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Leaderless Consensus of Heterogeneous Multiple Euler–Lagrange
Systems With Unknown Disturbance

Shimin Wang , Hongwei Zhang , Simone Baldi , Senior Member, IEEE, and Renxin Zhong

Abstract—This article studies the leaderless consensus prob-
lem of heterogeneous multiple networked Euler–Lagrange systems
subject to persistent disturbances with unknown constant biases,
amplitudes, initial phases, and frequencies. The main character-
istic of this study is that none of the agents has information of
a common reference model or of a common reference trajectory.
Therefore, the agents must simultaneously and in a distributed
way: achieve consensus to a common reference model (group
model); achieve consensus to a common reference trajectory; and
reject the unknown disturbances. We show that this is possible via
a suitable combination of techniques of distributed “observers,”
internal model principle and adaptive regulation. The proposed
design generalizes recent results on group model learning, which
have been studied for linear agents over undirected networks. In
this article, group model learning is achieved for Euler–Lagrange
dynamics over directed networks in the presence of persistent
unknown disturbances.

Index Terms—Cooperative control, Euler–Lagrange system,
leaderless consensus, multiagent system, output regulation.

I. INTRODUCTION

Euler–Lagrange (EL) systems have found widespread applications
in engineering and can model a variety of mechanical systems, such
as marine vessels [1], rigid spacecrafts [2], and robot manipulators [3],
[4]. Since precise modeling of an EL system is very difficult in practice
and disturbances are always entangled with the system movement,
control of uncertain EL systems with disturbance rejection has been
an important issue in control community [5]–[7]. A recent work [7]
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solved a global asymptotic tracking control problem of EL systems
with disturbance rejection, where the disturbance is a combination of
sinusoidal signals with unknown frequencies, amplitudes, and phase
angles. However, a similar problem becomes more challenging in a co-
operative setting with multiple EL systems since, in addition to rejecting
disturbances, the systems should achieve a common behavior with lim-
ited information (only using local information from a few neighbors).

Cooperative control of multiple EL systems has been intensively
investigated in the past two decades mainly under two formulations,
i.e., leader–following consensus (with a single leader or multiple lead-
ers) [8]–[10] and leaderless consensus [11]–[14]. For leader–following
consensus, a leader (or a group of leaders) generate a desired trajectory
(or a convex hull) that all follower agents should follow. The desired
trajectories can be time-varying and the tracking problem will become
even more stringent if there exist some external disturbances [15]. In
this sense, the tracking control of a single Euler–Lagrange system
as in [7] can be viewed as a special case of the leader–following
consensus with one leader (i.e., the desired trajectory) and one follower.
To tackle the local information challenge, the idea of using a distributed
observer [16] or an adaptive distributed observer [9], [17] was proposed
for leader–following consensus. The idea is that only part of the follower
agents can directly get access to the state and system matrix information
of the leader, while the rest of the follower agents should estimate the
leader’s information using observers.

In many practical scenarios, there is no such leader. For example,
when a leaderless swarm of unmanned aerial vehicles (UAVs) performs
surveillance missions, individuals need to reach a consensus in altitude
and heading angle and must coordinate with each other a commonly
agreed trajectory to track [18]. A similar setting has been reported for
a group of robotic arms equipped on different mobile robots to cooper-
atively scan a target area [11]. Most existing works on leaderless con-
sensus of multiple networked EL systems typically allow the common
trajectory to be time-invariant [11], [14]. Even when a disturbance is
considered, as in [14], it is assumed that the final consensus equilibrium
is a constant trajectory. As synchronization of uncertain heterogeneous
multiagent systems to more complex trajectories requires either a leader
agent generating a desired trajectory, or a common model according to
the internal model principle, it is interesting to ask: what can be done
without a leader? This problem has not been sufficiently investigated
until very recently [19]–[21]. The work [19] gave a first answer for a
special class of linear multiagent systems, i.e., heterogeneous oscilla-
tor systems. It formulates leaderless consensus as a “virtual” leader–
following consensus problem. It shows that there exists a “group model”
that has the same structure as the oscillators. Via consensus dynamics,
each agent can learn the parameters of the group model without its direct
knowledge, and finally synchronize to it. In this sense, synchronization
of multiple oscillators to a nonconstant trajectory is achieved. More
recently, a similar framework has been proposed in [21] for leaderless
consensus of linear time-varying multiagent system, whereas Yan et
al. [20] proposed a two-step approach, i.e., dynamics synchronization
and state synchronization, and provided sufficient conditions for the

0018-9286 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 19,2023 at 07:34:36 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-3713-8738
https://orcid.org/0000-0002-8818-0207
https://orcid.org/0000-0001-9752-8925
https://orcid.org/0000-0003-1559-7287
mailto:shimin.wang@queensu.ca
mailto:hwzhang@hit.edu.cn
mailto:s.baldi@tudelft.nl
mailto:zhrenxin@mail.sysu.edu.cn
https://doi.org/10.1109/TAC.2022.3172594


2400 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 4, APRIL 2023

efficacy of this two-step design. However, the authors in [19]–[21] only
consider linear dynamics or undirected communication graphs.

