
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, Friday 2nd April, 2021 01:18 1

Distributed synchronous and asynchronous
algorithms for semi-definite programming with

diagonal constraints
Xia Jiang, Xianlin Zeng, Member, IEEE, Jian Sun, Member, IEEE, and Jie Chen, Fellow, IEEE

Abstract—This paper develops distributed synchronous and
asynchronous algorithms for the large-scale semi-definite pro-
gramming with diagonal constraints, which has wide applications
in combination optimization, image processing and community
detection. The information of the semi-definite programming is
allocated to multiple interconnected agents such that each agent
aims to find a solution by communicating to its neighbors. Based
on low-rank property of solutions and the Burer-Monteiro fac-
torization, we transform the original problem into a distributed
optimization problem over unit spheres to reduce variable di-
mensions and ensure positive semi-definiteness without involving
semi-definite projections, which are computationally expensive.
For the distributed optimization problem, we propose distributed
synchronous and asynchronous algorithms, both of which reduce
computational burden and storage space compared with existing
centralized algorithms. Specifically, the distributed synchronous
algorithm almost surely escapes strict saddle points and converges
to the set of optimal solutions to the optimization problem. In
addition, the proposed distributed asynchronous algorithm allows
communication delays and converges to the set of critical points
to the optimization problem under mild conditions. By applying
proposed algorithms to image segmentation applications, we
illustrate the efficiency and convergence performance of the two
proposed algorithms.

Index Terms—Semi-definite programming with diagonal con-
straints, synchronous and asynchronous algorithms, low-rank
matrices, distributed optimization.

I. INTRODUCTION

SEMI-DEFINITE programming (SDP) is an active subfield
of convex optimization and has attracted considerable

attention due to its widely applications in diverse fields such

This work was supported in part by the National Natural Science Foundation
of China (Nos. 61720106011, U1613225, 62073035, 61925303), Program for
Changjiang Scholars and Innovative Research Team in University (IRT1208),
the Youth ChangJiang Scholars Program, the National Key Research and
Development Program of China under Grant 2018YFB1700100 and Beijing
Institute of Technology Research Fund Program for Young Scholars. (Corre-
sponding author: Jian Sun.)

X. Jiang (jiangxia@bit.edu.cn) and J. Sun (sunjian@bit.edu.cn) are with
Key Laboratory of Intelligent Control and Decision of Complex Systems,
School of Automation, Beijing Institute of Technology, Beijing, 100081,
China, and also with the Beijing Institute of Technology Chongqing Innovation
Center, Chongqing 401120, China

X. Zeng (xianlin.zeng@bit.edu.cn) is with Key Laboratory of Intelligent
Control and Decision of Complex Systems, School of Automation, Beijing
Institute of Technology, Beijing, 100081, China

J. Chen (chenjie@bit.edu.cn) is with Beijing Advanced Innovation Center
for Intelligent Robots and Systems (Beijing Institute of Technology), Key Lab-
oratory of Biomimetic Robots and Systems (Beijing Institute of Technology),
Ministry of Education, Beijing, 100081, China, and also with the School of
Electronic and Information Engineering, Tongji University, Shanghai, 200082,
China

as control theory [1]–[3], combinatorial optimization [4], [5],
operations research [6], [7], and machine learning [8]–[10].
Formally, it aims to maximize or minimize a linear objective
function subject to a constraint that is an affine combination
of positive semi-definite matrices. One important class of
SDP problem is the SDP with diagonal constraints, which
is a relaxation of the “maximum cut” problem [11] and also
appears in phase retrieval [12] and Z/2Z synchronization [13].

Various algorithms have been developed to solve SDP with
diagonal constraints but tend to be computational demanding
as variable dimensions scale. On one hand, the arithmetic
cost scales badly as the dimension of matrices increases,
especially for high-order algorithms. For example, each itera-
tion costs O(n3) arithmetic operations with an interior-point
solver, which solves SDP in polynomial time [14], and the
computation may run out of memory and time if n is greater
than several thousands [15]. On the other hand, the storage
cost of each iteration may scale beyond the memory of single
computer if the number of unknowns reaches tens of thousands
[16]. Hence, the design of efficient algorithms for large-scale
SDP with diagonal constraints is still a challenging problem.

To reduce the computational burden of large-scale SDP,
there are many explorations of efficient centralized works
in recent years

[15], [17]–[19]
. One key idea is using the Burer-

Monteiro factorization that expoits the low-rank property of
matrix solutions by replacing the original large scale positive
semi-definite matrix as the product of two “tall” matrices with
lower dimensions to reduce storage cost and avoid computing
the semi-definite projection. Using this idea, in [15], [17],
[20], [21], authors transform general SDP into non-convex op-
timization problems by making use of the low-rank property of
solutions, and propose augmented Lagrangian algorithms and
Riemannian manifold methods. In addition, the challenging
positive semi-definite constraints are eliminated with the cost
of introducing non-convexity to the optimization problems.
Surprisingly, this change to non-convex problems does not
cause many difficulties because local solutions tend to recover
the optimal solution in practice. Despite these advances, the
existing augmented Lagrangian algorithms and Riemannian
manifold methods do not guarantee converging to global
optima, and suffer from slow convergence and difficulties
in selecting step sizes. For SDP with diagonal constraints,
some recent works [18], [22] developed block-coordinate
algorithms with rigorous convergence analysis, which have
free parameters and better optimization performance than prior
works

[15], [17], [20], [21]
. All these centralized algorithms own fine

ar
X

iv
:2

10
4.

00
36

0v
1

 [
m

at
h.

O
C

]
 1

 A
pr

 2
02

1

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, Friday 2nd April, 2021 01:18 2

practical evidences for the transformed non-convex optimiza-
tions. However, as the matrix dimension grows too large,
the lower dimensional matrices in these algorithms may still
take too much storage space for a single computer, such
as these in some image processing problems. In addition,
some information and data of practical problems may be
generated and stored at different locations and cannot be
communicated due to privacy considerations. Hence, these
centralized algorithms can not be applied directly to large
scale problems with distributed information and distributed
algorithms are in need for large-scale SDP.

Distributed optimization algorithms offer a promising ap-
proach to address large scale matrix problems by using the
problem setup that the information is allocated over different
agents

[23]–[29]
. In distributed setting, agents have access to

local information and communicate with their neighbors to
seek for a global optimal solution

[30]–[32]
. For large-scale SDP,

many works in [1], [33]–[36] exploited the sparse structure
of SDP and introduced additional consensus constrains to
the transformed distributed problems. These works proposed
distributed algorithms based on alternating direction method of
multipliers (ADMM) with iterative message-passing. Whereas,
in ADMM, agents need to solve sub-semidefinite problems at
each iteration and have considerable computational burden.
Focusing on SDP with tree structures, [37] proposed a dis-
tributed primal-dual interior-point algorithm for constrained
semi-definite programming without introducing consensus
constraints. The algorithm in [37] is a second-order algorithm
that conducts a recursion over the tree structure to compute the
exact search directions and factorizes a relatively small matrix
during each iteration. Recently, [38] proposed a distributed
optimization design for solving continuous-time algebraic Ric-
cati inequalities, which have applications in distributed control
of multi-agent systems. This design is a first-order algorithm
and has well intuitive interpretations, but it needs computing
semi-definite projections, which are expensive for large-scale
matrices.

In this paper, we develop distributed first-order algorithms
for large-scale semi-definite programs with diagonal con-
straints by taking advantage of low-rank property of solutions
and the inherent sparsity of problems. The contributions of
this paper are summarized as follows.

• This paper proposes a study on the distributed algo-
rithms for SDP with diagonal constraints and distributed
coefficient matrices information. This study extends the
works in [15], [18], [20], [22] to distributed setups, which
have wide applications in power flow problems

[1], [33]
and

distributed state estimation/control
[35], [38]

. In addition, the
SDP problem in this paper does not require tree structures
as in [37].

• This paper designs distributed synchronous and asyn-
chronous algorithms for SDP with diagonal constraints by
solving an equivalent nonconvex optimization problem,
which is obtained using the Burer-Monteiro factoriza-
tion. In particular, the distributed algorithms reduce the
computational burden and storage cost on single agent
compared with the existing centralized algorithms [18],

[22] for SDP with diagonal constraints and show a su-
perior numerical performance in simulation experiments.
With the Burer-Monteiro factorization, the proposed al-
gorithms avoid the computational burden of projection to
semi-definite cone

[33]–[36]
. Compared with the distributed

second-order interior-point algorithm in [37], the pro-
posed first-order algorithms have lower complexity and
the distributed asynchronous algorithm performs well
without a global synchronous clock.

• This paper analyzes the convergence of our proposed
distributed algorithms. For the distributed synchronous
algorithm, we show that the variables converge to the set
of global optimal solutions almost surely under random
initializations, despite of the non-convexity of feasible
sets. For the distributed asynchronous algorithm, we show
that the variables converge to the set of critical points of
the nonconvex problem under mild conditions.

The remainder of the paper is organized as follows. Math-
ematical notations are given in section II. The semi-definite
programming description and distributed algorithms are pro-
posed in section III. The convergence properties of the pro-
posed algorithms are analyzed theoretically in section IV. The
efficiency of distributed algorithms is verified by simulations
in section V and the conclusion is made in section VI.

II. MATHEMATICAL NOTATIONS

We denote R as the set of real numbers, Rn as the set of n-
dimensional real column vectors, Rn×m as the set of n-by-m
real matrices, N as the set of natural numbers, Sn as the set
of n by n symmetric matrices, Sn+ as the set positive semi-
definite matrices, ∅ as the empty set, respectively. All vectors
in the paper are column vectors, unless otherwise noted. The
notation 0n denotes an n×1 vector with all elements of 0. For
a real vector v, ‖v‖ is the Euclidean norm and ‖v‖1 is 1-norm
defined by the sum of absolute values of elements. We denote
A′ as the transpose of matrix A, λmin(A) as the minimum
eigenvalue of the matrix A. For a symmetric matrix A, A � 0
denotes that A is positive semi-definite and A(i,j) is the (i, j)th
element of matrix A. For real matrices A and B with same
dimensions, 〈A,B〉 denotes the Frobenius inner product of two
real matrices such that 〈A,B〉 = tr(A′B) =

∑
i,j A(i,j)B(i,j).

In addition, A◦B denotes Hadamard product of two matrices,
whose elements are defined by [A◦B](i,j) = A(i,j)B(i,j). For
a twice-continuously differentiable function f(x), its gradient
and Hessian matrix are denoted as ∇f(x) and ∇2f(x).

For a set S, |S| denotes the number of elements in the set
S. For sets S1 and S2, S1 ⊂ S2 means that S1 is a subset
of S2, S1 ∪ S2 is the union of S1 and S2, S1 ∩ S2 is the
intersection of S1 and S2, and S1\S2 = S1− (S1∩S2). For a
real number a, dae is the smallest integer greater than a. For
a non-zero vector x ∈ Rn, the notation normal(x) is x

‖x‖ and
A = diag(x) ∈ Rn×n denotes a matrix with diagonal element
A(i,i) = xi.

