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On the Optimality and Convergence Properties of the

Iterative Learning Model Predictive Controller

Ugo Rosolia, Yingzhao Lian, Emilio T. Maddalena, Giancarlo Ferrari-Trecate, Colin N. Jones

Abstract—In this technical note we analyse the performance
improvement and optimality properties of the Learning Model
Predictive Control (LMPC) strategy for linear deterministic sys-
tems. The LMPC framework is a policy iteration scheme where
closed-loop trajectories are used to update the control policy for
the next execution of the control task. We show that, when a
Linear Independence Constraint Qualification (LICQ) condition
holds, the LMPC scheme guarantees strict iterative performance
improvement and optimality, meaning that the closed-loop cost
evaluated over the entire task converges asymptotically to the
optimal cost of the infinite-horizon control problem. Compared
to previous works this sufficient LICQ condition can be easily
checked, it holds for a larger class of systems and it can be used
to adaptively select the prediction horizon of the controller, as
demonstrated by a numerical example.

I. INTRODUCTION

Model Predicitve Control (MPC) is an established control

methodology which systematically uses forecast to compute

control actions [1]–[4]. In MPC at each time step, a model is

used to predict the evolution of the system over a time horizon.

A sequence of control actions is chosen such that the predicted

trajectory safely drives the system from the current measured

state to a safe set and it minimizes the predicted cost over

the prediction horizon and the future cost given by a value

function. The MPC policy applies the first predicted input to

the system, and the process is repeated at the next time step

based on the new measurement. Computing the safe set and

the value function to maximize the region of attraction of the

controller and to guarantee optimal closed-loop performance

is hard. To guarantee these properties the safe set should be

the maximal stabilizable set (i.e., a set containing all states

from which the control task can be executed [4], [5]) and the

value function should map each state of the safe set to the

cumulative cost associated with the optimal policy [5].

Several strategies have been proposed to approximate the

safe set and value function used for MPC design. In the

control community, these approximation strategies are based

on interpolation techniques which leverage closed-loop tra-

jectories and knowledge of the system dynamics [6]–[11].

The resulting controllers guarantee constraint satisfaction and

closed-loop stability. The approximation of the optimal value

function is studied in Approximate Dynamic Programming

(ADP) and Reinforcement Learning (RL). In ADP and RL the
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value function estimate is computed either fitting Monte Carlo

estimate of the cumulative cost or minimizing the temporal

difference associated with stored historical data [12]–[15].

In this note, we focus on the learning model predictive

control (LMPC) technique presented in [16] and specialized

for linear dynamics in [17]. In this framework, the control

task is performed iteratively and the terminal safe set and

value function are constructed using historical data collected

from previous iterations of the control task. The asymptotic

properties of this iterative procedure were studied in the orig-

inal work [16], where the authors established that the closed-

loop cost is non-increasing as iterations progress. Moreover,

it was shown that if the algorithm attains a fixed-point, and

a specific set containment condition is met, then the closed-

loop trajectory at convergence is the optimizer of a constrained

problem with an arbitrarily long but finite horizon.

Our contributions in this note are twofold. First, we show

that when the Linear Independence Constraint Qualification

(LICQ) condition holds and the closed-loop costs of two

subsequent iterations are equal, then the closed-loop trajectory

is optimal for the infinite-horizon optimal control problem.

Second, we leverage this result to guarantee strict perfor-

mance improvement at each iteration of the control task and,

therefore, convergence of the LMPC algorithm to a fixed-

point which is optimal for the infinite-horizon optimal control

problem. From a practical viewpoint, the proposed LICQ

condition is simple to verify after the algorithm has converged

and it can be employed by users to guide the selection of the

LMPC prediction horizon.

Notation: A polyhedron P is an intersection of a finite

number of half-spaces and a ball of radius ǫ is denoted as

B(ǫ) = {x ∈ R
2 | ||x||2 ≤ ǫ}. As usual in calculus,

infinite sums are to be interpreted in the limit sense, i.e.,
∑∞

k=0 f(k) := limn→∞

∑n

k=0 f(k). The convex hull Conv(·)
of a countable set of points is the smallest closed convex

set containing them. The identity matrix is represented by

IN ∈ R
N×N and the vector of ones, by 1N ∈ R

N . A matrix

M ≻ (�)0 is positive (semi) definite and ⊗ denotes the Kro-

necker product. Finally, given m vectors v1, . . . , vm in R
n we

define the vector Vec(v1, . . . , vm) = [v⊤1 , . . . , v
⊤
m]⊤ ∈ R

nm.

II. PROBLEM FORMULATION

Consider the linear deterministic system

xt+1 = Axt +But (1)

where at time t the state xt ∈ R
n and the input ut ∈ R

d. The

system is subject to the following state and input constraints

xt ∈ X = {x ∈ R
n : Fxx ≤ bx},

ut ∈ U = {u ∈ R
d : Fuu ≤ bu},

(2)
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which are assumed to be polyhedra containing the origin in

their interior and should be satisfied for all t ≥ 0.

Our goal is to find a control policy π∗(·) which solves the

following infinite-time optimal control problem

J∗
0→∞(xS) = min

u0,u1,...

∞
∑

t=0

h(xt, ut)

s.t. xt+1 = Axt +But, ∀t ≥ 0,

xt ∈ X , ut ∈ U , ∀t ≥ 0,

x0 = xS ,

(3)

where xS is a known initial condition and the running cost

h(x, u) fulfills the following assumption.