Motivated by these recent achievements, this article aims to solve a
leaderless consensus problem of uncertain heterogeneous EL systems
with unknown disturbances over directed graphs. The disturbance is
a compound sinusoidal signal with unknown magnitudes, frequencies,
and phase angles. Each agent aims to achieve consensus to a complex
time-varying trajectory, cooperatively contributed by the whole group
of agents. This include the constant consensus equilibrium [14] as
a special case. Therefore, the agents must simultaneously and in a
distributed way: achieve consensus to a common group system matrix;
achieve consensus to a common reference trajectory; and reject the
unknown harmonic disturbances. Inspired by both [6], [7], [9], and [19],
we show that this is possible via a suitable combination of consensus
dynamics, internal model principle, and adaptive regulation. More
specifically, we propose an “observer” for each agent, whose task is
to “observe” the state and system matrix of an autonomous system,
which is not prespecified but arising from the inherent properties and
the initial states of the agents. We put the term “observe” in quotes
since this autonomous system does not exist a priori. In other words, it
is an imaginary one, and is generated through the collaboration of all
observers of the group of agents. The contribution and novelties of our
approach are summarized as follows.
1) In place of considering linear dynamics and undirected graphs, we

solve a leaderless consensus problem of uncertain heterogeneous
EL systems with unknown disturbances over directed graphs. This
requires to develop new technical results (Lemmas 2–4 in this work)
not reported in the literature.

2) Based on the consensus stage, we design a cooperative controller
for each EL system to synchronize to the observer while rejecting
in an adaptive way the external unknown disturbances.

3) Instead of a bounded tracking signal as in the single Euler–
Lagrange system case [7], we only require that the derivative of
the final consensus state is bounded without imposing bounds on
the cooperatively agreed trajectory.

The rest of this article is organized as follows. The problem is formu-
lated in Section II. In Section III, distributed “observers” are designed
for all agents, which collaboratively generate an autonomous system,
which is not prespecified but arising from the inherent properties and the
initial states of the agents. The main result is presented in Section IV,
followed by a numerical example in Section V. Finally, Section VI
concludes this article.

Notation: Notation ‖ · ‖ is the Euclidean norm. The set of
(positive) real numbers are denoted by (R+) R. For Xi ∈
Rni×m, i = 1, . . . , N , let col(X1, . . . ,XN ) =

[
XT

1 , . . . ,X
T
N

]T
,

and 1N = col(1, . . . , 1) ∈ RN . For Xi ∈ Rm×ni , i = 1, . . . , N , let
row(X1, . . . ,XN ) = [X1, . . . ,XN ]. For any matrix X ∈ Rm×n, let
vec(X) = col(X1, . . . ,Xn), where Xi ∈ Rm denotes the ith column
of X . Finally, ⊗ denotes the Kronecker product, and ◦ denotes the
Tracy–Singh product.

II. PROBLEM FORMULATION

Consider N agents represented by the following Euler–Lagrange
dynamics:

Mi (qi) q̈i + Ci (qi, q̇i) q̇i +Gi (qi) = τi + di (1)

where for each agent i, qi ∈ Rn is the vector of generalized coordi-
nates, Mi(qi) ∈ Rn×n is the symmetric positive definite inertia ma-
trix, Ci(qi, q̇i)q̇i ∈ Rn is the vector of Coriolis and centripetal forces,
Gi(qi) ∈ Rn is the vector of gravitational force, τi ∈ Rn is the control
torque, and di = col(di1, . . . , din) ∈ Rn is the external disturbance,

taking the form

dis(t) = ψis,0 +

nis∑
k=1

ψis,k sin(σis,kt+ φis,k)

i = 1, . . . , N, s = 1, . . . , n (2)

where ψis,0, φis,k ∈ R, ψis,k, σis,k ∈ R+ are constant biases, initial
phases, amplitudes, and frequencies. Biases, initial phases, amplitudes,
and frequencies can all be arbitrary and unknown. In line with most
Euler–Lagrange literature [3], let the dynamics (1) satisfy the following
properties.
1) The inertia matrix Mi(qi) is symmetric and uniformly positive

definite such that kmI ≤ Mi(qi) ≤ kmI for some positive scalars
km and km. Also, ‖Ci(qi, q̇i)‖ ≤ kc‖q̇i‖, and ‖Gi(qi)‖ ≤ kg for
some positive scalars kc and kg .

2) For all x, y ∈ Rn, Mi(qi)x+ Ci(qi, q̇i)y +Gi(qi) =
Yi(qi, q̇i, x, y)Θi, where Yi(qi, q̇i, x, y) ∈ Rn×q is a known
regression matrix and Θi ∈ Rq is a constant vector consisting of
the uncertain parameters of (1).

