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Abstract

The purpose of this work is to introduce and characterize the Bounded
Acceleration Shortest Path (BASP) problem, a generalization of the Shortest
Path (SP) problem. This problem is associated to a graph: the nodes repre-
sent positions of a mobile vehicle and the arcs are associated to pre-assigned
geometric paths that connect these positions. BASP consists in finding the
minimum-time path between two nodes. Differently from SP, we require
that the vehicle satisfy bounds on maximum and minimum acceleration and
speed, that depend on the vehicle position on the currently traveled arc. We
prove that BASP is NP-hard and define solution algorithm that achieves poly-
nomial time-complexity under some additional hypotheses on problem data.

1 Introduction

The purpose of this work is to introduce and characterize the Bounded Acceleration
Shortest Path (BASP) problem, a generalization of the Shortest Path (SP) problem.
We consider a graph associated to a path and speed planning problem for a mobile
vehicle. The graph nodes represent vehicle positions and the arcs are associated
to pre-assigned geometric paths that connect these positions. BASP consists in
finding the minimum-time path between two nodes. Differently from SP, BASP re-
quires that the vehicle satisfy bounds on maximum and minimum acceleration and
speed, that depend on the vehicle position on the currently traveled arc. Figure 1
presents a simple scenario that allows to illustrate BASP and its difference with SP.
This figure shows some fixed paths connecting positions A,B,C,D. The vehicle
starts from A with zero speed and must reach D with zero speed. The solution of
the SP problem corresponds to path ABCD, which is the one of shortest length.
BASP consists in finding the shortest-time path under acceleration and speed con-
straints. In this case, we assume that the vehicle acceleration and deceleration are
bounded by a common constant and that its speed is bounded only on arc BC. For
instance, this may be due to the fact that BC is an arc of a circle of small radius
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and the vehicle speed on BC has to be limited in order to avoid excessive lateral
acceleration, which may cause slideslip. If the bound on acceleration and decel-
eration is sufficiently high, the solution of BASP corresponds to path AD. Indeed,
even if this second path is longer, it can be travelled with a greater mean speed due
to the absence of speed bounds. To clarify this fact, see Figures 2 and 3. Figure 2
represents the fastest speed profile on ABCD. The x-axis corresponds to the arc-
length position on path ABCD and the y-axis represents the squared speed. In this
representation, arc-length intervals of constant acceleration or deceleration corre-
spond to straight lines. Note that speed has to be reduced before entering into arc
BC in order to respect the speed bound on BC. Figure 3 represents the fastest speed
profile on AD. Due to the absence of speed bounds, the vehicle accelerates till the
midpoint of the path and then decelerates to the end node D. Even if path AD is
longer than ABCD, it can be travelled with a shorter time. In Section 3.1, we will
justify the structure of the optimal speed profiles reported in Figures 2 and 3.

A B C D

BASP solution

SP solution

Figure 1: Comparison of BASP and SP solutions.

Arc-length

squared 

speed

A B C D

Speed bound on BC

Figure 2: Optimal speed profile on ABCD.

BASP is a generalization of SP. Indeed, if we remove the maximum and min-
imum acceleration bounds, BASP reduces to SP, in which the cost of each arc is
the time needed to travel the path associated to the arc at maximum speed. In the
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Figure 3: Optimal speed profile on AD.

general case, BASP is more complex than SP. Indeed, in Proposition 4.2, we will
show that BASP is NP-hard. However, if we make some additional assumptions
on problem parameters, we obtain a subclass of BASP, that we call k-BASP, that
can be solved with polynomial time-complexity. Roughly speaking, a BASP in-
stance belongs to k-BASP if the problem data are such that no more than k− 2
arcs can be travelled with a speed profile starting from zero speed and of maximum
acceleration, then followed by one of maximum deceleration and ending with zero
speed, without violating the maximum speed constraint. In Section 5, we will de-
fine k-BASP more precisely and we will present a simple upper bound on constant
k. In Proposition 5.5, we will show that k-BASP can be solved by Dijkstra’s algo-
rithm with polynomial time complexity with respect to the graph size (its number
of nodes and edges), provided that k is fixed. We will also present Algorithm 6.5,
which is able to adaptively find constant k.

Statement of contribution. To our knowledge, BASP has not been explic-
itly considered in literature, so that the main results presented here are new. In
particular, we believe that the most relevant contributions are:

• Proposition 4.2, that shows that BASP is NP-hard.

• Proposition 5.5, that shows that k-BASP can be solved with a polynomial
time-complexity, provided that k is fixed.

• The adaptive Algorithm 6.5, that is able to efficiently solve a large set of
BASP instances.

1.1 Problem motivation

One relevant application of this work is the optimization of automated guided vehi-
cles (AGVs) motions in automated warehouses. Automated warehouses are rapidly
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spreading in manufacturing and logistics because of their speed, flexibility, and re-
liability. In order to ensure the smooth functioning and to increase the overall
efficiency of the system, such fleets of AGVs need be coordinated at different lev-
els of control: task allocation, localization, path planning, motion planning and
vehicle management (see, for instance, [11], for a more in depth discussion).

In automated warehouses, AGVs are commonly moved between fixed operat-
ing points. These points may be associated to shelves locations, where packages
are stored or retrieved, to the end of production lines, where the AGV picks up a
final product, and to additional intermediate locations, used for routing. Between
these operating points, the vehicle follows preassigned connecting paths (see Fig-
ure 4). The vehicle motion must satisfy constraints on maximum speed and max-

Figure 4: An example scenario.

imum tangential and transversal accelerations, that depend on the vehicle position
on the path.

The algorithms developed in this paper allow to find the time-optimal path
for a single AGV that travels between operating points, taking into account path-
dependent bounds on maximum acceleration, deceleration and speed.

1.2 Related works

As said, to our knowledge, BASP has not been explicitly addressed in literature.
However, various works address related path planning problems for AGVs. In
those scenarios in which AGVs are allowed to move freely within their environ-
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ment and no predetermined circuits are available, one need to employ environmen-
tal representations such as cell decomposition methods ([1]) or trajectory maps
([12]). In particular, among cell decomposition methods, [4] presents an algorithm
based on a modification of Dijkstra’s algorithm in which edge weights depend on
previously visited edges. Note that our work shares some similarities with [4] in
regards of the idea of the history-dependent edges weight and in the way the ex-
tended graph associated to the addressed problem is defined. However, [4] focuses
on a different problem. In fact, it introduces a cell decomposition method whose
goal is to obtain a feasible path taking into account the vehicle maximum curva-
ture radius. Instead, our work focuses on selecting the optimal path among a set of
already feasible paths while obtaining the optimal speed profile as well. Moreover,
the algorithm introduce in [4] operates introducing a set of labels which can po-
tentially be very expensive in terms of memory usage and the history parameter is
given in input and is not adaptively computed, losing the guarantee of optimality.

In many industrial scenarios, AGVs move along predetermined circuits. The
representation of such paths is usually graph-based. The problem of finding the
optimal path connecting two positions within a facility turns, then, into the problem
of finding the shortest path connecting a pair of nodes in a graph. There are various
graph searching algorithms that are used to this end such as A∗, Lifelong Planning
A∗ ([9]), D∗ ([6]) and D∗ Lite algorithms. Among these, the most widely used ([8])
are A∗ and D∗ Lite algorithms.

A∗ algorithm ([10]) is a heuristic method that allows to compute the optimal
path (if it exists) ([7]) by exploring the graph beginning from the starting node
along the most promising directions according to a heuristic function that estimates
the cost from the current position to the target node.

2 Notation

A directed graph is a pair G = (V,E) where V is a set of nodes and E ⊂ {(x,y) ∈
V2 | x 6= y} is a set of directed arcs. A path p on G is a sequence of adjacent
vertices of E. That is, p = σ1 · · ·σm, where, for i ∈ {1, . . . ,m−1}, (σi,σi+1) ∈ E.
We denote by P(G) the set of all paths of G. An alphabet Σ = {σ1, . . . ,σn} is a set
whose elements are called symbols. A word is any finite sequence of symbols. We
denote the set of all words over Σ by Σ∗, that also contains the empty word ε , while
Σi represents the set of all words of length up to i ∈ N, that is, words composed
of up to i symbols, including the empty word ε . Given a word w ∈ Σ∗, we denote
its length by |w|. Given a directed graph G = (V,E), we can think of V as an
alphabet. In this way, any path p ∈ P(G) is a word in V∗. Given s, t ∈ Σ∗, the word
obtained by writing t after s is called the concatenation of s and t and is denoted by
st ∈ Σ∗. We also say that t is a suffix of st and that s is a prefix of st. For r ∈ V∗,
we denote by~r the rightmost symbol of r. In the following, it will be convenient to
represent paths of G as strings composed of symbols in V. This will allow us to use
the concatenation operation on paths and to use prefixes and suffixes to represent
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portions of paths.
For x ∈R, we denote the ceiling of x by dxe= min{i ∈ Z | i≥ x}. For a,b ∈R,

we set a∧ b = min{a,b} and a∨ b = max{a,b}, as the minimum and maximum
operations, respectively. Further, R+ denotes the set of nonnegative real numbers.

