
ar
X

iv
:2

10
7.

00
09

4v
1 

 [
ee

ss
.S

Y
] 

 3
0 

Ju
n 

20
21

1

Super Twisting based Lyapunov Redesign for

Uncertain Linear Delay Systems
Marco A. Gomez, Christopher D. Cruz-Ancona, and Leonid Fridman, Member, IEEE

Abstract

We present a new continuous Lyapunov Redesign (LR) methodology for the robust stabilization of a class of uncertain time-
delay systems that is based on the so-called Super Twisting Algorithm. The main feature of the proposed approach is that allows
one to simultaneously adjust the chattering effect and achieve asymptotic stabilization of the uncertain system, which is lost when
continuous approximation of the unit control is considered. At the basis of the Super Twisting based LR methodology is a class of
Lyapunov-Krasovskii functionals, whose particular form of its time derivative allows one to define a delay-free sliding manifold
on which some class of smooth uncertainties are compensated.

Index Terms

Time-delay systems, Lyapunov redesign, Super Twisting

I. PROBLEM STATEMENT

We consider uncertain linear time-delay system of the form

ẋ(t) =

m
∑

j=0

Ajx(t− hj) +B(u(t) + δ(t, x̄)), t ≥ 0,

x(t) = ϕ(t), t ∈ [−hm, 0],

(1)

where the initial function ϕ is considered to belong to the space of continuous functions, x(t) ∈ R
n is the state at present

time, Aj ∈ R
n×n, j = 0, . . . ,m, B ∈ R

n×k, the delays 0 = h0 < h1 < . . . < hm are known, and the vector x̄T (t) :=
(

xT (t) xT (t− h1) . . . xT (t− hm)
)

. The delayed state dependent uncertainty δ(t, x̄) is continuous in x̄, for all t ∈ R,

and it is Lebesgue measurable in t, for all x̄ ∈ R
(m+1)n. As specified by Assumption 3 in Section II, it is assumed that it can

be divided into vanishing and non-vanishing terms. The non-vanishing terms in δ are assumed to be continuously differentiable

in time. Moreover, its derivative and the vanishing terms are bounded by time dependent Lebesgue integrable functions (cf.

with Chapter 3 in [1]).

Systems of the form (1) are pervasive in engineering [1], and design of robust control algorithms that mitigate the perturbation

effects has been object of active research in the last decades [2]–[6]. As in systems without delays, Lyapunov redesign (LR)

[7]–[9] methodology can be used to design a robust control law to stabilize time delay system (1) as long as two requirements

are fulfilled [10]–[14]. The first one is the existence of a nominal control law that stabilizes the nominal system. This is, for

system (1) with δ(t, x̄) = 0, there exist Kj ∈ R
k×n, j = 0, . . . ,m, such that

u(t) = vnom(t) =

m
∑

j=0

Kjx(t− hj) (2)

renders an asymptotical stable trivial solution of the closed-loop nominal system

ẋ(t) =

m
∑

j=0

Gjx(t− hj), t ≥ 0,

x(t) =ϕ(t), t ∈ [−hm, 0],

(3)

where Gj := Aj + BKj for j = 0, . . . ,m. The second requirement is the existence of a Lyapunov-Krasovskii functional

(or Lyapunov-Razumikhin function) such that it satisfies standard lower and upper bounds, and its time derivative along the

solutions of the closed-loop system (3) is negative. In this paper, we consider the following well-known class of Lyapunov-

Krasovskii functionals [15]

V (ϕ) = ϕT (0)Pϕ(0) +
m
∑

j=1

∫ 0

−hj

Fj

(

~h, θ, ϕ(θ)
)

dθ, (4)
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where P ∈ R
n×n is a positive definite matrix, ~h :=

(

h1, . . . , hm

)

, and Fj are continuous functions.

We condensate the above requirements in the LR methodology within the following assumption, which is regarded to be

satisfied from now on:

Assumption 1: There exists a Lyapunov-Krasovskii functional of the form (4) such that for some α1, α2, α3 ∈ R+

α1‖ϕ(0)‖
2 ≤ V (ϕ) ≤ α2‖ϕ‖

2
H (5)

V̇ (xt)
∣

∣

∣

(3)
≤ −α3‖x(t)‖

2, (6)

where ‖ · ‖H is introduced later on.

