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Abstract

In this paper, we study a privacy filter design problem for a sequence of sensor measurements

whose joint probability density function (p.d.f.) depends on a private parameter. To ensure parameter

privacy, we propose a filter design framework which consists of two components: a randomizer and a

nonlinear transformation. The randomizer takes the private parameter as input and randomly generates

a pseudo parameter. The nonlinear mapping transforms the measurements such that the joint p.d.f. of

the filter’s output depends on the pseudo parameter rather than the private parameter. It also ensures

that the joint p.d.f. of the filter’s output belongs to the same family of distributions as that of the

measurements. The nonlinear transformation has a feedforward-feedback structure that allows real-time

and causal generation of the disguised measurements with low complexity using a recursive structure.

The design of the randomizer is formulated as an optimization problem subject to a privacy constraint,

in terms of mutual information, and it is shown that the optimal randomizer is the solution of a convex

optimization problem. Using information-theoretic inequalities, we show that the performance of any

estimator of the private parameter, based on the output of the privacy filter, is limited by the privacy

constraint. The structure of the nonlinear transformation is studied in the special cases of independent

and identically distributed, Markovian, and Gauss-Markov measurements. Our results show that the

privacy filter in the Gauss-Markov case can be implemented as two one-step ahead Kalman predictors

and a set of minimum mean square error predictors. The Kalman predictors significantly reduce the

complexity of computing the disguised measurements. A numerical example on occupancy privacy in

a building automation system illustrates the approach.
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I. INTRODUCTION

A. Motivation

Networked control systems are omnipresent in our daily lives by providing essential services

such as intelligent transportation, smart grid, and intelligent buildings. Sensors are crucial com-

ponents of any system as they provide critical information that can be used for control, diagnosis

and monitoring purposes. However, sensor measurements in a networked system typically contain

information about private variables. Thus, directly revealing the measurements to untrusted parties

may expose the system to the risk of privacy loss. For example, the occupancy level of a building,

which is a highly private variable, can be inferred from the CO2 and temperature measurements

of the building [1]. Privacy breaches may have negative consequences such as reputation damage

and financial losses due to lawsuits. The sheer importance of privacy has motivated numerous

research efforts to develop privacy-preserving solutions for networked control systems.

B. Related Work

A variety of problems related to privacy and networked estimation and control have been

studied in the literature. The privacy aspect of the hypothesis testing problem as well as various

solutions for privacy-aware hypothesis testing have been studied in the literature, e.g., [2], [3],

[4], [5]. The authors in [6] considered a multi-sensor hypothesis testing problem wherein a fusion

center receives the decisions of a set of sensors and an adversary overhears the local decisions of

a subset of sensors. They studied the optimal privacy-aware hypothesis testing rule that minimizes

the Bayes risk subject to a privacy constraint at the adversary. In [7], the authors considered a

similar set-up and investigated the optimal privacy-aware design of the Neyman-Pearson test.

The authors in [8] studied the optimal privacy filter design problem for a public Markov chain

that is correlated with a private Markov chain. Tanaka et al. in [9] considered a linear Gaussian

plant in which the sensor measurements are communicated with an untrusted cloud controller.

They studied the optimal privacy filter design problem subject to a constraint on the privacy of

the states of the plant. The authors of [10] studied the optimal privacy-aware control law for a

Markov decision process subject to a privacy constraint on an adversary which has access to the

input and output of the Markov chain. We note that the information-theoretic approach to privacy

has been extensively studied in the literature, e.g., [11], [12], [13], [14]. In such an approach,

one observes a public random variable which is correlated with a private variable. Here, the
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objective is to generate a degraded version of the public variable such that the distortion due

to the privacy filter is minimized subject to an information-theoretic constraint on the privacy.

The interested reader is referred to [15] for an overview of information-theoretic approaches to

privacy in estimation and control.

Privacy-aware solutions to estimation, filtering, and average consensus problems have been

developed in the literature based on the notion of differential privacy. The authors in [16]

developed a framework for privacy-aware filtering of the measurements of a dynamical system

using the concept of differential privacy. Sandberg et al. [17] studied the state estimation in an

electricity distribution network subject to a constraint on the consumers’ privacy. Privacy-aware

average consensus algorithms were developed in [18] and [19] to guarantee the privacy of agents’

initial states. The authors of [20] developed a framework based on differential privacy to address

the privacy of the initial state as well as the way-points of each agent in a distributed control

problem.

The statistical parameter privacy problem has been studied in [21] and [22]. Bassi et al. in

[21] studied the statistical parameter privacy of an independent and identically distributed (i.i.d.)

sequence of random variables where their common p.d.f. depends on a private parameter. In

their set-up, the privacy filter consists of a randomly selected stochastic kernel which generates

a random output based on each observed random variable. They characterized the leakage level

of private information under the Bayes statistical risk as the privacy measure. The authors in

[22] studied the optimal design of controller and privacy filter for a linear Gaussian plant. The

system dynamics should be kept private from an adversary interested in inferring the system

dynamics based on the state measurements and control inputs. Assuming Fisher information as

privacy metric, they showed that the optimal privacy filter is in the form of a state-dependent

Gaussian stochastic kernel.

C. Contributions

In this paper, we consider a sequence of measurements, observed by a sensor, whose joint

p.d.f. depends on a private parameter. To ensure parameter privacy of the measurements, we

propose a filter design framework which consists of two parts: a randomizer and a nonlinear

transformation. The randomizer takes the private parameter as input and randomly generates a

pseudo parameter. The nonlinear transformation alters the measurements such that the joint p.d.f.

of the filter’s output is characterized by the pseudo parameter rather than the private parameter.
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The nonlinear transformation also ensures that the joint p.d.f. of the filter’s output belongs

to the same family of distributions as the measurements. The nonlinear transformation has a

feedforward-feedback structure which enables real-time and causal computation of the disguised

measurements with low complexity.

In our set-up, the randomizer is designed by minimizing the average distortion due to the

privacy filter subject to a privacy constraint in terms of the mutual information between the

private and the pseudo parameters. Using information-theoretic inequalities, we show that the

performance of any estimator of the private parameter based on the output of the privacy filter

is limited by the privacy constraint. We investigate the structure of the nonlinear transformation

for independent and identically distributed (i.i.d.), Markovian and Gauss-Markov measurements.

Our results show that the structure of the nonlinear transformation involves two one-step-ahead

Kalman predictors in the Gauss-Markov case. The Kalman predictors significantly reduce the

complexity of generating the disguised measurements. The result for i.i.d. measurements has

appeared in [23].