Assumption 1. The function h(x, u) = x⊤Qx + u⊤Ru for

the matrices Q � 0 and R ≻ 0.

III. LEARNING MODEL PREDICTIVE CONTROL

In this section, we recall the iterative Learning Model Pre-

dictive Control (LMPC) strategy [16], [17]. We approximate

the solution to problem (3) by iteratively performing the

regulation task from the initial condition xS . At each iteration

of the control task j, we store closed-loop trajectories and

input sequences

x
j = [xj

0, x
j
1, . . .] and u

j = [uj
0, u

j
1, . . .], (4)

where x
j
t ∈ R

n and u
j
t ∈ R

d are the state and input of

system (1) at time t of the jth iteration. In the following

we show that the above trajectories can be used iteratively

to synthesize a predictive control policy.

A. Safe Set and Value Function Approximation

Given j stored closed-loop trajectories over an infinite

horizon, we define the convex safe set at iteration j as

CSj = Conv
(

j
⋃

i=0

∞
⋃

t=0

xi
t

)

. (5)

The above convex safe set represents the convex hull of the

stored trajectories and it is a control invariant set, if the stored

trajectories converge to the origin [17].

Next, we construct an approximation to the value function

over the convex safe set. First, we compute the cost-to-go

associated with the stored state xi
t as

J i
t→∞(xi

t) =

∞
∑

k=t

h(xi
k, u

i
k). (6)

Finally, we define the Q-function

Qj(x) = min
γi
t≥0

j
∑

i=0

∞
∑

k=0

γi
kJ

i
k→∞(xi

k)

s.t.

j
∑

i=0

∞
∑

k=0

γi
kx

i
k = x,

j
∑

i=0

∞
∑

k=0

γi
k = 1,

(7)

which interpolates the cost-to-go over the convex safe set

in (5). As shown in [17], the above Q-function is a control

Lyapunov function for the linear deterministic system (1).

Assumption 2. At iteration j = 0, we are given the closed-

loop trajectory x
0 = [x0

0, . . . , x
0
t , . . .] and associated input

sequence u0 = [u0
0, . . . , u

0
t , . . .]. Moreover, the state x0

t ∈ X
and the input u0

t ∈ U for all t ≥ 0. Finally, limt→∞ x0
t = 0,

limt→∞ u0
t = 0 and J0

0→∞(xs) =
∑∞

t=0 h(x
0
t , u

0
t ) < ∞.

B. LMPC Policy

In this section we describe the predictive controller design,

where the Q-function and the convex safe set are used respec-

tively as terminal cost and terminal constraint. In particular,

at time t we solve the following finite-time optimal control

problem

J
LMPC,j
t→t+N (xj

t ) =

min
ut|t,...,ut+N−1|t

t+N−1
∑

k=t

h(xk|t, uk|t) +Qj−1(xt+N |t)

s.t. xk+1|t = Axk|t +Buk|t,

xk|t ∈ X , uk|t ∈ U ,

xt+N |t ∈ CSj−1,

xt|t = x
j
t ,

∀k ∈ [t, . . . , t+N − 1],
(8)

whose solution steers the system from the current state x
j
t to

the convex safe set CSj−1 constructed using the stored j − 1
trajectories. Let [uj,∗

t|t , . . . , u
j,∗
t+N−1|t] be the optimal solution

to problem (8), we apply to system (1)

πj(xj
t ) = u

j,∗
t|t . (9)

The finite-time optimal control problem (8) is solved at time

t + 1, based on the new state xt+1|t+1 = x
j
t+1, yielding a

moving or receding horizon control strategy.

C. Properties

In this section we recall the closed-loop properties of the

iterative LMPC strategy from [17].

Proposition 1 (Theorem 1 in [17]). Consider system (1) con-

trolled by the LMPC policy (9). Let Assumptions 1–2 hold,

then the LMPC (8) and (9) is feasible for all t ≥ 0 and at

every iteration j ≥ 1. Moreover, the origin is asymptotically

stable for the closed-loop system (1) and (9) at every iteration

j ≥ 1.

Proposition 2 (Theorem 2 in [17]). Consider system (1)

controlled by the LMPC policy (9) and let Assumptions 1–

2 hold. Then the iteration cost J
j
0→∞(·) does not increase

with the iteration index j and for all t ≥ 0 we have that

J
j−1
0→∞(xS) ≥

t−1
∑

k=0

h(xj
k, u

j
k) + J

LMPC,j
t→t+N (xj

t ) ≥ J
j
0→∞(xS)

and J
LMPC,j
t→t+N (xj

t ) ≥ h(xj
t , u

j
t) + J

LMPC,j
t+1→t+1+N (xj

t+1).

Remark 1. Notice that Assumption 2 and Propositions 1–

2 imply that at each iteration j we have J
j
0→∞(xs) =

∑∞
t=0 h(x

j
t , u

j
t ) ≤ J0

0→∞(xs) < ∞.



IV. OPTIMALITY AND PERFORMANCE IMPROVEMENT

First we introduce a sufficient condition which guarantees

optimality of the LMPC policy at convergence. Afterwards,

we show that this sufficient condition also implies a strict

performance improvement at each iteration.

A. Optimality

Assume that, after a finite number of iterations c, the closed-

loop system (1) and (9) converges to a fixed-point (xc,uc),
i.e.,

x
c = x

c+1 = · · · =: x∞ and u
c = u

c+1 = · · · =: u∞.