Finally, given an interval I ⊆ R, let us recall that W 1,∞(I) is the Sobolev space
of functions in L∞(I) with weak derivative of order one with finite L∞-norm. For
f ,g ∈W 1,∞(I), we denote with f ∧g and f ∨g the point-wise minimum and maxi-
mum of f and g, respectively.

3 Problem formulation

We first present the speed planning problem on an assigned path, following our
previous work [3]. Then, we introduce the BASP problem, that considers both
speed planning and path selection.

3.1 Speed planning along an assigned path

Let γ : [0,λ f ]→ R2 be a C2 function such that (∀λ ∈ [0,λ f ]) ‖γ ′(λ )‖ = 1. The
image set γ ([0,λ f ]) represents the path followed by a vehicle, γ(0) the initial con-
figuration and γ(λ f ) the final one. Function γ is an arc-length parameterization
of the path. We want to compute the speed-law that minimizes the overall travel
time while satisfying some kinematic and dynamic requirements. To this end, let
ξ : [0, t f ]→ [0,λ f ] be a differentiable monotone increasing function that repre-
sents the vehicle arc-length coordinate along the path as a function of time and let
v : [0,λ f ]→ [0,+∞) be such that, (∀t ∈ [0, t f ]) ξ̇ (t) = v(ξ (t)). In this way, v(λ ) is
the vehicle speed at position λ . The position of the vehicle as a function of time is
given by x : [0, t f ]→ R2, x(t) = γ(ξ (t)), speed and acceleration are given by

ẋ(t) = γ
′(ξ (t))v(ξ (t)),

ẍ(t) = aL(t)γ ′(ξ (t))+aN(t)γ ′⊥(ξ (t)),

where aL(t) = v′(ξ (t))v(ξ (t)) and aN(t)(t) = κ(ξ (t))v(ξ (t))2 are the longitudinal
and normal components of acceleration, respectively. Here, κ : [0,λ f ]→ R is the
scalar curvature, defined as κ(λ ) =

〈
γ ′′(λ ),γ ′(λ )⊥

〉
, where 〈·, ·〉 denotes the scalar

product.
We require to travel distance λ f in minimum-time while satisfying, for ev-

ery t ∈ [0,ξ−1(λ f )], 0 ≤ v−(ξ (t)) ≤ v(ξ (t)) ≤ v+(ξ (t)), |aN(ξ (t))| ≤ β (ξ (t)),
α−(ξ (t))≤ aL(ξ (t))≤α+(ξ (t)). Here, functions v−,v+,α−,α+,β are arc-length
dependent bounds on the vehicle speed and on its longitudinal and normal accel-
eration. It is convenient to make the change of variables w = v2 (see [13]), so that
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our problem takes on the following form

min
w∈W 1,∞([0,λ f ])

λ f∫
0

w(λ )−
1
2 dλ (1a)

µ
−(λ )< w(λ )≤ µ

+(λ ), λ ∈ [0,λ f ], (1b)

α
−(λ )≤ w′(λ )≤ α

+(λ ), λ ∈ [0,λ f ], (1c)

where

µ
+(λ ) = v+(λ )2∧ β (λ )

κ(λ )
, µ

−(λ ) = v−(λ )2 (2)

represent the upper bound on w (depending on speed bound v+ and curvature κ)
and the lower bound on w, respectively.

We actually address the following problem, which is slightly more general
than (1),

min
w∈W 1,∞([0,λ f ])

Ψ(w) (3a)

µ
−(λ )≤ w(λ )≤ µ

+(λ ), λ ∈ [0,λ f ], (3b)

α
−(λ )≤ w′(λ )≤ α

+(λ ), λ ∈ [0,λ f ], (3c)

where Ψ : W 1,∞ ([0,λ f ]) → R is order reversing (i.e., (∀x,y ∈ [0,λ f ]) x ≥ y ⇒
Ψ(x) ≤ Ψ(y)) and µ−, µ+, α−, α+ ∈ L∞ ([0,λ f ]) are assigned functions with
µ−,α+ ≥ 0 and α− ≤ 0. Initial and final conditions on speed can be included
in the definition of functions µ− and µ+. For instance, to set initial condition
w(0) = w0, it is sufficient to define µ+(0) = µ−(0) = w0.

Note that the objective function (1a) is order reversing, so that Problem (1) has
form (3).

3.2 Solution of Problem (3)

We summarize the method presented in [3] and begin with introducing a subset of
W 1,∞([0,λ f ]) as a technical requirement.

Definition 3.1. Let Qα−,α+ be the subset of W 1,∞([0,λ f , ]) such that µ ∈ Q if
sign(µ ′−α+) and sign(µ ′−α−) are Riemann integrable (i.e., in view of the
boundedness of the sign function, almost everywhere continuous), where sign :
R→{−1,0,1} is defined as

sign(x) =


1, if x > 0
0, if x = 0
−1, if x < 0.

Note that µ ∈ Qα−,α+ if functions µ ′−α+ and µ ′−α− change sign a finite
number of times in interval [0,λ f ]. In the following, we assume that µ+ ∈Qα−,α+ .
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To solve Problem (3), we define operators F,B,M : Q→W 1,∞([0,λ f ]) where Q
is defined as in Definition 3.1 and, for µ ∈ Q, F(µ) and B(µ) are given as followsF(µ)′(λ ) =

{
α+(λ )∧µ ′(λ ) if F(µ)(λ )≥ µ(λ )

α+(λ ) if F(µ)(λ )< µ(λ )

F(µ)(0) = µ(0),

(4)

B(µ)′(λ ) =

{
α−(λ )∧µ ′(λ ) if B(µ)(λ )≥ µ(λ )

α−(λ ) if B(µ)(λ )< µ(λ )

B(µ)(λ f ) = µ(λ f ).

(5)

Finally, for µ ∈ Q, operator M is defined as

M(µ) = F(µ)∧B(µ). (6)

The solution of Problem (3) is given by w = M(µ+) (see [3]). We call F,B,M
the forward operator, the backward operator and the meet operator, respectively.
Roughly speaking, given a maximum squared speed profile µ+ ∈ Q, starting from
µ+(0) and up to µ+(λ f ), F(µ+) grows with the maximum allowed acceleration
α+ while staying below µ+, and, if it touches µ+, coincides with it until µ+ grows
with an acceleration higher than α+, in which case F(µ+) behaves again as previ-
ously explained. Analogously, operator B acts in the same way as F but backwards
and with −α− as maximum acceleration. Finally, meet operator M is the point-
wise minimum between forward operator F and backward operator B. Moreover,
Problem (3) is feasible if and only if µ− ≤ w.

In order to further clarify the meaning of these operators, we will consider a
simple example. Let us examine the path shown in Figure 5, which represents a
path whose total length is 200 m. The speed bounds v+ and v− in (2) are set as
follows: v+(0) = v−(0) = 0 ms−1, v+(200) = v−(200) = 22 ms−1, whilst, for
each λ ∈ (0,200), v−(λ ) = 0 ms−1 and v+(λ ) = 36.1 ms−1. The longitudinal
acceleration limits are α− =−2.78 ms−2 and α+ = 2.78 ms−2, and the maximal
normal acceleration is β = 4.9 ms−2. Figure 6 shows the upper-bound function
µ+ obtained by (2), with µ+(0) = 0, to impose zero initial speed, and the cor-
responding functions F(µ+) and B(µ+) computed as the solution of (4) and (5),
respectively. Figure 6 shows F(µ+) and B(µ+), while Figure 7 shows the optimal
solution w = M(µ+) obtained by (6). In this example, the initial speed is zero,
then the profile grows to the upper bound µ+; next, it follows it in order to respect
the maximum speed constraint due to the lateral acceleration on the curve. After
that, at the end of the path part of higher curvature, it grows again and reaches a
second local maximum speed after which it decreases in order to meet the final
speed requirement v+(200). Note that we can compute an approximated solution
of w = M(µ+) by using a finite difference approximation of equations (4) and (5).
As shown in [2], this can be done with an algorithm that has linear time-complexity
with respect to the number of discretization points. Further, note that if functions
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Figure 5: The black line represents the path, while the red circle and the black cross
represent the starting point and the end point, respectively.
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Figure 6: The red line represents µ+ defined in (2), the blue one represents F(µ+),
whilst the green one represents B(µ+).

µ+, α−, α+ are piecewise-constant, then w is piecewise linear (as in the simple
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Figure 7: Example 1: The red line represents µ+ defined in (2), whilst the black
one represents optimal solution w = M(µ+).

examples of Figures 2 and 3) and can be directly computed without actually inte-
grating differential equations (4) and (5).

3.3 Bounded Acceleration Shortest Path Problem

Before defining BASP in a formal way, we present an example. Consider the set-
ting represented in Figure 8. Here, the circles represent the positions of 7 AGV
configurations, while the arrows represent the associated orientation angles. For
instance, each configuration can be an operating point useful to the management of
an automated warehouse. It may be a position along the racks, to insert or retrieve
packages from the shelves, a position at the end of the production lines, to pickup
finished products, or some intermediate location, used for routing. These config-
urations are connected by 10 fixed directed paths. We can associate a directed
graph to this setting, reported in Figure 9. Namely, each configuration corresponds
to a vertex and each path to a directed arc. We associate to each path bounds on
maximum and minimum velocity and acceleration, that may depend on the arc-
length position along the path, following the procedure presented in Section 3.1.
Roughly speaking, solving BASP consists in finding the time-optimal motion from
a source to a destination configuration. This requires finding both the geometrical
path (i.e., the optimal sequence of directed arcs) and the time-optimal speed law
along this path that satisfied the constraints associated to each travelled arc. Note
that, once the path is known, this last task can be done with the method presented
in Section 3.1.
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Figure 8: Layout with 7 positions.
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Figure 9: Directed graph associated to the setting in Figure 8.