Different from [23] and [21], the current paper develops a privacy filter design framework

without imposing the i.i.d. assumption on the joint p.d.f. of the measurements. In our set-up, the

sensor measurements are processed by a nonlinear transformation, rather than a stochastic kernel,

which ensures that the distribution of the output of privacy filter belongs to the same family of

distributions as the measurements. This requirement is not guaranteed by the frameworks in [21]

and [22] since stochastic kernels significantly alter the distribution of the measurements.

Our mutual information privacy metric is fundamentally different from the Fisher information

metric in [22], in the sense that the mutual information provides a lower bound on the error

probability of any arbitrary estimator of private variables whereas Fisher information provides

a lower bound on the mean square error of any unbiased estimator of private parameters.

D. Outline

This paper is organized as follows. Section II describes our system model and standing

assumptions. Section III introduces the model randomization approach to parameter privacy.

Section IV investigates the structure of the nonlinear transformation in special cases. Section V

presents the numerical results followed by the concluding remarks in Section VI.
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Fig. 1. The information sharing with an untrusted user via a privacy filter.
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Fig. 2. Estimates of occupancy (Θ) as a function of time for different levels of occupancy.

II. PROBLEM FORMULATION

A. System Model and Objectives

Consider a sensor that measures the stochastic process Yk over the time-horizon k = 1, . . . , T

where Yk =
[
Y 1
k , . . . , Y

d
k

]> is a d-dimensional random vector. We assume that the joint p.d.f. of

the measurements over the time-horizon 1, . . . , T is parameterized by Θ which takes values in

Θ = {θ1, . . . , θm} with probability mass function Pr (Θ = θi) = pi. The value of the parameter

Θ is fixed during the time-horizon k = 1, . . . , T . The joint p.d.f. of {Yk}Tk=1 is denoted by

pθi (y1, . . . , yT ) when Θ is equal to θi. We refer to pθ (y1, . . . , yT ) as the statistical model of the

measurements which belongs to the family of p.d.f.s

M = {pθ (y1, . . . , yT )}θ .
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We assume that Θ carries private information and the sensor sequentially communicates its

measurements with an untrusted party, hereafter named the “user”, for monitoring, control or

storage purposes. Directly revealing the measurements to the user will result in the loss of

private information since the true value of Θ can be inferred from the measurements. A common

approach for ensuring privacy is to use a privacy filter that mediates the information sharing

between the sensor and user as shown in Fig. 1. In this paper, we develop a privacy filter design

framework that achieves the following three objectives:

1) It ensures that the output of the privacy filter accurately represents the sensor measurements.

2) It guarantees that an adversary with access to the output of the privacy filter cannot reliably

infer the value of Θ.

3) The joint p.d.f. of the output of the privacy filter belongs to the family of distributionsM.

In general, the output distribution of a privacy filter might be arbitrarily complex. Objective

3 avoids this situation by ensuring that the joint p.d.f. of the privacy filter’s output belongs to

the same family of distributions as that of the measurements. This is especially important when

the filter’s output is used to perform computations, such as filtering, whose complexity depends

on the underlying distribution of the data.

Note that adding noise to the measurements may not ensure the privacy of the parameter Θ.

To highlight this point, assume that the Yk’s are i.i.d. according to a Gaussian distribution with

mean Θ and unit variance. Let Ỹk = Yk +Nk denote the shared information with the user where

{Nk}k is a sequence of zero mean independent and identically distributed random variables.

Using the law of large numbers, we have

1

T

T∑
k=1

Ỹk → Θ

almost surely as T tends to infinity, which indicates that the user can reliably estimate the

private parameter when T is large. Hence, the noise addition mechanism does not ensure the

privacy of Θ. In this example, the statistical model of the measurements belongs to the family

of distributions

M =

{
1√
2π

e
1
2
(x−θ)2

}
θ∈R

where θ takes values in the set of real numbers. If the additive noise terms Nks are Laplacian
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distributed [24], objective 3 is not satisfied and the p.d.f. of the shared information with the user

becomes intractable.

Remark 1: Although, we assume that Θ is fixed, our results can be easily extended to the case

that Θ is time-varying, e.g., when the private parameter is given by Θ = [Θ1, . . . ,ΘT ] where Θk

is the parameter that characterizes the conditional distribution of Yk given Y1, . . . , Yk−1.

B. Motivating Example: Building Automation

Consider a building automation application in which a sensor measures the CO2 level of a

room over the time horizon k = 1, . . . , T . The response of CO2 concentration to the presence

of humans can be modeled as

Xk+1 = aXk +Wk + bΘ

Yk = Xk + Vk

where a ∈ (0, 1) and b are constants, Xk denotes the CO2 level at time-step k, Yk represents the

sensor measurement, Wk denotes the external disturbance, Vk denotes the measurement noise

and Θ ∈ {0, . . . , L} denotes the occupancy level of the room, i.e., Θ = i indicates that there are

i persons in the room during the horizon k = 1, . . . , T .

In building automation, it is common to transmit the sensor measurements over communication

networks for control or monitoring purposes. Note that Θ is the private statistical parameter of the

shared information {Yk}Tk=1. When the CO2 measurements are accessible by untrusted parties,

e.g., a hacker or a “cloud”, the occupancy level, which carries private information, can be inferred

from the measurements.

We examine the privacy of the occupancy information in two cases: (i) when CO2 measure-

ments are directly shared with the user, (ii) when a noise addition mechanism is employed to

ensure occupancy privacy. To this end, we first construct an estimator of the occupancy level

based on the shared information with the user. Let Ỹk denote the shared information at time-step

k and define the averages Ȳk and ¯̄Yk as

Ȳk =
1

Th

k∑
i=k−(Th−1)

Ỹi (1)

¯̄Yk =
1

Th

k−1∑
i=k−Th

Ỹi

May 25, 2021 DRAFT
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for k ≥ Th + 1 where Th is the window size. Let Θ̂k denote the estimator of occupancy based

on the shared information up to time-step k, Ỹ1, . . . , Ỹk, which is defined as

Θ̂k =
Ȳk − ¯̄Yk

a
. (2)

Fig. 2 shows the output of the occupancy estimator, as a function of time, when the true

occupancy level is equal to 1 or 2. The solid lines in Fig. 2 show the occupancy estimates when

the estimator has access to the CO2 measurements, i.e., Ỹk = Yk. The dashed lines in this figure

represent the occupancy estimates under a noise addition privacy mechanism wherein Gaussian

noise is added to the measurements. In this case, the estimator has access to Ỹk = Yk + Nk

where {Nk}k is a sequence of independent and identically distributed (i.i.d.) Gaussian random

variables with zero mean and unit variance. In our simulations, {Wk, Vk}k is assumed to be a

sequence of i.i.d. Gaussian random variables with zero mean and variance 0.1.