Let X be a smooth manifold. Let f : X → R be a real-
valued twice-continuously differentiable function. A point x∗

is a critical point of f if ∇f(x∗) = 0d. If, in addition,
λmin(∇2f(x∗)) < 0, x∗ is a strict saddle point of f .

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, Friday 2nd April, 2021 01:18 3

III. PROBLEM DESCRIPTION AND DISTRIBUTED
ALGORITHM DESIGN

In this section, we present the problem of solving semi-
definite programming with diagonal constraints in a distributed
way. Then, we reformulate the problem into a distributed
non-convex optimization using the low-rank property of solu-
tions, and propose distributed synchronous and asynchronous
discrete-time algorithms.

A. Problem description and transformation

Let G = (V, E) be an arbitrary simple, undirected and
connected graph with the node set V = {1, · · · ,m} and the
edge set E = V × V . Let X ∈ Sn+ be the variable. For each
ĩ ∈ V , define Jĩ ⊂ {1, · · · , n} as an ordered set, where
n > m. Throughout this paper, we use (̃·) to denote the index
of agent in G and (·) to denote an element of J

(̃·). For example,
ĩ ∈ V denotes agent ĩ of G and j ∈ Jĩ is element j in Jĩ.
If Jĩ ∩ Jj̃ 6= ∅, then (̃i, j̃) ∈ E such that agents ĩ and j̃ can
communicate with each other.

The distributed semi-definite programming with diagonal
constraints is

min
X∈Sn+

m∑
ĩ=1

〈M ĩ
, X〉, (1a)

s. t. X(j,j) = 1, j ∈ {1, · · · , n}, (1b)

where M
ĩ ∈ Sn is a coefficient matrix such that M

ĩ

(j,k) = 0 if

(j, k) /∈ Jĩ × Jĩ, and
∑m
ĩ=1M

ĩ
= M . Define EJĩ×Jĩ ∈ Rn×n

as the 0 − 1 matrix with E(l,k) = 1 for (l, k) ∈ Jĩ × Jĩ and

E(l,k) = 0 otherwise. It is clear that 〈M ĩ
, X〉 = 〈M ĩ

, EJĩ×Jĩ ◦
X〉 for all i ∈ {1, . . . , n}. Without affecting solutions, the

local variable X
ĩ ∈ Sn+ to be determined by agent ĩ ∈ V is

defined as X
ĩ

= EJĩ×Jĩ ◦X . The objective of this paper is to
design a distributed algorithm for solving (1) such that each
agent ĩ ∈ V only knows local information M

ĩ ∈ Sn.
Example 3.1: Figure 1 illustrates the relationship of

global optimization variable X and local variables X
ĩ

(i ∈
{1, · · · , 4}), where elements with same indices in different
colored matrices are the same.

Remark 3.1: The centralized version of problem (1) is

min
X∈Sn+

〈M,X〉, s. t. Xi,i = 1, i ∈ {1, . . . , n}, (2)

which is a special case of generic semi-definite programming.
It appears as a convex relaxation to many problems, such
as the maximum cut (MAXCUT) problems

[11]
, community

detection
[39]

and image segmentation
[40]

. In practical problems
such as roadmaps or social networks, the dimension n may
be several millions or even billions, which makes centralized
computation hard. Hence, the development of distributed al-
gorithms for (1) is of great importance.

Remark 3.2: There are two scenarios in which the problem
(1) arises. In the first scenario, an arbitrary sparse SDP
problem in the standard centralized form is converted into a
distributed SDP with multiple positive semi-definite matrices

X ĩ by the idea of chordal decomposition of positive semi-
definite cones in [41]. In the second scenario, it is assumed
that the SDP is associated with a multi-agent network and
matches the formulation in (1) exactly, such as large-scale
image segmentation by multiple agents in section Simulation.

Since 〈M ĩ
, X〉 only depends on elements with indices in

Jĩ × Jĩ of variable X ∈ Sn+, define matrix M ĩ ∈ S|Jĩ| (X ĩ ∈
S|Jĩ|) as the remaining matrix by deleting elements of M

ĩ ∈
Sn+ (X

ĩ ∈ Sn+), whose indices are not in Jĩ × Jĩ. For ease of

notation, we define X ĩ
{j,k} , X

ĩ

(j,k) for (j, k) ∈ Jĩ × Jĩ and

ĩ ∈ V . Similarly, define M ĩ
{j,k} ,M

ĩ

(j,k) for (j, k) ∈ Jĩ × Jĩ
and ĩ ∈ V . Hence, problem (1) is equivalent to

min
X ĩ∈S

|J
ĩ
|

+ , ĩ∈V

m∑
ĩ=1

fĩ(X
ĩ), fĩ(X

ĩ) = 〈M ĩ, X ĩ〉, (3a)

s. t. X ĩ
{j,j} = 1, j ∈ Jĩ, (3b)

X ĩ
{l,k} = X j̃

{l,k}, ∀l, k ∈ Jĩ ∩ Jj̃ , (̃i, j̃) ∈ E ,
(3c)

where agent ĩ ∈ V knows M ĩ and computes a positive semi-
definite matrix variable X ĩ ∈ S|Jĩ|+ , (̃i, j̃) ∈ E specifies an
overlap between the local variables X ĩ and X j̃ of agents ĩ
and j̃.

In most existing distributed works
[33], [34]

for (1), the updating
of local variable X ĩ often involves a projection operator to the
positive semi-definite cone. If the dimension of local X ĩ of
large-scale SDP is large, the projection operator is difficult
and time-consuming. Hence, based on prior works on the
low-rank property of matrix variables, we further reduce the
computational and storage burden by representing X ∈ Rn×n
by V ′V with V = [v1, · · · , vn] ∈ Rp×n to avoid the projection
operator. It is well-known that the rank of an optimal solution
is at most d

√
2ne (see [42]). Let vĩs be the estimate of

vs by agent ĩ for s ∈ Jĩ and ĩ ∈ V . Without causing
confusions, we define V ĩ = [vĩs1 , · · · , v

ĩ
s|J

ĩ
|
] ∈ Rp×|Jĩ|, where

{s1, . . . , s|Jĩ|} = Jĩ, s1 < · · · < s|Jĩ|, and ĩ ∈ V . Hence,
the local variable X ĩ is replaced by X ĩ = V ĩ

′
V ĩ, where

V ĩ ∈ Rp×|Jĩ|, p >
√

2n. Then the semi-definite programming
(3) is rewritten as the following non-convex optimization
problem on unit spheres:

min
V ĩ, ĩ∈V

m∑
ĩ=1

f̃ĩ(V
ĩ), f̃ĩ(V

ĩ) = 〈M ĩ, V ĩ
′
V ĩ〉 (4a)

s. t. ‖vĩj‖ = 1, ∀ĩ ∈ V, j ∈ Jĩ (4b)

vĩs = vj̃s, ∀s ∈ Jĩ ∩ Jj̃ , (̃i, j̃) ∈ E , (4c)

where V ĩ ∈ Rp×|Jĩ| is local variable and M ĩ ∈ S|Jĩ| is local
coefficient matrix known by agent ĩ ∈ V .

The following assumption is needed.
Assumption 3.1:

(1) Graph G is undirected and connected.
(2) Each element of global coefficient matrix M =

∑m
ĩ=1M

ĩ

is non-negative and diagonal elements of M are zero.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, Friday 2nd April, 2021 01:18 4

11x

21x

31x

41x

51x

61x

X

12x

22x

32x

42x

52x

62x

13x

23x

33x

43x

53x

63x

14x

24x

34x

44x

54x

64x

15x

25x

35x

45x

55x

65x

16x

26x

36x

46x

56x

66x

1

11x

1

21x

1

31x

1

41x

1

51x

1

61x

1X

1

12x

1

22x

1

32x

1

42x

1

52x

1

62x

1

13x

1

23x

1

33x

1

43x

1

53x

1

63x

1

14x

1

24x

1

34x

1

44x

1

54x

1

64x

1

15x

1

25x

1

35x

1

45x

1

55x

1

65x

1

16x

1

26x

1

36x

1

46x

1

56x

1

66x

2

11x

2

21x

2

31x

2

41x

2

51x

2

61x

2X

2

12x

2

22x

2

32x

2

42x

2

52x

2

62x

2

13x

2

23x

2

33x

2

43x

2

53x

2

63x

2

14x

2

24x

2

34x

2

44x

2

54x

2

64x

2

15x

2

25x

2

35x

2

45x

2

55x

2

65x

2

16x

2

26x

2

36x

2

46x

2

56x

2

66x

3

11x

3

21x

3

31x

3

41x

3

51x

3

61x

3X

3

12x

3

22x

3

32x

3

42x

3

52x

3

62x

3

13x

3

23x

3

33x

3

43x

3

53x

3

63x

3

14x

3

24x

3

34x

3

44x

3

54x

3

64x

3

15x

3

25x

3

35x

3

45x

3

55x

3

65x

3

16x

3

26x

3

36x

3

46x

3

56x

3

66x

4

11x

4

21x

4

31x

4

41x

4

51x

4

61x

4X

4

12x

4

22x

4

32x

4

42x

4

52x

4

62x

4

13x

4

23x

4

33x

4

43x

4

53x

4

63x

4

14x

4

24x

4

34x

4

44x

4

54x

4

64x

4

15x

4

25x

4

35x

4

45x

4

55x

4

65x

4

16x

4

26x

4

36x

4

46x

4

56x

4

66x

Fig. 1. Matrix decomposition of global variable X over four agents.

(3) The integer p satisfies p >
√

2n.
Remark 3.3: Assumption 3.1 (1) is general in distributed

optimization. Since the norm of column variables vi is fixed
as one, M(i,i) = 0 does not affect the solution of optimization
problem. In addition, because elements of coefficient matrix
in MAXCUT problems and community detection are non-
negative, Assumption 3.1 (2) is practical for problem (1).
Assumption 3.1 (3) is a sufficient condition that optimal
solutions for V ĩ’s recover optimal solutions for X ĩ’s.

B. Distributed synchronous optimization algorithm
In this subsection, we propose a distributed synchronous

algorithm for the transformed distributed non-convex opti-
mization problem (4).