In this case, we will simply say that the LMPC has converged

to a fixed-point1 (x∞,u∞).
Now, consider the following finite-time optimal control

problem closely related to problem (3),

P ∗
t→t+T (x

∞
t , x∞

t+T ) = min
u0,...,uT−1

T−1
∑

k=0

h(xk, uk)

s.t. xk+1 = Axk +Buk,

xk ∈ X , uk ∈ U ,

x0 = x∞
t , xT = x∞

t+T ,

∀k ∈ [0, . . . , T − 1],
(10)

where the running cost, the dynamic constraint, the state and

input constraints are the same as in (8). Compare problem (10)

with problem (8). Problem (10) uses a horizon T , possibly

longer than the horizon N of problem (8). Moreover, the

terminal set in problem (10) is a subset of the terminal set

in problem (8) if j ≥ c. Therefore, if the optimal solution to

problem (8) with T = N is feasible for problem (10), then it

is also optimal.

In what follows, we introduce a sufficient condition which

guarantees that x∞
t:t+T = [x∞

t , . . . , x∞
t+T ] is optimal for

problem (10) for all T ≥ 0 and for all t ≥ 0. Compared

to the sufficient condition presented in [16, Theorem 3],

our condition can be easily checked and it may be used to

verify that the closed-loop trajectory x∞ associated with a

fixed-point (x∞,u∞) of the LMPC algorithm is optimal for

problem (3), as shown in Section VI.

First, we rewrite problem (10) in compact form:

P ∗
t→t+T (x

∞
t , x∞

t+T ) = min
zt:t+T−1

z
⊤
t:t+T−1QT−1zt:t+T−1

s.t. G
eq

t:t+T−1zt:t+T−1 = beq

F in
t:t+T−1zt:t+T−1 ≤ bin

,

(11)

where the vector zt:t+T−1 = Vec(x0, u0, . . . , xT−1, uT−1).
The matrices QT−1, G

eq

t:t+T−1, F in
t:t+T−1 and the vectors beq

and bin and are defined in the Appendix VIII-A.

Let

z
∗
t:t+T−1 = Vec(x∗

t , u
∗
t , . . . , x

∗
t+T−1, u

∗
t+T−1)

1Notice that a “point” for our algorithm is a pair of state-input trajectories
associated with one iteration of the task. Convergence to a fixed-point is
guaranteed by the monotonicity property in Proposition 2.

be the optimal solution to problem (11). We recall that there

exists a sequence of multipliers λ
∗
t:t+T−1 and δ

∗
t:t+T−1 =

[δ∗,active
t:t+T−1, δ

∗,inactive
t:t+T−1] so that the following KKT conditions are

satisfied:
[

G
eq

t:t+T−1

F
in,active
t:t+T−1

]⊤[
λ∗
t:t+T−1

δ
∗,active
t:t+T−1

]

=−2QT−1z
∗
t:t+T−1, (Stationarity)

G
eq

t:t+T−1 z
∗
t:t+T−1 = beq,

F in
t:t+T−1 z

∗
t:t+T−1 ≤ bin,

(Primal Feasibility)

δ
∗
t:t+T−1 ≥ 0, (Dual Feasibility)

δ∗k|t,i F
in
k|t,i = 0, ∀i ∈ Ak|t, ∀k ∈ Tt,

δ∗k|t,i F
in
k|t,i = 0, ∀i ∈ Ik|t, ∀k ∈ Tt,

(Complementarity)

where Tt = {t, . . . , t + T − 1} and, at optimum, F
in,active
t:t+T−1

collects the active inequality constraints of problem (11), and

Ak|t and Ik|t are the set of indices associated with active and

inactive inequality constraints at time k ∈ {t, . . . , t+ T − 1}.

Assumption 3 (LICQ). For a given fixed prediction horizon

N and for all t ≥ 1, the LICQ condition holds for problem (11)

defined for T = N − 1.

The above assumption is the key ingredient that will allow

us to show strict performance improvement. More explicitly,

it states that at any time t ≥ 1, given the following optimal

solution to problem (11) with horizon T = N − 1:

z
∗
t:t+N−2 = Vec(x∗

t , u
∗
t , . . . , u

∗
t+N−2, x

∗
t+N−2), (12)

the gradients of the active inequality constraints and those of

the equality constraints are linearly independent at z∗
t:t+N−2,

i.e., the following matrix is full row rank

Mt:t+N−2 =

[

G
eq

t:t+N−2

F
in,active
t:t+N−2

]

, (13)

where F
in,active
t:t+N−2 collects the active inequality constraints.

Remark 2. Note that the set containment condition used to

establish [16, Theorem 3] only holds when no input constraints

are active, a rather strong restriction. Moreover, the same

condition only holds when the associated one-step forward and

one-step backward reachable sets are full-dimensional, which

is also not required for Assumption 3 to hold, as shown in our

numerical example in Section VI.

When the LICQ condition from Assumption 3 is satisfied,

the sequences

x
∞
t:t+T =[x∞

t , . . . , x∞
t+T ] and u

∞
t:t+T−1=[u∞

t , . . . , u∞
t+T−1]

are optimal for problem (10), for all t ≥ 0 and all T > 0, as

stated in the following theorem.

Theorem 1. Consider system (1) in closed-loop with the

LMPC policy (9) defined for a horizon N . Let Assumptions 1–

3 hold and assume that after c iterations the closed-loop

system (1) and (9) converges to a fixed-point (x∞,u∞).
Then (x∞

t:t+T ,u
∞
t:t+T−1) is the optimizer of the finite-horizon

optimal control problem (10) for all t ≥ 0 and for all T > 0.



Proof: The proof can be found in the Appendix VIII-B.

