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Linear Quadratic Control of Positive Systems: A
Projection-Based Approach

Nachuan Yang, Student Member, IEEE , Jiawei Tang, Yik Ben Wong, Yuzhe Li, Senior Mem-
ber, IEEE , and Ling Shi, Senior Member, IEEE

Abstract— This technical note investigates the linear
quadratic regulator (LQR) design for continuous-time pos-
itive linear systems. Based on positive systems theory
and Lyapunov theory, the solvability and optimality of the
positivity-preserving LQR problem are analyzed through
the lens of optimization, and two projection theorems are
derived for single-input and multi-input positive systems,
respectively, which paves the way for developing a pro-
jected gradient descent (PGD) algorithm. The proposed re-
sults fill the literature gap by considering both the optimal-
ity and positivity in LQR design, and numerical simulations
are provided to verify the effectiveness of the results.

Index Terms— Linear quadratic regulator, nonfragile con-
trol, positive linear systems, projected gradient descent.

I. INTRODUCTION

Positive linear systems have attracted much attention in

recent years for its broad applications in biochemical engi-

neering [1], mobile robots [2], and fault detection [3], to name

just a few. The research on such type of systems can be traced

back to David G. Luenberger who, for the first time, introduced

the concept of positive systems in a fundamental book [4]. For

many electrical or mechanical systems, the descriptor variables

are often intrinsically nonnegative or positive, otherwise the

controller or observer design will lose its physical attributes

[5]. For example, the power level of transmitters in a commu-

nication system should always be nonnegative [6]. Meanwhile,

positive systems theory has also seen applications in stochastic

processes such as Markov processes [7] since probabilities are

naturally nonnegative values. The emerging development of

nonnegative matrices [8] and co-positive programming [9] is

providing more advanced mathematical tools for the analysis

and design of positive system, which identifies its uniqueness

than usual systems. The research on positive linear systems

mainly focuses on, positive controllability and controller de-

sign [10], [11], positive observability and observer design
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[12]–[14], and positive realization [15]. Moreover, positive

systems theory is also used in cooperative control [16], time-

delay systems [17] and epidemic spreading dynamics [18].

In recent years, the performance of positive systems has

received much attention. In [19], the extension of Bounded
Real Lemma and H∞ performance of positive linear systems

were investigated. In [20], the finite-horizon linear quadratic

optimal control was analyzed using the maximum principle.

In [21], the H2 state-feedback controller design of positive

linear systems was studied using linear matrix inequalities

(LMIs). Moreover, as pointed out by [21], the answer to

infinite-horizon LQR for positive systems is still missing.

The H2 control of positive systems was further investigated

in [22] where a monotonically nondecreasing sequence of

lower bounds for the optimal H2 performance is constructed

using semidefinite programmings (SDPs). In another recent

paper [9], the performance of positive systems is character-

ized by not-self-dual cones and analyzed using co-positive

programming but the numerical method is still missing. Due

to the nonconvexity inherited by the positive systems [21], the

progress on this challenging topic is still very limited and the

problem is far from being solved. This motivates us to propose

a new projection-based method in this paper, which will shed

new light on solving these problems.

The nonfragility of controllers is an important topic in

control systems theory [23]–[25]. Due to the inaccuracies or

uncertainties in the implementation of a designed controller,

there may exist variations over the gain matrix, which can also

be regarded as structural uncertainty of actuators [25]. The

designed controller may fail easily without considering such

type of uncertainty. Thus a section of this paper is devoted to

discussing the extension of the proposed optimization method

to tackle gain variations. It turns out that the nonfragility of

the controller can be reduced to variation over constraints in

the proposed optimization framework thus easily solved.

The contributions of this note are multi-fold. First, the

infinite-horizon LQR design is investigated through the lens

of optimization which is a completely new attempt in posi-

tive systems theory. Second, a systematic optimization-based

framework is proposed for linear quadratic control of positive

LTI systems which can be readily extended to analyze other

types of positive systems, such as positive delay systems and

positive switched systems. The derivations may also be utilized

to study robust control or filtering of positive systems. Third,

through using convexification and positive systems theory,

two projection theorems are provided and a tractable PGD



algorithm is developed for numerical computation.