To present the algorithm, we need additional definitions and
notations. We define “children” and “parents” in graph G. For
the problem (4), there is an edge between agents ĩ and j̃ if
Jĩ ∩ Jj̃ 6= ∅. Without loss of generality, if indices j̃ < ĩ

and Jĩ ∩ Jj̃ 6= ∅, the agent j̃ is called the parent of agent
ĩ, denoted by par(̃i), and the set of children of agent ĩ is
denoted by ch(̃i). The message passed from agent r̃ ∈ ch(̃i)
to agent ĩ ∈ V is denoted by $r̃,̃i. Define the coupling
set of indices between column variables of agent ĩ and its
parent par(̃i) as Sĩ,par(̃i) = Jĩ ∩ Jpar(̃i) and the uncoupling
set of indices as Rĩ,par(̃i) = Jĩ\Sĩ,par(̃i). In addition, column
variables vĩjs with j ∈ Sĩ,par(̃i) are called coupling variables
of agent ĩ and its parent par(̃i), and column variables vĩj’s with
j ∈ Rĩ,par(̃i) are called uncoupling variables of agent ĩ and
its parent par(̃i). Accordingly, we have the similar notations
Sch(̃i),̃i and Rch(̃i),̃i.

Example 3.2: Fig. 2 gives a network to show the previous
definitions of S·,· and R·,·. Noted that Sch(̃i),̃i is an empty
set for agent ĩ with no children, such as agents 3̃, 4̃, 5̃. Ac-
cordingly, the message $r̃,̃i, r̃ ∈ ch(̃i) passed from children
agents is zero for ĩ = 3̃, 4̃, 5̃. The similar case Sĩ,par(̃i) = ∅
holds for the root agent, which have no parents.

For each agent ĩ ∈ V and j ∈ Rĩ,par(̃i), define

pĩj(t) ,
∑

l<j,l∈Jĩ

M ĩ
{j,l}v

ĩ
l(t+ 1) +

∑
l>j,l∈Jĩ

M ĩ
{j,l}v

ĩ
l(t).

Define the step-size θĩj as

θĩj ∈ (0,
1∑

s̃∈(̃i,ch(̃i)) ‖M s̃
{j,:}‖1

), j ∈ Rĩ,par(̃i) (5)

6

3 4

1

5

7
2

8

4,par(4)

4,par(4)

5,par(5)

5,par(5)

{3}

{6,7}

{3}

{8}

S

R

S

R

2,par(2)

2,par(2)

3,par(3)

3,par(3)

1

{1,4}

{3}

{4}

{5}

={1 2 4}

S

R

S

R

R

，，

4
J

5
J

2
J

1
J

3
J

Fig. 2. The coupling and uncoupling variables over a sparse graph. The
subscript elements (̃·) of set S or R denote different agents and the elements
(·) in the brace denote the indices of coupling variables among different
agents.

where M s̃
{j,:} denotes the jth row of matrix M

s̃
.

The massage passed from agent r̃ ∈ ch(̃i) to its parent ĩ ∈ V
is defined as

$r̃,̃i
j (t+ 1) ,

∑
l∈Jr̃

M r̃
{j,l}v

r̃
l (t+ 1) ∀j ∈ Sr̃,̃i. (6)

and $r̃,̃i
j (t+ 1) = 0 for j ∈ Rĩ,par(̃i)\Sr̃,̃i.

For ĩ ∈ V and j ∈ Rĩ,par(̃i), the variable vĩj(t+1) is updated
as

vĩj(t+ 1) = normal
(
vĩj(t)− θĩj

[
pĩj(t) +

∑
r̃∈ch(̃i)

$r̃,̃i
j (t+ 1)

])
.

(7)

The message sent from agent ĩ ∈ V to its parent par(̃i) is

$
ĩ,par(̃i)
j =

∑
l∈Jĩ

M ĩ
{j,l}v

ĩ
l(t+ 1) +

∑
r̃∈ch(̃i)

$r̃,̃i
j (t+ 1), (8)

where j ∈ Sĩ,par(̃i).
Define V = (V 1, · · · , V m). The distributed synchronous

algorithm is given in Algorithm 1.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, Friday 2nd April, 2021 01:18 5

Algorithm 1 Distributed Synchronous Algorithm (DSA)

1: Initialization: Initialize vĩj = v0 ∈ Rp such that ‖v0‖ = 1

for all ĩ ∈ V and j ∈ Jĩ.
2: while the stopping criteria is not satisfied do
3: for ĩ = m to ĩ = 1 do
4: for j ∈ Rĩ,par(̃i) do
5: if j ∈ Sch(̃i),̃i then
6: agent ĩ receives $r̃,̃i

j (t+ 1) (computed by
(6)) from its child r̃ ∈ ch(̃i).

7: end if
8: agent ĩ updates variable vĩj(t+1) following (7).
9: if j ∈ Sch(̃i),̃i then

10: agent ĩ sends vĩj(t+1) to its child r̃ ∈ ch(̃i),
i.e.,

vr̃j (t+ 1) = vĩj(t+ 1). (9)

11: end if
12: end for
13: for j ∈ Sĩ,par(̃i) do
14: if j ∈ Sch(̃i),̃i then
15: agent ĩ receives information $r̃,̃i

j from its
child r̃ ∈ ch(̃i).

16: end if
17: agent ĩ sends message $ĩ,par(̃i)

j (computed by
(8)) to its parent par(̃i).

18: end for
19: end for
20: t← t+ 1.
21: end while

The convergence performance of Algorithm 1 is provided
in the following theorem, whose proof is given in the next
section.

Theorem 3.1: Let Assumption 3.1 hold and {V(t)} be a
sequence generated by Algorithm 1. Then V(t) converges to
global optimal solutions to (4) almost surely under random
initialization as t→∞.

Remark 3.4: Note that there may be several parents for each
agent in practice. In this paper, we only consider the case
that each agent owns one parent for convenience of analysis.
However, the algorithm can be easily extended to cases where
agents have multiple parents. We provide examples in simu-
lations to demonstrate the cases of tree-structured graphs of
which one agent has a unique parent and graphs of which one
agent may have multiple parents.

Remark 3.5: Compared with the existing centralized works
[18], [43], the proposed algorithm decentralizes the storage
space and computational burden of large-scale SDP over
different agents at the cost of network communication. In
addition, the proposed algorithm is applicable for the scenario
where global information is located on geographically sepa-
rated agents such that centralized algorithms can not handle.

C. Distributed asynchronous optimization algorithm

The synchronous algorithm given by Algorithm 1 needs a
global clock and the updating rate of variables is limited by

the slowest agent. Whereas, asynchronous algorithms update
variables by local clocks and allow communication time-
delays, then the variables updating of one agent will not be
limited by other agents. Hence, in this subsection, we provide
a distributed asynchronous algorithm for solving problem (4).

Let T ĩ be the set of times at which agent ĩ updates local
variable V ĩ. Noted that agent ĩ may not have access to the
most recent value of other agents’ variables. Then, we define
that the updating time of variables vj at parent or child node,
τ ĩj(t), satisfies

0 ≤ τ ĩj(t) ≤ t, ∀t ∈ T ĩ, (10)

where j ∈ Jch(̃i)∪Jpar(̃i)∪Jĩ. If j ∈ Rĩ,par(̃i), then τ ĩj(t) = t.
The difference (t−τ ĩj(t)) between the current time t and τ ĩj(t)
is viewed as a form of communication delay between agent ĩ
and its parents or children.

For the communication delay between agents, we assume
that the following condition holds.

Assumption 3.2: (Partial Asynchronism) There exists a
positive integer B such that:
• For each agent ĩ and t ≥ 0, at least one element of the

set {t, t+ 1, · · · , t+B − 1} belongs to T ĩ.
• There holds

max{0, t−B + 1} ≤ τ ĩj(t) ≤ t,

for all agent ĩ ∈ V and j ∈ {1, · · · , n} and all t ≥ 0.
In the distributed asynchronous Algorithm 2, local variable

V ĩ is updated by the time-delayed messages communicated
from neighbors and local information. For each agent ĩ, define

pĩj(t) =
∑
l∈Jĩ

M ĩ
{j,l}v

ĩ
l(t),

and the step-size θĩj satisfies

θĩj ∈ (0,
1

(1 +B + nB)L
), (11)

where L = maxĩ∈V{l1, · · · , lm}, l̃i is the best Lipschitz
constant of ∇f̃ĩ(V ĩ) (f̃ĩ(V

ĩ) was defined in (4)) and B is
defined in Assumption 3.2.

The massage passed from child r̃ ∈ ch(̃i) to parent ĩ is
defined as

$r̃,̃i
j (τ ĩ(t)) =

∑
l∈Jr̃

M r̃
{j,l}v

r̃
l (τ

ĩ
l (t)) ∀j ∈ Sr̃,̃i,

and for variables with indices j ∈ Rĩ,par(̃i)\Sr̃,̃i,
$r̃,̃i
j (τ ĩ(t)) = 0.
If t ∈ T ĩ, the variable vĩj(t+ 1) is updated as

vĩj(t+ 1) =normal
(
vĩj(t)− θĩj

[
pĩj(t) +

∑
r̃∈ch(̃i)

$r̃,̃i
j (τ ĩ(t))

])
,

j ∈ Rĩ,par(̃i), (12a)

vĩj(t+ 1) = v
par(̃i)
j (τ ĩj(t)), j ∈ Sĩ,par(̃i). (12b)

For times t /∈ T ĩ, the variable vĩj is unchanged,

vĩj(t+ 1) = vĩj(t), ∀j ∈ Jĩ.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, Friday 2nd April, 2021 01:18 6

The message sent from agent ĩ ∈ V to its parent par(̃i) is

$
ĩ,par(̃i)
j =

∑
l∈Jĩ

M ĩ
{j,l}v

ĩ
l(t+ 1) +

∑
r̃∈ch(̃i)

$r̃,̃i
j (τ ĩ(t)), j ∈ Jĩ.

(13)

Algorithm 2 Distributed Asynchronous Algorithm (DAA) -
from the view of agent ĩ

1: Initialization: Initialize vĩj = v0 ∈ Rp such that ‖v0‖ = 1

for all ĩ ∈ V and j ∈ Jĩ.
2: while the stopping criteria is not satisfied do
3: for each agent ĩ, keep receiving information
$r̃,̃i
j (τ ĩ(t)) from children and receiving information

v
par(̃i)
j (τ ĩj(t)) from parent.

4: if t ∈ T ĩ then
5: for j ∈ Jĩ do
6: agent ĩ updates variable vĩj(t + 1) following

(12).
7: if j ∈ Sĩ,par(̃i) then
8: agent ĩ sends message $ĩ,par(̃i)

j (computed
by (13)) to its parent,

9: end if
10: if j ∈ Sl̃,̃i, l̃ ∈ ch(̃i) then
11: agent ĩ sends local variable vĩj(t + 1) to

each child l̃ that has coupling variable vĩj , j ∈ Sl̃,̃i.
12: end if
13: end for
14: end if
15: t← t+ 1.
16: end while

Before providing the convergence performance of DAA,
we need one additional assumption, which is vital in the
transformation of proposed algorithm.

Assumption 3.3: Each element of matrix M is only acces-
sible to one agent, which implies that for each agent ĩ ∈ V ,
M ĩ
{l,k} = M(l,k) holds for (l, k) ∈ Jĩ × Jĩ.
Next, the convergence performance of DAA is provided in

the following theorem, whose analysis is shown in the section
IV-B.

