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Differentially Private LQ Control

Kasra Yazdani∗, Austin Jones†, Kevin Leahy†, Matthew Hale∗

Abstract—As multi-agent systems proliferate and share more
user data, new approaches are needed to protect sensitive data
while still enabling system operation. To address this need, this
paper presents a private multi-agent LQ control framework.
Agents’ state trajectories can be sensitive and we therefore
protect them using differential privacy. We quantify the impact

of privacy along three dimensions: the amount of information
shared under privacy, the control-theoretic cost of privacy, and
the tradeoffs between privacy and performance. These analyses
are done in conventional control-theoretic terms, which we
use to develop guidelines for calibrating privacy as a function
of system parameters. Numerical results indicate that system
performance remains within desirable ranges, even under strict
privacy requirements.

I. INTRODUCTION

MULTI-AGENT systems, such as smart power grids and

robotic swarms, require agents to exchange information

to work together. In some cases, the information shared may be

sensitive. For example, consumption data in a power grid can

expose habits and activities of individuals [1], [2]. Sensitive

user data must be protected when it is shared, though of course

it must remain useful in multi-agent coordination. Hence,

privacy in multi-agent control should protect sensitive data

from the agent receiving it while still ensuring that private

data remains useful to that recipient.

Recently, privacy of this form has been achieved using

differential privacy. Differential privacy was originally de-

signed to protect data of individuals in static databases [3],

[4]. Its goal is to allow accurate statistical analyses of a

population while providing strong, provable privacy guarantees

to individuals. Differential privacy is appealing because it is

immune to post-processing [5], in that post-hoc computations

on private data do not weaken privacy’s guarantees. For exam-

ple, filtering private trajectories can be done without harming

privacy [6], [7]. Differential privacy is also robust to side

information [8], in that its privacy guarantees are not defeated

by an adversary with access to additional information about

data-producing entities. Differential privacy has been extended

to dynamical systems [6], [9], [10] in which trajectory-valued
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data is protected, and it is this notion of differential privacy

that we use.

Linear-quadratic (LQ) control is the underlying framework

for many existing multi-agent control applications. One ex-

ample is smart power systems where power forecast, gen-

eration, and distribution require access to time series usage

data measured by smart meters. In particular, LQ control for

load frequency control has been used in power systems [11],

[12], with the objective of restoring balance between power

consumption and generation. In addition, the work in [13]–

[16] incorporates an LQ control scheme for stability and

performance of wide-area power control systems using stan-

dard phasor measurement units. Other applications of LQ

control include motion planning [17] and security of cyber

physical systems [18]. Existing work investigates convergence

and performance under various constraints; however, despite

the sensitive nature of the data involved, privacy is generally

absent in their treatment.

In this paper, we use differential privacy to develop a

private multi-agent LQ control framework. Adding privacy

noise makes this problem equivalent to a linear quadratic

Gaussian (LQG) problem, and the optimal controller will be

linear in the expected value of agents’ states. Computing this

expected value is a centralized operation, and we therefore

augment the network with a cloud computer [19]. In contrast

to some existing approaches, the cloud is not a trusted third

party and does not receive sensitive information from any

agent [20]. The cloud instead gathers private information from

the agents, estimates their states, and generates optimal inputs.

These inputs are transmitted back to the agents, which apply

them in their local state updates, and then this process repeats.

Contributions: Although there exists a large body of privacy

research, privacy parameter interpretation and selection both

largely remain the domain of subject matter experts. More-

over, since offering privacy guarantees for a control system

generally involves sacrificing some level of performance, it is

critical to quantify the effects of privacy to rigorously evaluate

tradeoffs. Our contributions are therefore the following:

1) Developing an algorithm for multi-agent differentially pri-

vate LQ control. (Sec. IV)

2) Quantifying sensitive information revealed by bounding

filter accuracy in terms of privacy parameters (Sec. V)

3) Providing quantitative criteria for privacy calibration to

trade off information shared and control cost (Sec. VI)

4) Quantifying the relationship between agents’ cost and their

privacy levels (Sec. VII)

Preliminary versions of this work appeared in [21], [22].

This paper differs from [21] because it does not rely on a

trusted aggregator. Further, we quantify the tradeoff between

cost and privacy, which was not explored in [21], [22].
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Organization: Section II reviews privacy background. Sec-

tion III defines the private LQG problem, and Section IV

solves it. Section V bounds filter error under privacy, and

in Section VI we provide guidelines for calibrating privacy.

Section VII quantifies the cost of privacy. Next, we provide

simulations in Section VIII, and then Section IX concludes.

II. REVIEW OF DIFFERENTIAL PRIVACY

Differential privacy is a statistical notion of privacy that

masks sensitive data while still enabling accurate analyses

of it [5]. It is appealing because post-processing does not

weaken its protections. In particular, filtering private data is

permitted. Moreover, differential privacy is not weakened even

if an adversary knows the privacy mechanism used [4], [5].

We briefly review differential privacy here and refer the reader

to [4]–[6] for a thorough introduction.