Compared with the LMI-based methods in [21] and [22]

which investigated H2 performance of positive linear systems,

this paper proposes a new projection-based approach for the

LQR design of positive systems where a local optimal solution

is obtained. The proposed approach also turns out to be flexible

to gain variations and is extended to design nonfragile optimal

controllers. The method in [22] characterized the upper and

lower bounds for the optimal H2 performance while the local

optimality is not guaranteed. Moreover, to illustrate the utility

of our proposed optimization method versus the LMI-based

method in [21], a numerical comparison is included in Section

V in which the proposed PGD algorithm shows a better LQR

performance than the algorithm in [21].

The remainder of this paper is organized as follows. In

Section II, some useful results in positive systems theory

are introduced and the problem to be solved by this paper

is formulated. In Section III, a systematic optimization-based

framework is proposed and some analyses are provided. Two

projection theorems are, respectively, derived for single-input

and multi-input positive systems, and the corresponding PGD

algorithm is developed. In Section IV, an extension of the

proposed optimization method to design nonfragile optimal

controllers is discussed. In Section V, simulations are given

to verify the effectiveness of the proposed results. In Section

VI, the whole paper is summarized and concluded, where the

potential direction for future research is also discussed.

Notations: The notations used throughout this paper are

standard. The absolute value of matrix X is defined as |X|
such that [|X|]ij = |[X]ij |. The notation ‖v‖p means the

Lp norm of vector v. The Lp projection of vector v̂ on set

S is defined as v = argminv∈S̄ ‖v̂ − v‖p. The notation

vec(X) denotes the vectorization of matrix X . To avoid

matrix norms, we use vectorization for matrix projection. The

notation X � 0 (or X � 0) means matrix X is positive definite

(or semidefinite). The notation X > 0 (or X ≥ 0) means all

elements of matrix X are positive (or nonnegative).

II. PRELIMINARIES

In this section, some backgrounds and useful results on

positive linear systems are introduced and the problem to be

investigated by this paper is formulated.

A. Positive Systems Theory
Consider a continuous-time positive linear system:

ẋ(t) = Ax(t) +Bu(t) (1)

where initial state x(0) ≥ 0, A ∈ R
n×n is Metzler and B ∈

R
n×m is nonnegative. We assume that (A,B) is stabilizable.

Without loss of generality, we assume that the initial value

x(0) is random (as the deterministic one is a special case)

with E[x(0)x(0)T ] = Ω � 0.

Lemma 1: [26] For Metzler matrices M1,M2, if M1 ≤
M2, α(M1) ≤ α(M2) where α(·) is the spectral abscissa.

Lemma 2: [27] Metzler matrix A is Hurwitz if and only

if there exists a diagonal matrix P � 0 such that

ATP + PA ≺ 0 or PAT +AP ≺ 0.

Lemma 3: [28] Metzler matrix A is Hurwitz if and only

if there exists a vector ω > 0 such that ωTA < 0 or Aω < 0.

B. Problem Formulation
We consider the positive linear system in (1) with a static

state-feedback controller:

u(t) = Kx(t) (2)

The infinite-horizon LQR performance index of the control

system is defined as

J (K) = E[

∫ ∞

0

x(t)TQx(t) + u(t)TRu(t) dt] (3)

where Q � 0 and R � 0 are, respectively, the state cost and

input cost matrices, and the expectation is taken with respect

to the initial values. More specifically, x(t)TQx(t) measures

the state deviation cost at time t, and u(t)TRu(t) measures

the input authority cost at time t. Throughout this paper,

we restrict our attention to static state feedback controller

for convenience which may be suboptimal due to its time-

invariance. The problem to be solved is defined as follows.

Problem LQCPS (Linear Quadratic Control of Positive

Systems): Consider the positive linear system in (1), design

a controller gain K in (2) such that the LQR performance

index J (K) is minimized, and meanwhile the positivity of

system (1) is preserved, i.e., x(t) ≥ 0 for t ≥ 0.

Remark 1: The main difficulty of the above problem is to

simultaneously preserve the stability and positivity as well as

the optimality of the controller gain matrix. It could be very

complicated to tackle the above problem from an LMI-based

perspective due to the conflict between positivity constraints

and algebraic Riccati equations. Hence in this paper, we will

analyze Problem LQCPS through the lens of optimization

and propose a projection-based approach to solve it using

Lyapunov theory and positive systems theory.

III. MAIN RESULTS

In this section, we first analyze the solvability of Problem
LQCPS and then transform it into an optimization-based

framework. To preserve the positivity and stability of the

positive linear system in (1), two projection theorems are

derived and a PGD algorithm is developed.