Theorem 3.2: Under Assumptions 3.1-3.3, the sequence
{V(t)} generated by DAA converges to critical points to (4)
as t→∞.

Remark 3.6: In the implementation of DAA, each agent
receives communication information from its neighbors and
stores it in local buffer. The local received data may be out-
of-date due to time-delays. Each agent ĩ ∈ V updates local
variables using data in local buffer at the time t ∈ T ĩ and does
not have to wait for the point when other local communicating
messages become available. It allows some agents to compute
faster and execute more iterations than others.

IV. THEORETICAL ANALYSIS

In this section, we present theoretical proofs for the con-
vergence properties of proposed distributed synchronous and
asynchronous algorithms, respectively.

A. Convergence analysis for synchronous algorithm

Firstly, we develop a compact form of the proposed syn-
chronous algorithm containing all agent’s updates.

For any j ∈ {1, . . . , n}, let vj , vĩj , where j ∈ Rĩ,par(̃i)

and vĩj is a column vector of the variable of agent ĩ ∈ V . Then
we define the global variable

V = [v1, · · · , vn] ∈ Rp×n. (14)

Remark 4.1: For j ∈ Sĩ,par(̃i), by the updating design (9),
there is a parent of ĩ, j̃ ∈ par(̃i), such that j ∈ Rj̃,par(j̃)

and vĩj(t) = vj̃j (t). Hence, in the following analysis, for
convenience, we consider the global variable V instead of V.

Without loss of generality, we make the following assump-
tions in the analysis.

Assumption 4.1: Take any ĩ ∈ V . Indices j ∈ Rch(̃i),̃i, l ∈
Rĩ,par(̃i) and p ∈ Sĩ,par(̃i) satisfy that p > l > j.

Notice that for each column vector vj with index j ∈
Sĩ,par(̃i), there must exist one agent j̃ such that j ∈ Rj̃,par(j̃).

Assumption 4.2: We assume that there is no shared variables
between agents ch(̃i) and par(̃i) for any ĩ ∈ V . That is,
Sch(̃i),̃i ⊂ Rĩ,par(̃i) for all ĩ ∈ V .

Note that Assumptions 4.1 and 4.2 are not needed in the
proposed synchronous algorithm, which is developed for the
convenience of proof.

Define Θ ∈ Rn×n as a diagonal matrix with diagonal
elements,

Θ(j,j) = θĩj if j ∈ Rĩ,par(̃i). (15)

Then, under the above assumptions, we obtain the following
result.

Lemma 4.1: Under Assumptions 4.1 and 4.2, the distributed
synchronous algorithm is equivalent to

vj(t+ 1) =normal
(
vj(t)−Θ(j,j)gj(t)

)
, ∀ j ∈ {1, · · · , n},

(16)

where gj(t) =
∑
l∈{1,··· ,j−1}M(j,l)vl(t + 1) +∑

l∈{j+1,··· ,n}M(j,l)vl(t).

Proof: For variables vĩj of agent ĩ such that j ∈ Rĩ,par(̃i),
we substitute (6) to the updating (7) and get

vĩj(t+ 1) = normal
(
vĩj(t)− θĩjgĩj(t)

)
, j ∈ Rĩ,par(̃i) (17)

where

gĩj(t) =
∑

l∈{1,··· ,j−1}

M ĩ
{j,l}v

ĩ
l(t+ 1)

+
∑

l∈{j+1,··· ,n}

M ĩ
{j,l}v

ĩ
l(t)

+
∑

r̃∈ch(̃i)

∑
l∈Jr̃

M r̃
{j,l}v

r̃
l (t+ 1). (18)

The condition j ∈ Rĩ,par(̃i) holds in the whole process of
proof. For convenience, in the following analysis, we omit this
condition.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, Friday 2nd April, 2021 01:18 7

Since M r̃
{j,l} = M

r̃

{j,l}, for (j, l) ∈ Jr̃ × Jr̃ and r̃ ∈ V , we
have ∑

r̃∈{ĩ,ch(̃i)}

M r̃
{j,l} =

m∑
r̃=1

M
r̃

{j,l} = M(j,l), (19)

j ∈ Rĩ,par(̃i) ⊂ ∪r̃∈{ĩ,ch(̃i)}Jr̃, l ∈ ∪r̃∈{ĩ,ch(̃i)}Jr̃,

where the first equality holds because for agent j̃ ∈
{1, · · · ,m}\{̃i, ch(̃i)}, M j̃

{j,l} = 0, where j ∈ Rĩ,par(̃i) ⊂
∪r̃∈{ĩ,ch(̃i)}Jr̃, l ∈ ∪r̃∈{ĩ,ch(̃i)}Jr̃.

By (19), the term
∑
r̃∈ch(̃i)

∑
l∈Jr̃ M

r̃
{j,l}v

r̃
l (t + 1) in (18)

satisfies∑
r̃∈ch(̃i)

∑
l∈Jr̃

M r̃
{j,l}v

r̃
l (t+ 1)

=
∑

r̃∈ch(̃i)

∑
l∈Sr̃,̃i

M r̃
{j,l}v

r̃
l (t+ 1)+

∑
r̃∈ch(̃i)

∑
l∈Rr̃,̃i

M r̃
{j,l}v

r̃
l (t+ 1)

=
∑

r̃∈ch(̃i)

∑
l∈Sr̃,̃i

M r̃
{j,l}v

r̃
l (t+ 1)+

∑
r̃∈ch(̃i)

∑
l∈Rr̃,̃i

M r̃
{j,l}vl(t+ 1)

=
∑

r̃∈ch(̃i)

∑
l∈Sr̃,̃i∩{l<j}

M r̃
{j,l}v

r̃
l (t+ 1)

+
∑

r̃∈ch(̃i)

∑
l∈Sr̃,̃i∩{l>j}

M r̃
{j,l}v

r̃
l (t)

+
∑

l∈Rr̃∈ch(ĩ),̃i

M(j,l)vl(t+ 1) (20)

where the last equality holds because variables vr̃l with indices
satisfying l > j, j ∈ Rĩ,par(̃i) are not updated by the algorithm
design and M ĩ

{j,l} = 0 for l ∈ Rr̃ĩ.
Then, by substituting (20) to gĩj in (18), we obtain

gĩj(t) = ζj(t+ 1) + ιj(t) (21)

where

ζj(t+ 1) =
∑

l∈{1,··· ,j−1}

M ĩ
{j,l}v

ĩ
l(t+ 1)

+
∑

r̃∈ch(̃i)

∑
l∈Sr̃,̃i∩{l<j}

M r̃
{j,l}v

r̃
l (t+ 1)

+
∑

l∈Rr̃∈ch(ĩ),̃i

M(j,l)vl(t+ 1),

and

ιj(t) =
∑

l∈{j+1,··· ,n}

M ĩ
{j,l}v

ĩ
l(t)

+
∑

r̃∈ch(̃i)

∑
l∈Sr̃,̃i∩{l>j}

M r̃
{j,l}v

r̃
l (t).

Then, we will discuss variables ζj(t+ 1) and ιj(t) respec-
tively.

(1) Consider ζj composed of variables with
indices l in the set {l|l < j, j ∈ Rĩ,par(̃i)}.
Let MR ,

∑
l∈Rĩ,par(ĩ)∩{l<j}

M ĩ
{j,l}v

ĩ
l(t + 1) and

MS ,
∑
r̃∈ch(̃i)

∑
l∈Sr̃,̃i∩{l<j}

M r̃
{j,l}v

r̃
l (t + 1). The

sum of MS and MR is

MS +MR

=
∑

r̃∈{ĩ,ch(̃i)}

∑
l∈Rĩ,par(ĩ)∩{l<j}

M r̃
{j,l}v

r̃
l (t+ 1)

=
∑

r̃∈{ĩ,ch(̃i)}

∑
l∈Rĩ,par(ĩ)∩{l<j}

M r̃
{j,l}vl(t+ 1)

=
∑

l∈Rĩ,par(ĩ)∩{l<j}

M(j,l)vl(t+ 1). (22)

where the first equality holds because of the condition
Sch(̃i),̃i ⊆ Rĩ,par(̃i), and the last equality holds due to the
relationship (19).

By Assumption 4.1, any index l in Rr̃∈ch(̃i),̃i satisfies l < j
for j ∈ Rĩ,par(̃i). Then, with (22),

ζj(t+ 1)

=
∑

l∈Rr̃∈ch(ĩ),̃i

M(j,l)vl(t+ 1)+
∑

l∈Rĩ,par(ĩ)∩{l<j}

M(j,l)vl(t+ 1)

=
∑

l∈{l<j,j∈Rĩ,par(ĩ)}

M(j,l)vl(t+ 1). (23)

(2) Consider ιj composed of variables with indices l in the
set {l|l > j, j ∈ Rĩ,par(̃i)}. The term

∑
l>jM

ĩ
{j,l}v

ĩ
l(t) in

ιj(t) satisfies∑
l∈{1,··· ,n}∩{l>j}

M ĩ
{j,l}v

ĩ
l(t)

=
∑

l∈Rĩ,par(ĩ)∩{l>j}

M ĩ
{j,l}v

ĩ
l(t) +

∑
l∈Sĩ,par(ĩ)∩{l>j}

M ĩ
{j,l}v

ĩ
l(t).

(24)

It follows from a similar analysis in (22) that the
sum of

∑
r̃∈ch(̃i)

∑
l∈Sr̃,̃i∩{l>j}

M r̃
{j,l}v

r̃
l (t) in ιj(t) and∑

l∈Rĩ,par(ĩ)∩{l>j}
M ĩ
{j,l}v

ĩ
l(t) in (24) is∑

r̃∈ch(̃i)

∑
l∈Sr̃,̃i∩{l>j}

M r̃
{j,l}v

r̃
l(t) +

∑
l∈Rĩ,par(ĩ)∩{l>j}

M ĩ
{j,l}v

ĩ
l(t)

=
∑

l∈Rĩ,par(ĩ)∩{l>j}

M(j,l)vl(t). (25)

Then, consider the term
∑
l∈Sĩ,par(ĩ)∩{l>j}

M ĩ
{j,l}v

ĩ
l(t) in

(24). Because all column variables are initialized as a same
value and the condition Sch(̃i),̃i ⊂ Rĩ,par(̃i) in Assumption 4.2,

vĩl(t) = v
par(̃i)
l (t) = vl(t), ∀l ∈ Sĩ,par(̃i), by Algorithm 1. By

(19), we have, for j ∈ Rĩ,par(̃i),∑
l∈Sĩ,par(ĩ)∩{l>j}

M ĩ
{j,l}v

ĩ
l(t)

=
∑

l∈Sĩ,par(ĩ)∩{l>j}

M(j,l)vl(t), (26)

where the equality holds because for each child r̃ ∈ ch(̃i),
M r̃
j,l = 0, for j ∈ Rĩ,par(̃i), l ∈ Sĩ,par(̃i).