We now present BASP problem in more general terms. Let us consider a di-
rected graph G = (V,E), with V = {σ1, . . . ,σN}. Each node σi, i ∈ {1, . . . ,N},
represents an operating point Qi ∈ R2.

Each arc θ = (σi,σ j) ∈ E represents a fixed directed path between two operat-
ing points and is associated to an arc-length parameterized path γθ of length `(θ),
such that γθ (0) = Qi and γθ (`(θ)) = Q j.

In the following, we denote the set of all possible paths on G simply by P.
Similarly, for s, f ∈ V, we denote by Ps the subset of P consisting in all paths
starting from s and by Ps, f the subset of P consisting in all paths starting from s
and ending in f . We extend this definition to subsets of V, that is, if S,F ⊂ V, we
denote by PS,F the set of all paths starting from nodes in S and ending in nodes in
F .

Given a path p = σ1 · · ·σm, its length `(p) is defined as the sum of the lengths
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of its individual arcs, that is,

`(p) =
m−1

∑
i=1

`(σi,σi+1).

To setup our problem, we need to associate four real-valued functions to each
edge θ ∈ E: the maximum and minimum allowed acceleration and squared speed.
The domain of each function is the arc-length coordinate on path γθ . Then, given a
specific path p, we are able to define a speed optimization problem of form (3) by
considering the constraints associated to the edges that compose p. We define the
set of edge functions as

E = {ϕ : E×R+→ R}.

If ϕ ∈ E , θ ∈ E, λ ∈ R+, ϕ(θ ,λ ) denotes the value of ϕ on edge θ at position
λ . Note that ϕ(θ ,λ ) will be relevant only for λ ∈ [0, `(θ)]. Given a path p =
σ1 · · ·σm, we associate to ϕ ∈ E a function ϕp : [0, `(p)]→R in the following way.
Define functions Θ : [0, `(p)]→ N, Λ : [0, `(p)]→ R such that Θ(λ ) = max{i ∈
N | `(σ1 · · ·σi) ≤ λ} and Λ(λ ) = `(σ1 · · ·σΘ(λ )). In this way, Θ(λ ) is such that
θ(λ ) = (σΘ(λ ),σΘ(λ )+1) is the edge that contains the position at arc-length λ along
p and Λ(λ ) is the sum of the lengths of all arcs up to node σΘ(λ ) in p. Then, we
define ϕp(λ ) = ϕ(θ(λ ),λ −Λ(λ )).

Given µ̂+, µ̂−, α̂+, α̂− ∈ E and path p∈ P, let B= (µ̂−, µ̂+, α̂−, α̂+). Assume
(∀θ ∈ E)µ̂+(θ , ·) ∈ Qα̂−(θ ,·),α̂+(θ ,·) and define

TB(p) = min
w∈W 1,∞([0,s f ])

Ψ(w),

as the solution of Problem (3) along path p with µ− = µ̂−p , µ+ = µ̂+
p , α− = α̂−p ,

α+ = α̂+
p . In this way, TB(p) is the minimum-time required to traverse path p,

respecting the speed and acceleration constraints defined in B. We set TB(p) =+∞

if Problem (3) is not feasible.
The following is the main problem discussed in this paper.

Problem 3.2 (Bounded Acceleration Shortest Path Problem (BASP)). Given a
graph G= (V,E), µ+,µ−,α−,α+ ∈ E , B= (µ+,µ−,α−,α+), s∈V, and F ⊂V,
find

min
p∈Ps,F

TB(p).

In other words, we want to find the path p that minimizes the transfer time
between source node s and a destination node in F , taking into account bounds
on speed and accelerations on each traversed arc (represented by arc functions
µ+,µ−,α−,α+). The following properties are a direct consequence of the defini-
tion of TB(p).

Proposition 3.3. The following properties hold:
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i) If p1, p2 ∈ P are such that p1 p2 ∈ P, then

TB(p1 p2)≥ TB(p1)+TB(p2).

ii) If B = (µ+,µ−,α−,α+), B̂ = (µ̂+, µ̂−, α̂−, α̂+) are such that (∀θ ∈ E)
(∀λ ∈ [0, `(θ)]) [µ−(θ ,λ ),µ+(θ ,λ )]⊂ [µ̂−(θ ,λ ), µ̂+(θ ,λ )] and [α−(θ ,λ ),
α+(θ ,λ )]⊂ [α̂−(θ ,λ ), α̂+(θ ,λ )], then (∀p ∈ P)

TB(p)≥ TB̂(p).

In particular, the first property states that the minimum time for travelling the
composite path p1 p2 is greater or equal to sum of the times needed for travelling
p1 and p2 separately. In fact, in the first case, the speed must be continuous when
passing from p1 to p2 (due to the acceleration bounds), but this constraint does not
need to be satisfied when the speed profiles for p1 and p2 are computed separately.

4 Complexity

We discuss the complexity of a simplified version of Problem 3.2, in which maxi-
mum and minimum acceleration and speed are constant on each arc.

Problem 4.1 (Bounded Acceleration Shortest Path Problem with constant bounds
(BASP-C)). Solve Problem 3.2 with the additional assumption that there exist
functions α−,α+,µ−,µ+ : E→ R such that, (∀θ ∈ E) (∀λ ∈ R+) α−(θ ,λ ) =
α−(θ),α+(θ ,λ ) = α+(θ),µ−(θ ,λ ) = µ−(θ),µ+(θ ,λ ) = µ+(θ).

We will show that BASP-C is NP-hard, which implies that the more general
BASP is also NP-hard.

A special case of BASP-C is the classical Shortest Path (SP) problem, where
a distance/time d(θ) is associated to each edge and a minimum distance/time path
from source node s to destination node f is searched for. This is the special case
when α+(θ) = +∞ and α−(θ) =−∞ for all edges θ ∈ E. In this case, speed can
be changed instantaneously, so that we can run along each edge at the maximum
allowed speed along that edge, so that d(θ) = `(θ)

µ+(θ) . The classical SP problem
is known to be solvable in polynomial time, e.g., by Dijkstra’s algorithm. BASP-
C can be viewed as a generalization of the SP problem, but, differently from SP,
we prove that BASP-C is NP-hard. The following proposition characterizes the
complexity of Problem 4.1.

Proposition 4.2. Problem BASP-C is NP-hard.

Proof. See Appendix 8.2.

As said, this implies that also BASP is NP-hard. However, we also prove that,
under additional assumptions, BASP admits a pseudo-polynomial algorithm, i.e.,
an algorithm running in polynomial time with respect to the values of the input but
not with respect to the number of bits required to represent them.
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Proposition 4.3. Let us assume that the maximum and minimum acceleration
along each arc are fixed values. W.l.o.g., we assume that α+(θ)=+1 and α−(θ)=
−1 for each θ ∈ E. Moreover, we also assume that all lengths `(θ) are positive
integer values. Then, BASP admits a pseudo-polynomial time algorithm.

Proof. See Appendix 8.3

5 The k-BASP problem

As stated in Proposition 4.2, BASP is NP-hard. In the previous section we com-
mented that SP can be viewed as a special case of BASP. In fact, also BASP can
be viewed as an SP problem but defined on a different graph with respect to the
original one. More precisely, here we introduce some restrictions on parameters B
that allow reducing BASP to a standard SP problem on an extended graph, that can
be solved by Dijkstra’s algorithm. Let p ∈ P, define

`+(p) = min
{{

λ ∈ [0, `(p)] |
∫

λ

0
α
+
p (q)dq = µ

+
p (λ )

}
,+∞

}
,

`−(p) = max
{{

λ ∈ [0, `(p)] | −
∫ `(p)

λ

α
−
p (q)dq = µ

+
p (λ )

}
,−∞

}
.

In this way, `+(p) is the smallest value of λ ∈ [0, `(p)] for which the solution
of F in (4), with α+ = α+

p , starting from initial condition F(0) = 0, reaches the
squared speed upper bound µ+(λ ). Note that `+(p) = ∞ if no such value of λ

exists. Similarly, `−(p) is the largest value of λ ∈ [0, `(p)] for which the solution
of B in (5), with α− = α−p , starting from initial condition B(`(p)) = 0, reaches
µ+(λ ). Again, `−(p) = −∞ if no such value of λ exists. Note that if p, t, pt ∈ P,
`+(pt) ≤ `+(p) and `−(pt) ≥ `−(p) (actually, equalities hold if the values are all
finite). Finally, we define

K(B) = min{k ∈ N | (∀p ∈ Ps) |p| ≥ k⇒ `+(p)≤ `−(p)}. (7)

We call k-BASP any instance of Problem 3.2 that satisfies K(B) ≤ k. For in-
stance, consider the simple graph depicted in Figure 10. Here, V = {s,1,2, f},
E= {(s,1),(1,2),(2, f )}, (∀θ ∈ E) α−(θ) =−1, α+(θ) = 1, µ−(θ) = 0, `(θ) =
1, moreover µ+((s,1)) = 1, µ+((1,2)) = 2

3 , µ+((2, f )) = 1. In this case, Ps =
{s,s1,s12,s12 f}. Moreover, K(B)> 2, since `+(s1) = 1 > 0 = `−(s1) as reported
in Figure 11. Further, `+(s12) < `−(s12) and `+(12 f ) < `−(12 f ) and s12,12 f
are the only paths of length 3. Figure 12 shows the computation of `+(s12) and
`−(s12), the computation of `+(12 f ) and `−(12 f ) is analogous. Hence, in this
example, K(B) = 3.