Proposition 1: Problem LQCPS is solvable if and only if

there exists a diagonal matrix L � 0 and U such that all the

following conditions are satisfied,

1) AL+BU is Metzler.

2) AL+ LAT +BU + UTBT ≺ 0.

Proof. Since diagonal matrix L � 0, then L−1 ≥ 0 and

(AL + BU)L−1 = A+ BUL−1 is a Metzler matrix. Taking

K = UL−1, we simply have that A + BK is Metzler thus

the positivity of system (1) is preserved. Meanwhile pre- and

post-multiply condition 2) by matrix L−1 � 0, we obtain that

L−1A+ATL−1+L−1BUL−1+L−1UTBTL−1 = L−1(A+
BK) + (A+BK)TL−1 ≺ 0. By Lemma 1, we have that (1)

is Hurwitz stable. Therefore Problem LQCPS is solvable.

On the other hand, if Problem LQCPS is solved by some

gain matrix K, then A+BK is a Metzler matrix and system



Fig. 1: An arbitrary cut plane of the set L.

(1) is asymptotically stable. Since A+BK is simultaneously

Metzler and Hurwitz, by Lemma 2, there exists a diagonal

matrix L � 0 such that (A + BK)L + L(A + BK)T ≺ 0.

Taking U = KL, it is easy to see that both conditions 1) and

2) hold. The proof is completed. �
To solve Problem LQCPS, we have to optimize the LQR

performance subject to the positivity and stability constraints,

which can be well described as a constrained optimization

problem. Moreover, we have the following results.

Theorem 1: Problem LQCPS is equivalent to the follow-

ing constrained optimization:

min
K

f := tr(FΩ)⎧⎪⎨
⎪⎩
A+BK is Hurwitz

A+BK is Metzler

(A+BK)F + F (A+BK)T +KTRK +Q = 0

(4)

Proof. Problem LQCPS is feasible if and only if there exists

a gain matrix K such that A+BK is simultaneously Hurwitz

and Metzler. By Bellman’s lemma [29], we have that the LQR

performance J (K) = E[x(0)TFx(0)] where matrix F � 0
satisfies the algebraic equation

(A+BK)TF + F (A+BK) = −(Q+KTRK). (5)

Since A + BK is Hurwitz, that is, system (1) is asymptot-

ically stable, then Eqn (5) has a unique solution F � 0.

Further notice the fact that J (K) = E[x(0)TFx(0)] =
tr(FE[x(0)x(0)T]) = tr(FΩ). Hence Problem LQCPS is

equivalent to optimization (4). The proof is completed. �
Based on the above formulation, we define the feasible

region for gain matrix K as

L := {K | A+BK is both Hurwitz and Metzler}
and the following example shows that L is in general not a

convex set. Consider the positive linear system in (1) with the

following system matrices:

A =

[−1.00 1.20
2.00 1.00

]
and B =

[
1.00 0.50
0.30 1.00

]
.

An arbitrary cut plane of the feasible region L is shown in

Fig. 1, which turns out to be nonconvex. Thus the feasible

region for gain matrix K is in general not a convex set.

Corollary 1: Given that Problem LQCPS is solvable, the

feasible region L is a connected set.

Proof. To show the connectedness, first notice that set L is

equal to set L̂ = {K = UL−1 | ∃ε, U, L � 0, AL + BU +
εI ≥ 0, AL + LAT + BU + UTBT ≺ 0}. Notice that L̂ is

connected since set {(L,U) | ∃ε, AL+BU + εI ≥ 0, AL+
LAT + BU + UTBT ≺ 0} is convex, thus connected, and

F : (U,L) 
→ K = UL−1 is a continuous mapping. Hence

L = L̂ is a connected set. The proof is completed. �
Corollary 2: The derivative of function f in K is

∂f

∂K
= 2(RK +BTF )H (6)

where H is the unique solution of

(A+BK)H +H(A+BK)T +Ω = 0. (7)