We use the “input perturbation” approach to differential

privacy, which means that agents add noise directly to their

outputs before sharing them. Thus, agents do not ever share

sensitive data. Privacy guarantees are likewise provided on an

individual basis. Formally, each agent’s state trajectory will be

made approximately indistinguishable from other nearby state

trajectories which that agent individually could have produced.

We use the notation [ℓ] = {1, . . . , ℓ} for ℓ ∈ N. We

consider trajectories of the form Z = (Z (1) , Z (2) , . . . ) ,
where Z (k) ∈ R

d and ‖Z(k)‖2 < ∞ for all k. Denote the

set1 of all such sequences by ℓ̃d2.

We consider N agents, and we denote agent i’s state

trajectory by xi ∈ ℓ̃ni

2 for some ni ∈ N. The kth element of

xi is xi (k) ∈ R
ni . We define our adjacency relation over ℓ̃ni

2 .

Definition 1. (Adjacency for Trajectories) Fix an adjacency

parameter bi > 0 for agent i. Two trajectories vi, wi ∈ ℓ̃ni

2

are adjacent if ‖vi − wi‖ℓ2 ≤ bi. We write Adjbi(vi, wi) = 1
if vi, wi are adjacent, and Adjbi(vi, wi) = 0 otherwise.

This adjacency relation requires that every agent’s state

trajectory be made approximately indistinguishable from all

other state trajectories not more than distance bi away. Next,

we define differential privacy for dynamic systems. This

definition considers outputs of agent i of dimension qi at each

point in time. Output signals are in the set ℓ̃qi2 , over which we

use the σ-algebra Σqi
2 (see [6] for a formal construction).

Definition 2. (Differential Privacy for Trajectories) Let ǫi >
0 and δi ∈ (0, 1/2) be given. A mechanism M is (ǫi, δi)-
differentially private if, for all adjacent xi, x

′
i ∈ ℓ̃ni

2 , we have

P [M (xi) ∈ S] ≤ eǫiP [M (x′
i) ∈ S] + δi for all S ∈ Σqi

2 .

We enforce this definition with the Gaussian mechanism,

defined next. We use s1(·) for the largest singular value of a

matrix, and Q to denote the Gaussian tail integral [23].

Lemma 1 (Gaussian mechanism; [6]). Let agent i use pri-

vacy parameters ǫi > 0 and δi ∈ (0, 1/2) and adjacency

parameter bi > 0. For outputs yi(k) = Cixi(k), the Gaus-

sian mechanism sets ỹi(k) = yi(k) + vi(k), with vi(k) ∼
1This notation comes from the fact that all such Z have finite truncations

with finite ℓ2-norm. See [6] for additional discussion.

N
(

0, σ2
i Iqi

)

, where Iqi is the qi × qi identity matrix, and

σi ≥ s1(Ci)bi
2ǫi

(Kδi +
√

K2
δi
+ 2ǫi), with Kδi := Q−1 (δi).

This is (ǫi, δi)-differentially private with respect to Adjbi .

For convenience, we set κ(δi, ǫi) =
1
2ǫi

(Kδi+
√

K2
δi
+ 2ǫi).

We use the Gaussian mechanism for the rest of the paper.

III. PROBLEM FORMULATION

We next introduce the private multi-agent LQG problem.

Below, we write diag(P1, . . . , Pn) :=
⊕n

i=1 Pi for matri-

ces P1 through Pn.

A. Multi-Agent LQ Formulation

Consider N agents indexed over i ∈ [N ]. At time k, agent i
has state xi (k) ∈ R

ni , with dynamics

xi(k + 1) = Aixi(k) +Biui(k) + wi(k),

where ui (k) ∈ R
mi , wi (k) ∈ R

ni , Ai ∈ R
ni×ni ,

and Bi ∈ R
ni×mi . The distribution of process noise

is wi (k) ∼ N (0,Wi), where Wi ∈ R
ni×ni is symmetric and

positive definite. All process noise terms are independent.

We define the state x(k) = (xT
1 (k) . . . x

T
N (k))T ∈ R

n

and control u(k) = (uT
1 (k) . . . u

T
N (k))T ∈ R

m, where

the dimensions n =
∑

i∈[N ] ni and m =
∑

i∈[N ] mi.

Along with w(k) = (wT
1 (k), . . . , w

T
N (k))T ∈ R

n,

and the matrices A = diag(A1, . . . , AN ) ∈ R
n×n and

B = diag(B1, . . . , BN ) ∈ R
n×m, we have the dynamics

x(k + 1) = Ax(k) +Bu(k) + w(k).

We consider infinite-horizon problems with cost

J (x, u)= lim
Kf→∞

1

Kf
E

{Kf
∑

k=1

(x (k)−x̄ (k))
T
Q (x (k)−x̄ (k))

+ u (k)
T
Ru (k)

}

,

where Q ∈ R
n×n and R ∈ R

m×m. The vector x̄i(k) ∈ R
ni

is agent i’s desired state at time k, and we define

x̄ (k) = (x̄T
1 (k) , . . . , x̄T

N (k))T . We make the standard as-

sumption that limk→∞ x(k) = x̄ exists [24].