Note that K(B)−1 represents the maximum number of vertices of a path that
can be traveled with a speed profile of maximum acceleration, followed by one
of maximum deceleration, starting and ending with zero speed, without violating
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s 1 2 f

Figure 10: Simple graph with source node s and final node f .

λ0 = `−(s1) 0.5 1 = `+(s1)

w

∫
λ

0 α
+
s1(q)dq

∫
λ

`(s1) α
−
s1(q)dq

µ
+
s1(λ )

Figure 11: Computation of `+(s1) = 1, `−(s1) = 0.

the maximum speed constraint. The following expression provides a simple upper
bound on K(B)

K(B)≤ 1+

2max
θ∈E

max
λ∈[0,`(θ)]

µ
+(θ ,λ )

min
λ∈[0,`(η)]

(
α
+(θ ,λ )∧|α−(θ ,λ )|

)
`(θ)

 . (8)

Note that K(B) = 1 only if α− = −∞ and α+ = +∞, that is, if we do not
consider acceleration bounds. We will present an algorithm that solves k-BASP in
polynomial time complexity with respect to |V| and |E|. However, note that the
complexity is exponential with respect to k, so that a correct estimation of K(B) si
critical. In general, bound (8) overestimates K(B). In section 6.2 we will present a
simple method for correctly estimating K(B).

Define Suffk : P→Vk such that, if |p| ≤ k, Suffk(p) = p and if |p|> k, Suffk(p)
is the suffix of p of length k. Function Suffk allows to introduce a partially defined
transition function Γ : Vk×V→ Vk by setting

Γ(r,σ) =

{
Suffk(rσ), if rσ ∈ P
is not defined, if rσ /∈ P.

λ0 `+(s12) = 1 4
3 = `−(s12)

w
∫

λ

0 α
+
s12(q)dq

∫
λ

`(s12) α
−
s12(q)dq

µ
+
s12(λ )

Figure 12: Computation of `+(s12) = 1, `−(s12) = 4
3 .

15



We recall that Vk represents the subset of language V∗ composed of strings
with maximum length k, including the empty string ε .

Define the incremental cost function η : Ps×V→R+ such that, for p ∈ Ps and
σ ∈ V,

η(p,σ) =

{
TB(pσ)−TB(p), if pσ ∈ Ps

+∞, otherwise.

In other words, η(p,σ) is the difference between the minimum-time required
for traversing pσ and the minimum-time required for traversing p. For simplicity
of notation, from now on we will denote TB simply as T . The following proposition
shows that the incremental cost is always strictly positive.

Proposition 5.1. η(p,σ)≥ T (σ).

Proof. By i) of Proposition 3.3, T (pσ)≥ T (p)+T (σ).

The following property, whose proof is presented in the Appendix, plays a key
role in the solution algorithm.

Proposition 5.2. Let p1, p2, t ∈ P be such that p1t, p2t ∈ P and `+(t)≤ `−(t), then
(∀σ ∈ V)

T (p1tσ)−T (p1t) = T (p2tσ)−T (p2t).

The following is a direct consequence of Proposition 5.2. It states that, given
p ∈ P and σ ∈ V, the incremental cost η(p,σ) does not depend on the complete
path p, but only on Suffk(p) (its last k symbols).

Proposition 5.3. If K(B) ≤ k and p, p′ ∈ P are such that Suffk(p) = Suffk(p′),
then (∀σ ∈ V)

η(p,σ) = η(p′,σ) .

Define function η̂ : Vk×V→ R+, such that η̂(r,σ) = η(p,σ) where p ∈ P is
any path such that r = Suffk(p). We set η̂(r,σ) = +∞ if such path does not exist.
Note that function η̂ is well-defined by Proposition 5.3, being η(p,σ) identical
among all paths p such that r = Suffk(p). In particular, Proposition 5.3 holds for
p′ = Suffk(p) = r, so that we can compute η̂ as

η̂(r,σ) = η(r,σ).

In the following, since η̂ is the restriction of η on Vk×V, we will denote η̂ simply
by η .

The value k can be viewed as the amount of memory required to solve the
problem: once a node is reached, the optimal path from such node to the target
one depends on the last k visited nodes. If k = 1, it only depends on the current
node itself (i.e., no memory is required). This is the situation with the classical
SP problem. More generally, k > 1, so that the optimal way to complete the path
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does not only depend on the current node, but also on the sequence of k−1 nodes
visited before reaching it.

Define function V : Vk→ R as

V (r) = min
p∈Ps|Suffk p=r

TB(p). (9)

Note that the solution of BASP corresponds to minr∈Vk|~r∈F V (r) (we recall that
~r is the last vertex of r). For r ∈Vk, define the set of predecessors of r as Prec(r) =
{r̄ ∈ Vk | r = Γ(r̄,~r)}. The following proposition presents an expression for V (r)
that holds if condition `+(r′)≤ `−(r′) is satisfied for all predecessors r′ of r.

Proposition 5.4. Let r ∈ Vk, if (∀r′ ∈ Prec(r)) `+(r′)≤ `−(r′), then

V (r) = min
r′∈Prec(r)

{V (r′)+η(r′,~r)}. (10)

Proof.
V (r) = min

p∈Ps|Suffk p=r
T (p) =

min
q∈Ps|Suffk q~r=r

{T (q~r)−T (q)+T (q)}=

min
q∈Ps|Suffk q~r=r

{T (q)+T ((Suffk q)~r)−T (Suffk q)}=

min
q∈Ps|Suffk q~r=r

{T (q)+η(Suffk q,~r)}=

min
q∈Ps,r′∈Prec(r)|Suffk q=r′

{T (q)+η(r′,~r)}=

min
r′∈Prec(r)

{V (r′)+η(r′,~r)},

where we used the facts that T (qσ)−T (q)= T (Suffk qσ)−T (Suffk q), by Proposi-
tion 5.2, and that q∈Ps is such that Suffk q~r = r if and only if Suffk q∈ Prec(r).

As a consequence of Proposition 5.4, if (∀r ∈ Vk) `
+(r) ≤ `−(r), V (r) corre-

sponds to the length of the shortest path from s to r on the extended directed graph
G̃= (Ṽ, Ẽ), where Ṽ= Vk and (r1,r2) ∈ Ẽ if r2 = Γ(r1,~r2) is defined, in this case
its length is η(r1,~r2). The upper part of Figure 13 shows a graph consisting of 3
nodes. Node s = 1 is the source (indicated by the entering arrow) and the double
border shows the final node F = {3}. The lower part of Figure 13 represents the
corresponding extended graph, obtained for k = 2, consisting of 13 nodes (the car-
dinality of V2). Note that some of the nodes are unreachable from the initial state,
these are represented with dotted edges.

Solving k-BASP corresponds to finding a minimum-length path on G̃ that con-
nects node s ∈ Vk to F̂ = {r ∈ Vk | ~f ∈ F}. Note that the set of final states for the
extended graph F̂ contains all paths p ∈ Vk that end in an element of F . In the ex-
tended graph reported in Figure 13, this corresponds to finding a minimum-length
path from starting node 1 to one of the final nodes 3, 13, 23, 33. Note that the un-
reachable nodes play no role in this procedure. We can find a minimum-length path
by Dijkstra’s algorithm applied on G̃, leading to the following complexity result.
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Figure 13: A graph and the corresponding extended graph for k = 2.

Proposition 5.5. k-BASP can be solved with complexity O(|V|k−1|E|+(|V|k log |V|k)).

Proof. Dijkstra’s algorithm has time complexity O(|E|+ |V | log |V |), where |E|
and |V | are the cardinalities of the edge and vertex sets. In our case, |V | = |Ṽ| =
|Vk|= ∑

k
i=0 |V|i = O(|V|k), |E|= |Ẽ| ≤ |Vk−1E|= O(|V|k−1|E|), which imply the

thesis.

The following remark establishes again that SP can be viewed as a special case
of BASP when no bound on the acceleration is imposed.

Remark 5.6. If (∀σ ∈V) (∀λ ) α−(σ ,λ ) =−∞, α+(σ ,λ ) =+∞, then K(B) = 1.
The resulting 1-BASP reduces to a standard SP problem on graph G and can be
solved with time complexity O(|E|+ |V| log |V|).