Proof. Notice that the incremental equation (A+BK)T∂F +
∂KTBTF+∂F (A+BK)+FB∂K+∂KTRK+KTR∂K =
0 is equivalent to (A+BK)T∂F + ∂F (A+BK) + (FB +
KTR)∂K + ∂KT(BTF + RK) = 0. Since (A + BK)
is Hurwitz, then the Lyapunov equation (A + BK)H +
H(A + BK)T + Ω = 0 has a unique solution H � 0. Pre-

multiply the incremental equation by matrix H , we obtain that

H(A+BK)T∂F +H∂F (A+BK)+H(FB+KTR)∂K+
H∂KT(BTF + RK) = 0. Take the trace and reorganize the

equation, we further have that −tr(∂FΩ) + 2tr(H(BTF +
RK)T∂K) = −∂f + 〈2(RK + BTF )H, ∂K〉 = 0, which

implies that Eqn (6) holds. The proof is completed. �
Notice that (4) is a constrained optimization with nonconvex

and nonsmooth feasible region. To tackle these constraints, we

further derive the following projection theorems for single-

input and multi-input positive linear systems.

Theorem 2: If system (1) is single-input, for any matrix

K̂, its Lp projection on the feasible region L is given by K,

which can be obtained by the following convex programming:

min
K,η

‖vec(K)− vec(K̂)‖p
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η > 0

ηTB = 1

A+BK + εI ≥ 0

ηTA+K < 0

(8)

Proof. Notice that there exists a scalar ε such that A+BK +
εI ≥ 0 if and only if A+BK is a Metzler matrix. Substituting

ηTB = 1 into inequality ηTA+K < 0, we obtain that

ηT(A+BK) = ηTA+ ηTBK < 0, (9)

By Lemma 3, since A+BK is Metzler, we have that A+BK
is a Hurwitz matrix. On the other hand, if matrix A+BK is

simultaneously Metzler and Hurwitz, then there must exist a

positive vector η̂ > 0 such that

η̂TA+ η̂TBK = η̂T(A+BK) < 0. (10)

Taking η = η̂/η̂TB, we can obtain that ηTB = 1, meanwhile

multiply Eqn (10) by scalar 1/η̂TB > 0, we have that

ηTA+ ηTBK = ηTA+K < 0.



The convexity of optimization (8) follows from the fact that its

constraints are all linear and its objective function is convex

for any Lp norm. The proof is completed. �
Remark 2: Notice that, the feasible region for gain matrix

K is in general not a convex set as shown in Fig. 1, thus

finding the projection of K̂ on nonconvex set L is usually

an NP-hard problem. However, for single-input positive linear

systems, the above theorem shows that its Lp projection

can always be obtained by convex programming with linear

constraints. Based on positive systems theory and Lyapunov

theory, we further derive the following projection theorem for

general multi-input positive linear systems.

Theorem 3: For any matrix K̂, its L∞ projection on the

feasible region L is given by K = UL−1 which can be

obtained by the following biconvex programming:

min
L,U,ε,ψ

ψ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U − K̂L ≤ ψ1m×nL

−ψ1m×nL ≤ U − K̂L

L is diagonal and L � 0

AL+BU + εI ≥ 0

AL+ LAT +BU + UTBT ≺ 0

(11)

Proof. Notice that there exists scalar ε such that AL+BU +
εI ≥ 0 if and only if AL+BU is a Metzler matrix. Since di-

agonal matrix L � 0, thus L > 0, then AL+BU is Metzler if

and only if A+BK is Metzler. By congruence transformation

with L−1, it is easy to see that AL+LAT+BU+UTBT ≺ 0
if and only if L−1(A + BK) + (A + BK)TL−1 ≺ 0, that

is, A + BK is Hurwitz. Denote the L∞ distance between

K and K̂ as φ := ‖vec(K) − vec(K̂)‖∞ ≥ 0. Notice that

|K − K̂| ≤ φ1m×n, thus −φ1m×n ≤ K − K̂ ≤ 1m×nφ.

Moreover, φ = argminφ{φ ∈ R | −φ1m×n ≤ K − K̂ ≤
1m×nφ}. As K = UL−1 where L � 0 is a diagonal matrix,

equivalently we have −φ1m×nL ≤ U − K̂L ≤ φ1m×nL. It

is easy to see that φ = ψ∗ where ψ∗ is the optimal value of

optimization (11). The proof is completed. �
Corollary 3: The biconvex programming in Theorem 3 can

always be solved by the bisection method.

Proof. Notice that, if the value of ψ is fixed, optimization (11)

becomes a feasibility problem as follows,

Find L,U⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U − K̂L ≤ ψ1m×nL

−ψ1m×nL ≤ U − K̂L

L is diagonal and L � 0

AL+BU + ωI ≥ 0

AL+ LAT +BU + UTBT ≺ 0

(12)

which turns out to be linear, thus convex. Notice that, if (12)

is feasible for some ψ, then it is also feasible for any ψ
′
> ψ.