Assumption 1. In the cost J , Q = QT ≻ 0 and R = RT ≻
0. The pair (A,B) is controllable, and there exists Ω such

that Q = ΩTΩ and such that the pair (A,Ω) is observable.

Assumption 1 is standard in LQ control [24]–[26], and it

guarantees the existence of a solution to an algebraic Riccati

equation that we will encounter below [24, Chapter 4].

B. Differentially Private Information Sharing

The cost J is generally non-separable, which means that

it cannot be minimized by agents using only knowledge of

their own states. We therefore introduce a cloud computer

to aggregate information and distribute control inputs to the

agents. The cloud has been used in cyber-physical systems,

e.g., in SCADA-based monitoring and state estimation [13]–

[15], [27], and is a natural choice here.
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At time k, the cloud requests from agent i the output value

yi (k) = Cixi (k), where Ci ∈ R
qi×ni . To protect its state

trajectory, agent i sends a differentially private form of yi to

the cloud. The cloud uses these private outputs to compute

optimal inputs for the agents. Agents use these inputs in their

local state updates, and then this process repeats.

Agent i adds noise to each yi (k) before sending it to the

cloud to enforce differential privacy for xi. Agent i selects

privacy parameters ǫi > 0 and δi ∈ (0, 1/2) and adjacency

parameter bi > 0. Then agent i sends the cloud

ỹi (k) := yi (k) + vi (k) = Cixi (k) + vi (k) , (1)

where the privacy2 noise vi (k) ∼ N
(

0, σ2
i Iqi

)

and

σi ≥ κ (δi, ǫi) s1 (Ci) bi from Lemma 1. The full privacy

vector is v (k) = (vT1 (k) , . . . , vTN (k))T , and, for all k, we

have v (k) ∼ N (0, V ) with V = diag
(

σ2
1Iq1 , . . . , σ

2
NIqN

)

.

Below we use C = diag(C1, . . . , CN ).
Agents’ reference trajectories are a source of side infor-

mation that can reveal their intentions. However, agents do

not need to reveal their whole reference trajectories to the

cloud. As written, the cost J depends on x̄(k) for all k, but,

leveraging the standard average cost-per-stage formulation,

one can replace x̄(k) with x̄ for all k with no loss of

optimality; see [24] for a thorough discussion. We emphasize

that this change is independent of privacy and is a standard

approach in infinite-horizon LQG. As a result, only the limit

of agent i’s reference trajectory, denoted x̄i, is needed by the

cloud to compute optimal inputs. Agent i thus privatizes x̄i

before sharing it3. Agent i selects privacy parameters ǭi > 0
and δ̄i ∈ (0, 1/2) and adjacency parameter βi. Two reference

limits x̄i, x̄
′
i are adjacent if ‖x̄i − x̄′

i‖2 ≤ βi. Then privacy

noise is added via x̃i := x̄i + w̄i. Using the rules for

privatizing static data in [6, Lemma 1], agent i generates noise

via w̄i ∼ N
(

0, σ̄2
i Ini

)

, with σ̄i ≥ κ
(

δ̄i, ǭi
)

βi.

Problem 1. Let the initial estimate x̂(0) = E[x(0)] and the

matrices A, B, C, V , and W be public information. Minimize

J̃ (x, u) = lim
Kf→∞

1

Kf
E

{ Kf
∑

k=1

(x (k)− x̃)
T
Q (x (k)− x̃)

+ u (k)
T
Ru (k)

}

over all control signals u with u (k) ∈ R
m, subject to

x (k + 1) = Ax (k) +Bu (k) + w (k)

ỹ (k) = Cx (k) + v (k) ,

where agent i has privacy parameters (ǫi, δi) and (ǭi, δ̄i).

2In Equation (III-B), measurement noise inherent to the system can be
included, and all analyses permit this change. The form of various Riccati
equations will remain the same, with instances of V replaced by the sum
of V and the measurement noise covariance matrix. However, we focus on
bounding the effects of privacy, and thus exclude measurement noise.

3We expect privatizing the reference limit to be unproblematic in applica-
tions in which it only changes the cost incurred, e.g., in applications where
states are non-physical quantities. However, if the reference also encodes some
notion of safety that could be affected by privacy, e.g., collision avoidance,
the approach we present can be augmented with a low-level reactive controller
for that purpose, such as a control barrier function [28].

IV. PRIVATE LQG TRACKING CONTROL

Problem 1 is an infinite-horizon LQG problem whose opti-

mal controller [29] is

u∗ (k) = Lx̂ (k) +Mg, (2)

where M = −
(

R+BTKB
)−1

BT and L = MKA. Here,

K is the unique positive semidefinite solution to the discrete

algebraic Riccati equation

K = ATKA−ATKB
(

R+BTKB
)−1

BTKA+Q

and g solves g = AT [I − KB(R + BTKB)−1BT ]g − Qx̃.

Without privacy, g would depend on x̄, but the cloud only

receives its private form, x̃, and this is what it must use.