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, Friday 2nd April, 2021 01:18 8

Then, with (25) and (26),

ιj(t)

=
∑

l∈Rĩ,par(ĩ)∩{l>j}

M(j,l)vl(t) +
∑

l∈Sĩ,par(ĩ)∩{l>j}

M(j,l)vl(t)

=
∑

l∈{j+1,··· ,n}

M(j,l)vl(t). (27)

Hence, by (21), (23) and (27), the updating (17) of agent ĩ
for any vector variable with index j ∈ Rĩ,par(̃i) is

vĩj(t+ 1) = normal
(
vĩj(t)−Θ(j,j)g

ĩ
j(t)
)
, (28)

where gĩj(t) =
∑
l∈{l<j,j∈Rĩ,par(ĩ)}

M(j,l)vl(t + 1) +∑
l∈{j+1,··· ,n}∩{j∈Rĩ,par(ĩ)}

M(j,l)vl(t) and Θ(j,j) = θĩj ,

which is defined in (5). Since (28) holds for each agent ĩ,
we obtain the desire result (16) with (14). �

Next, we will discuss the convergence properties of pro-
posed distributed synchronous algorithm. Because the opti-
mization problem (4) is a non-convex minimization problem,
there may exist several local minima and saddle points, which
are regarded as major obstacles for global minima search over
continuous spaces. For the semi-definite programming like (1),
it has been known that the low-rank transformed problem (4)
has no local optima except the global ones if p >

√
2n [15].

Thus, the main work is to discuss whether the proposed
algorithm escapes strict saddle points and converges to global
optimal solutions. At first, we provide the definition of unsta-
ble critical points. Denote the update of V generated by DSA
as V (t+ 1) = hSM (V (t)).

Definition 4.1: Define unstable critical points as the set
of critical points where the Jacobian of variable updating
hSM (V) has at least a single eigenvalue with magnitude
greater than one

[43]
,

A∗g = {V : hSM (V) = V,max
i
|λi(DhSM (V))| > 1}.

Following the work in [43], we have the following property,
which was investigated in [18].

Lemma 4.2: If p >
√

2n, each strict saddle point V ∗ of the
updating hSM is an unstable critical point, meaning X ∗ ⊂ A∗g ,
where X ∗ is the set of strict saddle points.

Proof: Consider the equivalent form in Lemma 4.1 of the
proposed synchronous algorithm. It follows from the proof in
[18] that the Jacobi of proposed algorithm has eigenvalues
containing those of the Jacobi of a standard Gauss-Seidel up-
dating proposed in [43]. Based on the discussions of standard
Gauss-Seidel updating in [43], we obtain the desirable result.
�

From Lemma 4.2, we deduce that all non-optimal critical
pints are unstable fixed points. Next, we will prove that the
updating hSM is a diffeomorphism, which is an invertible
function that maps one differentiable manifold to another such
that both the function and its inverse are smooth.

Lemma 4.3: Under Assumptions 4.1 and 4.2, the distributed
synchronous updating hSM is a diffeomorphism.

Proof: By the designed variable updating in Algorithm 1
and Lemma 4.1, hSM is equivalent to

hSM (V) =
[
ψn(ψn−1(· · ·ψ1(V)))

]

where each column variable updating is defined as

(ψi(V))s=1···n =

{
vi−Θ(i,i)VM(:,i)

‖vi−Θ(i,i)VM(:,i)‖ if s = i

v′s otherwise.

Because a composition of diffeomorphisms is still a
diffeomorphism

[44]
, to prove this lemma, we only need to prove

that ψi(V) is a diffeomorphism for i = 1, · · · , n.
In (16), the step size takes a constant Θ(i,i) ∈ (0, 1

‖M(i,:)‖1
).

Because M is symmetric, it is equivalent to taking 1−σ
‖M(:,i)‖1

for a constant σ ∈ (0, 1) and from the triangular inequality,

∥∥VM(:,i)

∥∥ =

∥∥∥∥∥∥
n∑
j=1

M(i,j)vj

∥∥∥∥∥∥ ≤
n∑
j=1

∣∣M(i,j)

∣∣ ‖vj‖ = ‖M(i,:)‖1.

Hence,
∥∥Θ(i,i)VM(:,i)

∥∥ ≤ 1 − σ < 1. Thus, we have∥∥vi −Θ(i,i)VM(:,i)

∥∥ ≥ 1 −
∥∥Θ(i,i)VM(:,i)

∥∥ ≥ σ > 0. Note
that the function ψi is only non-smooth at the point where
the denominator term

∥∥vi −Θ(i,i)VM(:,i)

∥∥ = 0 and we have
proved that the term is greater than 0. Therefore, the function
ψi and its inverse function are valid and smooth. By the work
in [18, Lemma C.2], ψi is a diffeomorphism. Since hSM (·) is
the composition of ψi(·)s, the mapping of hSM (V) is also a
diffeomorphism. �

Next, with the definition of global variable V in (14),
we provide one equivalent form of objective function in
optimization problem (4), which will be used in the analysis
of Lemma 4.5.

Lemma 4.4: With the definition (14) and Assump-
tions 4.1, 4.2, the objective function of (4) at time t∑m
ĩ=1〈M ĩ, V ĩ

′
(t)V ĩ(t)〉 = 〈M,V (t)′V (t)〉.

Proof: The objective function of optimization problem (4) is∑m
ĩ=1〈M ĩ, V ĩ

′
V ĩ〉. By the algorithm design, after one iteration

t, vĩj(t) = vj(t) for all j ∈ Jĩ, which holds because the
coupling variables vĩj with j ∈ Sĩ,par(̃i) are equal to the

uncoupling variables vpar(̃i)
j . Hence, the constraints (4b) and

(4c) in (4) hold. Then, we obtain

m∑
ĩ=1

〈M ĩ, V ĩ
′
(t)V ĩ(t)〉

=

m∑
ĩ=1

∑
l,h∈Jĩ

M ĩ
{l,h}v

ĩ
l(t)
′vĩh(t)

=

m∑
ĩ=1

∑
l,h∈Jĩ

M ĩ
{l,h}vl(t)

′vh(t)

=
∑
l,h∈Jĩ

M(l,h)vl(t)
′vh(t)

=〈M,V (t)′V (t)〉,

where the second to last equation holds because M ĩ
{l,h} =

M
ĩ

(l,h) and
∑m
ĩ=1M

ĩ
= M . �

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, Friday 2nd April, 2021 01:18 9

With Lemma 4.4, before updating vi, all variable vj except
for vi are given and fixed, then the global function is rewritten
as

f(V) = 〈M,V ′V 〉

=

n∑
i=1

n∑
j=1

M(i,j)v
′
ivj

= 2v′igi + constant, (29)

where the last equation holds since the matrix M is symmetric.
Note that gi is defined in Lemma 4.1 and is independent
of vi because M(i,i) = 0. Then, we have the following
Lemma stating the monotonous decreasing property of the
global function value generated by the proposed synchronous
algorithm.

Lemma 4.5: For the proposed synchronous algorithm with
step size Θ, let V (t + 1) = hSM (V (t)). Under Assumptions
4.1 and 4.2, we have

f(V (t))− f(V (t+ 1)) =

n∑
i=1

1 + yi(t)

Θ(i,i)
‖vi(t)− vi(t+ 1)‖2 ,

(30)

where yi(t) =
∥∥vi(t)−Θ(i,i)gi(t)

∥∥ and gi(t) =∑
l<iM(i,l)vl(t+ 1) +

∑
l>iM(i,l)vl(t).

Proof: By (29), the function difference after updating vi(t)
to vi(t + 1) is 2g′i(vi(t) − vi(t + 1)). Then, by the updating
in (16), vi(t+ 1) = (vi(t)−Θ(i,i)gi(t))/yi(t), we have

2gi(t)
′(vi(t)− vi(t+ 1))

=2(gi(t) +
vi(t)−Θ(i,i)gi(t)

Θ(i,i)
)′(vi(t)− vi(t+ 1))

− 2(
vi(t)−Θ(i,i)gi(t)

Θ(i,i)
)′(vi(t)− vi(t+ 1))

=2
1

Θ(i,i)
vi(t)

′(vi(t)− vi(t+ 1))

− 2
yi(t)

Θ(i,i)
vi(t+ 1)′(vi(t)− vi(t+ 1))

=
1 + yi(t)

Θ(i,i)
2(1− vi(t)′vi(t+ 1))

=
1 + yi(t)

Θ(i,i)
‖vi(t)− vi(t+ 1)‖2 , (31)

where the third equality holds due to the condition ‖vi‖ = 1.
Then, the result holds from summing the above equation over
i = 1, · · · , n. �

Now, we are ready to prove the result in Theorem 3.1.
Proof of Theorem 3.1: Assume Assumptions 4.1 and

4.2 hold. From Lemma 4.2 and the nonexistence of local
optima, all non-optimal critical pints are unstable fixed points.
Recall that hSM is a diffeomorphism by Lemma 4.3 and non-
optimal critical points of hSM (·) are unstable fixed points by
Lemma 4.2. It follows from the center-stable manifold theorem
(Theorem III.5 of [45]) that the proposed algorithm escapes
all non-optimal critical points almost surely under random
initialization. By Lemma 4.5 and the fact that 1+yi(t)

Θ(i,i)
in (30)

is always positive over iterations, the objective function value

is strictly decreasing. Because the objective function value
generated by the proposed algorithm is strictly decreasing and
the objective value is lower bounded, the generated variables
converge to the set of first-order critical points. Thus, the
almost sure divergence from the non-optimal critical points
and the convergence to critical points imply that vĩj , j ∈ Jĩ
in the updating hSM converges to corresponding column of
global optimal solutions of (4) almost surely under random
initialization.

Next, we show that the result of this theorem holds if
Assumptions 4.1 and 4.2 are removed. If Assumption 4.1 does
not hold, the indices of variables can be rearranged manually
such that the indices in uncoupling set Rĩ,par(̃i) are smaller
than the indices in coupling set Sĩ,par(̃i) for each agent ĩ.
Hence, the above analysis still holds without Assumptions 4.1.
If Assumption 4.2 does not hold, in (26) of Lemma 4.1, for
each variable vĩl , l ∈ Sch(̃i),̃i ∩Sĩ,par(̃i), there must be a parent
agent j̃ such that l ∈ Rj̃,par(j̃) by algorithm design. Then,

vĩl(t) = vj̃l (t) = vl(t). Thus, the analysis in (26) analogously
holds and the rest of theoretical deductive is true. �

B. Convergence analysis for asynchronous algorithm

For distributed asynchronous algorithm 2, let T ĩ be the set
of times at which agent ĩ updates variable V ĩ. In addition,
agent ĩ may not have access to the most recent value of other
agents’ variables. To collect communicated information from
neigbors, define a set Jĩ as the union Jĩ ∪ Rr̃∈ch(̃i),̃i. Thus,
define one possibly outdated variable of agent ĩ, Vĩ(t) ∈
Rp×|Jĩ|, as

Vĩ(t) =
[
vĩs1(τ ĩs1(t)), · · · , vĩs|J

ĩ
|
(τ ĩs|J

ĩ
|
(t))
]
, (32)

where {s1, · · · , s|Jĩ|} = Jĩ, τ ĩj(t) is assumed to satisfy the
condition (10). Recall that, if sj ∈ Rĩ,par(̃i), then τ ĩsj (t) = t.
Vĩ ∈ Rp×|Jĩ| collects time-delayed transmitted information
from children and parents.