According to Fig. 2, the occupancy estimator in (2) can reliably infer the occupancy level

even if the noise addition privacy mechanism is employed. This observation confirms that

directly sharing sensor measurements with an entrusted party might result in the loss of private

information. Moreover, based on Fig. 2, noise addition mechanisms may not be capable of

ensuring statistical parameter privacy.

C. Notations and Assumptions

The shorthand notation Y1:k is used to represent the sequence of random variables Y1, . . . , Yk.

The realization of Y1:k is denoted by y1:k. The shorthand notation Y 1:l
k denotes the collection of

the first l components of Yk. The lth component of Yk is denoted by Y l
k . When Θ is equal to

θ, the joint p.d.f. of Y1:k is denoted by pθ (y1, . . . , yk) which is assumed to be non-zero almost

everywhere in Rk×d.

The conditional p.d.f. of Y l
k given

{
Y 1:l−1
k = y1:l−1k , Y1:k−1 = y1:k−1,Θ = θi

}
is represented by

pθi
(
x
∣∣y1:l−1k , y1:k−1

)
,

where its corresponding cumulative distribution function (c.d.f.) is assumed to be absolutely

continuous with respect to the Lebesgue measure. The conditional c.d.f. of Y l
k given

May 25, 2021 DRAFT
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{
Y 1:l−1
k = y1:l−1k , Y1:k−1 = y1:k−1,Θ = θi

}
is defined as

Fl,k,θi
(
z
∣∣y1:l−1k , y1:k−1

)
=

∫ z

−∞
pθi
(
x
∣∣y1:l−1k , y1:k−1

)
dx. (3)

The inverse function of Fl,k,θi
(
·
∣∣y1:l−1k , y1:k−1

)
is denoted by F−1l,k,θi

(
·
∣∣y1:l−1k , y1:k−1

)
. Note that,

for all θi, the transformation Fl,k,θi (· |·) is a mapping from Rl+(k−1)d to [0, 1] which is increasing

in its first argument when its second argument is fixed.

The following conventions are adopted in the rest of this paper:

F1,1,θi

(
z
∣∣y1:0k , y1:0

)
= F1,1,θi (z) ,

Fl,1,θi
(
z
∣∣y1:l−11 , y1:0

)
= Fl,1,θi

(
z
∣∣y1:l−11

)
,

F1,k,θi

(
z
∣∣y1:0k , y1:k−1

)
= F1,k,θi (z |y1:k−1 ) ,

where F1,1,θi (z) is the conditional c.d.f. of Y 1
1 given Θ = θi, Fl,1,θi

(
z
∣∣y1:l−11

)
is the conditional

c.d.f. of Y l
1 given

{
Y 1:l−1
1 = y1:l−11 ,Θ = θi

}
and Fl,k,θi (z |y1:k−1 ) is the conditional c.d.f. of Y 1

k

given {Y1:k−1 = y1:k−1,Θ = θi}.

III. THE MODEL RANDOMIZATION APPROACH

In this section, we discuss the model randomization framework for ensuring the statistical

parameter privacy of the sensor measurements. In this framework, the privacy filter consists

of two components: a randomizer and a nonlinear transformation, as shown in Fig. 3, which

collectively attain the objectives 1, 2, and 3 in Section II. The randomizer takes the value of the

private variable Θ as input and generates a realization of the pseudo parameter Θ̃ which remains

constant during the horizon. The pseudo parameter takes values in the set Θ̃ =
{
θ̃1, . . . , θ̃m̃

}
.

At each time-step k, the nonlinear transformation generates Ỹk based on the sensor measurement

at time-step k and the values of Θ and Θ̃. Then, Ỹk is revealed to the user.

In this section, the design of the privacy filter is studied without imposing any special structure

on the joint p.d.f. of the sensor measurements. We start by discussing the structure of the

nonlinear transformation in the next subsection. Then, the optimal design of the randomizer is

discussed, followed by the privacy analysis of Θ under the proposed framework.
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Fig. 3. The structure of the proposed privacy filter.

A. Nonlinear Transformation

Let ỹk =
[
ỹ1k, . . . , ỹ

d
k

]> denote the realization of the output of the privacy filter at time k.

Assuming Θ = θi and Θ̃ = θ̃j , the nonlinear transformation at time-step k generates ỹlk, i.e., the

lth entry of ỹk, according to

ỹlk = F−1
l,k,θ̃j

(
ulk
∣∣ỹ1:l−1k , ỹ1:k−1

)
, (4)

where ulk is given by

ulk = Fl,k,θi
(
ylk
∣∣y1:l−1k , y1:k−1

)
, (5)

and Fl,k,θi
(
·
∣∣y1:l−1k , y1:k−1

)
is the c.d.f. of Y l

k given
{
Y 1:l−1
k = y1:l−1k , Y1:k−1 = y1:k−1,Θ = θi

}
defined in (3). According to (4) and (5), the output of the privacy filter at time-step k is generated

based on the history of the measurements up to time-step k. Moreover, the lth entry of ỹk is

generated using its first l − 1 entries, i.e., ỹ1:l−1k , which implies that the entries of the filter’s

output are generated sequentially. The structure of the nonlinear transformation at time-step k

is illustrated in Fig. 4.

The feedforward-feedback structure of the nonlinear transformation, in Fig. 4, is a unique

aspect of the proposed privacy filter. The feedforward component computes uik’s whereas the

feedback component computes ỹik’s based on the past outputs of the filter. This structure allows

us to cast the proposed privacy filter as a dynamical system enabling recursive computation

of the p.d.f.s pθi (yk |y1:k−1 ) and pθj (ỹk |ỹ1:k−1 ). Under the proposed scheme, pθi (yk |y1:k−1 )

and pθj (ỹk |ỹ1:k−1 ) can be computed recursively over time to reduce the computational cost

of generating the disguised measurements. The recursive structure significantly reduces the
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Fig. 4. The structure of the nonlinear transformation at time-step k.

computational cost when the measurements are generated by a linear Gaussian system (see

Subsection IV-C for more details).

In certain applications, it is important to generate the disguised measurements in real-time,

i.e., ỹk must be causally generated using the sensor measurements up to time k rather than all the

sensor measurements Y1, . . . , YT . The recursive structure of the proposed privacy filter enables

the causal (real-time) generation of the disguised measurements.

The next theorem studies the joint probability density function (p.d.f.) of the output of the

nonlinear transformation.