3) Ṁi(qi)− 2Ci(qi, q̇i) is skew symmetric, ∀qi, q̇i ∈ Rn.
Let the agents (1) interact according to a static directed graph G =

{V, E ,A}where the vertex set isV = {1, 2, . . . , N}, and the edge set is
E ⊆ V × V . We useA = [aij ] ∈ RN×N to denote the adjacency matrix
of graph G, where aij > 0 if (j, i) ∈ E , and aij = 0 otherwise. LetL ∈
RN×N be the Laplacian matrix of graph G, and Ni = {j|(j, i) ∈ E}
be the neighbor set of agent i. For more details on graph theory, readers
are referred to [22]. The following property holds for the Laplacian
matrix L.

Lemma 1 (see [23]): If the communication graph G contains a
spanning tree, then 0 is a simple eigenvalue of the Laplacian matrix L,
and all the other N − 1 eigenvalues have positive real parts.

Problem 1 (Leaderless Consensus Problem): Consider the net-
worked Euler–Lagrange systems (1) with communication graphG. Find
a distributed control law such that, for any external disturbance with
arbitrary ψis,0, ψis,k, φis,k, and σis,k as in (2), and arbitrary initial
conditions qi(0) and q̇i(0), the trajectories qi(t) and q̇i(t) exist and
are bounded for all t ≥ 0, and the following consensus results are
achieved:

lim
t→∞

(qi(t)− qj(t)) = 0, lim
t→∞

(q̇i(t)− q̇j(t)) = 0 ∀i, j.

To solve Problem 1, we need the following assumption, standard for
directed static communication graphs [23].

Assumption 1: The communication graph G contains a spanning
tree.

Remark 1: Under Assumption 1, for the Laplacian matrix L ∈
RN×N of the communication graphG, there exists a nonsingular matrix
U ∈ RN×N such that U−1LU = JL, where JL is the Jordan canonical
form of L. In the following, let us denote λ1 as the nonzero minimum
real part among the eigenvalues of L.

III. DISTRIBUTED OBSERVER AND DYNAMIC COMPENSATOR

In this section, a distributed observer is designed for each agent
so that all these observers will achieve consensus to an autonomous
system determined by the inherent properties and the initial states of
the agents. Additionally, an internal model based dynamic compensator
is designed to deal with the uncertain disturbances.

A. Design of a Distributed Observer

We propose a distributed observer for each agent as follows:

Ṡi = μ1

∑
j∈Ni

aij(Sj − Si) (3a)
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η̇i = Siηi + μ2

∑
j∈Ni

aij(ηj − ηi) (3b)

where Si ∈ Rn×n and ηi ∈ Rn are the estimated system matrix and
state of the autonomous system, respectively. The main difference
between (3) and other adaptive distributed observers in the literature,
e.g., [9], [24] is that the adaptive distributed observers in [9] and
[24] require an explicit leader agent, generating an a priori reference
trajectory for the network, while (3) requires no leader agent and all
agents works cooperatively to construct an autonomous system.

In the following development, we shall show how to construct an
autonomous system by the proposed observer (3). To this purpose, a
technical lemma is needed.

Lemma 2: Consider the system

ẋ = F (t)x (4)

where x ∈ Rn, and F (·) : R → Rn×n is bounded and piecewise con-
tinuous for all t ≥ 0. If F (t) vanishes exponentially, then x converges
to a bounded vector.

Proof: Since F (t) vanishes exponentially, there exist positive con-
stants α and λ, such that ‖F (t)‖ ≤ αe−λt. Let V = xTx. The time
derivative of V along system (4) is

V̇ = xT
(
F (t) + FT (t)

)
x

≤ 2αe−λtV.

Then, ∀t ≥ 0

V (t) ≤ e

∫ t

0
2αe−λτdτ

V (0)

≤ e
2α
λ ‖x(0)‖2

which implies that ‖x(t)‖ is bounded for all x(0) and t ≥ 0. Hence,
for system (4), F (t)x will converge to zero exponentially at the rate
of λ. Clearly, there exists an x∗ ∈ Rn such that limt→∞ x(t) = x∗

exponentially at the rate of λ.
Remark 2: A related result is reported in [24, Lemma 1]. However,

[24, Lemma 1] considers the system ẋ = F0x+ F (t)x, where matrix
F0 needs to be Hurwitz, proving that x converges to zero. Clearly,
system (4) in the proposed Lemma 2 cannot be covered by [24], due to
the absence of the Hurwitz matrix F0.

Now we are ready to show the consensus of dynamics (3).
Lemma 3: Consider dynamics (3a). Under Assumption 1, for any

positive μ1 and any initial Si(0), the matrix signals Si(t) will achieve
consensus exponentially, for i = 1, . . . , N .