Classical LR. The LR consists in adjusting the control law u(t) by adding a robustifying discontinuous controller v(t) to the

nominal one, i.e. u(t) = vnom(t) + v(t), such that v(t) is capable of compensating the uncertainty within the time derivative

of the Lyapunov-Krasovskii functional, while recovering the negative sign in its upper-bound. More specifically, notice that

the time derivative of the functional V along the solutions of uncertain system (1) yields

V̇ (xt)
∣

∣

∣

(1)
≤ −α3‖x(t)‖

2 + 2xT (t)PB (v(t) + δ(t, x̄)) .

By taking the unit control

v(t) = −ρδ(t, x̄)
2BTPx(t)

‖2BTPx(t)‖
, (7)

where ρδ is a known function such that ‖δ(t, x̄)‖ ≤ ρδ(t, x̄), one obtains

2xT (t)PB(v(t) + δ(t, x̄)) ≤ 0. (8)

Thus, the negativeness of the time derivative of the functional is recovered and the asymptotic stability of system (1) is ensured

(cf. Theorem 3.1. in [15]). The main drawback of this approach resides in the discontinuity of the control law (7) in a switching

manifold of relative degree one, which produces the undesirable chattering effect.

Continuous LR. In order to make a continuous LR, a continuous approximation of the unit controller (7) can be considered

[16]. Namely,

v(t)=

{

−ρδ(t, x̄)
2BTPx(t)

‖2BTPx(t)‖ , ρδ(t, x̄)‖2B
TPx(t)‖ ≥ ε,

−ρ2δ(t, x̄)
2BT Px(t)

ε , ρδ(t, x̄)‖2B
TPx(t)‖ < ε

(9)

where ε is a given real positive number. However, with such an approximation it is not possible to recover a time derivative

of V with definite sign anymore. Indeed,

2xT (t)PB(v(t) + δ(t, x̄)) ≤ −ρ2δ
‖2BTPx(t)‖2

ε
+ ‖2BTPx(t)‖ρδ ≤

ε

4
,

and the perturbation within the time derivative of the functional is no longer compensated. The system’s solutions are restricted

to an arbitrarily small neighborhood of the trivial solution in a sufficiently large time and, to maintain the solutions bounded in

this region, extremely high gains of the controller are required. Thus, as one cannot ensure asymptotic stability of the uncertain

system (1) anymore, the critical issue is the compromise between controller effort and the attainable residual set where the

solutions will be contained. This approach was used with Lyapunov-Razumikhin functions in the early work [10], and similarly

later appeared with Lyapunov-Krasovskii functionals in [11], [12] for the design of adaptive control algorithms.

Contribution. An open question of practical interest within LR methodology is whether it is possible to design a continuous

controller that simultaneously makes system (1) asymptotically stable and adjusts the chattering effect, at least for systems

with fast actuators [17]. In this paper, inspired by the ideas introduced in [18], [19], we look at the classical LR from a second

order Sliding Mode Control (SMC) perspective by defining the sliding variable as

w(t) := 2BTPx(t) (10)

and the sliding manifold by

S := {x ∈ R
n : w(t) = 0}.

We propose a continuous LR methodology that relies on the super twisting algorithm (STA), a well-known technique within

the SMC framework that ensures a stable second order sliding mode on the manifold S [20]–[23]. Since the discontinuous

term is integrated in the STA, the control signal is absolutely continuous at the expense of theoretically exact compensation

of smooth perturbations. By using the STA instead of any continuous approximation of unit control, we ensure the asymptotic

stability of the trivial solution of the uncertain system (1), which is the premise of a classical LR. Moreover, STA does not

require a boundary layer strategy as in (9) but a single robustifying controller does the task. Notice that, in contrast to the

classical LR where one looks for inequality (8) to be satisfied, in the presented approach we restrict x ∈ S.
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It is important to mention that few research work addressing the robust stabilization of time-delay systems via STA has been

reported in the literature, see for instance [24], [25]. The reported results there are within the standard SMC framework, where

one requires a transformation of the delay system to a regular form and the design of a sliding manifold. Robust stabilization

via the LR approach requires neither of both.

The note is organized as follows. The continuous LR methodology based on the STA is introduced in Section II. The

theoretical results are illustrated with an example in Section III, and the paper ends with some final remarks in Section IV.

The following notation is adopted throughout the paper. The Euclidian norm for vectors and matrices is denoted by ‖ · ‖.

The space of continuous functions defined on [−h, 0] with values in R
n is denoted by C ([−h, 0],Rn) and it is equipped with

the supremum norm

‖ϕ‖H := sup
θ∈[−h,0]

‖ϕ(θ)‖.