On the other hand, if (12) is infeasible for some ψ, then it is

also infeasible for any ψ
′
< ψ. Hence optimization (11) can

be solved by bisection method. The proof is completed. �
Remark 3: Due to the nonconvexity and nonsmooothness

of the feasible region, the Lp projection for multi-input cases

is very complicated. Thus here we relax solving the original

Lp projection problem to solving an L∞ projection problem,

which is further equivalently transformed into the biconvex

programming in Theorem 3 which can be completely solved

by the bisection method in Corollary 3.

Based on the above derivations, a PGD algorithm is devel-

oped in Algorithm 1 to solve Problem LQCPS.

Algorithm 1 LQR Design for Positive Systems

- Initialize k = 1, ξ > 0, τ ∈ (0, 1
2 ), θ ∈ (0, 1), λ > 0.

- Initialize the gain K(1) = UL−1 through Proposition 1.

repeat
- Update step size λ(k) = λ.

- Determine f (k) and F (k) by solving (A + BK(k))F +
F (A+BK(k))T +K(k)TRK(k) +Q = 0.

repeat
- Determine K̂(k) by gradient descent K̂(k) = K(k)+
λ(k)D(K(k)) where D(K(k)) denotes the descent di-

rection that can be determined by Corollary 2.

- Determine the projection of K̂(k) on the feasible

region as K̃(k) through Theorem 2 or Corollary 3.

- Determine f̃ (k) and F̃ (k) by solving (A+BK̃(k))F+
F (A+BK̃(k))T + K̃(k)TRK̃(k) +Q = 0.

- Update step size λ(k) = θλ(k).

until f̃ (k) < f (k) − τλ(k)|〈D(K(k)), K̃(k) −K(k)〉|;
- Update K(k+1) = K̃(k), f (k+1) = f̃ (k), k = k + 1.

until |f (k) − f (k−1)|/|f (k)| < ξ;

return K∗ = K(k) and f∗ = f (k).

Lemma 4: Algorithm 1 converges to a local optimal point.

Proof. Through backtracking linesearch, the above algo-

rithm will generate a nonincreasing sequence {K(k), k ≥ 1}
where f(K(k+1)) ≤ f(K(k)) for any k ≥ 1. Due to the bound-

edness of function f(·) over feasible domain, it is guaranteed

that Algorithm 1 converges to some K∗. If K∗ is an interior

point, its local optimality follows easily from that ∇f(K∗) =
0. Otherwise K∗ exists over the Metzler constraint. Assume

K∗ is not local optimal, that is, there is a neighboring point

K ′ sufficiently close to K∗ such that f(K ′) < f(K∗). By

the smoothness of function f(·), we have that K ′ −K∗ is a

descent direction thus 〈D(K∗),K ′ −K∗〉 > 0. Denote K̄ as

the projection of K∗+λD(K∗) for a sufficiently small λ > 0,

then we have 〈D(K∗), K̄−K∗〉 ≥ 〈D(K∗),K ′−K∗〉 > 0. By

the convexity of the Metzler constraint, we have that K̄−K∗

is a feasible descent direction thus f(K̄) < f(K∗). This

contradicts with the convergence of Algorithm 1 to K∗. Thus

K∗ is local optimal. The proof is completed. �
Remark 4: Notice the fact that strict inequalities are not

executable in numerical solvers. To avoid singular cases, we

can replace ‘≺ 0’ (or ‘� 0’) and ‘< 0’ (or ‘> 0’) by ‘� −δ’

(or ‘� δ’) and ‘≤ −δ’ (or ‘≥ δ’), respectively, where δ denotes

a sufficiently small positive scalar or vector.

IV. FURTHER DISCUSSIONS

This section discusses Problem LQCPS with nonfragile

controllers. On one hand, the controller designed in this way



is more robust in practical implementations. On the other hand,

the following analysis may serve as an example for more

extensions and variations, which also illustrates the flexibility

and compatibility of the proposed optimization method.

The nonfragility of controllers is an important topic in

control engineering [23]–[25]. The variation over controller

gains is caused by inaccuracies or uncertainties in the imple-

mentation of a designed controller.