Remark 3. Theorem 1 shows that the state-input vector

z∞
t:t+N−1 = Vec(x∞

t , u∞
t , . . . , x∞

t+N−1, u
∞
t+N−1) is optimal

for problem (11) with T = N − 1. Therefore, given a fixed-

point (x∞,u∞), Assumption 3 can be easily verified by

checking the rank of the matrix Mt:t+N−2 associated with

z∞
t:t+N−1 for all times t ≥ 1.

Theorem 1 implies that (x∞
0:T ,u

∞
0:T−1) is optimal for prob-

lem (10) for all T ≥ 0. Next, we show that (x∞,u∞) is

optimal for problem (3).

Theorem 2. Consider system (1) in closed-loop with the

LMPC policy (9) defined for a horizon N . Let Assumptions 1-

3 hold and assume that after c iterations the closed-loop

system (1) and (9) converges to a fixed-point (x∞,u∞). Then,

(x∞,u∞) is the optimizer of the infinite-horizon optimal

control problem (3).

Proof: First, we notice that

lim
T→∞

||J∗
0→∞(xS)− P ∗

0→T (xS , x
∞
t+T )||

= lim
T→∞

||J∗
0→∞(xS)− P ∗

0→T (xS , x
∗
t+T )

+ P ∗
0→T (xS , x

∗
t+T )− P ∗

0→T (xS , x
∞
t+T )||

≤ lim
T→∞

||J∗
0→∞(xS)− P ∗

0→T (xS , x
∗
t+T )||

+ lim
T→∞

||P ∗
0→T (xS , x

∗
t+T )− P ∗

0→T (xS , x
∞
t+T )||.

(14)

By definition we have that J∗
0→∞(xS) =

limT→∞ P ∗
0→T (xS , x

∗
t+T ), zeroing the first term of the sum.

Furthermore, we notice that problem (10) is a parametric

QP and therefore its value function is Lipschitz continuous

within a compact set for some constant L. These facts allow

us to rewrite (14) as

lim
T→∞

||J∗
0→∞(xS)− P ∗

0→T (xS , x
∞
t+T )||

≤ lim
T→∞

||P ∗
0→T (xS , x

∗
t+T )− P ∗

0→T (xS , x
∞
t+T )||

≤ lim
T→∞

L||x∗
t+T − x∞

t+T ||.

By asymptotic stability (Proposition 1), sequences {x∞
t }∞t=0

and {u∞
t }∞t=0 converge to zero, hence for any ǫ > 0, there

exists N and M such that x∞
t+T ∈ B( ǫ

2
) ∀T ≥ N and x∗

t+T ∈
B( ǫ

2
) ∀T ≥ M . Hence, for all T ≥ max{N,M},

||x∗
t+T − x∞

t+T || ≤ ||x∗
t+T − 0||+ ||x∞

t+T − 0|| ≤ ǫ .

Notice that, as ǫ is arbitrarily small,

lim
T→∞

||J∗
0→∞(xS)− P ∗

0→T (xS , x
∞
t+T )||

≤ lim
T→∞

L||x∗
t+T − x∞

t+T || = 0 .

From the above equation we have that

J∗
0→∞(xS) = lim

T→∞
P ∗
0→T (xS , x

∞
t+T ).

Finally, from Theorem 1 we have that (x∞
0:T ,u

∞
0:T−1) is

the optimizer to problem P ∗
0→T (xS , x

∞
t+T ) for all T ≥

0, which together with the above equation implies that

limT→∞(x∞
0:T ,u

∞
0:T−1) = (x∞,u∞) is the optimizer to the

infinite-horizon optimal control problem (3).

B. Performance Improvement

In this section, we show that the closed-loop performance

J
j
0→∞(xS) associated with the LMPC policy is strictly de-

creasing2 at each iteration until the closed-loop trajectory

converges to the optimal one from problem (3).

Lemma 1. Consider system (1) in closed-loop with the LMPC

policy (9). Let Assumptions 1 and 2 hold. If two iterations

attain the same cost, then the associated trajectories are also

the same, i.e., if J
j−1
0→∞(xS) = J

j
0→∞(xS), then xj−1 = xj .

Proof: We proceed by induction. First, assume that at the

jth iteration there exists a time t such that x
j−1

k = x
j
k for all

k = 0, . . . , t. From Proposition 2 and the convergence of the

cost we have that

J
j−1
0→∞(xS) =

t−1
∑

k=0

h(xj
k, u

j
k) + J

LMPC,j
t→t+N (xt) = J

j
0→∞(xS).

Therefore, the optimal cost at time t is

J
LMPC,j
t→t+N (xt) = J

j−1
0→∞(xS)−

t−1
∑

k=0

h(xj
k, u

j
k). (15)

By our induction assumption, at time t of the jth iteration

the state x
j
t = x

j−1
t . Now notice that at time t of iteration

j the LMPC cost associated with the feasible trajectory

[xj−1
t , . . . , x

j−1

t+N ] is

t+N−1
∑

k=t

h(xj−1

k , u
j−1

k ) +Qj−1(xj−1

t+N )

≤

t+N−1
∑

k=t

h(xj−1

k , u
j−1

k ) +

∞
∑

k=t+N

h(xj−1

k , u
j−1

k )

= J
j−1
0→∞(xS)−

t−1
∑

k=0

h(xj−1

k , u
j−1

k )

= J
j−1
0→∞(xS)−

t−1
∑

k=0

h(xj
k, u

j
k).