Computing state estimates for infinite time horizons can

use a time-invariant Kalman filter [24, Section 5.2] whose

prediction step is x̂−(k + 1) = Ax̂ (k) + Bu (k). The a

posteriori state estimate x̂(k) is computed with

x̂(k+1)= x̂−(k+1)+ΣCTV −1
(

ỹ (k+1)− Cx̂−(k+1)
)

,

where the a posteriori error covariance matrix Σ is given by

Σ = (CTV −1C+Σ−1)−1, and the a priori error covariance Σ
is the unique positive semidefinite solution to the discrete alge-

braic Riccati equation Σ = A(Σ−1 + CTV −1C)−1AT +W .

The terms K,L,M,Σ,Σ, and g can be all computed before-

hand by the cloud to reduce its computational load at runtime.

We solve Problem 1 in Algorithm 1: for all i ∈ [N ],
Algorithm 1 provides (ǫi, δi)-differential privacy for agent i’s
state trajectory and (ǭi, δ̄i)-differential privacy for x̄i.

Algorithm 1: Differentially Private LQG (Solution to

Problem 1)

Data: Public information: Ai, Bi, Ci, ǫi, δi, ǭi, δ̄i,
x̂i(0), Wi, and Vi for all i, and Q, R

1 For all i, agent i chooses (ǫi, δi) and (ǭi, δ̄i). It

computes x̃i and sends it to the cloud

2 In the cloud, compute K , L, M , Σ, Σ, and g
3 for k = 0, 1, 2, . . . do

4 for i = 1, . . . , N do

5 Agent i sends the cloud the private

output ỹi(k) := Cixi(k) + vi(k)

6 In the cloud, compute u∗(k) via (IV), send u∗
i (k)

to agent i
7 for i = 1, . . . , N do

8 Agent i updates its state via

xi(k + 1) = Aixi(k) +Biu
∗
i (k) + wi(k)

The feedback control signals u∗
i , i ∈ [N ], are computed

using estimates of agents’ states, and these state estimates are

functions of the private output trajectories ỹi, i ∈ [N ]. The

signals u∗
i are thus post-processing on private data and do not

reveal agents’ state trajectories. In addition, knowledge of how

u∗
i depends upon the xi’s is equivalent to knowledge of agents’

dynamics, which is often assumed to be public information and

is unproblematic for privacy. Therefore, this use of a feedback

controller does not harm privacy.
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V. QUANTIFYING ERROR INDUCED BY PRIVACY

Algorithm 1 solves Problem 1, though adding privacy noise

makes it more difficult for the cloud to compute optimal

control values. Indeed, the purpose of differential privacy is to

protect an agent’s state from the cloud, other agents, and any

eavesdroppers. Thus, the cloud is forced to estimate agents’

states to generate control values for them. Accordingly, in this

section we quantify the ability of the cloud to estimate the

agents’ states as a measure of the impact of privacy.

The cloud runs a Kalman filter and computes the input

u∗ (k), though privacy noise only affects the Kalman filter

due to the certainty equivalence principle [24]. We therefore

quantify the impact of privacy upon the Kalman filter in

Algorithm 1 by investigating the best estimate that can be

computed with differentially private outputs.

We proceed by developing trace bounds for the a priori

error covariance matrix Σ and the a posteriori error covariance

matrix Σ, which are, respectively, equal to the steady-state

mean-square error (MSE) of the prediction and estimation

steps in the Kalman filter. Because the Kalman filter minimizes

both of these quantities, lower bounds on them are lower

bounds on (asymptotic) MSE for any filtering strategy.

We use λn(Υ) ≤ · · · ≤ λ1(Υ) to denote the ordered eigen-

values of the matrix Υ. For simplicity, consider C diagonal.

Noting that CTV −1C = diag
(

C2
11

σ2
1
, . . . ,

C2
nn

σ2
n

)

, we define

l = argmin
1≤i≤n

C2
ii

σ2
i

, u = argmax
1≤i≤n

C2
ii

σ2
i

. (3)

Theorem 1. Suppose every agent shares its private output

trajectory, and the cloud has all public information. Then the

steady-state a priori MSE of the Kalman filter is bounded via

trW +
σ2
utr(ATA)λn(W )

σ2
u + λn(W )C2

u

≤ trΣ ≤ trW +
σ2
l tr(ATA)

C2
l

and the steady-state a posteriori MSE is bounded via

nσ2
u

C2
u + σ2

uλ
−1
n (W )

≤ trΣ ≤ n
σ2
l

C2
l

,

where σl = κ(δl, ǫl)s1(Cl)bl and σu = κ(δu, ǫu)s1(Cu)bu are

the minimum and maximum privacy noise among agents.

Proof: See the appendix. �

These bounds relate privacy to the accuracy of information

shared with the cloud and give insight into differential pri-

vacy’s protections in conventional estimation-theoretic terms.

We next leverage these bounds to guide privacy calibration.

VI. GUIDELINES FOR SELECTING PRIVACY PARAMETERS

Calibrating privacy can be challenging. The computer sci-

ence literature has studied this problem [30], though, to

the best of our knowledge, there are not control-theoretic

guidelines for calibrating privacy. Therefore, in this section,

we develop such techniques. The privacy parameter δ can be

interpreted as the probability that ǫ-differential privacy fails,

and is typically [6] chosen in the range [10−5, 10−1] on this

basis. The parameter ǫ can be interpreted as the privacy loss

of differential privacy, and it is typically the parameter to be

tuned. We therefore develop guidelines for calibrating ǫ.