Here we consider interval gain variations, that is, the prac-

tical control input is in the form of

ũ(t) = (K +Δ)x(t) = u(t) + Δx(t) (13)

with the bounded gain variation as follows

−Δ ≤ Δ ≤ Δ (14)

where Δ and Δ are non-negative matrices with compati-

ble dimensions. Since matrix Δ is usually inaccessible and

narrow-range during the dynamic process, we use the so-

called nominal LQR performance [30]–[32] for optimization.

In other words, we optimize the LQR performance in (3) with

nominal controller (2) and meanwhile guarantee the positivity

and stability of the system with practical controller (13).

Proposition 2: Matrix A + B(K + Δ) is simultaneously

Hurwitz and Metzler if and only if A+B(K −Δ) is Metzler

and A+B(K +Δ) is Hurwitz.

Proof. The necessity is obvious and it suffices to show the

sufficiency. If matrix A+B(K −Δ) is Metzler, as matrix B
is non-negative, then A + B(K + Δ) ≥ A + B(K − Δ) is

Metzler for any Δ in (14). If A+B(K+Δ) is Hurwitz, then

we have α(A + B(K +Δ)) ≤ α(A + B(K +Δ)) < 0 thus

A+B(K +Δ) is Hurwitz for any Δ in (14), which follows

from Lemma 1. The proof is completed. �
Remark 5: Based on the above proposition, we can solve

the nonfragile version of Problem LQCPS by simply chang-

ing the constraints in optimization (4) correspondingly. Then

the projection theorems and PGD algorithm proposed in

Section III follows immediately in a similar way.

V. SIMULATIONS

In this section, two numerical examples are given to verify

the effectiveness of Algorithm 1 for single-input and multi-

input positive linear systems, respectively. Throughout this

section, we simply set that Ω = I .

A. Single-Input Positive Systems
Consider a positive linear system in (1) where

A =

⎡
⎣−3.00 1.00 5.00

3.00 −1.00 3.00
2.00 1.00 −8.00

⎤
⎦ and B =

⎡
⎣1.000.50
1.50

⎤
⎦

with

Q =

⎡
⎣1.00 0.20 0.10
0.20 1.00 0.20
0.10 0.20 1.00

⎤
⎦ and R = 2.00.

The gain variations are Δ =
[
0.02 0.01 0.01

]
and Δ =[

0.01 0.02 0.01
]
. We first computed the optimal controller
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Fig. 2: Convergence process of Algorithm 1.

gain without considering the positivity and nonfragility, that

is, K† =
[−1.1801 −1.0390 −1.0134

]
with f† = 2.3877.

It is easy to verify that A+BK† is Hurwitz but not Metzler.

We implemente Algorithm 1 with the convex program-

ming in Theorem 2. The gain matrix was initialized using

Proposition 1 as K(1) =
[−0.0595 −0.5738 −4.7821

]
with f (1) = 4.1229. After 30 iterations, it converged and

we obtained that K∗ =
[−1.1211 −0.6466 −1.6713

]
with

f∗ = 2.6152. Notice the fact that

A+B(K∗ −Δ) =

⎡
⎣−4.1311 0.3333 3.3187

2.4345 −1.3333 2.1593
0.3034 0.0000 −10.5220

⎤
⎦

is a Metzler matrix and

A+B(K∗ +Δ) =

⎡
⎣−4.1011 0.3633 3.3387

2.4495 −1.3183 2.1693
0.3484 0.0450 −10.4920

⎤
⎦

has eigenvalues {−0.9875,−4.2523,−10.6716}, thus is Hur-

witz. Hence K∗ is a feasible point to the optimization in (4).

The convergence process is shown in Fig. 2.

Denote M := {K | A+B(K −Δ) is Metzler} and H :=
{K | A + B(K + Δ) is Hurwitz}. The cross-section of the

feasible region and optimal points is depicted in Fig. 3, where

M \ H is denoted by red dots, H \ M is denoted by green

dots, and M∩H is denoted by blue dots.

To verify the local optimality of K∗, we randomly generated

10 feasible neighboring points and obtained their performances

as {2.6165, 2.6154, 2.6170, 2.6161, 2.6182, 2.6175, 2.6180,

2.6177, 2.6168, 2.6174}, which are all larger than f∗.

B. Multi-Input Positive Systems
Consider a positive linear system in (1) where

A =

[−1.00 2.00
2.00 2.00

]
and B =

[
1.00 0.50
0.30 1.00

]

with

Q =

[
1.00 0.10
0.10 1.00

]
and R =

[
2.00 0.20
0.20 1.00

]
.