Theorem 1: Consider the nonlinear transformation above and assume that the joint p.d.f. of

the measurements belongs to the family of distributions M = {pθ (y1, . . . , yT )}θ. Given Θ = θi

and Θ̃ = θ̃j , the joint p.d.f. of the filter’s output is pθ̃j (ỹ1, . . . , ỹT ) for all i, j.

Proof: See Appendix A.

According to Theorem 1, the joint p.d.f. of the output of the privacy filter over the horizon

1, . . . , T is characterized by the value of the pseudo parameter Θ̃ rather than the value of the

private parameter Θ. Moreover, the nonlinear transformation ensures that the joint p.d.f. of the

filter’s output also belongs to the family of probability distributions M. Under the proposed

framework, the statistical model of the filter’s output, i.e., pθ̃ (ỹ1, . . . , ỹT ), is randomly chosen

from the set of probability distributions {pθ̃ (ỹ1, . . . , ỹT )}θ̃∈Θ̃ where Θ̃ =
{
θ̃1, . . . , θ̃m̃

}
is

the support set of the randomizer’s output. Hence, we refer to this framework as the model

randomization approach to the parameter privacy.
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B. Randomizer

The parameter Θ̃ is selected from the set Θ̃ =
{
θ̃1, . . . , θ̃m̃

}
using a randomized mapping.

More precisely, given Θ = θi, the value of Θ̃ is randomly generated according to

Θ̃ =


θ̃1 w.p. P1i,
...

... if Θ = θi

θ̃m̃ w.p. Pm̃i,

where
∑

j Pji = 1 for all i. Thus, the randomizer with probability Pji selects θ̃j as the value

of Θ̃ when Θ is equal to θi. The set of randomization probabilities {Pji}ji are designed such

that the accuracy of the output of the privacy filter is maximized and simultaneously a desired

privacy level is achieved.

Due to the nonlinear transformation, the output of the privacy filter might be different from

its input. To quantify the difference between the input and the output of the filter, we define the

average distortion between Y1:T and Ỹ1:T as

1

T

T∑
k=1

E
[
d
(
Yk, Ỹk

)]
where the distortion function d (·, ·) : Rd×Rd → R+ captures the deviation of the output of the

privacy filter from its input.

We consider the mutual information between the private parameter and pseudo parameter as

the privacy metric. Let I
[
Θ; Θ̃

]
denote the mutual information between Θ and Θ̃ which can be

written as

I
[
Θ; Θ̃

]
=
∑
i,j

Pr
(

Θ = θi, Θ̃ = θ̃j

)
log

Pr
(

Θ = θi, Θ̃ = θ̃j

)
Pr (Θ = θi)Pr

(
Θ̃ = θ̃j

) .
Note that I

[
Θ; Θ̃

]
captures the amount of information that can be inferred about the private

parameter by observing the pseudo parameter. When the mutual information between Θ and Θ̃

is zero, the pseudo parameter has no information about the private parameter. Also, the mutual

information between Θ and Θ̃ achieves its maximum level when Θ can be correctly inferred by

observing Θ̃. Thus, a relatively large level of I
[
Θ; Θ̃

]
indicates that Θ can be reliably inferred
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from Θ̃.

The optimal randomization probabilities are obtained by minimizing the average distortion

subject to a privacy constraint. More precisely, the optimal randomization probabilities are the

solution of the following optimization problem

minimize
{Pji}j,i

1

T

T∑
k=1

E
[
d
(
Yk, Ỹk

)]
Pji ≥ 0,∀i, j∑
j

Pji = 1, ∀i

I
[
Θ; Θ̃

]
≤ I0. (6)

where the second constraint enforces the law of total probability and the last constraint imposes an

upper bound on the mutual information between the private parameter and the pseudo parameter.

We refer to the last constraint as the privacy constraint since it limits the amount of information

that can be inferred about Θ based on Θ̃. In what follows, we refer to I0 as the leakage level

of private information.

Next theorem investigates the structural properties of the optimization problem (6).

Theorem 2: The objective function in (6) is linear in the randomization probabilities. Also,

the privacy constraint is a convex constraint.

Proof: See Appendix C.

Theorem 2 shows that the optimization problem (6) is a convex optimization problem. Hence,

the optimal randomization probabilities can be computed efficiently.

Remark 2: In practice, the elements of Θ̃ can be selected using a nested optimization problem

where the optimal elements of Θ̃ and the optimal randomization probabilities are computed

recursively such that the total distortion is minimized while the privacy constraint is met.

Although this results in a non-convex optimization problem, one can obtain a locally optimal

solution by alternating between the nested optimization problems.

Remark 3: It may not be always possible to find a closed-form expression for the total distortion

due to the structure of the distortion function and the distribution of the sensor measurements.

However, it is straightforward to approximate the total distortion accurately using Monte-Carlo

simulations.
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C. Privacy level of Θ

In this subsection, we study the privacy level of the parameter Θ under the proposed frame-

work. To this end, let Θ̂
(
Ỹ1:T

)
denote an arbitrary estimator of Θ, based on the output of

the privacy filter over the horizon 1, . . . , T , which is defined as a mapping from RT×d to

Θ = {θ1, . . . , θm}. Next theorem establishes a lower bound on the error probability of the

estimator Θ̂
(
Ỹ1:T

)
.

Theorem 3: Let Pr
(

Θ 6= Θ̂
(
Ỹ1:T

))
denote the error probability of the estimator Θ̂

(
Ỹ1:T

)
.

Then, we have

Pr
(

Θ 6= Θ̂
(
Ỹ1:T

))
≥ H [Θ]− I0 − 1

log |Θ|
,

where H [Θ] is the discrete entropy of Θ, I0 is the leakage level of private information in (6)

and |Θ| denotes the cardinality of the set Θ.

Proof: See Appendix D.

According to Theorem 3, the error probability of any estimator of the private parameter based

on the output of the privacy filter is limited by the leakage level of private information I0. The

lower bound in Theorem (3) increases as the leakage level of private information becomes small.

Thus, for a relatively small value of I0, no estimator can reliably infer the private parameter Θ

which implies that the proposed framework is capable of ensuring the privacy of Θ.

In Appendix D, we show that the mutual information between Θ and Ỹ1:T can be upper

bounded as

I
[
Θ; Ỹ1:T

]
≤ I
[
Θ; Θ̃

]
. (7)

Note that I
[
Θ; Ỹ1:T

]
quantifies the amount of information that can be inferred about Θ by

observing Ỹ1:T . Thus, the inequality above implies that the leakage of information about the

private parameter via the output of the privacy filter is limited by the mutual information between

the input and the output of the randomizer. Hence, the upper bound on the mutual information

between Θ and Θ̃ in (6) ensures the privacy of Θ.

