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Delay-Compensated Distributed PDE Control of
Traffic with Connected/Automated Vehicles
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Abstract—We develop an input delay-compensating design for
stabilization of an Aw-Rascle-Zhang (ARZ) traffic model in con-
gested regime which is governed by a 2×2 first-order hyperbolic
nonlinear PDE. The traffic flow consists of both adaptive cruise
control-equipped (ACC-equipped) and manually-driven vehicles.
The control input is the time gap of ACC-equipped and connected
vehicles, which is subject to delays resulting from communication
lag. For the linearized system, a novel three-branch bakcstepping
transformation with explicit kernel functions is introduced to
compensate the input delay. The transformation is proved to
be bounded, continuous and invertible, with explicit inverse
transformation derived. Based on the transformation, we obtain
the explicit predictor-feedback controller. We prove exponential
stability of the closed-loop system with the delay compensator
in L2 norm. The performance improvement of the closed-loop
system under the proposed controller is illustrated in simulation.

Index Terms—Delayed distributed input, PDE backstepping,
Traffic flow, Predictor-feedback, First-order hyperbolic PDE,
Adaptive cruise control (ACC)

I. INTRODUCTION

TRAFFIC congestion has become a severe worldwide so-
cial issue. Stop-and-go traffic is a common phenomenon

in congested highway traffic [30], which results from a small
perturbation, such as a delay in a driver’s response, propagat-
ing backward in traffic flow [8], [20]. The stop-and-go oscil-
lation in traffic flow leads to poorer driving experience, higher
fuel consumption and a high accident risk. One promising way
to reduce the oscillation in the congested regime is to develop
control design tools that exploit the capabilities of automated
and connected vehicles, such as manipulation of the time gap
setting of ACC-equipped and connected vehicles [4], [12].

PDE-based models have established a realistic description
of the traffic dynamics [3], [10], [11], [17], [29] by capturing
the temporal and spatial dynamics of the traffic density and the
traffic speed along the considered highway stretch. Boundary
control [16], [33]–[35], [37], [38], and in-domain manipulation
[9], [31] are both developed to stabilize the traffic flow. Traffic
state estimations are also considered in different situations
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[35], [5], [13]. Due to the information transmission or (and)
reaction time of drivers [7], there are usually time delays
in the traffic flow control process, see, e.g., [15] for delays
in feedback. Therefore, it is necessary to study the traffic
flow control involving delays. However, few papers on traffic
control consider delay compensation.

We consider an Aw-Rascle-Zhang (ARZ) traffic model in
congested regime comprising manually-driven vehicles and
ACC vehicles, which are subject to input delays. The model is
composed of 2×2 first-order hyperbolic PDEs whose states are
traffic density and traffic speed. In order to eliminate the stop-
and-go waves, a distributed actuation using the time-gap of the
ACC vehicles is employed for control. If the actuator delay
is present and sufficiently large, the state feedback control
proposed in [4] may become destabilizing.

Relevant advances have been achieved towards the con-
trolling of diffusion-driven distributed parameter systems with
delays. Early predictor-based boundary controller is developed
using the PDE backstepping method in [18], which stabi-
lizes an unstable reaction-diffusion PDE with arbitrarily long
input delay. The aforementioned method has been extended
to a 3-D formation control problem to compensate for the
effect of potential input delays [25]. For state delays in an
unstable reaction-diffusion PDE, a boundary feedback has
been developed using backstepping in [14]. Recently, a delay-
compensator was designed for an unstable reaction-diffusion
PDE via distributed actuation in [24]. Alternatively, series
control design approaches based on Lyapunov-Krasovskii
functions have been proposed in [27] and [28], respectively.
A boundary feedback to compensate a constant input delay
for an unstable reaction-diffusion PDE has been developed in
[22], using spectral reduced-order models which approximate
the infinite-dimensional system by a finite-dimensional one. A
similar method is used for in-domain stabilization of reaction-
diffusion PDEs with time-and spatially-varying delays in [19].

Most studies on delay-compensator design are for parabolic
PDEs. There are fewer results on hyperbolic PDEs with delays.
An example of first-order hyperbolic PDE is given in [26],
where a backstepping boundary control is designed for com-
pensating the input delay. State delay and measurement delay
is addressed in [23]. In the context of robustness analysis,
a delay-robust boundary feedback has been proposed for a
2× 2 linear hyperbolic PDEs in [2]. Both in [6] and [32], the
authors introduce an equivalent delay system representation
to first-order hyperbolic PDEs, which transforms the coupled
PDE-ODE systems to ODE systems with input delays.