(16)

Equations (15)–(16) together with Assumption 1 and convexity

of Qj(·) imply that [xj−1
t , . . . , x

j−1

t+N ] is optimal at time t and

therefore x
j
t+1 = x

j,∗
t+1|t = x

j−1
t+1 . Finally, notice that at time

t = 0 we have that the initial state x
j−1
0 = x

j
0 = xS , therefore

we conclude by induction that x
j−1
t = x

j
t for all t ≥ 0.

Corollary 1. Consider system (1) in closed-loop with the

LMPC policy (9). If Assumptions 1–3 hold, then at iteration

j either one of the following must hold:

• The closed-loop cost strictly decreases, i.e., J
j
0→∞(xS) <

J
j−1
0→∞(xS);

• The closed-loop cost is optimal for problem (3), i.e.

J
j
0→∞(xS) = J

j−1
0→∞(xS) = J∗

0→∞(xS).

Proof: From Proposition 2 we have that the iteration

cost in non-increasing. Therefore, at each iteration either

J
j
0→∞(xS) < J

j−1
0→∞(xS) or J

j
0→∞(xS) = J

j−1
0→∞(xS). Now

consider the latter case, if J
j
0→∞(xS) = J

j−1
0→∞(xS) then

2This result is stronger than the one from Proposition 2, where we showed
that the iteration cost is non-increasing at each iteration.



due to Lemma 1 we have that xj−1 = xj which in turn

implies CSj−1 = CSj and Qj−1 = Qj . Consequently,

xj−1 = xj = xj+1 = · · · = x∞. Finally, Theorem 2

ensures that J
j−1
0→∞(xS) = . . . = J∞

0→∞(xS) = J∗
0→∞(xS),

concluding the proof.

V. ENLARGING THE REGION OF ATTRACTION

In this section, we present an iterative strategy that may be

used to construct the safe set and the terminal cost when a

first feasible trajectory is not given. This algorithm may also

be utilized for enlarging the region of attraction associated

with the controller when a first feasible trajectory is available.

First, we introduce the Region of Attraction (RoA) associ-

ated with the policy (9):

Cj = {x0 ∈ R
n | ∃{x̄k}

N
k=0, {ūk}

N−1
k=0 such that x̄0 = x0,

x̄k+1 = Ax̄k +Būk, x̄k ∈ X , ūk ∈ U ,

∀k ∈ {0, . . . , N − 1} and x̄N ∈ CSj−1}.

By definition, for any initial condition x0 ∈ Cj the closed-loop

system (1) and (9) is asymptotically stable and the constraints

from (2) are satisfied. Let {vj1, . . . , v
j

nj} be the nj vertices

associated with the region of attraction Cj . We notice that

each vertex v
j
i ∈ Cj may be outside the the convex safe

set CSj−1. Therefore, we can run a closed-loop simulation

from each vertex v
j
i to enlarge the convex safe set and, as a

result, the region of attraction associated with the controller. In

Algorithm 1 we run closed-loop simulations from the vertices

of Cj , and we use the simulated data to update the convex safe

set CSj and the Q-function Qj . In Section VI-B, we show that

this strategy may be used to enlarge the region of attraction

when a first feasible trajectory is not given.

Remark 4. Computing the vertices of the region of at-

traction Cj may be challenging. A computationally cheaper

alternative is to replace the vertices {vj1, . . . , v
j

nj} used in

Algorithm 1 with the following points:

v̄
j
i = argmax

v∈Rn

v⊤di

s.t. v ∈ Cj, v⊤d⊥i = 0,
(17)

where the set of user-specified vectors D = {d1, . . . , dn}
characterize the directions in which we wish to enlarge the

RoA. In the above convex optimization problem d⊥i ∈ R
n

denotes a vector orthogonal to di ∈ R
n.

Algorithm 1 Domain Enlargement

1: Input: M

2: Set j = 0, CS0 = {0}, Q0(x) = 0, ∀x ∈ CS0

3: for i ∈ {1, . . . ,M} do

4: Define the policy πj from (9) using CSj−1 and Qj−1

5: Compute the vertices {vj1, . . . , v
j

nj} of the set Cj

6: for v ∈ {vj1, . . . , v
j

nj} do

7: Run a simulation setting v as initial condition

8: Construct CSj and Qj using data up to iteration j

9: Set j = j + 1

10: Outputs CSj , Qj

VI. RESULTS

In this section, we test the Learning Model Predictive

Controller on the following infinite-time constrained linear

quadratic regulator problem

J∗(xS) = min
u0,u1,...

∞
∑

k=0

x⊤
k Qxk + u⊤

k Ruk

s.t. xk+1 =

[

1 1
0 1

]

xk +

[

0
1

]

uk, ∀k ≥ 0,

||xk||∞ ≤ 15, ||uk|| ≤ umax, ∀k ≥ 0,

x0 = xS ,
(18)

where Q = diag(1, 1), R = 1, and xS = [−14, 2]⊤.

In Section VI-A, we initialize the LMPC algorithm with a

suboptimal trajectory and we perform the regulation task until

the closed-loop system converges to a fixed-point. Afterwards,

we check if the LICQ condition from Assumption 3 is satisfied

and we compare the steady-state solution with the optimal

trajectory3. In all tested scenarios, the LMPC converged in

less than 20 iterations. Finally, in Section VI-B we do not

assume that a first feasible trajectory is given, and we leverage

Algorithm 1 to iteratively enlarge the region of attraction

associated with the LMPC.