Theorem 2. Suppose the cloud has all public informa-

tion, and agent i shares its private output trajectory ỹi,
where ỹi(k) = Cixi(k) + vi(k). Take δi ∈ [10−5, 10−1] and

set σi = s1(Ci)κ(δi, ǫi)bi. Suppose we want the MSE in the

cloud’s state estimates to be bounded below by Bl > 0 and

above by Bu > Bl. These bounds are attained if

1

8

(

1 +
√
36η4 + 1

η4

)2

≤ ǫi ≤
1

η3

for all i, where

η3 :=

(

BlC
2
u

s1(Ci)2b2i
(

n−Blλ
−1
n (W )

)

)1/2

, η4 :=

(

BuC
2
l

ns1(Ci)2b2i

)1/2

.

Proof: See the appendix. �

Theorem 2 provides guidelines for choosing ǫi, which

allows agents to make informed decisions for privacy. With

this ability, we next examine privacy’s impact upon the cost J .

VII. THE CONTROL-THEORETIC COST OF PRIVACY

Implementing differential privacy adds noise where it would

otherwise be absent, and we expect privacy to increase the

cost J relative to a non-private implementation. Without

any cost considerations, one could add noise of very large

variance to provide arbitrarily strong privacy. However, private

information is used to compute control inputs, which affect

future states. Thus, there is a need to balance privacy and per-

formance. The existing literature has explored several notions

of a “cost of privacy;” LQG minimizes J , and we therefore

compute the increase in J due to privacy, which offers a “cost

of privacy” in standard control-theoretic terms.

Theorem 3 (Cost of Privacy). Let J0(x, u) be the cost of

Algorithm 1 without privacy, i.e., with vi(k) = w̄i = 0 for all i
and k. Let J̃(x, u) be the cost of Algorithm 1 with privacy.

Then the cost of privacy in LQG, denoted ∆J , is

∆J (x, u) = J̃(x, u)− J0(x, u) (4)

= tr
(

KΣ+ (Q−K)Σ
)

− tr (KW )

+ tr(QW ) + tr(HTRHW ),

where H = M
[

I − (A+BL)T
]−1

.

Proof: See the appendix. �

After selecting a privacy level and computing its cost, agents

may wish to change their privacy levels to tune costs. For

example, agents may choose to relax privacy for significant

reductions in ∆J . A natural way to analyze these changes is

with the derivative of the cost of privacy ∆J with respect to ǫi;
recalling that δi is typically fixed a priori, ǫi is the parameter

to be tuned. For simplicity, we take ǭi = ǫi = ǫ, δ̄i = δi = δ,

and s1(Ci)bi = ω for all i.
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Theorem 4. Let A be stable. Then the sensitivity of the cost

of privacy to changes in privacy is lower-bounded via

d∆J

dǫ
≥
(

−ω

ǫ
κ(δ, ǫ) +

ω

2ǫ

1
√

K2
δ + 2ǫ

)

·
(

λ1(K)
−2σtr(FTF )

λn(U)
+ 2σtrQ+ 2σtr

(

HTRH
)

+

λ1(Q−K)

[

max

{−2σtr(FTF )

λ1(U)
, 0

}

λn

(

Ū
)

+tr
(

2σF̄T F̄
)

])

and upper-bounded via

d∆J

dǫ
≤
(

−ω

ǫ
κ(δ, ǫ) +

ω

2ǫ

1
√

K2
δ + 2ǫ

)

·
(

λn(K)max

{−2σtr(FTF )

λ1(U)
, 0

}

+ 2σtrQ+ 2σtr
(

HTRH
)

λn(Q−K)

[

−2σtr(FTF )

λn(U)
λ1

(

Ū
)

+ tr
(

2σF̄T F̄
)

])

,

where we use the matrices P = CT
(

CΣCT + V
)−1

CΣAT ,

U = (AT −P )(A−PT )− I , P̄ = CT
(

CΣCT + V
)−1

CΣ,

F =
(

CΣCT + V
)−1

CΣAT , F̄ =
(

CΣCT + V
)−1

CΣ,

and Ū = (I − P̄ )(I − P̄T ).

Proof: See the appendix. �

Theorem 4 explores the continuum of privacy costs that

result from varying ǫ, and for a given problem it provides

parameter regimes that either make it useful or not to relax

privacy. One may also wish to enforce hard constraints on

performance. Next, we provide guidelines for choosing the

privacy parameters {ǫi}i∈[N ] to enforce a desired cost bound.

Theorem 5. Suppose a performance requirement

is given as a bound on cost by requiring

J̃(x, u) ≤ α. Take δi ∈ [10−5, 10−1] and set

σi = s1(Ci)κ(δi, ǫi)bi. Then Algorithm 1 attains

J̃(x, u) ≤ α if, for all i, ǫi ≥ 1
8

(

1+
√
36η5+1
η5

)2

, where

η5=





Bu−λ1(K)trW−x̄TQx̄+gTB(R+BTKB)
−1

BT g

s1(Ci)2b2i

(

λ1(K) tr(AT A)

C2
l

+tr(HT RH)+tr(Q)

)





1/2

.