6 Adaptive A∗ algorithm for k-BASP

The computation method based on Dijkstra’s algorithm on the extended graph G̃,
presented in the previous section, has two main disadvantages. First, the extended
graph has ∑

k
j=1 |V| j nodes, so that the time required by Dijkstra’s algorithm grows

exponentially with k. We will show that it is possible to mitigate this problem and
reduce the number of visited nodes by using A∗ algorithm with a suitable heuristic.
Second, the estimation of k = K(B) from its definition is not an easy task. We will
show that it is quite easy to adaptively find the correct value of k by starting from
k = 2 and increasing k if needed.
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6.1 Upper bounds on TB(p)

To implement the A∗ algorithm, we need to define a heuristic function h : Vk→R,
such that, for r ∈Vk, h(r) is a lower bound on minp∈P~r,F̂ T (p), that is, the minimum
time needed for traveling from~r to a final state in F̂ . In general, we can compute
lower bounds for BASP by relaxing the acceleration constraints α−, α+. Namely,
let B̂ be a parameter set obtained by relaxing acceleration constraints in B. Then,
if K(B̂)< K(B), by Proposition 5.5, the solution of BASP for parameters B̂ can be
computed with a lower computational time than the solution with parameters B. In
particular, we obtain a very simple lower bound by removing acceleration bounds
altogether, that is, by setting α− = −∞ and α+ = +∞. In this way, the vehicle is
allowed to travel at maximum speed everywhere along the path and the incremental
cost function η(p,σ) is given by the time needed to travel γσ at maximum speed,
that is:

η(p,σ) =
∫ `(~pσ)

0

1√
µ+((~p,σ),λ )

dλ .

Define the heuristic h : Vk→ R+ as

h(r) = min
p∈P~r,F̂

TB̂(p). (11)

Note that, if α− =−∞ and α+ =+∞, h corresponds to the solution of 1-BASP
and all values of h can be efficiently precomputed by Dijkstra’s algorithm (see
Remark 5.6).

The following proposition shows that h is admissible and consistent, so that A∗

algorithm, with heuristic h, provides the optimal solution of k-BASP and its time-
complexity is no worse than Dijkstra’s algorithm (see for instance Theorems 2.9
and 2.10 of [5]).

Proposition 6.1. Heuristic h satisfies the following two properties:

i) (∀r ∈ Vk) h(r)≤minq∈P~r, f TB(q) (admissibility).

ii) (∀r ∈ Vk) (∀σ ∈ V) h(r)≤ η(r,σ)+h(Γ(r,σ)) (consistency).

Proof. i) h(r) = minp∈P~r, f TB̂(p)≤minq∈P~r, f TB(q), since B̂ is a relaxation of B.
ii) h(r)=minp∈P~r, f TB̂(p)≤TB̂(σ)+minp∈Pσ , f TB̂(p)≤TB(σ)+minp∈Pσ , f TB̂(p)

≤ η(r,σ)+minp∈Pσ , f TB̂(p) = η(r,σ)+h(Γ(r,σ)), where TB̂(σ)≤ TB(σ) by ii) of
Proposition 3.3 and TB(σ)≤ η(r,σ) by Proposition 5.1.

Since heuristic h is admissible and consistent, A∗ is equivalent to Dijkstra’s
algorithm, with the only difference that the incremental cost function η(r,σ) is
substituted with modified cost

η̃(r,σ) = η(r,σ)+h(Γ(r,σ))−h(r) (12)

(see Lemma 2.3 of [5] for a complete discussion). A description of A∗ algorithm
can be found in literature (for instance, see Algorithm 2.13 of [5]). For the sake of
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completeness, we report a possible implementation. We define a priority queue Q
that contains open nodes, that is, nodes that have already been generated but have
not yet been visited. Namely, Q is an ordered set of pairs (r, t)∈Vk×R+, in which
r ∈ Vk and t is a lower bound for the time associated to the best completion of r to
a path arriving at a final state. We need to perform the following operations on Q:
find its element with the minimal t-value, insert a pair, and update the queue if a
node improves its t-value due to the discovery of a shorter path. Accordingly, we
define the following operations on Q. Operation INSERT(Q,(r, t)) inserts couple
(r, t) into Q, operation (r, t) = DELETEMIN(Q) returns the first couple of Q, that
is, the couple (r, t) with the minimum time t, and removes this couple from Q.
Finally, operation DECREASEKEY(Q,(r, t)) assumes that Q already contains a
couple (r, t ′) with t ′ > t and substitutes this couple with (r, t). Further, we consider
three partially defined maps VALUE : Vk→R, PARENT : Vk→Vk, CLOSED : Vk→
{0,1}, such that, for r ∈ Vk, VALUE(r) is the current best upper estimate of V (r),
PARENT(r) is the parent node of r and CLOSED(r) = 1 if node r has already been
visited. Maps VALUE, PARENT, and CLOSED can be implemented as hashtables.
For a complete discussion on A∗ algorithm and the data structures involved, we
refer again the reader to [5].

Algorithm 6.2 (A∗ algorithm for k-BASP).

1) [initialization] Set Q = {(s,h(s))}, VALUE(s) = 0.

2) [expansion] Set (r, t) = DELETEMIN(Q) and set CLOSED(r) = 1. If~r ∈ F̂ ,
then t is the optimal solution and the algorithm terminates, returning maps
VALUE, PARENT. Otherwise, for each σ ∈ V for which Γ(r,σ) is defined,
set r′ = Γ(r,σ), t ′ = t + η̃(r,σ). If CLOSED(r′) = 1, go to 3). Else, if
VALUE(r′) is undefined INSERT(Q,(r′, t ′)). Otherwise, if t ′ < VALUE(r′),
set VALUE(r′) = t ′, PARENT(r′) = r and do DECREASEKEY(Q,(r′, t ′)).

3) [loop] If Q is not empty go back to 2), otherwise no solution exists.

Proposition 6.3. Algorithm 6.2 terminates and returns the optimal solution (if it
exists), with a time-complexity not higher than Dijkstra’s algorithm.

Proof. It is a consequence of the fact that heuristic h is admissible and consistent
(see, for instance, Theorems 2.9 and 2.10 of [5]).

Note that, at the end of Algorithm 6.2, VALUE( f ) is the optimal value of k-
BASP and the optimal path from s to set F can be reconstructed from map PARENT.

6.2 Adaptive search for k

One possible limitation of Algorithm 6.2 is that estimating K(B) from its definition
can be difficult. A correct estimation of K(B) is critical for the efficiency of the
algorithm. Indeed, if K(B) is overestimated, the time-complexity of the algorithm
is higher than it would be with a correct estimate. On the other hand, if K(B) is
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underestimated, Algorithm 6.2 is not correct since Proposition 5.4 does not hold.
Here we propose an algorithm that adaptively find a suitable value for k in Algo-
rithm 6.2, that may be lower or equal to the true value of K(B), but, in any case,
allows to find the optimal solution of BASP. First, we define the modified cost
function W : Vk→ R as

W (r) =V (r)+h(r),

where V is given by (9) and h is the heuristic given by (11).
If (∀r ∈ Vk) `

+(r)≤ `−(r), then W is the solution of{
W (r) = minr′∈Prec(r){W (r′)+ η̃(r′,~r)}
W (s) = h(s)

(13)

Indeed, following the same steps of the proof of Proposition 5.4

W (r) =V (r)+h(r) =

min
r′∈Prec(r)

{V (r′)+η(r′,~r)+h(r)+h(r′)−h(r′)}

= min
r′∈Prec(r)

{W (r′)+ η̃(r′,~r)}.

Hence, W (r) corresponds to the length of the shortest path from s to r on G̃, with
arc-length given according to η̃ . If condition `+(r) ≤ `−(r) is not satisfied for all
r ∈ Vk, equation (13) does not hold for all r ∈ Vk and W does not represent the
solution of a shortest path problem. However, the following proposition shows that
we can still find a lower bound Ŵ of W that does correspond to the solution of a
shortest path problem.

Proposition 6.4. Let Ŵ : Vk→ R be the solution of{
Ŵ (r) = minr′∈Prec(r){Ŵ (r′)+ η̂(r′,~r)}
Ŵ (s) = 0

(14)

where

η̂(r′,~r) =

{
η̃(r′,~r), if `+(r′)≤ `−(r′) or |r′|< k
h(r)−h(r′), otherwise.

Then, (∀r ∈ Vk)

i) Ŵ (r)≤W (r).

ii) if (∀r̄ ∈ Vk | Ŵ (r̄)≤ Ŵ (r))`+(r̄)≤ `−(r̄), then Ŵ (r) =W (r).

Proof. i) For r ∈ Vk, let p ∈ Ps be such that Suffk p ∈ Prec(r). If `+(Suffk p) ≤
`−(Suffk p), in view of Proposition 5.2, T (p~r) = T (p)+η(Suffk p,~r), otherwise,
obviously, T (p~r) ≥ T (p). Hence, in both cases, by the definition of η̃ in (12),
T (p~r)+ h(r) ≥ T (p)+ h(Suffk p)+ η̂(Suffk p,~r). By contradiction, assume that
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there exists a non-empty subset A ⊂ Vk such that (∀r ∈ A) Ŵ (r) > W (r). Let
r̄ = argminr̂∈AW (r̂), then,

W (r̄) =V (r̄)+h(r̄) = min
p∈Ps|Suffk p=r̄

T (p)+h(r̄) =

min
q∈Ps|Suffk q∈Prec(r̄)

T (q~r)+h(r̄)≥

min
q∈Ps|Suffk q∈Prec(r̄)

{T (q)+h(Suffk(q))+ η̂(Suffk q,~̄r)}=

min
r′∈Prec(r̄)

{Ŵ (r′)+ η̂(r′,~̄r)}= Ŵ (r̄),

where we used the fact that W (r′) = Ŵ (r′), that follows from the definition of r̄,
since the value of r′ that attains the minimum is such that W (r′)<W (r̄). Then, the
obtained inequality contradicts the fact that Ŵ (r̄)>W (r̄).

ii) Let A ⊂ V be the set of values of r ∈ V for which ii) does not hold and, by
contradiction, assume that A is not empty and let r̂ = argminr∈AŴ (r). Then, by the
definition of r̂, it satisfies the following two properties. First, (∀r̄ ∈ Vk | Ŵ (r̄) ≤
Ŵ (r̂))`+(r̄)≤ `−(r̄), moreover Ŵ (r̂) 6=W (r̂).