The notation xt represents the state function xt(θ) = x(t+θ), θ ∈ [−hm, 0]. The space of positive real numbers is represented

by R+.

II. CONTINUOUS LYAPUNOV REDESIGN FOR TDS

We present the continuous LR methodology based on the STA. Let w in (10) be defined as a sliding variable. We address

the robust stabilization of system (1) by enforcing w to be zero in finite time via a second order sliding mode controller and

ensuring asymptotic convergence of the system’s solutions to the origin on the sliding manifold S.

Let us assume

Assumption 2: rankB = k.

Consider the control law in system (1) as

u(t) = vnom(t) + v(t), (11)

where

v(t) = −
(

2BTPB
)−1

(2BTP





m
∑

j=0

Gjx(t− hj)



− usta(t)), (12)

with P ∈ R
n×n from functional (4), usta denotes the STA of variable gains introduced in [21], [23] given by

usta(t) =− k1(t, x̄, ¯̄x)ξ1(w) + ρ(t)

ρ̇(t) =− k2(t, x̄, ¯̄x)ξ2(w),
(13)

where k1, k2 and ¯̄x are specified later on, k3 is any positive real number and

ξ1(w) :=
w(t)

‖w(t)‖1/2
+ k3w(t),

ξ2(w) :=
w(t)

2‖w(t)‖
+

3k3
2

w(t)

‖w(t)‖1/2
+ k23w(t).

By setting k3 = 0 and lifting the dependence of gains k1 and k2 on the state and delays, one recovers the standard STA,

which has been recently studied for a class of time-delay systems in [24], [25]. A remarkable difference is that here the sliding

manifold is not designed but results from the Lyapunov-Krasovskii functional used for the stability analysis of the nominal

system.

It is well-known that since the STA produces a continuous signal, it cannot compensate perturbations satisfying ‖δ(t, x̄)‖ ≤
ρδ(t, x̄) [20]. That is the reason why we introduce the following assumptions on the system uncertainty:

Assumption 3: The uncertainty term can be divided as

2BTPBδ(t, x̄) = d1(t, x) + δz(t, x̄), (14)

where d1(t, x) = 0 if x ∈ S and δz is such that

∂δz

∂x(t− hj)
B = 0, j = 0, . . . ,m.

Assumption 4: There exist known functions ρ1 : R+ × R
n → R+ and ρ2 : R+ × R

(m+1)n × R → R+ such that

‖d1(t, x)‖ ≤ρ1(t, x)‖ξ1(w)‖,

‖d2(t, x̄, ¯̄x)‖ ≤ρ2(t, x̄, ¯̄x)‖ξ2(w)‖,

where

d2(t, x̄, ¯̄x) := δ̇z(t, x̄) =
∂δz

∂t
+ ¯̄x(t),
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where ¯̄x(t) := ∂δz
∂x̄

˙̄x(t).
Remark 1: Let Hh denote the set of all possible sums of pairs of delays (hi, hj), i, j = 0, . . . ,m, the vector ¯̄x depends on

terms of the form x(t−hκ) with hκ ∈ Hh. For example, for two delays h1 and h2, Hh = {h0, h1, h2, 2h1, 2h2, h1 + h2} and
¯̄x depends on x(t), x(t − h1), x(t− h2), x(t − 2h1), x(t − 2h2), x(t − h1 − h2).

It is important to mention that whereas the component d1 contains terms that vanish while x ∈ S for t ≥ T > 0,

the component d2 contains non-vanishing terms including those that are delay dependent, i.e. terms of the form x(t − hi),
i = 1, . . . ,m. These terms do not vanish until t ≥ T + hm.

Let us consider the following Lyapunov function, used in the proof of Proposition 1 in the Appendix (cf. with [21], [23]),

Vst(w, z) = γTPstγ,

where

γ :=

(

ξ1(w)
z

)

, Pst :=

((

β + 4ǫ2
)

I −2ǫI
−2ǫI I

)

,

and set the gains of the STA in (13) as

k1(t, x̄, ¯̄x) = δ +
1

β

(

1

4ǫ
(4ǫρ1 + ρ2)

2
+ 2ǫρ2 + ǫ+ (2ǫ+ ρ1)

(

β + 4ǫ2
)

)

,

k2(t, x̄, ¯̄x) = β + 4ǫ2 + 2ǫk1(t, x̄, ¯̄x),

(15)

where δ, β, ǫ ∈ R+. In the next theorem we state the main result of the paper, i.e. the robust stabilization of system (1) by

control (11).

