
∑
j 6=i

(P̄ji + ∆)(p̄∞j +N∆ max
j
|h#
ij |)− P̄jip̄

∞
j ,

=
∑
j 6=i

P̄jiN∆ max
j
|h#
ij |+ P̄ji∆ +N∆2 max

j
|h#
ij |.

(75)

We are now ready to give the following theorem similar to
Theorem 9 for the mode-dependent parameters case.

Theorem 10. Let M = (S, ŝ,Σ, T ) and M̄ = (S, ŝ,Σ, T̄ )
be two MDPs where M̄ is a ∆−approximation of M. A
policy π incurs two DTMCs C = (S, ŝ, P ) and C̄ = (S, ŝ, P̄ ),
respectively. Consider an MDP-JLS whose mode s ∈ S makes
transitions following the MDP M = (S, ŝ,Σ, T ) and the
dynamics in each modes as in (1). The MDP-JLS is stable
with probability one with the policy π if conditions (43) and
(44) are satisfied and∑
i

[(
−→̄
pi +

∑
j 6=i

P̄jiN∆ max
j
|h#
ij |+ P̄ji∆ +N∆2 max

j
|h#
ij |)

lnµi + (p̄∞i +N∆2 max
j
|h#
ij |) ln(1− αi)] < 0.

(76)

Proof. This is a direct result of (45) and (75).

The counterpart of policy synthesis formulations for uncer-
tain MDPs can be derived in a way similar to Theorem 6
and Theorem 7 but with conditions stated in Theorem 9 and
Theorem 10, respectively.

VI. NUMERICAL EXAMPLES

We demonstrate the proposed approach on two examples:
vehicle formation and transportation networks. The simula-
tions were performed on a computer with an Intel Core i9-
9900K 3.60 GHz x 16 processors and 62.7 GB of RAM with
MOSEK [44] as the SDP solver, GUROBI [45] as the LP
solver and using the CVX [46] interface.

In each subsection, we show and compare the results
of proposed methods with both mean-square stability and
stability with probability one. For mean-square stability, we
use both CD and SDP approaches. For the CD method, we
initialize V 0 = I and π0 to be uniform over all actions.
CD methods could converge to a saddle point, and we add
additional random term to each action uniformly selected over
the interval [−δ, δ], where δ > 0 is a small constant, to ensure
that the procedure does not converge to a saddle point.

For stability with probability one, we apply two lin-
ear programming-based methods for mode-independent and
mode-dependent coefficients. The mode-independent LP is
the LP in (56) with mode-independent stability coefficients
from Theorem 6. The mode-dependent LP is the LP in (62)
with mode-dependent stability coefficients from Theorem 7.
For the LP-based methods, ε is taken sufficiently small in
order for the positive constraints to be satisfied. The mode-
dependent/independent coefficients αs and µs are generated
with (53) and (55).

A. Vehicle Formation Example

The example used in this section is adapted from [47]. We
consider the vehicle formation example where the continuous-
time dynamic is given by

ẋ1 = −x1 + l13(x3 − x1)

ẋ2 = l21(x1 − x2) + l23(x3 − x2)

ẋ3 = l32(x2 − x3) + l34(x4 − x3)

ẋ4 = −4x4 + l43(x3 − x4).

(77)
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The state xi represents the position of vehicle i and the pa-
rameters lij represent position adjustments based on distance
measurements between the vehicles. We consider the discrete-
time version of the model (77) with sampling time dt = 0.1.

The team of vehicle can be modeled as an MDP-JLS
with three modes corresponding to three different position
adjustment parameters. There are two actions that trigger
transitions between modes probabilistically. We are interested
in the MDP-JLS with the following characteristics.

Mode Dynamics α, µ
1 l13 = l32 = l34 = 3

l21 = l23 = 5
l43 = 2

α1 = 0.21875
µ1 = 1.682

2 l13 = l43 = 0
l21 = 0.5
l23 = l32 = l34 = 0.5

α2 = 0.09375
µ2 = 1.885

3 l13 = l43 = 1
l21 = l34 = 3
l23 = l32 = 5

α3 = 0.21093
µ3 = 1.928

The parameters α, µ for every modes have been found by
solving the SDP in (53) and (55) for each modes. Moreover,
we consider that the transitions between modes are governed
by an MDP with two actions and the transitions probabilities
given by

T1 =

 0.8 0.15 0.05
0.03 0.95 0.02
0.85 0.05 0.1

 and T2 =

 0.3 0.6 0.1
0.9 0.05 0.05
0.08 0.02 0.9

 .
The goal is to generate a policy that guarantees the system
stability with probability one and in the mean-square sense.
Using the SDP, CD, the mode-independent LP, and the mode-
dependent LP methods, we synthesize such policies and sum-
marize the results in Fig. 2. The evolution of state x(t) in
Fig. 2 is of logarithmic scale to show how fast the policies
generated by different methods converge.