Proof: For notational conciseness, define S̄ = col(S1, . . . , SN ).
Then, we can rewrite dynamics (3a) in a compact way

˙̄S = − μ1 (L ⊗ In) S̄. (5)

By Remark 1, let Φ = (U−1 ⊗ In)S̄ ∈ RNn×n. Then, (5) can be
rewritten as

Φ̇ = −μ1 (JL ⊗ In)Φ (6)

where JL is the Jordan canonical form of L. Since the graph G contains
a spanning tree, we have, from Lemma 1, that 0 is a simple eigenvalue
of JL, and all other N − 1 eigenvalues have positive real parts. For
convenience, let us rearrange

JL = block diag (0, JN−1)

whereJN−1 ∈ R(N−1)×(N−1) consists of the last (N − 1) rows and the
last (N − 1) columns of the matrix JL. Let Φ = col(Φ1,Ψ) and Ψ =

col(Φ2 . . . ,ΦN ), where Φi ∈ Rn×n for i = 1, . . . , N . Then, system
(6) can be rewritten as

Φ̇1 = 0In (7a)

Ψ̇ = − μ1 (JN−1 ⊗ In)Ψ. (7b)

From (7b), and the properties of JN−1, we obtain limt→∞ Ψ(t) = 0
exponentially with decay rate μ1λ1, which implies

lim
t→∞

Φ(t) = col
(
Φ1(0), 0(N−1)n×n

)
exponentially. Thus,

lim
t→∞

S̄(t) = (U ⊗ In) col
(
Φ1(0), 0(N−1)n×n

)
exponentially. Let 1N be the eigenvector associated to the 0 simple
eigenvalue ofL. Then, arrangeU so that its first column is1N . Thus, for
any positive μ1 and any initial Si(0) ∈ Rn×n, limt→∞ S̄(t) = (1N ⊗
Φ1(0)) exponentially, i.e., limt→∞ Si(t) = Φ1(0), ∀i with decay rate
μ1λ1. �

Remark 3: After denoting the first row ofU−1 asuT = col(u1, . . . ,
uN ), the following equality holds:

Φ(0) =
(
U−1 ⊗ In

)
S̄(0)

= col (Φ1(0),Φ2(0), . . . ,ΦN (0)) .

Thus, Φ1(0) =
∑N

i=1 uiSi(0). Denote S∗ = Φ1(0), which can be
treated as the system dynamics of the autonomous system determined
by the initial conditions of each agent and communication network.

Next, we show that dynamics (3b) achieve consensus to the state of
the autonomous system constructed by all the agents through commu-
nication network.

Lemma 4: Consider dynamics (3b) with an arbitrary ηi(0). Under
Assumption 1, for sufficiently largeμ1 andμ2, the signals ηi(t) achieve
consensus exponentially, for i = 1, . . . , N .

Proof: For notational conciseness, let η = col(η1, . . . , ηN ) and
Ŝd = block diag(S1, . . . , SN ), Then, we can put (3b) into the follow-
ing compact form:

η̇ =
[
Ŝd − μ2 (L ⊗ In)

]
η. (8)

Perform the following transformation:

η̂ = P (t)η (9)

where P (t) = eQt and Q = μ2(L ⊗ In)− (IN ⊗ S∗). The time
derivative of η̂ along the trajectory (8) is

˙̂η = P (t)
[
Ŝd(t)− (IN ⊗ S∗)

]
P−1(t)η̂

= eQt
[
Ŝd(t)− (IN ⊗ S∗)

]
e−Qtη̂

= F (t)η̂. (10)

We know from Lemma 3 that limt→∞ Si(t) = S∗ exponentially with
decay rate μ1λ1. Note that ‖eQt‖ and ‖e−Qt‖ are upper bounded by
e(μ2‖L‖+‖S∗‖)t. Therefore, we have limt→∞ F (t) = 0 exponentially for

μ1 ≥ 2(μ2‖L‖+ ‖S∗‖)/λ1.

Then, by Lemma 2, for any initial states η̂(0) ∈ RNn, η̂(t) converges
to a bounded vector η̂∗ = col(η̂∗1, . . . , η̂

∗
N ), η̂∗i ∈ Rn. Since graph G

contains a spanning tree, for any positive μ2 and any initial η̂(0), we
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have from Lemma 1 that

lim
t→∞

e−μ2(L⊗In)tη̂(t) = lim
t→∞

e−μ2(L⊗In)t lim
t→∞

η̂(t)

= 1N ⊗ χ∗ (11)

where χ∗ =
∑N

i=1 uiη̂
∗
i and ui is defined in Remark 3. Let

η0(t) = 1N ⊗ (
eS

∗tχ∗) . (12)

According to (9), we have

η(t) = e−Qtη̂(t) = e(IN⊗S∗)te−μ2(L⊗In)tη̂(t).

Since ‖e(IN⊗S∗)t‖ ≤ e‖S‖t

‖η(t)− η0(t)‖ =
∥∥e(IN⊗S∗)t [e−μ2(L⊗In)tη̂(t)− 1N ⊗ χ∗]∥∥

≤ e‖S
∗‖t ∥∥e−μ2(L⊗In)tη̂(t)− 1N ⊗ χ∗∥∥ .

Considering (11), the exponentially decay rate is μ2λ1. Then, we have

‖η(t)− η0(t)‖ ≤ e‖S
∗‖te−μ2λ1t

= e−(μ2λ1−‖S∗‖)t.