Theorem 1: Suppose Assumptions 1, 2, 3 and 4 are satisfied. Trajectories of closed-loop system (1), (11), with vnom and v

given by (2) and (12) respectively, reach the sliding manifold S in finite time

T =
2

η2
ln

(

1 +
η2

η1

√

Vst(w0, z0)

)

,

with

η1 =
ǫ
√

λmin(Pst)

λmax(Pst)
, η2 =

2ǫk3
λmax(Pst)

,

and after that they asymptotically converge to the origin.

Proof 1: The proof is splitted into two parts. First, it is proved that with robust controller (11) the trajectories of system (1)

converge to the sliding manifold S in finite time, and then that they asymptotically converge to the origin.

From Assumption 3 it follows that

δ(t, x̄) =
1

2

(

BTPB
)−1

(d1(t, x) + δz(t, x̄)) ,

hence, differentiating w along the solutions of system (1), (11), yields

ẇ(t) = usta(t) + d1(t, x) + δz(t, x̄). (16)

By taking the change of variable z(t) := ρ(t) + δz(t, x̄), where ρ is from the STA (13), we arrive at

ẇ(t) =− k1(t, x̄, ¯̄x)ξ1(w) + z(t) + d1(t, x),

ż(t) =− k2(t, x̄, ¯̄x)ξ2(w) + d2(t, x̄, ¯̄x).
(17)

By Proposition 1 in Appendix, system (17) with gains given by (15) is finite time stable.

Now, notice that closed-loop system (1), (11) is

ẋ(t) = E

m
∑

j=0

Gjx(t− hj) +
1

2
B(BTPB)−1usta +Bδ(t, x̄),

where E = I −B(BTPB)−1BTP . It follows from equation (16) that

ẋ(t) = E

m
∑

j=0

Gjx(t− hj) +
1

2
B(BTPB)−1ẇ(t).

Thus, on the sliding manifold S,

ẋ(t) = E

m
∑

j=0

Gjx(t− hj), x ∈ S. (18)
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In order to prove that the trajectories asymptotically converge to the origin, let us consider a Lyapunov-Krasovskii functional

V of the form (4) satisfying conditions of Assumption 1. The derivative of V along the solutions of system (18) satisfies

V̇ (xt)
∣

∣

∣

(18)
≤ −α3‖x(t)‖

2 − 2xT (t)PB(BTPB)−1BTPE

m
∑

j=0

Gjx(t − hj)

= −α3‖x(t)‖
2 − wT (t)(BTPB)−1BTPE

m
∑

j=0

Gjx(t− hj)

= −α3‖x(t)‖
2, x ∈ S.

This proves the asymptotic stability of system (18), and in turn completes the proof.

The methodology for the design of robust controller is summarized as follows:

1) Propose a Lyapunov-Krasovskii functional of the form (4) that satisfy the conditions of Assumption 1.

2) Select the sliding variable w(t) = 2BTPx(t), where matrix P is from the Lyapunov-Krasovskii functional proposed in

Step 1.

3) Find ρ1 and ρ2 satisfying Assumption 4.

4) Select controller v(t) as (12) with a given sliding variable w(t) in Step 2.

5) Fix the gains as in (15) with upper-bounds given in Step 3.

III. EXAMPLE

The obtained results are illustrated with an example. The performance of the unit control (7), continuous approximation

(9) and the STA (13) are compared. It is worth mentioning that the considered system cannot be robustly stabilized by the

approach proposed in [11], [12].

Example 1: We consider a system of the form (1) with h1 = h = 2 and matrices [29]

A0 =

(

2 0
1.75 0.25

)

, A1 =

(

−1 0
−0.1 −0.25

)

, B =

(

1
1

)

.

For the sake of simulation, consider the uncertainty term as

δ(t, x) =
1

3
(sin(t) + 2(x1(t− h)− x2(t− h))) .

Notice that the associated nominal system is not stabilizing by a memoryless feedback since the pair (A0, B) is not

controllable. The robust stabilization of this system has been addressed in [29] via SMC. We next present the simulation

results obtained with control

u(t) = vnom(t) + v(t),

where v(t) is considered to be of three classes: unit control of the form (7), continuous control with approximation (9) with

ε = 0.05, and continuous control based on STA (13). In all of them we consider the same nominal control and the same

associated Lyapunov-Krasovskii functional of the form (4):

V (xt) = xT (t)Px(t) +

∫ 0

−h

(

xT (t+ ξ)Qx(t+ ξ)dξ +

∫ 0

θ−h

xT (t+ ξ)Rx(t + ξ)dξ

)

dθ

where

P =

(

2.8063 0.8062
0.8062 0.6559

)

, Q =

(

9.1429 3.3997
3.3997 1.3327

)

,

R =

(

4.6439 1.5632
1.5632 0.6352

)

.