Note that, from the definitions of Ŵ , W (s) = Ŵ (s). Then,

W (r̂) = min
p∈Ps|Suffk p=r̂

T (p)+h(r̂) =

min
q∈Ps|Suffk q∈Prec(r̂)

{T (q~̂r)+h(Suffk q)−h(Suffk q)+h(r̂)}

= min
r′∈Prec(r̂)

{Ŵ (r′)+ η̂(r′,~̂r)}= Ŵ (r̂),

which contradicts the definition of r̂. Here, we used equation (12) and the fact that,
since Ŵ (r′)< Ŵ (r̂) and by the definition of r̂, Ŵ (r′) =W (r′).

Proposition 6.4 implies that Ŵ (r) is a lower bound of W (r) and that it corre-
sponds to the length of the shortest path from s to r on the extended directed graph
G̃, with arc-length given in accordance to (14), namely by the value of function
η̂ . Hence, Ŵ ( f ) can be computed by Dijkstra’s algorithm (which is equivalent to
compute V with A∗ algorithm, with heuristic h). The algorithm that we are going
to present is based on the following basic observation. If A∗ algorithm computes
f ∗ = argmin f∈F̂ Ŵ ( f ) by visiting only nodes for which `+(r) ≤ `−(r), then ii) of
Proposition 6.4 is satisfied for r = f ∗ and Ŵ ( f ∗) =W ( f ∗) is the optimal value of k-
BASP. If this is not the case, we increase k by 1 and re-run the A∗ algorithm. Note
that the algorithm starts with k = 2, since, according to its definition, K(B) = 1
only if no acceleration bounds are present and, in this case, BASP is equivalent to
a standard SP and can be solved by Dijkstra’s algorithm.

Algorithm 6.5 (Adaptive A∗ algorithm for k-BASP).

1) Set k = 2.
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Figure 14: Simple graph considered in Example 6.6.

2) Execute A∗ algorithm and, at every visit of a new node r, if none of the two
conditions `+(r)≤ `−(r) and |r|< k hold, set k = k+1 and repeat step 2).

Note that the algorithm does not compute the exact value K(B). Rather, it
underestimates it. More precisely, it stops with the smallest k value needed to solve
BASP problem between the given source and destination nodes. This is illustrated
by the following example.

Example 6.6. Let

G= (V,E), V= {s,1, f}, E= {(s,1),(1, f ),(s, f )},

be the graph represented in Figure 14, with the following set of bounds B:

(s,1) → α− =−1, α+ = 1, µ− = 0, µ+ = 4

(1, f ) → α− =−1, α+ = 1, µ− = 0, µ+ = 4

(s, f ) → α− =−2, α+ = 2, µ− = 0, µ+ = 3,

and edge lengths

`((s,1)) = 2, `((1, f )) = 2, `((s, f )) = 3.

The speed is further bounded to be equal to 0 both in s and in f . In this case
it is easily seen that K(B) = 3, since along path s1 f the maximum speed is never
reached under the given bounds on the acceleration and the graph does not contain
paths with more vertices. However, the A∗ algorithm is first run with k = 2. With
such value, the heuristic has the following value for the different paths of length
less or equal than k = 2

h(s) = 1, h(1) = 0.5, h( f ) = 0,

h(s1) = 0.5, h(1 f ) = 0, h(s f ) = 0.

These are easily computed by solving an SP problem with edge lengths equal to

ds1 = 0.5, d1 f = 0.5, ds f = 1,
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obtained by the formula de =
`(e)

µ+(e) for each edge e. The queue Q is then initial-
ized with {(s,1)} with VALUE(s) = 0. Next, we remove (s,1) from the queue and
set CLOSED(s) = 1, and we insert in the queue (1,h(s)+TB(s1)−TB(s)+h(1)−
h(s)) = (1,2.5) and (1,h(s)+TB(s f )−TB(s)+ h( f )− h(s)) =

(
1,
√

6
)

, and we
set

PARENT(1) = PARENT( f ) = s.

Thus,
Q =

{(
f ,
√

6
)
,(1,2.5)

}
.

Since the minimum is attained by
(

f ,
√

6
)

, we remove it from the queue, we check

whether `+(s f )≤ `−(s f ), which is the case since `+(s f ) = `−(s f ) = 1.5, and we
stop since we reached the target node f . The minimum path is recovered from
PARENT (in this case it is simply path s f ) and the minimum time to travel from s to
f is
√

6.

Proposition 6.7. Algorithm 6.2 terminates with k ≤ K(B) and returns an optimal
solution.

Proof. By Definition of K, if k = K(B) condition `+(r)≤ `−(r) is satisfied for all
r. Hence, there exists k ≤ K(B) for which the algorithm terminates. Let r ∈ Vk,
with ~r ∈ F be the last-visited node before the termination of the algorithm. By
ii) of Proposition 6.4, we have that Ŵ (r) =W (r) = V (r) (since h(r) = 0), but, by
definition, V (r) is the shortest time for reaching a node in F .

7 Numerical experiments

7.1 Nodes associated to different orientations

1a

1b

2a2b

3a

3b

Figure 15: Graph with replicated nodes for the two possible directions.
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Figure 16: Directed graph associated to the setting in Figure 15.

Consider the setting represented in Figure 15. There are 3 positions connected
by 4 paths. The paths are given by spline curves and are chosen in order to have
a nonzero continuous first derivative at connection points. In this way, the path
obtained by combining two adjacent arcs has piecewise-continuous curvature. In
order to associate a graph to the setting of Figure 15, we actually need to assign
two nodes to each position, associated to opposite curve directions. For instance,
there is a direct arc from node 1a to node 2a, but not from 1a to 2b, since node 2b
is associated to a direction which is opposite to the one that we would obtain by
following the path from the first to the second position. In this way, the setting of
Figure 15 is associated to the graph reported in Figure 16 Here, position 1 is the
initial one and is associated to the two initial nodes 1a and 1b. This is due to the
fact that we assume that the vehicle is initially at rest, so that it can start along both
directions associated to 1a and 1b. Similarly, final position 3 is associated to the
two states 3a, 3b, due to the fact that we accept both orientations for reaching the
final position. Handling two initial states is not problematic, since it is sufficient
to solve the problem twice, starting from both initial states 1a and 1b, and then
choosing the best solution.

7.2 A 16-vertex graph

We run all simulations on an Intel core i5 (7200u) with 8GB of RAM. As a simple
example, we consider the 16-configuration setting represented in Figure 17. Each
configuration i ∈ {1, . . . ,16} is associated to a direction θi ∈ [0,2π] and to a posi-
tion Qi ∈ R2. According to the method presented in Section 7.1, we associate the
setting of Figure 17 to a graph with 32 nodes. In order to satisfy the maximum
acceleration constraint, for each edge we set the constant squared speed bound
µ∗((i, j)) = aNri j, where ri j is the minimum curvature radius of the path that con-
nects Qi to Q j. The normal acceleration aN = 2 m/s2 and the maximum tangential
acceleration and deceleration α+ =−α− = 0.5 m/s2 are constant and equal for all
arcs.

As an example, we chose as source configuration s = 16 and, as final one,
f = 6, and we computed three different solutions:
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Figure 17: Graph with 16 nodes.

• the solution of BASP;

• the solution of BASP with infinite acceleration and deceleration (1-BASP);

• the shortest path (SP).

Note that the solutions of SP and 1-BASP can be computed by Dijkstra’s algorithm.
To compute the solution of BASP, we used Algorithm 6.5. Figure 18 represents the
solutions of the three problems. Note that, in this case, they are all different. In
particular, in Figure 19, we show the speed profile of the solution of BASP, while,
in Figure 20, we show the speed profile of the solution of 1-BASP, which is the
solution of BASP with infinite acceleration. Observe that the path obtained as
the solution of 1-BASP, being 49 m long, is longer than the path obtained as the
solution of BASP, which is 42 m long. However, if we allow infinite acceleration,
this longer path is the minimum-time one.

The path corresponding to the solution of BASP changes according to the cho-
sen acceleration bounds. In particular, if we choose a small enough acceleration
bound, for example α+ =−α− = 0.1 m/s2, then the path corresponding to the so-
lution of BASP coincides with the shortest one. Instead, if the acceleration bounds
are large enough, for example α+ =−α− = 1 m/s2, the path corresponding to the
solution of BASP coincides with the one obtained from the solution of 1-BASP
(i.e., the infinite acceleration fastest path).