Remark 4: To prove Theorem 3, we first show that the Markov chain Θ −→ Θ̃ −→ Ỹ1:T

holds (see Appendix A for more details). This Markov chain along with the data processing

inequality [25] allow us to establish the inequality in (7). Finally, the lower bound in Theorem

3 is obtained by combining Fano’s inequality with the inequality (7).
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IV. SPECIAL CASES

In section III, we studied the structure of the nonlinear transformation without imposing any

restriction on the joint probability density function (p.d.f.) of the measurements. In this section,

we study the structure of the nonlinear transformation in the special cases of independent and

identically distributed (i.i.d.), Markovian and Gauss-Markov measurements.

A. Independent and Identically Distributed Measurements

In this subsection, we assume that Y1, . . . , YT is a sequence of independent and identically

distributed (i.i.d.) random variables with the common p.d.f. pθi
(
y1, . . . , yd

)
when Θ is equal to

θi. Given Θ = θi and Θ̃ = θ̃j , the privacy filter at time-step k generates ylk according to

ỹlk = F−1
l,θ̃j

(
ulk
∣∣ỹ1:l−1k

)
,

ulk = Fl,θi
(
ylk
∣∣y1:l−1k

)
,

where

Fl,θi
(
z
∣∣y1:l−1k

)
=

∫ z

−∞
pθi
(
yl
∣∣y1:l−1k

)
dyl.

Note that Ỹk is generated only using Yk when the measurements are independent and identically

distributed.

B. Markovian Measurements

When measurements are Markovian, the conditional joint p.d.f. of Y1, . . . , YT given Θ = θi

factorizes as

pθi (y1, . . . , yT ) = p1,θi (y1)
T−1∏
k=1

pk+1,θi (yk+1 |yk ) .

In this case, the privacy filter at time-step k generates ỹlk according to

ỹlk = F−1
l,k,θ̃j

(
ulk
∣∣ỹ1:l−1k , ỹk−1

)
,

ulk = Fl,k,θi
(
ylk
∣∣y1:l−1k , yk−1

)
,
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where

Fl,k,θi
(
z
∣∣y1:l−1k , yk−1

)
=

∫ z

−∞
pk,θi

(
yl
∣∣y1:l−1k , yk−1

)
dyl.

Note that, different from the general case, Ỹk is generated using Yk−1 and Yk in the Markovian

case.

C. Gauss-Markov Measurements

Given Θ = θi in the Gauss-Markov case, the measurements are generated by the following

model:

Xk+1 = AiXk +Wk

Yk = CiXk + Vk, (8)

where {Wk}k and {Vk}k are sequences of i.i.d. zero mean Gaussian random vectors with the

covariance matrices Qi
w and Qi

v, respectively. We assume that X0 is a zero mean Gaussian

random vector with the covariance matrix Qi
0. We also assume {Wk}k and {Vk}k are mutually

independent and X0 is independent of {Wk, Vk}k. For all i, we assume that Ai is Schur stable,

(Ai, Ci) is observable and the matrices Qi
w, Q

i
v, Q

i
0 are positive definite.

In the Gauss-Markov case, the parameter θi = (Ai, Ci, Q
i
w, Q

i
v, Q

i
0) characterizes the joint

p.d.f. of the measurements. Given Θ̃ = θ̃j =
(
Aj, Cj, Q

j
w, Q

j
v, Q

j
0

)
, the objective of the nonlinear

transformation is to sequentially generate Ỹ1, . . . , ỸT such that their joint p.d.f. is the same

as the joint p.d.f. of a sequence generated by a Gauss-Markov model with the parameters(
Aj, Cj, Q

j
w, Q

j
v, Q

j
0

)
.

Before proceeding with the structure of the nonlinear transformation in the Gauss-Markov

case, we introduce the structure of the optimal output predictor of the model in (8). Let x̂k|k

denote the Kalman estimate of Xk based on {Y1 = y1, . . . , Yk = yk,Θ = θi} which is given by

(9) with x̂1|0 = 0 where Σi
k|k−1 is the one-step ahead prediction error covariance which satisfies

the algebraic Riccati recursion in (10). Let ŷk|k−1 denote the one-step ahead Kalman predictor

of Yk based on {Y1 = y1, . . . , Yk−1 = yk−1,Θ = θi} which is given by

ŷk|k−1 = Cix̂k|k−1 ,
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x̂k|k = x̂k|k−1 + Σi
k|k−1C

>
i

(
CiΣ

i
k|k−1C

>
i +Qi

v

)−1 (
yk − Cix̂k|k−1

)
.

x̂k|k−1 = Aix̂k−1|k−1 . (9)

Σi
k+1|k = AiΣ

i
k|k−1A

>
i +Qi

w − AiΣi
k|k−1C

>
i

(
CiΣ

i
k|k−1C

>
i +Qi

v

)−1
CiΣ

i
k|k−1A

>
i . (10)

ˆ̃yk|k−1 = Cj ˆ̃xk|k−1 ,

ˆ̃xk|k = ˆ̃xk|k−1 + Σj
k|k−1C

>
j

(
CjΣ

j
k|k−1C

>
j +Qj

v

)−1 (
ỹk − Cj ˆ̃xk|k−1

)
.

ˆ̃xk|k−1 = Aj ˆ̃xk−1|k−1 . (11)

Σj
k+1|k = AjΣ

j
k|k−1A

>
j +Qj

w − AjΣ
j
k|k−1C

>
j

(
CjΣ

j
k|k−1C

>
j +Qj

v

)−1
CjΣ

j
k|k−1A

>
j . (12)

with the output prediction error covariance matrix Σo,i
k|k−1 defined as

Σo,i
k|k−1 = CiΣ

i
k|k−1C

>
i +Qi

v.

The next lemma studies the p.d.f. of the lth component of Yk given{
Y 1:l−1
k = y1:l−1k , Y1:k−1 = y1:k−1,Θ = θi

}
. This result will be used to study the structure of the

nonlinear transformation in the Gauss-Markov case.

Lemma 1: The conditional p.d.f. of Y l
k given

{
Y 1:l−1
k = y1:l−1k , Y1:k−1 = y1:k−1,Θ = θi

}
is a

Gaussian p.d.f. with mean µ̂lik and variance σl,ik given by

µ̂l,ik = ŷlk|k−1 −∆l,i
k

[
Σo,i
k|k−1

]−1
l−1

(
y1:l−1k − ŷ1:l−1k|k−1

)
σl,ik = Σl,o,i

k|k−1 −∆l,i
k

[
Σo,i
k|k−1

]−1
l−1

(
∆l,i
k

)>
. (13)

where ŷlk|k−1 is the lth element of ŷk|k−1 , ŷ1:l−1k|k−1 is the vector of the first l−1 elements of ŷk|k−1 ,[
Σo,i
k|k−1

]
l−1

is a matrix formed by the elements in the first l−1 rows and the first l−1 columns

of Σo,i
k|k−1 with

[
Σo,i
k|k−1

]−1
0

= 0, Σl,o,i
k|k−1 is the lth diagonal entry of Σo,i

k|k−1 and ∆l,i
k is the vector

of the first l − 1 elements in the lth row of Σo,i
k|k−1 .