Proof: See the appendix. �

VIII. CASE STUDY

Load Frequency Control (LFC) regulates power flow to

different areas while balancing load and generation. In our

framework, each area is an agent, and we consider a system of

ten decoupled areas. LFC requires transmitting measurements

from remote terminal units (RTUs) to a control center and

control signals from the control center to the plant side.

This aggregation and communication have well-established

privacy concerns [1], [2], and we use Algorithm 1 for it. The

continuous time dynamic model of the multi-area LFC system

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7
1014

Fig. 1: The time-average cost incurred by ten power system areas
with privacy (solid line) and without privacy (dashed line). Privacy
increases costs, though these increases become small relative to the
noise-free cost, indicating that privacy’s impact is not excessive. This
simulation was performed 100 times and the average over these runs
is plotted.
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Fig. 2: The squared error of the cloud’s state estimates (solid line),
the lower bound on estimation error in Theorem 1 (dotted line), and
the upper bound on estimation error in Theorem 1 (dashed line) over
200 timesteps. We see that instantaneous a posteriori error typically
obeys our MSE bounds, and on average lies within the bounds.

is given by Ẋ(t) = AcX(t) + BcU(t), and the matrices Ac

and Bc can be found in [12]. The state vector for agent i is

xi(t) = [∆f i(t), ∆P i
g(t), ∆P i

tu(t), Λi(t)]T ∈ R
4,

where ∆f i(t),∆P i
g(t), and ∆P i

tu(t) are the frequency de-

viation, generator power deviation, and position value of the

turbine, respectively. The control input error on the i-th power

area is denoted by Λi(t) =
∫ t

0
ϑi∆f i(s)dt, where ϑi is the

frequency bias factor. We simulate 5 agents with dynamics of

Area 1 from [12] and 5 agents with dynamics of their Area 2.

We discretize the dynamics of X(t) with A = eAch

and B =
∫ h

0 eAcτBcdτ , where h is the sampling period.

We have C = I40×40 and W = I40×40. We initialize all

states to zero. All areas select identical privacy parameters,

namely, (ǫi, δi) = (ln 3, 0.001) for all i. In addition, x̄i = 0
is made private with

(

ǭi, δ̄i
)

= (ln 3, 0.2). For the cost, we

choose Qij = 100 for all i and j, and we set Rii = 100
and Rij = 5.

The effects of privacy on cost are shown in Figure 1. As

expected, the cost with privacy is higher than without privacy.

However, this increase becomes relatively modest over time,

which indicates that privacy is well-suited to the long-horizon

problems we consider. In Figure 2, we show the instantaneous
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Fig. 3: Even with privacy, control values provided by the cloud are
able to regulate an agent’s state to remain near its desired trajectory.

error of the cloud’s state estimates, and we compare that

with the bounds in Theorem 1; we note that we plot the

instantaneous error, but the bounds are for mean-square error.

As expected, there are ephemeral bound violations by the

instantaneous error, and it is shown that on average, the a

posteriori error lies within the bounds in Theorem 1. This

illustrates that privacy is compatible with the cloud estimating

agents’ states under privacy. Finally, Figure 3 illustrates the

behaviour of the states of one of the areas.

IX. CONCLUSIONS

We have studied distributed linear-quadratic control with

differential privacy and bounded the uncertainty and cost in-

duced by privacy. Future work will develop differential privacy

for other optimal control problems, including in model-free

contexts at the intersection of control and learning [31].
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X. APPENDIX

The following lemmas will be used in deriving error bounds.

Lemma 2. [32, Fact 5.12.4] Let Υ and Θ
be symmetric n × n matrices. If Υ ≻ 0,

then λn(Θ)tr(Υ) ≤ tr(ΥΘ) ≤ λ1(Θ)tr(Υ).
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Lemma 3. [32, Theorem 8.4.11.] Let Υ and Θ be n × n
Hermitian matrices. Then

λ1(Υ) + λn(Θ) ≤ λ1(Υ + Θ) ≤ λ1(Υ) + λ1(Θ)

λn(Υ) + λn(Θ) ≤ λn(Υ + Θ) ≤ λn(Υ) + λ1(Θ).