Stabilizing gains of the nominal system are found to be

K1 =
(

−3.7648 −0.73
)

, K2 =
(

1.1964 0.1723
)

.

The sliding variable is

w(t) = 2BTPx(t) = 7.2251x1(t) + 2.9244x2(t).

Let us define c = 2
3B

TPB = 3.3832 and consider the gain k3 = 0. The uncertainty satisfies Assumption 3 with d1(t, x) = 0
and

δz(t, x̄) = c (sin(t) + 2(x1(t− h)− x2(t− h))) .
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It is clear that
∂δz

∂x(t− h)
B = 0. Then, the uncertainty also satisfies Assumption 4 with ρ1(t, x) = 0 and,

ρ2(t, x̄, ¯̄x) = (4c2
(

1 + 2|0.5x2(t− 2h)− 1.8x1(t− 2h)|2
)

+ 2c2|x1(t− h)− x2(t− h)|2)1/2.

For unit control (7) and continuous approximation (9), consider ρδ(t, x̄) =
1
3 (1 + 2|x1(t− h)− x2(t− h)|).

Set then the gains k1 and k2 as in (15) with the parameters

δ = 1.5, β = 1, ǫ = 0.3.

Figure 1 depicts the norm of the closed-loop solution. One observes that the LR based on STA has a better performance in

comparison with the continuous approximation (9) and the unit control (7). Indeed, closed-loop solution of the system with

(9) does not converge to the origin but it is restricted to a small neighborhood. Figure 2 shows the control laws, where the

reduction of chattering with respect to the unit control is clearly visualized.

0 10 20 30 40 50 60 70 80
t

0

0.5

50 55 60 65 70 75 80
t

0

5

10-3

Fig. 1. Top: Norm of the closed-loop solution obtained with LR based on unit control (blue), continuous LR based on approximation (9) (green), and LR
based on STA (red). Bottom: Simulation result of the last 30 seconds

0 10 20 30 40 50 60 70 80
t

-2

-1.5

-1

-0.5

0

0.5

1

Fig. 2. Top: Control signals of LR based on LR based on unit control (blue), continuous LR based on approximation (9) (green), and LR based on STA
(red). Bottom: Simulation result of the last 30 seconds.

IV. CONCLUSIONS

The robust stabilization of a class of uncertain systems with delays via a new continuous LR methodology based on the

STA was addressed. A remarkable feature of the proposed approach is that it allows one to ensure asymptotic stability of the

system using continuous control signals.

As a direct consequence of the considered class of Lyapunov-Krasovskii functionals, the associated sliding variable is delay-

free. The latter allowed us to combine the STA with the LR technique without eliminating the sliding modes (see Chapter 13

in [30] and Section IV in [31]), providing a flexible, robust design methodology that can be easily extended to more complex

scenarios studied in SMC for delay-free systems.
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APPENDIX

Proposition 1: Under Assumptions 1, 2, 3 and 4, system

ẇ(t) =− k1(t, x̄, ¯̄x)ξ1(w) + z(t) + d1(t, x),

ż(t) =− k2(t, x̄, ¯̄x)ξ2(w) + d2(t, x̄, ¯̄x),

with k1 and k2 given by (15), is finite time stable with

T =
2

η2
ln

(

1 +
η2

η1

√

Vst(w0, z0)

)

.

Proof 2: The proof follows the same arguments as those presented in [23] up to the dependence of the gains on the delayed

states. Let us consider the Lyapunov function

Vst(w, z) = γTPstγ,

where

γ = γ(w, z) :=

(

ξ1(w)
z

)

, Pst :=

((

β + 4ǫ2
)

I −2ǫI
−2ǫI I

)

.

The Lyapunov function Vst is differentiable everywhere except on the set W := {(w, z) ∈ R
2k : w = 0}. Let us define

ξ′1(w) :=
d

dw
ξ1(w) ∈ R

k×k. We observe that

ξ′1(w) =‖w‖−1/2I −
1

2
wwT ‖w‖−5/2 + k3I

=
1

‖w‖1/2

(

I −
1

2

wwT

‖w‖2

)

+ k3I

for any different from zero w ∈ R
k. We recall from [23] some properties of that are useful throughout the proof:

1) ξ2(w) = ξ′1(w)ξ1(w), ∀w 6= 0.