Proof: See Appendix E.

Lemma 1 implies that µ̂l,ik is the minimum mean square error (MMSE) predictor of Yk given{
Y 1:l−1
k = y1:l−1k , Y1:k−1 = y1:k−1,Θ = θi

}
and σl,ik is the error variance associated with µ̂l,ik . The

next theorem studies the structure of the nonlinear transformation in the Gauss-Markov case.
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Theorem 4: Consider the Gauss-Markov model with Θ = θi and Θ̃ = θ̃j . Then, for 1 ≤ l ≤ d,

the lth component of the Ỹ l
k is generated according to

ỹlk = F−1
(
ulk, µ̂

l,j
k , σ

l,j
k

)
ulk = F

(
ylk, µ̂

l,i
k , σ

l,i
k

)
,

where F (·, µ̂, σ) is the cumulative distribution function of a Gaussian random variable with

mean µ̂ and variance σ, F−1 (·, µ̂, σ) is the inverse function of F (·, µ̂, σ), ˆ̃yk|k−1 and Σo,j
k|k−1

are given by (11) and (12) with ˆ̃x1|0 = 0, µ̂l,ik and σl,ik are defined in (13), and σl,jk and µ̂l,jk are

defined in a similar way.

Proof: According to Lemma 1, the conditional p.d.f. of Y l
k given{

Y 1:l−1
k = y1:l−1k , Y1:k−1 = y1:k−1,Θ = θi

}
is a Gaussian p.d.f. with mean µ̂lik and variance σl,ik .

Thus, we have

pθi
(
x
∣∣y1:l−1k , y1:k−1

)
=

1√
2πσl,ik

e
− 1

2σ
l,i
k

(x−µ̂lik )
2

.

This implies that Fl,k,θi
(
z
∣∣y1:l−1k , y1:k−1

)
= F

(
z, µ̂l,ik , σ

l,i
k

)
where F (·, µ̂, σ) is the cumulative

distribution function of a Gaussian random variable with mean µ̂ and variance σ. Using a

similar argument, it is straightforward to show F−1
l,k,θ̃j

(
z
∣∣ỹ1:l−1k , ỹ1:k−1

)
= F−1

(
z, µ̂l,jk , σ

l,j
k

)
where F−1 (·, µ̂, σ) is the inverse function of F (·, µ̂, σ). Using these observations and Theorem

1, ỹlk, in the Gauss-Markov case, is generated according to

ỹlk = F−1
(
ulk, µ̂

l,j
k , σ

l,j
k

)
,

ulk = F
(
ylk, µ̂

l,i
k , σ

l,i
k

)
,

which completes the proof.

According to Theorem 4, the structure of the nonlinear transformation in the Gauss-Markov

case is characterized by two types of predictors: one-step ahead Kalman predictors and one-

component ahead predictors. At time-step k, the Kalman predictors compute ŷk|k−1 and ˆ̃yk|k−1

which, respectively, are the optimal prediction of Yk given {Y1:k−1 = y1:k−1,Θ = θi} and the

optimal prediction of Ỹk given
{
Ỹ1:k−1 = ỹ1:k−1, Θ̃ = θ̃j

}
. At time-step k, the optimal one-

component ahead predictors use ŷk|k−1 and ˆ̃yk|k−1 to compute µ̂l,i and µ̂l,j which are the MMSE

prediction of Y l
k given

{
Y 1:l−1
k = y1:l−1k , Y1:k−1 = y1:k−1,Θ = θi

}
and the MMSE prediction of

May 25, 2021 DRAFT



19

Fig. 5. The structure of the nonlinear transformation in the Gauss-Markov case.

Ỹ l
k given

{
Ỹ 1:l−1
k = ỹ1:l−1k , Ỹ1:k−1 = ỹ1:k−1, Θ̃ = θ̃j

}
, respectively. The outputs of these predictors

are used to compute the parameters of the nonlinear transformation in the Gauss-Markov case

as shown in Fig. 5.

Remark 5: The Kalman predictors significantly reduce the computational complexity of gen-

erating the disguised measurements. In the Gauss-Markov case, the proposed filtering scheme

requires the conditional p.d.f.s pθi (yk |y1:k−1 ) and pθi (ỹk |ỹ1:k−1 ) which can be computed (re-

cursively) with low computational costs using the filtering equations in (9)-(12). Note that the

direct computation of these p.d.f.s becomes prohibitive when k is large.

V. NUMERICAL RESULTS

In this section, we numerically evaluate the performance of the proposed framework in ensuring

the occupancy privacy of the CO2 measurements in a building automation application. To this

end, let Yk denote the CO2 measurement inside a room at time-step k which evolves according
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to

Xk+1 = 0.95Xk +Wk + 10Θ,

Yk = Xk + Vk,

where Θ denotes the number of occupants in the room, {Wk, Vk}k is a sequence of i.i.d. Gaussian

random variables with zero mean and variance 10−1 and X0 is a Gaussian random variable,

independent of {Wk, Vk}k, with mean 100 and variance 1. The occupancy parameter Θ is assumed

to take values in {0, 1} with the probabilities Pr (Θ = 1) = Pr (Θ = 0) = 0.5. We also assume

that the pseudo occupancy parameter Θ̃ takes values in {0, 0.2, 0.4, 0.6, 0.8, 1}. The horizon

length T was set to 50 in our simulations.

Fig. 6 shows the percentage of the relative distortion, due to the privacy filter, as a function of

the leakage level of private information I0. The relative distortion is defined as the ratio of the

average distortion between the input and output of the filter over the average CO2. According to

Fig. 6, the relative distortion increases as the leakage of private information becomes small since

the privacy constraint in (6) becomes tight in this case. The maximum distortion and maximum

privacy level are achieved when leakage of private information is equal to zero. Note that Θ

and Θ̃ are independent when I0 = 0 which results in a high level of relative distortion. The

minimum distortion and minimum privacy levels are achieved for I0 = 0.69. In this case, the

privacy constraint is relaxed and however Θ can be correctly inferred from Θ̃.