B. Transportation Example

Consider the linear transportation example [48] [49] given
by the continuous time dynamic ẋ = Ax where

A =


−1− l31 l12 0 0

0 2− l12 − l32 l23 0
l31 l32 3− l23 − l43 l34

0 0 l43 −4− l34

 .
(78)

This model describes a transportation network connecting four
buffers. The state x represents the quantities of contents in the
buffers and the parameter lij determines the rate of transfer
from buffer j to buffer i.

We consider a discrete-time version of (78) with sample
time dt = 0.1. In particular, there are two actions that may
affect the rate of transfer probabilistically which result in four
different matrices A. This can be modeled as an MDP-JLS
with transitions governed by an MDP with four discrete modes
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Fig. 2: Log scale states evolution of the system w.r.t. the
number of time steps for policies generated from the four
methods explained in this sequel.

and two actions. The transition probabilities induced by the
two actions are given by

T1 =


0.1 0.7 0.1 0.1
0.1 0.8 0.05 0.05
0.2 0.6 0.1 0.1
0.1 0.05 0.05 0.8


and

T2 =


0.8 0.05 0.05 0.1
0.3 0.15 0.4 0.15
0.1 0.1 0.7 0.1
0.1 0.7 0.1 0.1

 .
We run the policy synthesis using the four different methods
for 25 different switched linear systems with the same MDP as
defined above but different continuous dynamics. The feasibil-
ity of finding a policy stabilizing each system is evaluated by
the number of times the method can find a stabilizing policy
and the average run time.

TABLE I: Linear transportation network results with 25 differ-
ent systems. Each mode in each system has a spectral radius
between [0.63, 0.98[ with a mean spectral radius of 0.8.

Successful cases Mean Time
CD 25 1.32s
SDP 23 0.044s

Mode-independent LP 2 0.027s
Mode-dependent LP 22 0.029s

For mean-square stability, Table I shows that the CD method
always manages to find a policy that stabilizes the system in all
cases given sufficient amount of time. The SDP approximation
is not as reliable as CD, but can find a feasible policy with
better performances in term of computational time. The LP-
based methods may fail to find a stabilizing policy. When
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they are able to find such a policy, the computational time
for the task is significantly less than that of the CD-based
method. The insight is that, the number of the variables of the
approach based on LP only depends on the number of modes,
but the number of the variables of the approach based on SDP
depends on both the number of modes and the dimension of
the continuous system.

For example, consider the linear transportation example (78)
where instead of having just four buffers and four modes,
we have 12 buffers and 8 modes. Running the CD method
and the mode-dependent LP method on multiple instances of
this example gives a mean execution time of 2.3s for the
CD method and 0.17s for the LP method. If we add four
more buffers (16 states per mode) with the same number of
modes and actions, we obtain in average 0.17s for the mode-
dependent LP to find a feasible policy and 7.9s for the CD
method. We perform the same experiment with 20 states per
mode and obtain 0.17s for the LP mean execution time and
19.1s for the CD method mean execution time. Finally, using
the same settings as previously described but with 40 states
per mode, the mode-dependent LP is able to find a feasible
policy with an average computational time of 0.23s when the
CD method has an average of 1136.8s. Table II summarizes
the computation time results.

TABLE II: Evolution of mean computational time for the CD
and LP (62) methods with the number of states per mode.

Number of states Mode-dependent LP CD
12 0.17s 2.3s
16 0.17s 7.9s
20 0.17s 19.1s
40 0.23s 1136.8s

Based on Table II, to find a policy to guarantee stability
with probability one with coefficients αs and µs, one could
first try to solve the LP-based methods as they are much more
faster than the other methods. If the LP methods fail to find
a stabilizing policy, then one can try the CD-based method
which is more reliable but could have much longer run time.

VII. CONCLUSION

In this paper, we consider a class of switched linear systems
whose mode switches are governed by a Markov decision
process (MDP) and we name such systems MDP-JLS for
brevity. The objective is to find a policy in the MDP to
stabilize the MDP-JLS. Given a policy, an MDP reduces to
a discrete-time Markov chain, and an MDP-JLS becomes a
Markov jump linear system (MJLS). For mean-square stability,
we leverage the existing stability conditions in MJLSs and
propose semidefinite programming (SDP)-based approaches to
compute the stabilizing policy. For stability with probability
one, we derive new sufficient stability conditions based on
which we formulate linear programs to find the stabilizing pol-
icy. We also extend the policy synthesis results to MDP-JLSs
with uncertain transition probabilities and the optimization of
the expected state-dependent cost. The numerical experiments
validate the proposed approaches.

This paper opens the door to study a class of switched
systems whose switches are governed by MDPs. For future
work, we will continue to investigate how to incorporate
additional temporal logic constraint on mode switches. We will
also study policy synthesis with partially observable modes.
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