7.3 Randomly generated problems

We performed various tests on randomly generated problems of different sizes, ob-
tained with the following procedure. First, we generated a random graph with n
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Figure 18: The three different solutions of BASP, 1-BASP and SP.
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Figure 19: Speed profile of the solution of BASP with α+ =−α− = 0.5 m/s2.

nodes with Python package NetworkX (networkx.org), using function
geographical_threshold_graph. Essentially, each node is associated to
a position, obtained by choosing a random element of set [0,1]× [0,1]. The edges
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Figure 20: Speed profile of the solution of 1-BASP with infinite acceleration.

are randomly determined in such a way that closer nodes have a higher connection
probability. We multiplied the obtained position by factor 10

√
n, in order to obtain

the same average nodes density independently on n. For a more detailed descrip-
tion of geographical_threshold_graph, we refer the reader to NetworkX
documentation. Then, we associated a random angle θi to each node, obtained
from a uniform distribution in [0,2π]. In this way, each node of the random graph
is associated to a vehicle configuration, consisting of a position and an angle. Set
τ(θi) = [cosθi,sinθi]

T . Each edge (i, j) is associated to a Dubins path, which is
defined as the shortest curve of bounded curvature that connects the configurations
associated to nodes i and j, with initial tangent parallel to τ(θi) and final tangent
parallel to τ(θ j). We chose the minimum turning radius for the path associated to
edge (i, j) as ri j = min

{
`((i, j))/(d(θi,θ j)),4

}
where d(x,y) is the angular dis-

tance between angles x and y.
We defined the problem graph G as described in Section 7.1. In particular,

we associated two nodes to each configuration, representing opposite directions.
In this way, we obtain a problem graph with 2n nodes. We set the acceleration
and deceleration bounds constant for all paths and equal to 0.1 m/s2. The upper
squared speed bound is constant for each arc and given by 2r, where r is the min-
imum curvature radius of the path associated to the arc. In our tests we used the
adaptive A∗ algorithm (Algorithm 6.5). First, we ran simulations for 10 values of n,
logarithmically spaced between 100 and 1000. For each value of n, we generated
20 different graphs and, for each one of them, we ran 10 simulations, randomly
choosing the source and the target node. Figure 21 shows the mean values and
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the distributions of the computational time. We considered as solved only those
instances for which the algorithm took less than 100 seconds to find the solution:
for n = 1000, 5% of the instances have not been solved, while all the instances
have been solved for the other values of n. Table 1 shows, for each value of n, the
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Figure 21: Box-and-whisker plot of the computational time to solve BASP on the
different instances.

percentages of the tests in which Algorithm 6.5 terminates with a given value of k.

number of nodes k = 3 k = 4 k = 5 k = 6
100 90 % 10% - -
129 81.5 % 17.5% - -
167 70.5% 28% 1% 0.5%
215 73.5% 25% 1.5 % -
278 64.5% 30.5% 5 % -
359 67.5 % 31 % 1.5% -
464 49 % 44.5% 6.5 % -
599 40 % 55% 5 % -
744 37.5% 53.5% 9 % -
1000 37.5% 57.9% 4.1% 0.5%

Table 1: Percentages of the values of k for each dimension of the graph.

In the previous section, we showed that, for a given problem instance, the path
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p∗ corresponding to the solution of BASP is in general different from the path p̂
obtained as the solution of BASP with infinite acceleration bounds. We ran some
numerical experiments to compare the travel times TB(p∗) and TB(p̂). Namely,
we generated 50 different random graphs with n = 100 with the procedure pre-
sented above. For each instance, we considered 10 problems obtained by randomly
choosing the source node and the target node. Then, we solved BASP with differ-
ent acceleration bounds. Namely, for each problem instance, we considered equal
and constant maximum acceleration and deceleration bounds, chosen in the range
[0.1,5.6] m/s2.

In Figure 22, we compare the optimal travel times along the two paths. Namely,
for each value of the acceleration and deceleration bounds, we report the percent-
age difference 100 TB(p̂)−TB(p∗)

TB(p∗) obtained for each test.
We observe that for low acceleration and deceleration bounds the difference is

significant, while as the acceleration and deceleration bounds increase, the travel
time difference between the two paths tends to be smaller. This is due to the fact
that, if the acceleration/deceleration bounds are sufficiently high, paths p∗ and p̂
are the same.
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Figure 22: Percentage difference between the travel time of the infinite acceleration
FP and the travel time of the FP.
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7.4 Real industrial applications

Here we present two problems taken from real industrial applications, representing
two automated warehouses. The problem data have been provided by packaging
company Ocme S.r.l., based in Parma, Italy. The first problem is described by a
graph of 399 nodes. The acceleration and deceleration bounds are constant, equal
for all paths, and given by α+ = 0.28 m/s2 and α− = −0.19 m/s2. The speed
bounds are constant for each arc but vary among different arcs, according to the
associated paths curvatures, and they take values in the interval [0.136.1.7] ms−1.
The arc-lengths take values between 0.628 m and 10.87 m and have an average
value of 2.86 m.

We ran 1000 simulations by randomly choosing the source node and the target
node. The average value and the standard deviation of the computational time are
0.0036 s and 0.0062 s, respectively. In Figure 23, we report the distribution of the
computational time of the considered instances. In the same figure we also show
a box-and-whisker plot that reports the final value of k obtained by Algorithm 6.5
for solving each instance.
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Figure 23: Box-and-whisker plot of the 1000 simulations on the 399-vertex graph.

We also considered a second problem, representing a larger automated ware-
house, described by a graph of 3399 nodes. The acceleration and deceleration
ramps are the same as in the previous example, while the maximum speed bounds
belongs to the interval [0.086,1.7] ms−1. The arc-lengths take values between 0.2
m and 16.352 m and have an average value of 3.569 m.

As in the first example, we ran 1000 simulations by randomly choosing the
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source and the target nodes and we found that the average value and the standard
deviation of the computational time are 0.0128 s and 0.0058 s, respectively.

In Figure 24, we report the box-and-whisker plots of the computational time
and of the final value for k in Algorithm 6.5, for each instance. Note that both
the mean computational time and the final value of k of the second example are
larger than those of the first one. This is due to the fact that the second problem
has a larger number of nodes. We can also note that the mean computational times
of these two real-life examples are much lower than those of the random tests of
comparable size presented in Section 7.3. This is probably due to the fact that the
graphs associated to the two industrial problems have a lower connectivity than
the randomly generated ones. Indeed, most nodes in the two industrial problems
represent positions in corridors and are connected only to two other nodes: the
preceding and the following one along the corridor. Note that this is common
in problems associated to automated warehouses, since these facilities often have
many long corridors.

1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Computational time

1

4

5

6

7

8

9

10

11

12

Values of k

Figure 24: Box-and-whisker plot of the 1000 simulations on the 3399-vertex graph.

7.5 Example with non constant speed bounds

In all previous simulations, we considered problem instances in which acceleration
and speed bounds are constant along each arc. However, the setting of BASP,
as defined in 3.2, allows for arc-length dependent bounds on each arc. Here, we
considered a problem instance of this more general form, illustrated by Figure 25.
We considered 9 configurations, each one associated to a position on the plane and
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to a direction angle. We defined the connecting paths by an order 5 interpolating
spline, with initial and final conditions that guarantee the continuity of the tangent
vector on connection points.
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Figure 25: Graph with 9 nodes.

We choose a maximum speed bound vmax = 1.7 ms−1 and a maximum normal
acceleration aN = 0.56 m/s2. The speed bound is a continuous function defined at
each point λ of a path as v(λ ) = min

{
vmax,

√
aN/|κ(λ )|

}
, where κ is the scalar

curvature of the path, which is a function whose absolute value is the inverse of the
radius of the circle that locally approximates the geometric path.

Figure 25 also shows the solution of BASP, with source node s = 1, while
Figure 26 shows the corresponding speed profile.

8 Conclusions

The main contributions of this work are the definition of BASP, the proof of its
NP-hardness, and the definition of a solution algorithm that achieves polynomial
time-complexity under some hypotheses on problem data.
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Figure 26: Speed profile of the fastest path.
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Figure 27: Illustration of the proof of Proposition 8.1.

Appendix

Proposition 8.1. Let µ,α : [0,+∞)→R+, let F1,F2 be the solutions of the follow-
ing equations, F ′i (λ ) =

{
α(λ )∧µ ′(λ ) if Fi(λ )≥ µ(λ )

α(λ ) if Fi(λ )< µ(λ )

Fi(0) = w0,i,

(15)

with 0 ≤ w0,i ≤ µ(0), for i ∈ {1,2}, and let λ̄ be such that µ(λ̄ ) =
∫

λ̄

0 α(λ )dλ .
Then (∀λ ≥ λ̄ ) F1(λ ) = F2(λ ).

Proof. Figure 27 illustrates the following proof. W.l.o.g., assume that w0,1 ≥ w0,2.
This implies that (∀λ ≥ 0) F1(λ ) ≥ F2(λ ). Indeed, assume by contradiction that
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there exists λ̄ such that F1(λ̄ )<F2(λ̄ ), then, by continuity of F1 and F2, this implies
that there exists λ̂ ≤ λ̄ such that F1(λ̂ ) = F2(λ̂ ), thus (∀λ ≥ λ̂ ) F1(λ ) = F2(λ ),
since, for λ ≥ λ̂ , F1(λ ) and F2(λ ) solve the same differential equation with the
same initial condition at λ = λ̂ , contradicting the assumption.