A. Iterative Improvement

First, we set umax = 2 and we synthesize the LMPC policy

for N = 3. At convergence the LICQ was satisfied for all

t ≥ 1 and therefore the LMPC converged to the unique optimal

solution to problem (18). This fact is confirmed by Figure 1,

where we reported the first feasible trajectory used to initialize

the LMPC, the closed-loop trajectory at convergence, and the

optimal solution. Notice that the closed-loop trajectory at con-

vergence overlaps with the optimal solution to problem (18).

−14 −12 −10 −8 −6 −4 −2 0
0

1

2

3

4

x1

x
2

First feasible trajectory

LMPC with N = 3
LMPC with N = 4
Optimal trajectory

Figure 1. The figure shows the first feasible trajectory used to initialize the
LMPC, the closed-loop trajectory at convergence, and the optimal solution.

3The optimal trajectory is approximated by solving a finite time optimal
control problem with a horizon N = 300.



−14 −12 −10 −8 −6 −4 −2 0
0

1

2

3

4

x1

x
2

First feasible trajectory

LMPC with N = 3
LMPC with N = 4
Optimal trajectory

Figure 2. The figure shows the first feasible trajectory used to initialize the
LMPC, the optimal solution, and the closed-loop trajectory at convergence
for N = 3 and N = 4. We notice that for N = 4 the LMPC converges to
the optimal behavior.

In the second example, we set umax = 1.5 and we synthesize

the LMPC policy for N = 3 and N = 4. Figure 2 shows

that for N = 4 the closed-loop trajectory converges to the

optimal solution to problem (18). However, for N = 3 the

closed-loop system does not converge to the optimal closed-

loop behavior. These results are in agreement with Theorem 1.

Indeed, Assumption 3 is satisfied for N = 4, but it is not

satisfied for N = 3. Tables I–II show the KKT multipliers for

problem (11) with N = 4 at times t = 0 and t = 1. We notice

that, as shown in the proof of the Theorem 1 (in particular in

equation (26)), we have that λ∗
k|0 = λ∗

k|1 for all k ∈ {1, . . . , 4}

and δ
∗,active

1|0,0 = δ
∗,active

1|1,0 .

λ∗
0|0

λ∗
1|0

λ∗
2|0

λ∗
3|0

λ∗
4|0

δ
∗,active

0|0,0
δ
∗,active

1|0,0
[

82.21

74.70

] [

54.21

24.49

] [

30.21

1.27

] [

13.21

−3.66

] [

4.49

−2.87

]

21.49 0.66

TABLE I
KKT MULTIPLIERS FOR PROBLEM (11) AT TIME t = 0 AND FOR N = 4

λ∗
1|1

λ∗
2|1

λ∗
3|1

λ∗
4|1

λ∗
5|1

δ
∗,active

1|1,0
[

54.21

24.49

] [

30.21

1.27

] [

13.21

−3.66

] [

4.49

−2.87

] [

1.04

−1.52

]

0.66

TABLE II
KKT MULTIPLIERS FOR PROBLEM (11) AT TIME t = 1 AND FOR N = 4

Finally, in Figure 3 we compare the LMPC input sequences

at convergence for N = 4 and N = 3. At time t = 2 the

input is saturated and therefore the matrix Mt:t+2 ∈ R
7×6

for t ∈ {1, 2} is not full row rank and the LICQ condition for

N = 3 is not fulfilled. For this reason, the LMPC with horizon

N = 3 cannot explore the state space and the algorithm

converges to a fixed-point which is not optimal. Even though

the solution is suboptimal with a prediction horizon equal

to three, the sacrifice of optimality is subtle as the LICQ

0 2 4 6 8 10 12 14 16
−2

−1

0

1

2

Time step k

u
k

LMPC input for N = 3
LMPC input for N = 4
Optimal input

Input constraints

Figure 3. The figure shows the LMPC input sequences at convergence for
N = 3, N = 4, and the optimal input sequence.

is satisfied for all t ≥ 3. Specifically, when the prediction

horizon N = 3, the trajectory starting from x∞
2 converges

to the optimal solution of the corresponding infinite horizon

control problem, i.e., J∗
2→∞(x∞

2 ) = J∞
2→∞(x∞

2 ).
B. Domain Enlargement

In this section, we leverage Algorithm 1 to iteratively

enlarge the convex safe set CSj and to construct the

Q-function. We test both Algorithm 1, where the ver-

tices of Cj are computed exactly, and a computationally

cheaper alternative where instead of the vertices of Cj

we used the points computed via problem (17) for D =
{±[1,−0.3]⊤,±[1,−0.5]⊤,±[1,−0.7]⊤}. The set D is cho-

sen to enlarge the RoA in the second and fourth quadrant. Fur-

thermore, we compare the region of attraction resulting from

our approaches with an MPC controller, where the terminal

constraint set is the maximal invariant set O∞ associated with

the LQR controller and the terminal cost is x⊤Px for the

matrix P given by the solution of the discrete time Riccati

equation. Figure 4 shows the region of attractions for our

strategies and the standard MPC approach. We notice that

the region of attraction associated with the LMPC is larger.

This result is expected, as in the LMPC methodology we used

a control invariant set as terminal constraint, whereas in the

standard MPC approach we used the maximal control invariant

associated with the LQR controller.

VII. CONCLUSIONS

In this paper, we presented a sufficient LICQ condition

which guarantees strict performance improvement and opti-

mality of the LMPC scheme. Compared to our previous work

this condition can be easily checked and it holds for a larger

class of systems. Furthermore, as demonstrated in simulations,

our result can be used to adaptively select the LMPC predic-

tion horizon to guarantee optimality of the closed-loop system

at convergence.
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O∞ LMPC RoA w/ Approx.