Hence, for i, j ∈ N and μ2 >
‖S∗‖
λ1

lim
t→∞

(ηi(t)− ηj(t)) = 0 (13)

exponentially. This further implies that

lim
t→∞

(ηi(t)− eS
∗tχ∗) = 0

exponentially for all i.
Remark 4: Note that the convergence analysis of Lemma 4 does

not require the consensus state to be bounded, whereas the convergence
analysis in some recent works such as [9] relies on the condition that the
state of the leader is bounded. The idea of constructing an autonomous
system in a distributed way was proposed in [19] for agents in the form
of heterogeneous oscillators over undirected graphs. More specifically,
in [19], the matrix Si takes the following form:

Si =

[
0 1

−βi 0
]

(14)

together with the following distributed dynamics:

β̇i =
∑
j∈Ni

aij(βj − βi)

whereβi ∈ R. Lemma 4 extends this result to directed graphs and more
general Si. In the following, an internal model design is discussed to
handle the unknown disturbances.

B. Design of a Dynamic Compensator

A so-called internal model approach can be adopted to reject the
disturbances di(t). For compactness, let σis = col(σis,1, . . . , σis,nis

)
and σi = col(σi1, . . . , σin), i = 1, . . . , N and s = 1, . . . , n. Accord-
ing to [2], [6], [7], [25]–[28], we know that for each i = 1, . . . , N
and s = 1, . . . , n, there exist positive integers ris and real numbers
cis,1, . . . , cis,ris , which may depend on σis, such that

d
(ris)
is = cis,1dis + cis,2ḋis + · · ·+ cis,risd

(ris−1)
is .

Let Tσis
is be a nonsingular matrix of dimension ris, and

ϑis = col
(
dis, ḋis, d

(2)
is , . . . , d

(ris−1)
is

)
.

Then, we have

ϑ̇is = Φσis
is ϑis, dis = Ψisϑis

where

Φσis
is =

[
0 Iris−1

cis,1 cis,2, . . . , cis,ris

]
, Ψis = row(1, 0ris−1).

LetMis ∈ Rris×ris be Hurwitz, Nis ∈ Rris , and (Mis, Nis) be con-
trollable. Then, there exists a nonsingular matrix Tσis

is satisfying the
Sylvester equation

Tσis
is Φσis

is −MisT
σis
is = NisΨis. (15)

Let θis(t) = −Tσis
is ϑis(t), θi = col(θi1, . . . , θin), Ψi =

block diag(Ψi1, . . . ,Ψin), Mi = block diag(Mi1, . . . ,Min), T
σi
i =

block diag(Tσi1
i1 , . . . , Tσin

in ), and Ni = block diag(Ni1, . . . , Nin).
Then, we have

di = −Ψi (T
σi
i )

−1
θi.

The dynamic compensator is designed as

ξ̇i =Miξi +Niτi (16)

where ξi ∈ Rni with ni =
∑n

s=1 ris. The following section concerns
the design of the distributed control τi.

IV. MAIN RESULTS

To propose a distributed control law for the EL agents, we assume
that η̇0 = 1N ⊗ (S∗eS

∗tχ∗) in (12) is bounded for all t ≥ 0, which
implies that η̇i is bounded for all t ≥ 0, for i = 1, . . . , N . Let

q̇ri = Siηi − α (qi − ηi) (17a)

si = q̇i − q̇ri (17b)

where α > 0 and ηi and Si are generated by (3). Then,

q̈ri = Ṡiηi + Siη̇i − α (q̇i − η̇i) (18a)

ṡi = q̈i − q̈ri. (18b)

By Property 2, there exists a known matrix Yi(qi, q̇i, q̇ri, q̈ri) and an
unknown constant vector Θi such that

Yi (qi, q̇i, q̇ri, q̈ri)Θi = Mi (qi) q̈ri +Gi (qi)

+ Ci (qi, q̇i) q̇ri. (19)

Next, substituting Yi(qi, q̇i, q̇ri, q̈ri)Θi into system (1) gives

Mi (qi) (q̈i − q̈ri) + Ci (qi, q̇i) (q̇i − q̇ri)

+ Yi (qi, q̇i, q̇ri, q̈ri)Θi = τi + di. (20)

Then, from (17b) and (20), we have

Mi (qi) ṡi = τi − Ci (qi, q̇i) si
− Yi (qi, q̇i, q̇ri, q̈ri)Θi + di. (21)

Consider the augmented system composed of (16) and (21), and the
following coordinate transformation:

ξ̄i = ξi − θi (22a)

τ̃i = τi −Aiξi (22b)

di = −Biθi (22c)

whereAi = Ψi(T
0
i )

−1 andBi = Ψi(T
σi
i )−1 with T 0

i being a nonsin-
gular matrix, Ψi and Tσi

i given in (15). We have

˙̄ξi = [Mi +NiAi] ξ̄i +Niǔ+NiE
σi
i θi,

Mi (qi) ṡi = τ̃i − Ci (qi, q̇i) si +Aiξ̄i
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− Yi (qi, q̇i, q̇ri, q̈ri)Θi +Eσi
i θi

with Eσi
i = Ai −Bi. Then, a further transformation

ξ̃i = ξ̄i −NiMi (qi) si

gives

˙̃
ξi =Miξ̃i + Pi(qi, q̇i, si)Θi

Mi (qi) ṡi = τ̃i − Ci (qi, q̇i) si +Aiξ̃i +Qi(qi, q̇i, si)Θi

+Eσi
i ξi −Eσi

i

[
ξ̃i +NiMi (qi) si

]
where ξi ∈ Rni , si ∈ Rn, and

Pi(qi, q̇i, si)Θi =MiNiMi (qi) si +NiCi (qi, q̇i) si
−NiṀi (qi) si +NiYi (qi, q̇i, q̇ri, q̈ri)Θi