Further, note that (∃λ̃ ∈ (0, λ̄ ]) F2(λ̃ ) = µ(λ̃ ). Indeed, if by contradiction

(∀λ ∈ (0, λ̄ ]) F2(λ )< µ(λ ),

then
(∀λ ∈ (0, λ̄ ]) F ′2(λ ) = α(λ ),

so that

F2(λ̄ )−F2(0) =
∫

λ̄

0
α(λ ) dλ = µ(λ̄ ),

which contradicts the assumption.
Hence, (∃λ̂ ∈ R+) F2(λ̂ ) = F1(λ̂ ) = µ(λ̂ ) and, consequently,

(∀λ ≥ λ̂ ) F1(λ ) = F2(λ ),

which implies the thesis, being λ̄ ≥ λ̂ .

For p ∈ P, λ ∈ [0, `(p)], we set Wp(λ ) = w, where w is the solution of Prob-
lem (3) for path p. In other words Wp(λ ) is the square of the optimal speed profile
for traversing path p, evaluated at arc-length λ , with respect to p.

Proposition 8.2. 1) Let p1, p2,q ∈ P, be such that p1q, p2q ∈ P, then

(∀λ ≥ `+(q)) Wp1q(`(p1)+λ ) = Wp2q(`(p2)+λ ).

2) Let p,q2,q1 ∈ P, be such that pq1, pq2 ∈ P, then

(∀λ ≤ `−(p)) Wpq1(λ ) = Wpq2(λ ).

Proof. We only prove 1), the proof of 2) is analogous. Note that, for λ ≥ 0,
Wp1q(λ +`(p1))=min{F1(λ ),B(λ )}, Wp2q(λ +`(p2))=min{F2(λ ),B(λ )}, where
F1, F2 are the solution of (15) with µ = µ+ and initial conditions w0,1 =Wp1(`(p1))
and w0,2 = Wp2(`(p2)), respectively, and B is the solution of (5) with µ = µ+.
By Proposition 8.1, for λ ≥ `+(q), F1(λ ) = F2(λ ). Consequently, (∀λ ≥ `+(q))
Wp1q(`(p1)+λ ) = Wp2q(`(p2)+λ ).

8.1 Proof of Proposition 5.2

Let Ψ be defined as in (3a), then

T (p1tσ)−T (p1t) =∫ `(p1tσ)

0
Ψ(Wp1tσ (λ ))dλ −

∫ `(p1t)

0
Ψ(Wp1t(λ ))dλ =∫ `(p1tσ)

`(p1)+`−(t)
Ψ(Wp1tσ (λ ))dλ −

∫ `(p1t)

`(p1)+`−(t))
Ψ(Wp1t(λ ))dλ ,
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where we used the fact that, by ii) of Proposition 8.2, (∀λ ≤ `(p1)+ `−(t))
Ψ(Wp1tσ (λ )) = Ψ(Wp1t(λ )). Similarly, we have that T (p2tσ)−T (p2t) =∫ `(p2tσ)

`(p2)+`−(t) Ψ(Wp2tσ (λ ))dλ −
∫ `(p2t)
`(p2)+`−(t) Ψ(Wp2t(λ ))dλ .

Moreover, by i) of Proposition 8.2, we have that (∀λ ≥ `+(tσ)) Wp1tσ (`(p1)+
λ )dλ =Wp2tσ (`(p2)+λ )dλ and (∀λ ≥ `+(t))Wp1t(`(p1)+λ )dλ =Wp2t(`(p2)+
λ )dλ which imply that T (p1tσ)−T (p1t)=T (p2tσ)−T (p2t), since `+(t)≤ `−(t)
and, as noticed in Section 5, `+(tσ)≤ `+(t).

8.2 Proof of Proposition 4.2

Let s ∈ V be the departure node and f ∈ V be the arrival node. Let vs be the initial
speed at node s and v f be the final speed at node f . We would like to select a
path in G from s to f , such that the time needed to run along the path by fulfilling
the maximum speed, the maximum and minimum acceleration constraints along
the edges, and the boundary conditions vs and v f , is minimized. We show that
this problem is NP-hard by a polynomial reduction of the NP-complete Partition
problem to BASP-C. In the Partition problem, given a set N = {1, . . . ,n} of positive
integer values w1, . . . ,wn, we would like to establish whether N can be partitioned
into two subsets N1 and N2 such that ∑i∈N1 wi = ∑i∈N2 wi =

W
2 . Given an instance

of the Partition problem we polynomially reduce it to an instance of BASP-C as
follows. Let G= (V,E) be such that:

V= N∪{0,n+1} , E= {(i, j) ∈ V2 | i < j}.

We set the following lengths for the arcs:

`(i, j) =

{
0, i = 0
wi, otherwise.

For what concerns the maximum speed values, we set (∀e ∈ E) µ+(e) = +∞ (un-
bounded maximum speed), while we set the maximum acceleration α+ = 1 and
the minimum acceleration α− = −1 for all arcs. The starting node s is node 0,
with vs = 0, while the final node f is n+1 with v f =

√
W . Each path p from node

0 to node n+1 has the following structure

0 i1 i2 · · · ir n+1,

with 0 < i1 < i2 < · · · < ir. Let us denote by Np = {i1, i2, . . . , ir} the set of inter-
mediate nodes in p. The length of path p is `(p) = ∑i∈Np wi. Let us first assume
that `(p)< W

2 . In this case the maximum speed which can be reached at the end of
the path is vu = α+tp, where tP fulfills `(p) = 1

2 α+t2, (i.e., tp =
√

2`(p)). Thus,
vu =

√
2`(p)< v f , (i.e., no path p with `(p)< W

2 is able to meet the boundary con-
dition v f ). Thus, we restrict our attention to paths p such that `(p) ≥ W

2 . A lower
bound for the time needed to run along the path is given again by the solution of the
following simple equation `(p) = 1

2 α+t2, (i.e., tp =
√

2`(p)). Note that this is a
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lower bound since, with the maximum acceleration, after this time we reach speed
vu = α+tp =

√
2`(p)≥

√
W , so that we might need to decelerate in order to meet

the boundary condition v f . Since `(p) ≥ W
2 , we have that the lower bound can be

further bounded from below by
√

W . Finally, we observe that such lower bound
can be attained if and only if the Partition problem admits a solution. In such case
we can set N1 = Np and N2 = N \Np. Thus, we have established that an instance
of the Partition problem admits a solution if and only if the corresponding instance
of the BASP has optimal value equal to

√
W .

8.3 Proof of Proposition 4.3

We modify the original problem as follows. First, we split each arc θ into `(θ) arcs
of length 1 by introducing along the original arc `(θ)−1 intermediate nodes (recall
that `(θ) is assumed to be integer). In this way, we have a new graph with node
set V′ such that |V′| = |V|+∑θ∈E `(θ)−|E| and arc set E′ where each arc θ ∈ E
is replaced by `(θ) arcs and all arcs have length equal to 1. The new arcs inherit
the speed and acceleration bounds of the original ones. Next, we observe that at
optimal solutions there is a finite number of speeds which can be reached at each
node. These include all squared speeds µ+(θ) for θ ∈ E but also all speeds which
can be reached starting from one squared speed µ+(θ) and then moving with a
maximum (or minimum) acceleration along a path p of length `(p), provided that
we never reach the maximum speed along an arc of the path and that the speed
never falls below 0. In order to meet the last two requirements, the value `(p) is
bounded from above by 1

2(maxθ∈E µ+(θ))2. Indeed, the time tp required for a path
p of length `(p), assuming that the initial speed is 0, is given by the solution of

`(p) =
1
2

α
+t2,

so that the corresponding variation of the speed is α+tp which needs to be lower
than maxθ∈E µ+(θ). Recalling that (∀θ ∈E) α+= 1, we must have that

√
2`(p)≤

maxθ∈E µ+(θ) or, equivalently, `(p)≤ 1
2(maxθ∈E µ+(θ))2. Now, let us denote by

V the set of different possible speeds. In view of the previous observations, we
have that |V | ≤ |E|(1+ 1

2(maxθ∈E µ+(θ))2). Now we create a new graph with
node set V′×V , (i.e., each node is a pair made up by a node in V′ and one of the
possible speeds in V ). Thus, the number of nodes is

|V′||V | ≤ (|V|+ ∑
θ∈E

`(θ)−|E|)(|E|(1+ 1
2
(max

θ∈E
µ
+(θ))2)).

For what concerns the arc set, in this graph an arc between node (i,wi) and node
( j,w j) exists if there exists an arc (i, j) ∈ E′. The distance associated to this arc
is the minimum time for a path from i to j with the boundary conditions wi and
w j, which can be easily computed by the forward-backward algorithm. Then we
can solve our problem by applying, e.g., Dijkstra’s algorithm to this graph. Dijk-
stra’s complexity is bounded from above by the square of the number of nodes and
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is, thus, polynomial with respect to the size and the values of data of the original
problem, which proves pseudo-polynomiality.
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