Proof of Theorem 1: The steady-state MSE of the Kalman

filter’s predictions is tr(Σ). Taking the trace of the Riccati

equation defining Σ, we obtain trΣ− trW = tr
[

ATA(Σ−1 +

CTV −1C)−1
]

, where we have used the cyclic permutation

property of the trace. Next, we use Lemma 2 to write

trΣ− trW ≥ tr(ATA)λn

[

(Σ−1 + CTV −1C)−1
]

≥ tr(ATA)

λ1(Σ−1) + λ1

(

CTV −1C
) =

tr(ATA)
1

λn(Σ) + λ1

(

CTV −1C
) ,

where we apply Lemma 3 on the second line to split up

the eigenvalues and use the fact that λ1(Σ
−1) = 1/λn(Σ)

in the final step. It is shown in [33, Theorem 3.1] that

Σ � W , and therefore λn(Σ) ≥ λn(W ). Using this fact and

Equation (V) completes the first part of the proof. Similarly,

applying Lemmas 2 and 3 to the same Riccati equation,

trΣ− trW ≤ tr(ATA)λ1

[

(Σ−1 + CTV −1C)−1
]

≤ tr(ATA)

λn(Σ−1) + λn(CTV −1C)
≤ σ2

l tr(ATA)

C2
l

,

where the second step uses λ1(Υ
−1) = 1/λn(Υ) and the third

step uses Lemma 3 to split the eigenvalues.

The steady-state MSE of the Kalman filter’s state estimates

is tr(Σ). Using Lemma 2,

trΣ ≥ n

λ1(CTV −1C +Σ−1)
≥ n

λ1(CTV −1C) + λ1(Σ−1)

≥ n

λ1(CTV −1C) + λ−1
n (W )

=
nσ2

u

C2
u + σ2

uλ
−1
n (W )

,

where in the second inequality we use Lemma 3 to split the

eigenvalues. In the last line, we use λn(Σ) ≥ λn(W ) [33,

Theorem 3.1] and Equation (V).

Using Lemma 2, an upper bound can be derived with

trΣ ≤ nλ1

(

(CTV −1C +Σ−1)−1
)

≤ n

λn(CTV −1C)
,

where we have used Lemma 3 to split the eigenvalues. Using

Equation (V) completes the proof. �

Proof of Theorem 2: Choose ǫi ≥ 1
8

(

1+
√
36η4+1
η4

)2

and solve

for η4 to get 9+
√
2ǫi

2ǫi
≤ η4. Choosing δi ∈ [10−5, 10−1] gives

Kδi ∈ [1, 4.5]. Then
2Kδi

+
√
2ǫi

2ǫi
≤ η4. Because

√
υ + θ ≤√

υ +
√
θ, we can lower-bound the left-hand-side to write

κ(δi, ǫi) ≤ η4. Squaring, substituting in η4, and rearranging we

find s1(Ci)
2κ(δi, ǫi)

2b2i ≤ BuC
2
l

n , which implies σ2
l ≤ BuC

2
l

n .

Comparing to Theorem 1, we see that trΣ ≤ Bu.

Next, choose ǫi ≤ 1
η3

. Given Kδi ∈ [1, 4.5], we may write

η3 ≤ Kδi

ǫi
. We substitute for η3 and square both sides to write

BlC
2
u

s1(Ci)2b2i
(

n−Blλ
−1
n (W )

) ≤
(

Kδi

ǫi

)2

.

Using
Kδi

ǫi
≤ κ(δi, ǫi) and rearranging, we have

BlC
2
u

n−Blλ
−1
n (W )

≤ s1(Ci)
2κ(δi, ǫi)

2b2i .

This implies
BlC

2
u

n−Blλ
−1
n (W )

≤ σ2
u. Isolating Bl and applying

Theorem 1 implies trΣ ≥ Bl. �

Proof of Theorem 3: The cost of privatizing x̄ specifically is

tr
(

[Q +HTRH ]W
)

, (5)

which is obtained from the authors’ technical report in [29]

and application of [34, Equation (318)]. Next, using [35] and

Equation (X), the total cost incurred by Algorithm 1 is

J̃(x, u) = J(x, u) + tr(QW ) + tr(HTRHW ) =

lim
Kf→∞

1

Kf

Kf
∑

k=1

tr
(

KΣ+ (Q−K)Σ
)

+ lim
Kf→∞

1

Kf

Kf−1
∑

k=0

x̄TQx̄− gTB
(

R+BTKB
)−1

BT g

+ tr(QW ) + tr(HTRHW ),

where the second step follows from [35, Equation 4.12]. Then

(3) follows by subtracting the cost without privacy noise. �

Proof of Theorem 4: Using chain rule we have d∆J
dǫ =

d∆J
dσ

dσ
dǫ . For the first term, we have

d∆J(x, u)

dσ
= tr

[

d
(

KΣ+ (Q−K)Σ
)

dσ

]

+
d
[

−tr (KW ) + tr(QW ) + tr(HTRHW )
]

dσ
(6)

where we have used [34, Equation 36] to move the derivative

inside the trace. The matrices K and Q − K are symmet-

ric, and trdΣdσ , trdΣdσ > 0 because filter error monotonically

increases with privacy noise. Therefore, by Lemma 2, the first

term in (X) can be bounded by

λn(K)tr
dΣ

dσ
+ λn(Q−K)tr

dΣ

dσ
≤ tr

d
(

KΣ+ (Q−K)Σ
)

dσ

≤ λ1(K)tr
dΣ

dσ
+ λ1(Q −K)tr

dΣ

dσ
. (7)

By differentiating the discrete algebraic Riccati equation that

defines Σ, we have

dΣ

dσ
= A

dΣ

dσ
AT −A

dΣ

dσ
CT

(

CΣCT + V
)−1

CΣAT

−AΣCT
(

CΣCT + V
)−1

C
dΣ

dσ
AT

+AΣCT
(

CΣCT+V
)−1

(

C
dΣ

dσ
CT+2σI

)

(

CΣCT+V
)−1CΣAT.