Qi(qi, q̇i, si)Θi = AiNiMi (qi) si

− Yi (qi, q̇i, q̇ri, q̈ri)Θi (23)

with Pi(qi, q̇i, si) and Qi(qi, q̇i, si) being known regression matrices.
Let ζi ∈ Rni×p be produced by an auxiliary system

ζ̇i =Miζi + Pi(qi, q̇i, si). (24)

Let ξ̂i = ξ̃i − ζiΘi. A straightforward computation shows

˙̂
ξi =Miξ̃i + Pi(qi, q̇i, si)Θi

− [Miζi + Pi(qi, q̇i, si)]Θi

=Miξ̂i (25a)

Mi (qi) ṡi = τ̃i − Ci (qi, q̇i) si +Biξ̂i

+ [Aiζi +Qi(qi, q̇i, si)]Θi

+Eσi
i [ξi −NiMi (qi) si]−Eσi

i ζiΘi. (25b)

Since Mi is Hurwitz in (25a), we only need to concentrate on the
second equation of (25). To handle the uncertain term in (25b) [i.e., the
last two lines of (25b)] with adaptive control technique, we note that the
uncertainty in the matrix Eσi

i can be linearly parameterized for some
integer l ≥ 1 as follows:

Eσi
i =

l∑
j=1

Eij�ij

= Ei [�i ⊗ Ini
]

whereEi = row(Ei1, . . . , Eil), �i = col(�i1, . . . , �il),Eij ∈ Rn×ni

is a constant matrix and �ij ∈ R is a smooth function of σi. As a result

Eσi
i ζiΘi = [Ei ◦ ζi] [�i ⊗Θi]

where Ei ◦ ζi = row(Ei1ζi, . . . , Eilζi). Besides

Eσi
i ξi = [Ei ◦ ξi] �i

Eσi
i NiMi (qi) si = Ei [�i ⊗ Ini

]NiLi (qi, si)Θi

= Ei ◦ [NiLi (qi, si)] [�i ⊗Θi]

where Li(qi, si)Θi = Mi(qi)si, and Li(qi, si) is a known regression
matrix. Now, system (25) can be further written in the following linearly
parameterized form:

˙̂
ξi =Miξ̂i (26a)

Mi (qi) ṡi = τ̃i − Ci (qi, q̇i) si

+Biξ̂i + ρi(qi, q̇i, si, ζi)ωi (26b)

where ωi = col(Θi, �i ⊗Θi, �i) is a constant vector consisting of the
uncertain parameters of (1) and (2), and ρi(qi, q̇i, si, ζi) is a known
regression matrix with

ρi(qi, q̇i, si, ζi) = col(ρi1(qi, q̇i, si, ζi), ρi2(qi, si, ζi), ρi3(ξi))

=

⎡
⎣ Aiζi +Qi(qi, q̇i, si)
Ei ◦ [ζi +NiLi (qi, si)]

Ei ◦ ξi

⎤
⎦ . (27)

The last step for solving the regulation problem of system (26) is to
introduce the control law as follows:

τ̃i = −Kisi − ρi(qi, q̇i, si, ζi)ω̂i (28a)

˙̂ωi = Λ−1
i ρTi (qi, q̇i, si, ζi)si (28b)

where si is calculated from (17b), ζi is generated by (24), the vector ω̂i

is used to estimate ωi,Ki is a positive definite matrix, and Λi a positive
definite diagonal matrix representing the estimator update rate. Now
we are in a position to present our main result.

Theorem 1: Consider system (1) over a communication graph
satisfying Assumption 1. Problem 1 is solvable by the control law
consisting of (3), (16), (24), and (28).

Proof: Substituting (28) into (26) gives

˙̂
ξi =Miξ̂i (29a)

Mi (qi) ṡi = − Ci (qi, q̇i) si −Kisi

− ρi(qi, q̇i, si, ζi)ω̃i +Biξ̂i (29b)

˙̃ωi = Λ−1
i ρTi (qi, q̇i, si, ζi)si (29c)

where ω̃i = ω̂i − ωi. Let Qi be the symmetric positive definite matrix
satisfying

QiMi +MT
i Qi = −I

and pick a real number ε ≥ ‖Bi‖2
λmin(Ki)

, where ‖Bi‖ = max‖x‖=1 ‖Bix‖.
Pick the following Lyapunov function candidate:

Vi = εξ̂Ti Qξ̂i +
1

2

[
sTi Mi (qi) si + ω̃T

i Λiω̃i

]
.

The time derivative of V along the trajectory (29) is

V̇i = − sTi Kisi +
1

2
sTi

[
Ṁi (qi)− 2Ci (qi, q̇i)

]
si + sTi Biξ̂i

− sTi ρi(qi, q̇i, si, ζi)ω̃i+ω̃
T
i ρ

T
i (qi, q̇i, si, ζi)si−ε‖ξ̂i‖2.