Fig. 3: An arbitrary cut plane passing through optimal points

with K∗ shifted to the origin of the plot.
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Fig. 4: Convergence process of Algorithm 1.

The gain variations are

Δ =

[
0.10 0.05
0.10 0.10

]
and Δ =

[
0.10 0.10
0.05 0.10

]
.

We first computed the optimal controller gain without consid-

ering the positivity and nonfragility, that is,

K† =
[−0.5789 −0.9758
−2.1327 −4.3662

]

with f† = 4.7750. It is easy to verify that A + BK† is

Hurwitz but not Metzler. Then we implement Algorithm 1

with the bisection method in Corollary 3. The gain matrix

was initialized using Proposition 1 as

K(1) =

[−1.3715 −0.0935
−0.2366 −2.8586

]

with f (1) = 10.4818. After 18 iterations, Algorithm 1 con-

verged, and finally we obtained that

K∗ =

[−0.8682 −0.2090
−1.0601 −3.2820

]

Fig. 5: An arbitrary cut plane passing through optimal points

with K∗ shifted to the origin of the plot.

Fig. 6: An arbitrary cut plane passing through optimal points

with K∗ shifted to the origin of the plot.

with f∗ = 6.1893. Notice the fact that

A+B(K∗ −Δ) =

[−2.5233 0.0000
0.5995 −1.4747

]

is a Metzler matrix and

A+B(K∗ +Δ) =

[−2.2483 0.2500
0.8095 −1.2297

]

has eigenvalues {−2.4185,−1.0595}, thus is Hurwitz. Hence

K∗ is a feasible point to the optimization in (4). The conver-

gence process is shown in Fig. 4.

Two cross-sections of the feasible region and optimal points

are depicted in Fig. 5 and Fig. 6.

To verify the local optimality of K∗, we randomly generated

10 feasible neighboring points and obtained their performances

as {6.1990, 6.2171, 6.2293, 6.2421, 6.2630, 6.2712, 6.2823,

6.2903, 6.2965, 6.3123}, which are all larger than f∗.



1 2 3 4 5 6 7
5

6

7

8

9

10

11

12

13

14

Fig. 7: Convergence process of the proposed PGD algorithm

versus the LMI-based algorithm in [21].

C. Numerical Comparisons

Then we compare our algorithm with the method proposed

in [21] through simulating Example B without gain variations

since the latter did not include uncertainty in the analysis.

The gain matrix is initialized using Proposition 1 as

K0 =

[−0.6822 −0.2574
−0.4965 −2.6758

]
.

We implement Algorithm 1 and the LMI-based algorithm in

[21]. Our algorithm converged after 6 iterations and returned

K∗ =

[−0.7382 −0.3338
−1.1251 −3.3325

]

with the LQR performance f∗ = 5.8545. The LMI-based

algorithm converged after 7 iterations and returned

K∗ =

[−1.6447 −0.1159
−0.1159 −3.7682

]

with the LQR performance f∗ = 6.3985. Their convergence

processes are depicted in Fig. 7.

TABLE I: Simulation results for different initial values.

Algorithm Algorithm 1 Algorithm in [21]
Avg Iteration 6.47 7.81

Avg Value 5.8341 6.3988
Best Value 5.8031 6.3985

Worst Value 5.8496 6.4004

To evaluate the algorithm’s performance for different initial

conditions, we use Proposition 1 to generate 100 initial values

then implement Algorithm 1 and the algorithm in [21]. The

simulation results are shown in Table 1.

VI. CONCLUSION

In this paper, we studied the design of linear quadratic

regulator for positive linear systems subject to gain variations.

Based on Lyapunov theory and positive systems theory, a

systematic optimization framework is proposed for positivity-

preserving controller design, and several analyses on solv-

ability and feasibility were provided. The feasible region

for gain matrices is in general nonconvex and nonsmooth.

However, using convexification and positive systems theory,

two projection theorems were derived for single-input and

multi-input positive systems, respectively, and a tractable

PGD algorithm was developed for computation. Finally, two

numerical examples were provided to verify the effectiveness

of the results. The analyses and approach proposed in this

paper can also be potentially extended to investigate other

types of positive systems, such as positive switched systems

and positive delay systems, which are left to future research.
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