MPC RoA LMPC RoA w/ Algo. 1

C∞

Figure 4. Comparison between the Regions of Attraction (RoA) associated
with the MPC and the LMPC policy updated using Algorithm 1 (LMPC RoA
w/ Algo. 1) and Algorithm 1 with the approximation described in Remark 4
(LMPC RoA w/ Approx.). The figure shows also the set of stabilizable states
C∞. Notice that C∞ overlaps with the region of attraction associated with the
proposed strategy, when Algorithm 1 is used for enlarging the LMPC domain.

VIII. APPENDIX

A. Matrices from problem (11)

By definition we have that QN−1 = IN−1 ⊗ diag(Q,R),
beq = Vec(x∞

t , 0, . . . , 0, x∞
t+T ), bin = 1N−1 ⊗ [b⊤x , b

⊤
u ]

⊤,

(Geq

t:t+N−1)
⊤ =























In −A⊤

−B⊤

In −A⊤

−B⊤

. . .

In −A⊤

−B⊤























,

(19)

and

(F in
t:t+N−1)

⊤ = IN−1 ⊗ diag(F⊤
x , F⊤

u ). (20)

B. Proof of Theorem 1

First, we show that for all t ≥ 0 the state-input sequences

[x∞
t , . . . , x∞

t+N ] and [u∞
t , . . . , u∞

t+N−1] (21)

are the optimizer to problem J
LMPC,j
t→t+N (x∞

t ) for j ≥ c.

From Proposition 2 we have that

J
LMPC,j
t→t+N (xj

t ) ≥

∞
∑

k=t

h(xj
k, u

j
k) + lim

k→∞
J

LMPC,j
k→k+N (xj

k)

=

∞
∑

k=t

h(xj
k, u

j
k),

as the closed-loop system is stable and therefore limk→∞ x
j
k =

0. Now notice that by definition (7) the Q-function is a lower-

bound to the closed-loop cost of the realized trajectories, i.e.,

Qj(xj
t ) ≤

∑∞
k=t h(x

j
k, u

j
k). Therefore, the above equation,

together with definition (7), implies that

J
LMPC,c+1

t→t+N (xc+1
t )

≥

t+N−1
∑

k=t

h(xc+1
k , uc+1

k ) +

∞
∑

k=t+N

h(xc+1
k , uc+1

k )

≥

t+N−1
∑

k=t

h(xc+1
k , uc+1

k ) +Qc+1(xc+1
t+N ).

We notice that by assumption x
j
t = x∞

t for all iterations j ≥ c,

therefore Qc+1(xc+1
t+N ) = Qc(x∞

t+N ) and

J
LMPC,c+1

t→t+N (xc+1
t ) ≥

t+N−1
∑

k=t

h(x∞
t , u∞

t ) +Qc(x∞
N ).

Finally, we notice that (21) is a feasible solution to

J
LMPC,c+1

t→t+N (xc+1
t ) and achieves the above lower bound. There-

fore, the positive definiteness of R from Assumption 1 implies

that the state-input sequences in (21) are the unique optimal

solution to problem J
LMPC,c+1

t→t+N (xc+1
t ), ∀t ∈ {0, 1, . . .}.

Next, we show that the following sequences of N+1 states

and N inputs

[x∞
0 , . . . , x∞

N+1] and [u∞
0 , . . . , u∞

N ]

are optimal for problem (10) defined for a horizon N+1. Due

to Assumption 3, the optimizer is a KKT point [18, p. 21] and

is uniquely defined by its multipliers. The following analysis

is therefore built on the KKT system.

As discussed, the state-input sequences in (21) are optimal

for problem J
LMPC,c+1

t→t+N (xc+1
t ), ∀t ∈ {0, 1, . . .}. Therefore, the

sequence

z
∞
t:t+N−1 = Vec(x∞

t , u∞
t , . . . , x∞

t+N−1, u
∞
t+N−1)

is optimal for problem P ∗
t→t+N (x∞

t , x∞
t+N ) from (11) and

there exists a set of multipliers such that the following neces-

sary optimality condition is satisfied:

M⊤
t:t+N−1

[

λ∗
t:t+N−1|t

δ
∗,active

t:t+N−1|t

]

= −2QN−1z
∞
t:t+N−1. (22)

In the above equation, the matrix M⊤
t:t+N−1 collects the

gradient of the active constraints as defined in (13). The

vector λ∗
t+N−1|t = Vec(λ∗

t|t, . . . , λ
∗
t+N−1|t) collects the KKT

multipliers associated with the equality constraints. Moreover,

the KKT multipliers associated with the active inequality

constraints at time k are stacked into the vector δ
∗,active

k|t , whose

entries are δ
∗,active

k|t,i for i ∈ Ak|t. Similarly, the index set for the

inactive constraints and their multipliers are denoted by Ik|t
and δ

∗,inactive

k|t .

Now, we construct the KKT multipliers for problem

P ∗
t+1→t+N (x∞

t+1, x
∞
t+N ). Notice that the matrix M⊤

t+1:t+N−1

is obtained from the matrix M⊤
t:t+N−1 by removing the

rows and columns related to the equality constraints and

the active inequality constraints at time t in problem

P ∗
t→t+N (x∞

t , x∞
t+N ). Therefore, by definitions (19)–(20) and

equation (22) we have

M⊤
t+1:t+N−1

[

λ∗
t+1:t+N−1|t

δ
∗,active

t+1:t+N−1|t

]

= −2QN−2z
∞
t+1:t+N−1, (23)



where the cost matrix QN−2 = IN−2 ⊗ diag(Q,R),
λ∗
t+1:t+N−1|t = Vec(λ∗

t+1|t, . . . , λ
∗
t+N−1|t) and δ

∗,active

t+1:t+N−1|t

collects the multipliers δ
∗,active
k|t , ∀k ∈ {t+1, . . . , t+N − 1}.