Since Ṁi(qi)− 2Ci(qi, q̇i) is skew symmetric, we have

V̇i = − sTi Kisi + sTi Biξ̂i − ε‖ξ̂i‖2

≤ − sTi Kisi +
1

2ε
‖sTi Bi‖2 + ε

2
‖ξ̂i‖2 − ε‖ξ̂i‖2

≤ − ε

2
‖ξ̂i‖2 − 1

2
sTi Kisi

= − a
(
ξ̂i, si

)
. (30)

Thus, si, ξ̂i, and ω̃i are bounded. From (3) and (17), we have

q̇i − η̇i + α (qi − ηi) = si − μ2

∑
j∈Ni

aij(ηj − ηi)
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Fig. 1. Communication graph Ḡ.

which can be further rewritten as

ėi + αei = si − μ2

∑
j∈Ni

aij(ηj − ηi). (31)

This can be viewed as a stable first-order differential equation in ei with
si − μ2

∑
j∈Ni

aij(ηj − ηi) as the input. Since this input is bounded
for all t ≥ 0, we conclude that both ei = qi − ηi and ėi = q̇i − η̇i are
bounded for all t ≥ 0, which further implies q̇i is bounded for all t ≥ 0
because of η̇i is bounded for all t ≥ 0.

By Property 1, we obtain that Mi(qi), Ci(qi, q̇i), andGi(qi) are all
bounded for all t ≥ 0. It is noted that

lim
t→∞

Ṡi(t)ηi(t) = 0 and lim
t→∞

[
Si(t)η̇i(t)− (S∗)2eS

∗tχ∗] = 0

from Lemmas 3 and 4, where χ∗ and S∗ are defined in (11) and
Remark 3, respectively. Hence, q̇ri and q̈ri are bounded from (17) for
all t ≥ 0. By (29b), we have Yi(qi, q̇i, q̇ri, q̈ri) is bounded. Noted that,
Pi(qi, q̇i, si) and Qi(qi, q̇i, si) are bounded for all t ≥ 0 from (23).
Thus, ζi is also bounded for all t ≥ 0 from a stable differential (24)
with a bounded input Pi(qi, q̇i, si). As a result, ξi is bounded for all
t ≥ 0 from (22a) and the fact that θi is bounded for all t ≥ 0. Then,
ρ(qi, q̇i, si, ζi) is bounded for all t ≥ 0 from (27). Hence, we have ṡ(t)
is bounded for all t ≥ 0 from (29b).

By integrating both sides of (30), we can show that∫ t

0

a
(
ξ̂i(τ), si(τ)

)
dτ ≤ V (0)− V (t) ≤ V (0).

Thus, limt→∞
∫ t

0
a(ξ̂i(τ), si(τ))dτ exists and is finite. Therefore

ȧ
(
ξ̂i(t), si(t)

)
=
∂a

∂ξ̂i

˙̂
ξi +

∂a

∂si
ṡi

is bounded for all t ≥ 0, and hence,a(ξ̂i(t), si(t)) is uniformly continu-
ous in t. Applying Barbalat’s lemma, we have limt→∞ a(ξ̂i(t), si(t)) =
0, thus, limt→∞ si(t) = 0.

Since the input in (31) is bounded for all t ≥ 0 and tends to zero
as t→ ∞, we conclude that both ei = qi − ηi and ėi = q̇i − η̇i are
bounded for all t ≥ 0 and will decay to zero. Together with (13), the
proof is completed.

Remark 5: For the single Euler–Lagrange system as in [7], the
tracking signal is bounded. In our multiple Euler–Lagrange setting we
only require that the derivative of the final consensus state is bounded
without imposing bounds on the cooperatively agreed trajectory.

V. NUMERICAL EXAMPLE

Consider a group of 5 EL agents with the communication network
described in Fig. 1. Let each EL agent represent a two-link robotic
arm, whose dynamics is described by (1), with generalized coordinates
qi = col(θi1, θi2)

Mi (qi) =

[
ai1 + ai2 + 2ai3 cos θi2 ai2 + ai3 cos θi2

ai2 + ai3 cos θi2 ai2

]

Ci (qi, q̇i) =
[
−ai3 (sin θi2) θ̇i2 −ai3 sin θi2

(
θ̇i1 + θ̇i2

)
ai3 sin θi2θ̇i1 0

]

Gi (qi) =

[
ai4g cos θi1 + ai5g cos (θi1 + θi2)

ai5g cos (θi1 + θi2)

]

and Θi = col(ai1, ai2, ai3, ai4, ai5). This dynamics is adopted from
[3, Example 3.2-2] with some simplified modification of notations.
The physical interpretation of each parameter can be found in [3]. We
consider the disturbance

dik = ψik sin (σikt+ φik) , k = 1, 2.

According to the internal model approach, we can select

Φik =

[
0 1

−σ2
ik 0

]
,Ψik =

[
1 0

]
.