With additional assumption in Assumption 3.3 that each
element of global coefficient matrix M is only accessible to
one agent, the relationship M ĩ

{l,k} = M(l,k) holds for all
agent ĩ. Then, the updating proposed in DAA is rewritten as a
compact form as shown in the following lemma, where each
column variable vj of global variabel V defined in (14) is
expressed by outdated transmitted information.

Lemma 4.6: Under Assumption 3.3, each column variable
vj generated by DAA with index j ∈ Rĩ,par(̃i) is equivalent
to{

vj(t+ 1) = normal(vj(t)−Θ(j,j)hj(V
ĩ(t)), t ∈ T ĩ,

vj(t+ 1) = vj(t), t /∈ T ĩ
(33)

where hj(V
ĩ(t)) =

[∑
l∈Rĩ,par(ĩ)

M(j,l)vl(t) +∑
l∈Sĩ,par(ĩ)

M(j,l)vl(τ
ĩ
l (t)) +∑

r̃∈ch(̃i)

∑
l∈Rr̃,̃i

M(j,l)vl(τ
ĩ
l (t))

]
, Θ(j,j) = θĩj was defined

in (11).

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, Friday 2nd April, 2021 01:18 10

Proof: By (12) in DAA, agent ĩ updates local uncoupling
variable vj with index in j ∈ Rĩ,par(̃i) according to

vĩj(t+ 1)

=normal
(
vĩj(t)− θĩj

[
pĩj +

∑
r̃∈ch(̃i)

$r̃,̃i
j (τ ĩ(t))

])
=normal

(
vĩj(t)− θĩj

[∑
l∈Jĩ

M ĩ
{j,l}v

ĩ
l(t)

+
∑

r̃∈ch(̃i)

∑
l∈Jr̃

M r̃
{j,l}v

r̃
l (τ

ĩ
l (t))

])
=normal

(
vĩj(t)− θĩj

[∑
l∈Rĩ,par(ĩ)

M(j,l)v
ĩ
l(t)

+
∑

l∈Sĩ,par(ĩ)

M(j,l)v
par(̃i)
l (τ ĩl (t))

+
∑

r̃∈ch(̃i)

∑
l∈Rr̃,̃i

M(j,l)v
r̃
l (τ

ĩ
l (t))

])
(34)

where the last equality holds because M r̃
{j,l} = 0, for j ∈

Rĩ,par(̃i), l ∈ Sr̃,̃i, by the assumption that each element of M
is only accessible to one agent.

For the second term
∑
l∈Sĩ,par(ĩ)

M(j,l)v
par(̃i)
l (τ ĩl (t)) of (34),

similarly to the discussions of (26) in the synchronous case,
we obtain∑
l∈Sĩ,par(ĩ)

M(j,l)v
par(̃i)
l (τ ĩl (t))=

∑
l∈Sĩ,par(ĩ)

M(j,l)vl(τ
ĩ
l (t)). (35)

Then, substituting (35) to (34), we have

vj(t+ 1)

=normal
(
vj(t)−Θ(j,j)

[∑
l∈Rĩ,par(ĩ)

M(j,l)v
ĩ
l(t)

+
∑

l∈Sĩ,par(ĩ)

M(j,l)vl(τ
ĩ
l (t))

+
∑

r̃∈ch(̃i)

∑
l∈Rr̃,̃i

M(j,l)v
r̃
l (τ

ĩ
l (t))

])
=normal

(
vj(t)−Θ(j,j)

[∑
l∈Rĩ,par(ĩ)

M(j,l)vl(t)

+
∑

l∈Sĩ,par(ĩ)

M(j,l)vl(τ
ĩ
l (t))

+
∑

r̃∈ch(̃i)

∑
l∈Rr̃,̃i

M(j,l)vl(τ
ĩ
l (t))

])
,

= normal(vj(t)−Θ(j,j)hj(V
ĩ(t))), t ∈ T ĩ, (36)

where hj(V
ĩ(t)) =

[∑
l∈Rĩ,par(ĩ)

M(j,l)vl(t) +∑
l∈Sĩ,par(ĩ)

M(j,l)vl(τ
ĩ
l (t)) +∑

r̃∈ch(̃i)

∑
l∈Rr̃,̃i

M(j,l)vl(τ
ĩ
l (t))

]
, Θ(j,j) = θĩj for

j ∈ Rĩ,par(̃i). For t /∈ T ĩ, vj(t + 1) = vj(t) holds
naturally. �

Define the updating direction sj (j ∈ Rĩ,par(̃i)) as,

sj(t) =
1

Θ(j,j)
(vj(t+ 1)− vj(t)). (37)

If t ∈ T ĩ,

sj(t) =
1

Θ(j,j)

(
normal

(
vj(t)−Θ(j,j)hj(V

ĩ(t))
)
− vj(t)

)
,

(38)

and if t /∈ T ĩ, sj(t) = 0.
In the following lemma, we present a vital descent property

of local variable iteration, which will be used in the proof of
Theorem 3.2.

Lemma 4.7: Suppose Assumption 3.3 holds. For any agent
ĩ and time t, we have

sj(t)
′hj(V

ĩ(t)) ≤ −‖sj(t)‖2, j ∈ Rĩ,par(̃i). (39)

Proof: If t /∈ T ĩ, the inequality (39) is true since both sides
are zero. If t ∈ T ĩ, by the definition of sj(t) in (37) and by
Lemma 4.6, vj(t + 1) = (vj(t) − Θ(j,j)hj(V

ĩ(t)))/yj(t) for
j ∈ Rĩ,par(̃i), where yj(t) = ‖vj(t) − Θ(j,j)hj(V

ĩ(t))‖, we
have

sj(t)
′hj(V

ĩ(t))

=
−1

Θ(j,j)
(vj(t)− vj(t+ 1))′hj(V

ĩ(t))

=
−1

Θ(j,j)

[(
hj(V

ĩ(t))

+
vj(t)−Θ(j,j)hj(V

ĩ(t))

Θ(j,j)

)′
(vj(t)− vj(t+ 1))

−
(vj(t)−Θ(j,j)hj(V

ĩ(t))

Θ(j,j)

)′
(vj(t)− vj(t+ 1))

]
=
−1

Θ(j,j)

[
1

Θ(j,j)
vj(t)

′(vj(t)− vj(t+ 1))

− yj(t)

Θ(j,j)
vj(t+ 1)′(vj(t)− vj(t+ 1))

]
=− 1 + yj(t)

Θ2
(j,j)

‖vj(t+ 1)− vj(t)‖2

=− (1 + yj(t))‖sj(t)‖2

≤− ‖sj(t)‖2,

where the last inequality holds because yj is non-negative. �
Making use of Lemma 4.7, we discuss the relationship of

global variable V and local variables Vĩ, and the gradient
of objective function at the point V (tk) when k → ∞ in
Theorem 3.2. Before discussions, it should be noted that
hj(V

ĩ(t)) defined in Lemma 4.6 is exactly the gradient of
global function f with respect to column variable vj(t), where
j ∈ Rĩ,par(̃i), so for convenience, we use hj(V

ĩ(t)) in the
following analysis. The proof follows the studies of gradient-
like optimization algorithms in Proposition 5.1, section 7, [46].

Proof of Theorem 3.2: We follow the proof of Proposition
5.1 in [46]. By Assumption 3.1 (2), the objective function of

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, Friday 2nd April, 2021 01:18 11

(4) satisfies
∑m
ĩ=1 fĩ ≥ 0. In addition, with the analysis in

Lemma 4.7, we have, for j ∈ {1, · · · , n},

sj(t)
′hj(V

ĩ(t)) ≥ −‖sj(t)‖‖hj(Vĩ(t))‖
−(1 + yj(t))‖sj(t)‖2 ≥ −‖sj(t)‖‖hj(Vĩ(t))‖

(1 + yj(t))‖sj(t)‖2 ≤ ‖sj(t)‖‖hj(Vĩ(t))‖

‖sj(t)‖ ≤
1

1 + yj(t)
‖hj(Vĩ(t))‖,

where the last inequality holds because yj is non-negative.
Then, there is a positive constant K3 = 1 such that ‖sj(t)‖ ≤
K3‖hj(Vĩ(t))‖. What’s more, with the block-descent prop-
erty in Lemma 4.7, the assumptions in Proposition 5.1 [46]
hold, where the product is replaced by inner product of vectors
and the term |sj(t)| is replaced by ‖sj(t)‖. Then, by a similar
analysis as Proposition 5.1 in [46], we obtain that

lim
t→∞

sj(t) = 0, (40)

for each j ∈ {1, · · · , n}. In addition, by (37), we obtain

lim
t→∞

‖V (t+ 1)− V (t)‖ = 0. (41)

Then, consider the boundeness of ‖vĩj(t)− vj(t)‖.

‖vĩj(t)− vj(t)‖ =‖vĩj(τ ĩj(t))− vj(t)‖

=Θ(j,j)‖
t−1∑

τ=τ ĩ
j (t)

sj(τ)‖

≤Θ(j,j)

t−1∑
τ=t−B

‖sj(τ)‖. (42)

With (40) and (42), we also obtain

lim
t→∞

‖vĩj(t)− vj(t)‖ = 0, ∀j ∈ Rĩ,par(̃i). (43)

In addition, for each j ∈ {1, · · · , n}, there is a unique agent
ĩ such that j ∈ Rĩ,par(̃i) and the equation (43) holds.

Define V ∗ as a limit point of V (t) and {tk} as a se-
quence such that limk→∞ V (tk) = V ∗. Let τk be such that
|tk − τk| ≤ B and τk ∈ T ĩ. Then, by equations (41) and (43),
vj(τk) converges to v∗j , which is jth column of V ∗, and vĩj(τk)

converges to v∗j such that Vĩ(τk) converges. Then, we have

lim
k→∞

(normal(vĩj(τk)−Θ(j,j)hj(V
ĩ(τk))− vĩj(τk))

= lim
k→∞

Θ(j,j)sj(τk) = 0.

Since it holds for each j ∈ {1, · · · , n}, we get the desired
result. �

V. SIMULATION

In this section, numerical tests and large-scale image seg-
mentation application are presented to show the efficiency of
the proposed distributed algorithms.