Basically, equation (23) implies that a subset of the KKT

multipliers from (22) can be used to show optimality of the

sequence

z
∞
t+1:t+N−1 = Vec(x∞

t+1, u
∞
t+1, . . . , x

∞
t+N−1, u

∞
t+N−1) (24)

for problem P ∗
t+1→t+N (x∞

t+1, x
∞
t+N ) from (11).

In the following we show optimality of z∞
t+1:t+N from (24)

for problem P ∗
t+1→t+N (x∞

t+1, x
∞
t+N ) using the KKT multipli-

ers associated with problem P ∗
t+1→t+N+1(x

∞
t+1, x

∞
t+N+1). As

discussed, the state-input sequences (21) for t = t + 1 are

optimal for J
LMPC,c+1

t+1→N+1(x
∞
t+1) and

z
∞
t+1:t+N = Vec(x∞

t+1, u
∞
t+1, . . . , x

∞
t+N , u∞

t+N)

is optimal for problem P ∗
t+1→t+N+1(x

∞
t+1, x

∞
t+N+1). There-

fore, there exists a set of multipliers such that the following

stationarity condition is satisfied:

M⊤
t+1:t+N

[

λ∗
t+1:t+N |t+1

δ
∗,active

t+1:t+N |t+1

]

= −2QN−1z
∞
t+1:t+N .

The above condition implies that

M⊤
t+1:t+N−1

[

λ∗
t+1:t+N−1|t+1

δ
∗,active

t+1:t+N−1|t+1

]

= −2QN−2z
∞
t+1:t+N−1,

(25)

where the matrix QN−2 = IN−2 ⊗ diag(Q,R). There-

fore, the vectors of KKT multipliers λ∗
t+1:t+N−1|t+1

and

δ
∗,active

t+1:t+N−1|t+1
can be used to show optimality of the vector

z
∞
t+1:t+N−1 = Vec(x∞

t+1, u
∞
t+1, . . . , x

∞
t+N−1, u

∞
t+N−1)

for problem P ∗
t+1→t+N+1(x

∞
t+1, x

∞
t+N+1).

Finally, from Assumption 3, we have that M⊤
t+1:t+N−1 is

full column rank. Therefore, from equations (23) and (25) we

have that

Ak|t = Ak|t+1, Ik|t = Ik|t+1

λ∗
k|t = λ∗

k|t+1

δ
∗,active
k|t,i = δ

∗,active
k|t+1,i

, ∀i ∈ Ak|t,

δ
∗,inactive
k|t,i = δ

∗,inactive
k|t+1,i

, ∀i ∈ Ik|t.























∀k∈{t+1, . . . , t+N−1}.

(26)

The above equation implies that the KKT multipliers λ̄t:t+N

and δ̄t:t+N = [δ̄active
t:t+N , δ̄inactive

t:t+N ] with entries

λ̄t|t = λ∗
t|t

δ̄activet|t,i = δ
∗,active
t|t,i , ∀i ∈ At|t

δ̄inactivet|t,i = δ
∗,inactive
t|t,i , ∀i ∈ It|t

λ̄k|t = λ∗
k|t

δ̄active
k|t,i = δ

∗,active
k|t,i , ∀i ∈ Ak|t,

δ̄inactivek|t,i = δ
∗,inactive
k|t,i , ∀i ∈ Ik|t,















∀k ∈ {t+1, . . . , t+N−1}

λ̄t+N |t = λ∗
t+N |t+1

δ̄activet+N |t,i = δ
∗,active
t+N |t+1,i

, ∀i ∈ At+N |t+1

δ̄inactivet+N |t,i = δ
∗,inactive
t+N |t+1,i

, ∀i ∈ It+N |t+1

satisfy the stationarity condition

M⊤
t:t+N

[

λ̄t:t+N

δ̄
∗,active
t:t+N

]

= 2QNz
∞
t:t+N . (27)

By definition δ̄t:t+N is dual feasible and (z∞
t:t+N , δ̄t:t+N ) sat-

isfies the complementarity conditions. Therefore, equation (27)

implies that the feasible state-input sequence z∞
t:t+N =

Vec(x∞
t , u∞

t , . . . , x∞
t+N , u∞

t+N) is optimal for problem (11)

at time t with horizon N + 1. In conclusion, we have that

(x∞
t:t+N+1,u

∞
t:t+N) is the optimizer to problem (10) with

horizon N + 1.

Now, we notice that from Assumption 3 the matrix Mt:t+T

is full rank for all t ≥ 1 and T ≥ N − 1. By induction,

the above argument can be iterated to show that z∞
t:t+T is the

optimal solution to problem (11) for all t ≥ 0 and for all

T ≥ N . Consequently, (x∞
t:t+T ,u

∞
t:t+T−1) is the optimizer

to problem (10) for all t ≥ 0 and for all T ≥ N . Finally, by

standard dynamic programming arguments (x∞
t:t+T ,u

∞
t:t+T−1)

is the optimizer to problem (10) for all t ≥ 0 and for all

T < N , which concludes the proof.
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