Choosing

Mik =

[
0 1
−3 −2

]
, Nik =

[
0
1

]

gives

T
σik
ik =

[
3− σ2

ik −2
2σ2

ik 3− σ2
ik

]
1

(3− σ2
ik)

2
+ 4σ2

ik

Ψik (T
σik
ik )

−1
=

[
3− σ2

ik 2
]

T 0
ik =

[
3 −2
0 3

]
1

9
.

Let σi = col(σi1, σi2),ψi = col(ψi1, ψi2), φi = col(φi1, φi2),Mi =
block diag(Mi1,Mi2), Ni = block diag(Ni1, Ni2), Ti = block diag
(Ti1, Ti2), andΨi = block diag(Ψi1,Ψi2). For the nominal valueσi =
0, we have

Eσi
i = Ψi

(
T 0
i

)−1 −Ψi (T
σi
i )

−1
=

[
σ2
i1 0 0 0
0 0 σ2

i2 0

]

=

[
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0

] [[
�i1
�i2

]
⊗ I4

]

=
[
Ei1 Ei2

]
[�i ⊗ I4]

= Ei [�i ⊗ I4]

where �i = col(�i1, �i2) = col(σ2
i1, σ

2
i2). Then, we have ωi =

col(Θi, �i ⊗Θi, �i). Next, the terms ρi(qi, q̇i, si, ζi) andPi(qi, q̇i, si)
can be obtained from the following equations:

ρi(qi, q̇i, si, ζi) =

⎡
⎣ Aiζi +Qi(qi, q̇i, si)
Ei ◦ [ζi +NLi (qi, si)]

Ei ◦ ξi

⎤
⎦

Pi(qi, q̇i, si)Θi =MiNiMi (qi) si +NiCi (qi, q̇i) si

−NiṀi (qi) si +NiYi (qi, q̇i, q̇ri, q̈ri)Θi

with

Qi(qi, q̇i, si)Θi = AiNiMi (qi) si − Yi (qi, q̇i, q̇ri, q̈ri)Θi

Li(qi, si)Θi = Mi (qi) si.

Now, we are ready to construct the control law as follows:

τi = −Kisi − ρi(qi, q̇i, si, ζi)ω̂i +Aiξi

ξ̇i =Miξi +Niτi

˙̂ωi = Λ−1ρTi (qi, q̇i, si, ζi)si

ζ̇i =Miζi + Pi(qi, q̇i, si)
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Fig. 2. Trajectories of ‖ei‖ and ‖ėi‖, for i = 1, . . . , 5.

Ṡi = μ1

5∑
j=1

aij(Sj − Si)

η̇i = Siηi + μ2

5∑
j=1

aij(ηj − ηi).

Select the following parameters: μ1 = μ2 = 2, Ki = 40I2, α = 6,
Λi = 0.15I17. The actual values of Θi, ψi, σi, and φik are given as

Θ1 = col(0.64, 1.10, 0.08, 0.64, 0.32), ψ1 = col(6, 8)

Θ2 = col(0.76, 1.17, 0.14, 0.93, 0.44), ψ2 = col(−1,−2)

Θ3 = col(0.91, 1.26, 0.22, 1.27, 0.58), ψ3 = col(−2,−5)

Θ4 = col(1.10, 1.36, 0.32, 1.67, 0.73), ψ4 = col(3, 5)

Θ5 = col(1.21, 1.16, 0.12, 1.45, 1.03), ψ5 = col(−3,−2.5)

σi = col(0.1, 0.2) and φik = 0. The simulation is conducted with the
following initial conditions: qi = 0, Θ̂i = 0, ζi = 0, ω̂i = 0, ξi = 0,
∀i, and

S1(0) =

[
0 3
−6 0

]
, S2(0) =

[
0 −2
1 0

]

S3(0) =

[
0 −2
−3 0

]
, S4(0) =

[
0 −2
−3 0

]

S5(0) =

[
0 2
−3 0

]
, η1(0) = col(0.2, 0.5)

η2(0) = col(−0.6, 0.3), η3(0) = col(−0.1, 0.4)

η4(0) = col(−0.6, 0.6), η5(0) = col(0.9, 0.2).

The errors in Fig. 2 show that consensus of both qi and q̇i is achieved
among all the five agents. The trajectories of ηi and Si in Fig. 3 show
that all five agents converge to an autonomous system arising from the
communication network, the inherent properties and the initial states
of the agents.

VI. CONCLUSION

This article proposed a novel design for leaderless consensus and
disturbance rejection problem of multiple Euler–Lagrange agents. In
this setting, all agents must converge to a common behavior while being
affected by persistent disturbances with unknown biases, amplitudes,
initial phases, and frequencies. The main feature of the proposed design
is that none of the agents has information of a common reference model

Fig. 3. Trajectories of ηi and Si, for i = 1, . . . , 5.

or of a common reference trajectory. Rather, all agents collaborate with
each other through a communication network to achieve a common
reference trajectory, and simultaneously reject persistent disturbances.
The analysis shows that the generalized coordinates and velocities of the
multiple Euler–Lagrange systems converge to common time-varying
states in a distributed way.
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