Example 1: We present one special sparse coupling numeri-
cal optimization problem, which has been investigated in [34],
[37], [47] and of which the corresponding connected graph
is one clique tree. More detailed information of clique trees

𝐽1 = {1,2,4}

𝐽2 = {1,3,4} 𝐽3 = {4,5}

𝐽4 = {3,6,7} 𝐽5 = {3,8}

1

2 3

4 5

Fig. 3. Clique tree of simulation problem

can be found in [37]. Here we only introduce some brief
concepts and focus on the discussions about the numerical
convergence performance of proposed algorithms. For the
coupling optimization (1), we assume that the dimension of
global matrix variable X is n = 8, the number of local
functions is N = 6, the corresponding dependent element
indices set are C1 = {1, 3}, C2 = {1, 2, 4}, C3 = {4, 5},
C4 = {3, 4}, C5 = {3, 6, 7}, C6 = {3, 8}. By the clique
tree transformations in [47], the corresponding clique tree
owns five agents, shown in Fig.3. It shows that the number
of agents in corresponding problem (4) is m = 5, which
implies that one agent has multiple local functions. The local
functions assigned to ith agent are denoted by a function set
φĩ. Then, the function sets of the clique tree are φ1̃ = {f2},
φ2̃ = {f1, f4}, φ3̃ = {f3}, φ4̃ = {f5}, φ5̃ = {f6}. In addition,
the ordered index sets are J1̃ = {1, 2, 4}, J2̃ = {1, 3, 4},
J3̃ = {4, 5}, J4̃ = {3, 6, 7}, J5̃ = {3, 8}. More specifically,
we provide the decomposed diagram of sparse coefficient
matrix M over five different agents as following. Elements
with different colors are assigned to different agents.

W11 W12 W13 W14 0 0 0 0
W21 W22 0 W24 0 0 0 0
W31 0 W33 W34 0 W36 W37 W38

W41 W42 W43 W44 W45 0 0 0
0 0 0 W54 W55 0 0 0
0 0 W63 0 0 0 W67 0
0 0 W73 0 0 W76 W77 0
0 0 W83 0 0 0 0 W88

.

Since the diagonal elements will not influence the opti-
mization result, they are assigned to any agent without effect.
Let f∗ be the optimal function value of the optimization
problem (1), which is solved by the solver YALMIP when
the dimension n is not too large.

1) We use the proposed distributed synchronous, asyn-
chronous algorithms and the centralized algorithm SDPLR
[20], which are all coded by MATLAB, to solve the sparse
optimization problem. The simulation results are shown in
Figs. 4(a)-4(c). The original global variable value is X(k) =
V (k)′V (k). In Fig. 4(a), the proposed algorithms and SD-
PLR all converge to the optimal function value f∗, which
is calculated by the solver YALMIP. It is observed that
distributed algorithms converge much faster than the SDPLR
algorithm for the MAXCUT problem. In Fig. 4(b), the trajec-
tories of ‖X(k + 1)−X(k)‖F , where the trajectories {X(k)}
are generated by the proposed algorithms DSA and DAA
respectively, are shown to converge to zeros. It shows that

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, Friday 2nd April, 2021 01:18 12

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

-25

-20

-15

-10

-5

0

5

10

15
f
(k
)

DSA
DAA
SDPLR

(a) The trajectories of f by DSA, DAA and SDPLR

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

0

1

2

3

4

5

6

7

8

9

10

‖X
(k

+
1)

−
X
(k
)‖

F

DSA
DAA
SDPLR

(b) The trajectories of ‖X(k + 1)−X(k)‖F along time

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

‖g
ra
d
f
(k
)‖

F

DSA
DAA
SDPLR

(c) The trajectories of gradient of f along time

Fig. 4. Convergent trajectories generated by proposed algorithms and SDPLR

varaible X(k) converges to one limiting point. The norm of
the Riemannian gradient of f is defined as ‖gradf‖2F =∑n
i=1(‖gi‖2−〈vi, gi〉2), where ‖·‖F represents the Frobenius

norm of a matrix, and gi =
∑n
j=1M(i,j)vj . The trajectories

of ‖gradf(k)‖F are shown in Fig. 4(c) and converge to zeros,
which implies that the generated sequences {V (k)} converge

to critical points. In addition, by the numerical experiments, for
most cases, we have observed that the asynchronous algorithm
converges faster than the synchronous algorithm. In addition,
in the next simulation, we provide quantitative comparisons of
convergence rates between DAA and DSA.

2) In order to compare the performance of the proposed
distributed algorithms with the inspired centralized algorithm,
which is proposed in [18], we make use of MPICH dis-
tributed model, which is a high-performance message passing
interface, to develop a multi-processers environment on one
computer with a Core(TM) I5-8250U CPU, 1.6GHz. Both
centralized algorithm and distributed algorithms are coded
by C language. For the distributed algorithms, we use five
processes to deal with the optimization problem.

We provide two experiments with different dimensions and
collect the number of iterations and executive time of different
algorithms. In each experiment, the stop criterion of iterations
reaches an expected error between the function value f(k)
and optimal value f∗. In addition, we use sn to denote the
number of shared variables over the multi-agent network,
e.g., the sn of network shown in Fig. 3 is 5. The executed
time comparisons of centralized algorithm and distributed
algorithms are listed in following table I.

By the comparative test, the distributed synchronous and
asynchronous algorithms both converge faster than the central-
ized Mixing algorithm. As the dimension of problem increases,
the role of distributed design is more important, especially
when communication between different agents is sparse. In
addition, by the simulation, we observe that distributed asyn-
chronous algorithm often converges faster than distributed
synchronous algorithm. It should be pointed out that although
communication time-delay will not make asynchronous algo-
rithm diverge, coordinating the trade-off between communi-
cation and computation may further improve the convergence
performance of distributed asynchronous algorithm in practice,
which is one future research direction of our work.

TABLE I
THE EXECUTION TIME COMPARISONS

dimension algorithm sn iterations time(ms) error

8
Mixing 0 291 20 0.00023

DSA 5 150 5 0.00023
DAA 5 150 4 0.00023

18
Mixing 0 600 41 0.0058

DSA 8 390 16 0.0058
DAA 8 361 10 0.0058

Example 2: We apply the proposed distributed asynchronous
algorithm to solving MAXCUT problems from image segmen-
tation over a multi-agent system, as shown in Fig. 5. There
is one edge between agents if there exists an intersection
between image pixels of different local images. Hence, there
exist several parents for one agent, which is different from the
first example, where each agent has only one parent. In this
example, we will show that the proposed distributed algorithm
efficiently achieves image segmentation.

There have been some works applying general graph cut
algorithms to image segmentation [48]–[51]. For image seg-
mentation, we need to create a graph representation of the

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, Friday 2nd April, 2021 01:18 13

Fig. 5. Distributed image segmentation set-up. Each agent only has access
to a subset (colored grids) of the whole image pixels.

Fig. 6. The four-connected neighborhood of image segmentation set-up.

image. One algorithm is to consider assigning each pixel of
the image as a node and using a four-connected neighborhood
to create the edges [50], as shown in Fig. 6. We here only
utilize the intensity components of the RGB of all pixels
to provide one simple connected matrix M , whose (i, j)th
element related to nodes (i, j) is defined by the following
equation [50]

Mi,j =

max((2[‖rgb(i)− rgb(j)‖2 > t]− 1)‖rgb(i)− rgb(j)‖2, 0),

where rgb(i) is the intensity vector of RGB of the ith pixel, t
is adjustable threshold value. The output of operator max(a, 0)
is the bigger one of a and 0. Then, the generated matrix M
is a typical large-scale sparse matrix. For some algorithms
which add seeds to different regions, the only change is the
development of matrix elements. We only use the simplest
RGB information between different pixels to segment image.
However, it should be noted that the proposed algorithms are
applicable for general MAXCUT problems (1) that include
more involved development of coefficient matrix elements. In
some intelligent algorithms, the graph cut problem is often
used as an important pretreatment [52]. Therefore, the large-
scale sparse graph cut problem is vital in image segmentation.

We apply the proposed distributed asynchronous algorithm
on images of the Berkeley database [53]. We have computed

the results for three images (Airplane, Church, Bird) in Figure
7. It is seen that the proposed distributed algorithm achieves
image segmentation efficiently. While the existing centralized
algorithms can not deal with image segmentation because of
the large dimension of image data.

(a) Airplane segmentation

(b) Church segmentation

(c) Brid segmentation

Fig. 7. Segmentation results of images from Berkeley database

VI. CONCLUSION

This paper has studied distributed synchronous and asyn-
chronous algorithms for solving large-scale SDP with diagonal
constraints by making use of the inherent sparsity of program-
ming and low-rank property of solutions. Each agent updates
its local variables by local information and communicating
messages over the underlying topology. To handle the com-
munication delays in networks, one distributed asynchronous
algorithm is proposed without global clocks. Although the
transformed optimization problem is non-convex, variables of
distributed synchronous and asynchronous algorithms eventu-
ally converge to optimal solutions and critical points of SDP,
repectively. The efficiency of proposed distributed algorithms
is verified by the numerical simulations.

Future work involves developing and analyzing
communication-efficient distributed algorithms, which
balance the computational and communication cost of
different agents, for SDP with diagonal constraints. The
objective SDP problem of this paper has diagonal constraints.
In future, we will further attempt to extend the distributed
algorithms to more general semi-definite programs with linear
constraints.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, Friday 2nd April, 2021 01:18 14

REFERENCES

[1] E. Dall’Anese, H. Zhu, and G. B. Giannakis, “Distributed optimal power
flow for smart microgrids,” IEEE Transactions on Smart Grid, vol. 4,
no. 3, pp. 1464–1475, 2013.

[2] F. R. Segundo Sevilla, I. M. Jaimoukha, B. Chaudhuri, and P. Korba,
“A semidefinite relaxation procedure for fault-tolerant observer design,”
IEEE Transactions on Automatic Control, vol. 60, no. 12, pp. 3332–
3337, 2015.

[3] P. A. Parrilo and S. Lall, “Semidefinite programming relaxations and
algebraic optimization in control,” European Journal of Control, vol. 9,
no. 2, pp. 307–321, 2003.

[4] S. J. Benson, Y. Ye, and X. Zhang, “Solving large-scale sparse
semidefinite programs for combinatorial optimization,” SIAM Journal
on Optimization, vol. 10, no. 2, pp. 443–461, 2000. [Online]. Available:
https://doi.org/10.1137/S1052623497328008

[5] Y. T. Lee, A. Sidford, and S. C. Wong, “A faster cutting plane method
and its implications for combinatorial and convex optimization,” in 2015
IEEE 56th Annual Symposium on Foundations of Computer Science,
2015, pp. 1049–1065.

[6] M. Kim, J. Park, K. Kim, and J. Kim, “Exact ML criterion based on
semidefinite relaxation for MIMO systems,” IEEE Signal Processing
Letters, vol. 21, no. 3, pp. 343–346, 2014.