To study the performance of an adversary in estimating the occupancy using Ỹk, we consider

the following estimator of the occupancy

Θ̂
(
Ỹ
)

= arg min
θ∈{0,1}

∣∣∣∣∣ Ȳ − ¯̄Y

0.95
− θ

∣∣∣∣∣ ,
where Ȳ and ¯̄Y are given by

Ȳ =
1

10

50∑
i=41

Ỹi,

¯̄Y =
1

10

49∑
i=40

Ỹi.

Fig. 7 shows the error probability of the proposed occupancy estimator as a function of the

leakage level of private information I0. Based on this figure, the proposed estimator can reliably
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Fig. 6. The percentage of relative distortion versus the leakage level of private information I0.
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Fig. 7. The error probability of the occupancy estimator versus the leakage level of private information I0.

estimate the occupancy information when the leakage of private information is high. However, as

I0 decreases from 0.68 to 0.3, the performance of the occupancy estimator degrades by more than

two orders of magnitude while the distortion due to the privacy filter at I0 = 0.3 is approximately

0.8 percent. This is due to the fact that the output of the filter ceases to be a reliable source of

information for estimating the occupancy as the leakage of private information decreases.
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Fig. 8. Realizations of the true and disguised sensor measurements as a function of time for Θ = 1, and Θ̃ = 0.6.
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Fig. 9. The output of the occupancy estimator, based on the disguised measurements, as a function of time.

Fig. 8 shows realizations of the true and disguised sensor measurements as a function of

time for Θ = 1 and Θ̃ = 0.6. According to this figure, the privacy filter results in a certain

level of distortion between the true and disguised measurements. Fig. 9 shows the output of the

occupancy estimator in (2) when the output of the nonlinear transformation is used as the input

to the estimator. According to this figure, the occupancy estimator cannot accurately infer the

occupancy based on the disguised measurements.
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VI. CONCLUSIONS

In this paper, we proposed a privacy filter design framework to ensure the statistical parameter

privacy of a sequence of sensor measurements. Under the proposed framework, the privacy

filter has two components: a randomizer and a nonlinear transformation. The optimal design of

randomizer was studied under a privacy constraint and it was shown than the optimal randomizer

is the solution of a convex optimization problem. The privacy level of the proposed framework

was examined using information-theoretic inequalities. We also studied the structure of the

nonlinear transformation in special cases.

An important direction for our future research is to investigate the optimal design of the ran-

domization probabilities and nonlinear transformation for the privacy-aware closed-loop control

problem. The optimal design of the randomizer when the private parameter is time-varying and

the randomizer has the causal knowledge of the private parameter is another important avenue

for our future work.

APPENDIX A

PROOF OF THEOREM 1

To prove this result, we first show that the Markov chain Θ −→ Θ̃ −→ Ỹ1:T holds. To this

end, we derive an expression for the conditional p.d.f. of Ỹ l
k given the event{

Ỹ 1:l−1
k = ỹ1:l−1k , Ỹ1:k−1 = ỹ1:k−1,Θ = θi, Θ̃ = θ̃j

}
in the next lemma.

Lemma 2: Let pỸ lk

(
ỹlk

∣∣∣ỹ1:l−1k , ỹ1:k−1,Θ = θi, Θ̃ = θ̃j

)
denote the conditional p.d.f. of Ỹ l

k given

the event
{
Ỹ 1:l−1
k = ỹ1:l−1k , Ỹ1:k−1 = ỹ1:k−1,Θ = θi, Θ̃ = θ̃j

}
. Then, we have

pỸ lk

(
ỹlk

∣∣∣ỹ1:l−1k , ỹ1:k−1,Θ = θi, Θ̃ = θ̃j

)
= pθ̃j

(
ỹlk
∣∣ỹ1:l−1k , ỹ1:k−1

)
,

where pθ̃j
(
ỹlk
∣∣ỹ1:l−1k , ỹ1:k−1

)
is obtained from pθ̃j (ỹ1, . . . , ỹT ) using the Bayes’ rule and marginal-

ization.

Proof: See Appendix B

Let pỸ1:T
(
ỹ1:T

∣∣∣Θ = θi, Θ̃ = θ̃j

)
denote the conditional p.d.f. of Ỹ1:T given

{
Θ = θi, Θ̃ = θ̃j

}
which can be written as (14) where (a) and (c) follow from the Bayes’ rule and (b) follows from
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pỸ1:T

(
ỹ1:T

∣∣∣Θ = θi, Θ̃ = θ̃j

)
(a)
=

T∏
k=1

d∏
l=1

pỸ lk

(
ỹlk

∣∣∣ỹ1:l−1k , ỹ1:k−1,Θ = θi, Θ̃ = θ̃j

)
(b)
=

T∏
k=1

d∏
l=1

pθ̃j
(
ỹl
∣∣ỹ1:l−1k , ỹ1:k−1

)
(c)
= pθ̃j (ỹ1, . . . , ỹT ) . (14)

Lemma 2. This implies that the conditional p.d.f. of Ỹ1, . . . , ỸT given Θ and Θ̃ only depends on

Θ̃. Thus, the following Markov chain holds Θ −→ Θ̃ −→ Ỹ1:T and, for all i, j, we have

pỸ1:T

(
ỹ1:T

∣∣∣Θ̃ = θ̃j

)
= pỸ1:T

(
ỹ1:T

∣∣∣Θ = θi, Θ̃ = θ̃j

)
= pθ̃j (ỹ1, . . . , ỹT ) ,

which completes the proof.

APPENDIX B

PROOF OF LEMMA 2

Note that the conditional cumulative distribution function of Ỹ l
k given the event{

Ỹ 1:l−1
k = ỹ1:l−1k , Ỹ1:k−1 = ỹ1:k−1,Θ = θi, Θ̃ = θ̃j

}
can be written as (15) where (a) follows from

the definition of Ỹ l
k :

Ỹ l
k = F−1

l,k,θ̃j

(
U l
k

∣∣∣Ỹ 1:l−1
k , Ỹ1:k−1

)
U l
k = Fl,k,θi

(
Y l
k

∣∣Y 1:l−1
k , Y1:k−1

)
and (b) follows from the fact that Fl,k,θ̃j (· |·) is invertible with respect to its first argument.

We next show that U l
k given

{
Ỹ 1:l−1
k = ỹ1:l−1k , Ỹ1:k−1 = ỹ1:k−1,Θ = θi, Θ̃ = θ̃j

}
is a uniformly

distributed random variable. To this end, let z denote a real number from the interval [0, 1].