2) Matrix ξ′1(w) is symmetric and positive definite for any different from zero w ∈ R
k. Moreover,

λmin(ξ
′
1(w))‖y‖

2 ≤ yT ξ′1(w)y, ∀y ∈ R
k,

with λmin(ξ
′
1(w)) =

1

2‖w‖1/2
+ k3.

3) ‖ξ′1(w)‖ =
1

‖w‖1/2
+ k3.

By Property 1,

γ̇ =

(

ξ′1(w)ẇ
ż

)

=

(

ξ′1(w) (−k1ξ1(w) + z + d1)
−k2ξ

′
1(w)ξ1(w) + d2

)

= Astγ + f, (w, z) ∈ R
2k \W ,

where

Ast = Ast(t, x̄, ¯̄x) :=

(

−k1(t, x̄, ¯̄x)ξ
′
1(w) ξ′1(w)

−k2(t, x̄, ¯̄x)ξ
′
1(w) 0

)

and

f = f(t, x̄, ¯̄x) :=

(

d1(t, x)
d2(t, x̄, ¯̄x))

)

.

Hence,
d

dt
Vst(w, z) = −γTQγ + 2γTPstf.

where

Qst := −
(

PstAst +AT
stPst

)

=

(

2βk1 − 4ǫ
(

β + 4ǫ2
)

ξ′1(w) 0
0 4ǫξ′1(w)

)

.

From Assumption 4, it follows that

γTPstf ≤(β + 4ǫ2)‖ξT1 ξ
′
1(w)‖‖d1‖+ 2ǫ‖z‖‖ξ′1(w)‖‖d1‖+ (2ǫ‖ξ1‖+ ‖z‖)‖d2‖

≤(β + 4ǫ2)‖ξT1 ξ
′
1(w)‖ρ1‖ξ1‖+ 2ǫ‖z‖‖ξ′1(w)‖ρ1‖ξ1‖+ (2ǫ‖ξ1‖+ ‖z‖)ρ2‖ξ2‖.
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Then, from equality ‖ξT1 ξ
′
1‖ = λmin(ξ

′
1(w))‖ξ1‖ and 2‖ξ′1(w)‖ ≤ 4λmin(ξ

′
1(w)), we obtain

2γTPstf ≤ 2λmin(ξ
′
1(w))((β + 4ǫ2)‖ξ1‖

2ρ1 + 4ǫ‖z‖‖ξ1‖ρ1 + 2ǫ‖ξ1‖
2ρ2 + ‖z‖‖ξ1‖ρ2), (19)

and from Property 2 we have that for any γ ∈ R
2k

− γTQstγ ≤ −λmin(ξ
′
1(w))

((

2βk1 − 4ǫ
(

β + 4ǫ2
))

‖ξ1‖
2 + 4ǫ‖z‖2

)

. (20)

By (20) and (19),
d

dt
Vst(w, z) ≤ −λmin(ξ

′
1(w))γ̂

T Q̂γ̂,

with γ̂ :=
(

‖ξ1‖ ‖z‖
)T

and

Q̂ =

(

2βk1 − (4ǫ+ 2ρ1)(β + 4ǫ2)− 4ǫρ2 −4ǫρ1 − ρ2
⋆ 4ǫ

)

.

Considering k1 as in (15) one has that Q̂− 2ǫI > 0, hence

d

dt
Vst(w, z) ≤ −2ǫλmin(ξ

′(w))‖γ̂‖2.

Since ‖w‖1/2 ≤ ‖ξ1‖ ≤ ‖γ̂‖ and λmin(Pst)‖γ̂‖
2 ≤ Vst(w, z) ≤ λmax(Pst)‖γ̂‖

2,

d

dt
Vst(w, z) ≤ −2ǫ

(

1

2‖w‖1/2
+ k3

)

‖γ̂‖2

≤ −η1
√

Vst(w, z)− η2Vst(w, z),

where

η1 =
ǫ
√

λmin(Pst)

λmax(Pst)
, η2 =

2ǫk3
λmax(Pst)

.

Finally, as the solution of the differential equation

v̇c(t) = −η1
√

vc(t)− η2vc(t), vc(0) := vc0

is determined by

vc(t) = e−η2t

(

v1/2c0 +
η1

η2

(

1− e
η2
2
t
)

)2

it follows from the comparison theorem that (w, z) converges to zero in finite time

T =
2

η2
ln

(

1 +
η2

η1

√

Vst(w0, z0)

)

.
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