[7] R. A. Jabr, “Solution to economic dispatching with disjoint feasible
regions via semidefinite programming,” IEEE Transactions on Power
Systems, vol. 27, no. 1, pp. 572–573, 2012.

[8] E. L. Hu and J. T. Kwok, “Low-rank matrix learning using biconvex
surrogate minimization,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 30, no. 11, pp. 3517–3527, 2019.

[9] E. Hu, S. Chen, D. Zhang, and X. Yin, “Semisupervised kernel matrix
learning by kernel propagation,” IEEE Transactions on Neural Networks,
vol. 21, no. 11, pp. 1831–1841, 2010.

[10] C. Shen, J. Kim, and L. Wang, “Scalable large-margin Mahalanobis
distance metric learning,” IEEE Transactions on Neural Networks,
vol. 21, no. 9, pp. 1524–1530, 2010.

[11] M. X. Goemans and D. P. Williamson, “Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming,” Journal of the ACM, vol. 42, no. 6, pp. 1115–1145, 1995.

[12] I. Waldspurger, A. d’Aspremont, and S. Mallat, “Phase recovery, maxcut
and complex semidefinite programming,” Mathematical Programming,
vol. 149, no. 1-2, pp. 47–81, 2012.

[13] E. Abbe, A. S. Bandeira, and G. Hall, “Exact recovery in the stochastic
block model,” IEEE Transactions on Information Theory, vol. 62, no. 1,
pp. 471–487, 2014.

[14] B. Borchers and J. G. Young, “Implementation of a primal–dual method
for SDP on a shared memory parallel architecture,” Computational
Optimization and Applications, vol. 37, no. 3, pp. 355–369, 2007.

[15] N. Boumal, V. Voroninski, and A. S. Bandeira, “The non-convex
Burer–Monteiro approach works on smooth semidefinite programs,” in
Proceedings of the 30th International Conference on Neural Information
Processing Systems, ser. NIPS’16. Red Hook, NY, USA: Curran
Associates Inc., 2016, p. 2765–2773.

[16] E. J. Candes, X. Li, and M. Soltanolkotabi, “Phase retrieval via Wirtinger
flow: Theory and algorithms,” IEEE Transactions on Information The-
ory, vol. 61, no. 4, 2015.

[17] S. Mei, T. Misiakiewicz, A. Montanari, and R. I. Oliveira, “Solving
SDPs for synchronization and maxcut problems via the grothendieck
inequality,” arXiv:Optimization and Control, 2017.

[18] P.-W. Wang, W.-C. Chang, and J. Z. Kolter, “The Mixing method: low-
rank coordinate descent for semidefinite programming with diagonal
constraints,” arXiv:Optimization and Control, 2017.

[19] M. Zhang, “A second order mehrotra-type predictor-corrector algorithm
for semidefinite optimization,” Journal of Systems Science and Com-
plexity, vol. 25, no. 6, pp. 1108–1121, 2012.

[20] S. Burer and R. D. Monteiro, “A nonlinear programming algorithm for
solving semidefinite programs via low-rank factorization,” Mathematical
Programming, vol. 95, no. 2, pp. 329–357, 2 2003.

[21] M. Journée, F. Bach, P.-A. Absil, and R. Sepulchre, “Low-rank
optimization on the cone of positive semidefinite matrices,” SIAM
Journal on Optimization, vol. 20, no. 5, pp. 2327–2351, 2010. [Online].
Available: https://doi.org/10.1137/080731359

[22] M. A. Erdogdu, A. Ozdaglar, P. A. Parrilo, and N. D. Vanli, “Conver-
gence rate of block-coordinate maximization Burer-Monteiro method for
solving large SDPs,” arXiv:Optimization and Control, 2018.

[23] W. Deng, X. Zeng, and Y. Hong, “Distributed computation for solving
the sylvester equation based on optimization,” IEEE Control Systems
Letters, vol. 4, no. 2, pp. 414–419, 2020.

[24] G. Shi, B. D. O. Anderson, and U. Helmke, “Network flows that solve
linear equations,” IEEE Transactions on Automatic Control, vol. 62,
no. 6, pp. 2659–2674, 2017.

[25] W. Deng, Y. Hong, B. Anderson, and G. Shi, “Network flows that solve
sylvester matrix equations,” arXiv: Optimization and Control, 2019.

[26] J. Yang, X. Meng, and M. W. Mahoney, “Implementing randomized
matrix algorithms in parallel and distributed environments,” Proceedings
of the IEEE, vol. 104, no. 1, pp. 58–92, 2016.

[27] W. Li, X. Zeng, Y. Hong, and J. Haibo, “Distributed design for nuclear
norm minimization of linear matrix equation with constraints,” IEEE
Transactions on Automatic Control, pp. 1–1, 2020.

[28] X. Jiang, X. Zeng, J. Sun, and J. Chen, “Distributed solver for discrete-
time Lyapunov equations over dynamic networks with linear conver-
gence rate,” IEEE Transactions on Cybernetics, pp. 1–10, 2020.

[29] Z. Deng and Y. Hong, “Multi-agent optimization design for autonomous
lagrangian systems,” Unmanned Systems, vol. 4, no. 1, pp. 5–13, 2016.

[30] A. Fontan, G. Shi, X. Hu, and C. Altafini, “Interval consensus for
multiagent networks,” IEEE Transactions on Automatic Control, vol. 65,
no. 5, pp. 1855–1869, 2020.

[31] S. Liang, L. Y. Wang, and G. Yin, “Distributed smooth convex optimiza-
tion with coupled constraints,” IEEE Transactions on Automatic Control,
vol. 65, no. 1, pp. 347–353, 2020.

[32] K. Wang, Z. Fu, Q. Xu, D. Chen, L. Wang, and W. Yu, “Distributed fixed
step-size algorithm for dynamic economic dispatch with power flow
limits,” Science China Information Sciences, vol. 64, no. 1, p. 112202,
2020.

[33] R. Madani, A. Kalbat, and J. Lavaei, “ADMM for sparse semidefinite
programming with applications to optimal power flow problem,” in 2015
54th IEEE Conference on Decision and Control (CDC), Osaka, 2015,
pp. 5932–5939.

[34] A. Kalbat and J. Lavaei, “A fast distributed algorithm for decomposable
semidefinite programs,” in 2015 54th IEEE Conference on Decision and
Control (CDC), Osaka, 2015, pp. 1742–1749.

[35] H. Zhu and G. B. Giannakis, “Power system nonlinear state estimation
using distributed semidefinite programming,” IEEE Journal of Selected
Topics in Signal Processing, vol. 8, no. 6, pp. 1039–1050, 2014.

[36] C. Chang, J. Cortés, and S. Martı́nez, “Scheduled-asynchronous dis-
tributed algorithm for optimal power flow,” IEEE Transactions on
Control of Network Systems, vol. 6, no. 1, pp. 261–275, 2019.

[37] S. K. Pakazad, A. Hansson, M. S. Andersen, and I. Nielsen, “Distributed
primal–dual interior-point methods for solving tree-structured coupled
convex problems using message-passing,” Optimization Methods and
Software, vol. 32, no. 3, pp. 401–435, 2017.

[38] X. Zeng, J. Chen, and Y. Hong, “Distributed optimization design for
computation of algebraic Riccati inequalities,” IEEE Transactions on
Cybernetics, pp. 1–12, 2020.

[39] A. S. Bandeira, N. Boumal, and V. Voroninski, “On the low-rank
approach for semidefinite programs arising in synchronization and
community detection,” in 29th Annual Conference on Learning Theory,
ser. Proceedings of Machine Learning Research, V. Feldman, A. Rakhlin,
and O. Shamir, Eds., vol. 49. Columbia University, New York, New
York, USA: PMLR, 23–26 Jun 2016, pp. 361–382.

[40] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26,
no. 9, pp. 1124–1137, 2004.

[41] R. P. Mason and A. Papachristodoulou, “Chordal sparsity, decomposing
SDPs and the Lyapunov equation,” in 2014 American Control Confer-
ence, Portland, USA, 2014, pp. 531–537.

[42] G. Pataki, “On the rank of extreme matrices in semidefinite programs
and the multiplicity of optimal eigenvalues,” Mathematics of Operations
Research, vol. 23, no. 2, pp. 339–358, 1998.

[43] J. D. Lee, I. Panageas, G. Piliouras, M. Simchowitz, M. I. Jordan, and
B. Recht, “First-order methods almost always avoid strict saddle points,”
Mathematical Programming, vol. 176, no. 1, pp. 311–337, 7 2019.

[44] H. Inci, T. Kappeler, and P. Topalov, “On the regularity of the compo-
sition of diffeomorphisms,” arXiv:Analysis of PDEs, 2012.

[45] M. Shub, Global stability of dynamical systems. Springer Science &
Business Media, 2013.

[46] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:
numerical methods. Belmont Massachusetts: Athena Scientific, 1997.

[47] S. K. Pakazad, A. Hansson, M. S. Andersen, and A. Rantzer, “Dis-
tributed semidefinite programming with application to large-scale system
analysis,” IEEE Transactions on Automatic Control, vol. 63, no. 4, pp.
1045–1058, 2018.

https://doi.org/10.1137/S1052623497328008
https://doi.org/10.1137/080731359

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, Friday 2nd April, 2021 01:18 15

[48] F. Yi and I. Moon, “Image segmentation: A survey of graph-cut
methods,” in 2012 International Conference on Systems and Informatics
(ICSAI2012), Yantai, 2012, pp. 1936–1941.

[49] S. Vicente, V. Kolmogorov, and C. Rother, “Graph cut based image
segmentation with connectivity priors,” in 2008 IEEE Conference on
Computer Vision and Pattern Recognition, Anchorage, AK, 2008, pp.
1–8.

[50] S. de Sousa, Y. Haxhimusa, and W. Kropatsch, “Estimation of dis-
tribution algorithm for the Max-Cut problem,” in Graph-Based Rep-
resentations in Pattern Recognition (GbRPR 2013), vol. 7877, Berlin,
Heidelberg, 2013, pp. 244–253.

[51] Y. Boykov and G. Funka-Lea, “Graph cuts and efficient ND image
segmentation,” International Journal of Computer Vision, vol. 70, no. 2,
pp. 109–131, 2006.

[52] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 5, pp. 898–916, 2011.

[53] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proceedings Eighth
IEEE International Conference on Computer Vision. ICCV 2001, vol. 2,
British Columbia, Canada, 2001, pp. 416–423.

	I Introduction
	II Mathematical Notations
	III Problem Description and Distributed Algorithm Design
	III-A Problem description and transformation
	III-B Distributed synchronous optimization algorithm
	III-C Distributed asynchronous optimization algorithm

	IV Theoretical analysis
	IV-A Convergence analysis for synchronous algorithm
	IV-B Convergence analysis for asynchronous algorithm

	V Simulation
	VI Conclusion
	References