Then, we have (16) where (a) follows from the fact that y1:l−1k , y1:k can be uniquely obtained

from ỹ1:l−1k , ỹ1:k since each nonlinear mapping Fl,k,θ (· |·) is invertible with respect to its first

argument and (b) follows from the Markov chain Θ̃ −→
(
Θ, Y 1:l−1

k , Y1:k
)
−→ Y l

k .
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Pr
(
Ỹ l
k ≤ ỹlk

∣∣∣ ỹ1:l−1k , ỹ1:k−1,Θ = θi, Θ̃ = θ̃j

)
(a)
= Pr

(
F−1
l,k,θ̃j

(
U l
k

∣∣ỹ1:l−1k , ỹ1:k−1
)
≤ ỹlk

∣∣∣ ỹ1:l−1k , ỹ1:k−1,Θ = θi, Θ̃ = θ̃j

)
(b)
= Pr

(
U l
k ≤ Fl,k,θ̃j

(
ỹlk
∣∣ỹ1:l−1k , ỹ1:k−1

)∣∣∣ ỹ1:l−1k , ỹ1:k−1,Θ = θi, Θ̃ = θ̃j

)
(15)

Pr
(
U l
k ≤ z

∣∣ ỹ1:l−1k , ỹ1:k−1,Θ = θi, Θ̃ = θ̃j

)
(a)
= Pr

(
Y l
k ≤ F−1θi

(
z| y1:l−1k , y1:k−1

)∣∣ y1:l−1k , y1:k−1,Θ = θi, Θ̃ = θ̃j

)
(b)
= Fθi

(
F−1θi

(
z| y1:l−1k , y1:k−1

) ∣∣y1:l−1k , y1:k−1
)

= z (16)

Combining (15) and (16), we have

Pr
(
Ỹ l
k ≤ ỹlk

∣∣∣ ỹ1:l−1k , ỹ1:k−1,Θ = θi, Θ̃ = θ̃j

)
= Fl,k,θ̃j

(
ỹlk
∣∣ỹ1:l−1k , ỹ1:k−1

)
which implies that the conditional p.d.f. of Ỹ l

k given the event{
Ỹ 1:l−1
k = ỹ1:l−1k , Ỹ1:k−1 = ỹ1:k−1,Θ = θi, Θ̃ = θ̃j

}
is given by pθ̃j

(
ỹlk
∣∣ỹ1:l−1k , ỹ1:k

)
.

APPENDIX C

PROOF OF THEOREM 2

The objective function in (6) can be written as

1

T

T∑
k=1

E
[
d
(
Yk, Ỹk

)]
=

1

T

T∑
k=1

∑
i,j

E
[
d
(
Yk, Ỹk

)∣∣∣Θ = θi, Θ̃ = θ̃j

]
PjiPr (Θ = θi)

=
1

T

T∑
k=1

∑
i,j

E
[
d
(
Yk,Φk

(
Y1:k, θi, θ̃j

))]
Pjipi

=
1

T

T∑
k=1

∑
i,j

Lk

(
θi, θ̃j

)
Pjipi, (17)

where Φk

(
·, θ, θ̃

)
is the vector-valued transformation that generates Ỹk using

(
Y1:k,Θ, Θ̃

)
and Lk

(
θi, θ̃j

)
= E

[
d
(
Yk,Φk

(
Y1:k, θi, θ̃j

))]
. Thus, the objective function is linear in the
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randomization probabilities. Also, it can be shown that the privacy constraint is convex in the

optimization variables [25]. Thus, the optimization problem in (6) is convex.

APPENDIX D

PROOF OF THEOREM 3

Using Fano’s inequality [25], we can lower bound the error probability of any estimator of

Θ, based on Ỹ1:T , as

Pr
(

Θ 6= Θ̂
(
Ỹ1:T

))
≥

H
[
Θ
∣∣∣Ỹ1:T ]− 1

log |Θ|
,

(a)
=

H [Θ]− I
[
Θ; Ỹ1:T

]
− 1

log |Θ|
, (18)

where H
[
Θ
∣∣∣Ỹ1:T ] denotes the conditional entropy of Θ given Ỹ1:T and (a) follows from the

definition of the mutual information. In Appendix A, we show that the following Markov chain

holds

Θ −→ Θ̃ −→ Ỹ1:T .

Hence, using the data processing inequality [25], we have

I
[
Θ; Ỹ1:T

]
≤ I
[
Θ; Θ̃

]
. (19)

Combining (19) and (18), we have

Pr
(

Θ 6= Θ̂
(
Ỹ1:T

))
≥

H [Θ]− I
[
Θ; Θ̃

]
− 1

log |Θ|
(a)

≥ H [Θ]− I0 − 1

log |Θ|

where (a) follows from the fact that the mutual information between the private parameter and

the pseudo parameter is upper bounded by the leakage level of private information in (6).
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APPENDIX E

PROOF OF LEMMA 2

Note that the distribution of Yk given {Y1:k−1 = y1:k−1,Θ = θi} is Gaussian with mean ŷk|k−1

and covariance Σo,i
k|k−1 where

ŷk|k−1 = E [Yk| y1:k−1]

= Cix̂k|k−1 ,

and

Σo,i
k|k−1 = E

[(
Yk − ŷk|k−1

) (
Yk − ŷk|k−1

)>]
= CiΣ

i
k|k−1C

>
i +Qi

v,

where x̂k|k−1 is the optimal predictor of Xk based on {Y1:k−1 = y1:k−1,Θ = θi} and Σi
k|k−1

is the error covariance matrix associated with x̂k|k−1 . Note that the joint p.d.f. of Y 1:l
k given

{Y1:k−1 = y1:k−1,Θ = θi} is also a Gaussian distribution with mean ŷ1:lk|k−1 and covariance
[
Σo,i
k|k−1

]
l

where
[
Σo,i
k|k−1

]
l

is a matrix formed by the elements in the first l rows and the first l columns

of Σo,i
k|k−1 . Thus, using the conditional distribution formula for Gaussian random variables, the

conditional p.d.f. of Y l
k given

{
Y 1:l−1
k = y1:l−1k , Y1:k−1 = y1:k−1,Θ = θi

}
is a Gaussian distribution

with mean µ̂l,ilk and variance σi,llk where

µ̂l,ik = ŷlk|k−1 −∆l,i
k

[
Σo,i
k|k−1

]−1
l−1

(
y1:l−1k − ŷ1:l−1k|k−1

)
σl,ik = Σl,o,i

k|k−1 −∆l,i
k

[
Σo,i
k|k−1

]−1
l−1

(
∆l,i
k

)>
.

Σl,o,i
k|k−1 is the lth diagonal entry of Σo,i

k|k−1 and ∆l,i
k is the vector of the first l− 1 elements in the

lth row of Σo,i
k|k−1 .
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