Taking the trace of both sides and simplifying, we find

tr
(

U dΣ
dσ

)

= −2σtr(FTF ). The matrix U is symmetric, and,

because A is stable, it is positive definite. Therefore by

applying Lemma 2 and simplifying we find

max

{−2σtr(FTF )

λ1(U)
, 0

}

≤ tr
dΣ

dσ
≤ −2σtr(FTF )

λn(U)
. (8)
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Next we differentiate the equation defining Σ to find

dΣ

dσ
=

dΣ

dσ
− dΣ

dσ
CT
(

CΣCT + V
)−1

CΣ

− ΣCT
(

CΣCT + V
)−1

C
dΣ

dσ

+ΣCT(CΣCT+V )−1

(

C
dΣ

dσ
CT+2σI

)

(CΣCT+V )−1CΣ.

Taking the trace gives trdΣdσ = tr
[

dΣ
dσ Ū

]

+ tr
(

2σF̄T F̄
)

. By

substituting the bounds in Equation (X) we get

max

{−2σtr(FTF )

λ1(U)
, 0

}

λn

(

Ū
)

+ tr
(

2σF̄T F̄
)

≤ tr
dΣ

dσ

≤ −2σtr(FTF )

λn(U)
λ1

(

Ū
)

+ tr
(

2σF̄T F̄
)

. (9)

Substituting the results from Equations (X) and (X) into (X)

and assemble the results back in Equation (X), we get

λn(K)max

{−2σtr(FTF )

λ1(U)
, 0

}

+ λn(Q−K)

[

−2σtr(FTF )

λn(U)
λ1

(

Ū
)

+tr
(

2σF̄T F̄
)

]

+2σtrQ+2σtr
(

HTRH
)

≤ d∆J

dσ
≤ λ1(K)

−2σtr(FTF )

λn(U)

+λ1(Q−K)

[

max

{−2σtr(FTF )

λ1(U)
, 0

}

λn

(

Ū
)

+tr
(

2σF̄T F̄
)

]

+ 2σtrQ + 2σtr
(

HTRH
)

. (10)

Next, we observe that dσ
dǫ < 0. We multiply Equation (X)

by dσ
dǫ < 0 and this completes the proof. �

Proof of Theorem 5: Choosing ǫi ≥ 1
8

(

1+
√
36η5+1
η5

)2

and

solving for η5, we find 9+
√
2ǫi

2ǫi
≤ η5. Taking δ ∈ [10−5, 10−1]

implies Kδi ∈ [1, 4.5], and as a result we can write
2Kδi

+
√
2ǫi

2ǫi
≤ η5. Using

√
υ + θ ≤ √

υ +
√
θ we take Kδi

inside the square root, leading to κ(δi, ǫi) ≤ η5. Expanding,

this is equivalent to

σ2
i ≤

Bu−λ1(K)trW−x̄TQx̄+gTB
(

R+BTKB
)−1

BTg

λ1 (K) tr(ATA)
C2

l

+ tr(HTRH) + tr(Q)
.

By rearranging terms and using σ̄i = σi = σl, we find

λ1 (K)

[

trW +
σ2
l tr(ATA)

C2
l

]

+ x̄TQx̄

−gTB
(

R+BTKB
)−1

BT g+σ̄2
i

[

tr(HTRH) + tr(Q)
]

≤ Bu.

Using σ̄2
i ≤ λ1(W ) and Lemma 2, we have tr(QW ) +

tr(HTRHW ) ≤ tr(Q)λ1

(

W
)

+ tr(HTRH)λ1

(

W
)

and we

can write

λ1 (K)

[

trW +
σ2
l tr(ATA)

C2
l

]

+ x̄TQx̄ (11)

− gTB
(

R+BTKB
)−1

BT g + tr(QW ) + tr(HTRHW ) ≤ Bu.

From [33, Theorem 3.1] we know that Q − K � 0 and

thus λ1(Q−K) ≤ 0. Using this in Equation (X), we find

λ1 (K)

[

trW +
σ2
l tr(ATA)

C2
l

]

+ λ1 (Q−K)

[

nσ2
l

C2
l + σ2

l λ
−1
n (W )

]

+ x̄TQx̄

−gTB
(

R+BTKB
)−1

BT g+tr(QW )+tr(HTRHW ) ≤ Bu.

Using Theorem 1, we can write

λ1 (K) tr (Σ) + λ1 (Q−K) trΣ+ x̄TQx̄

−gTB
(

R+BTKB
)−1

BT g+tr(QW )+tr(HTRHW ) ≤ Bu,

and therefore

tr (KΣ) + tr
[

(Q−K)Σ
]

+ x̄TQx̄

−gTB
(

R+BTKB
)−1

BT g+tr(QW )+tr(HTRHW ) ≤ Bu,

and we find J̃ (x, u) ≤ α, which completes the proof. �
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