The overall challenge addressed in this work is the design of
an in-domain delay-compensator for a 2×2 hyperbolic PDE by
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employing the PDE backstepping method while dealing with a
dynamic boundary condition which results in a 2×2 hyperbolic
PDE-ODE cascade system. The usual Volterra integral trans-
formation cannot be applied directly to control design because
the resulting kernel equation is unsolvable. Therefore, we
propose a three-branch affine Volterra transformation which
contains the state of the ODE, namely, the traffic speed at
the outlet boundary. The transformation with explicit kernel
functions has a different form in each of the three intervals.
Although there are three intervals, the transformation is proved
to be continuous in its domain. Further, we derive the explicit
inverse transformation which is bounded and continuous too.
Based on the transformation, we obtain an explicit delay-
compensator, composed of the feedback of the states and the
historical actuator state. The compensator stabilizes the traffic
flow with input delay via manipulation of the time gap of
the ACC-equipped vehicles in-domain. We prove the closed-
loop system is L2 exponentially stable, by establishing the
L2 stability of the target system and the norm equivalence
between the target system and the original system based on
the fact that the transformation is invertible.

The structure of the paper is as follows. In Section II,
we introduce the model. In Section III, we design the
delay-compensator using the backstepping method. Section
IV presents the proof of the L2 norm exponential stability
of the close-loop system. The effectiveness of the proposed
delay-compensated controller is illustrated with numerical
simulations in Section V. The conclusion is given in Section
VI.

Notation: Throughout the paper, we adopt the following
notation to define L2-norm for f(·) ∈ L2(0, L), g(·, ·) ∈
L2((0, L)× (0, D)) :

‖f‖2L2
=

∫ L

0

|f(x)|2dx, ‖g‖2L2
=

∫ L

0

∫ D

0

|g(x, s)|2dsdx.

II. MODEL DESCRIPTION

A. ARZ Traffic model with mixed vehicles

We consider the ARZ traffic model of highway introduced
in [4] but an input delay which acts on adaptive cruise control-
equipped (ACC-equipped) vehicles is addressed. The state
variables of the model are the traffic density ρ̆(x, t) and
the traffic speed v̆(x, t), both defined in domain (x, t) ∈
[0, L]×R+ where t is time, x is the spatial variable denoting
the position on the concerned highway. Constant L > 0
denotes the length of the concerned highway stretch. Define
v̆(x, t) ∈ (0, vf ] with vf being free-flow speed. We consider
a mixed traffic, consisting of both manual and ACC-equipped
vehicles with the percentage of ACC-equipped vehicles with
respect to total vehicles being α. Let h̆acc(x, t) denote the
time-gap of the ACC-equipped vehicle at x from its leading
vehicle, which is the control input because a vehicle with
ACC can automatically adjust its speed to maintain a desired
distance (or, say, a time-gap) from vehicles ahead. Due to
the lag of information transmission from the control center to
each individual ACC vehicle, there often exists input delay.

Expressed with equations, the traffic flow control system we
consider is:

ρ̆t(x, t) =− ρ̆x(x, t)v̆(x, t)− ρ̆(x, t)v̆x(x, t), (1)

v̆t(x, t) =− ρ̆(x, t)
∂Vmix(ρ̆(x, t), h̆acc(x, t−D))

∂ρ̆
v̆x(x, t)

− v̆(x, t)v̆x(x, t)

+
Vmix(ρ̆(x, t), h̆acc(x, t−D))− v̆(x, t)

τmix(α)
, (2)

ρ̆(0, t) =qin/v̆(0, t), (3)

v̆t(L, t) =
Vmix(ρ̆(L, t), h̆acc(L, t−D))− v̆(L, t)

τmix(α)
, (4)

where D is the delay on the domain-wide actuated time gap
input, and

τmix(α) =
1

α
τacc

+ 1−α
τm

, 0 ≤ α ≤ 1 (5)

is time constant for a mixture traffic which depends on both
time constant τacc of ACC vehicles and time constant τm of
manual vehicles. τmix is also a function of α, the percentage

Fig. 1: τmix varies with α.

of ACC vehicles with respect to total vehicles. Fig. 1 shows
the relations of these two parameters. The equilibrium speed
profile of the mixed flow Vmix is expressed as

Vmix(ρ̆, h̆acc) =
1

h̆mix(h̆acc)

(
1

ρ̆
− l
)
, (6)

and the mixed time gap is defined as

h̆mix(h̆acc) =
α+ (1− α) τacc

τm

α+ (1− α) τacc

τm
h̆acc

h̆m

h̆acc. (7)

In the above model, l > 0 denotes the average effective vehicle
length, qin > 0 is a constant external inflow, and h̆m > 0 is
the time gap of manual vehicles.

Equation (1) means that the traffic flow observe the mass
conservation law [16]. Equation (2) is a momentum equation
inspired by the speed dynamics of ARZ model [36] for ACC-
equipped and manual mixed flow, where α ∈ [0, 1] is the
percentage of ACC vehicles with respect to total vehicles. In
(2), Vmix(ρ̆, h̆acc) = Q(ρ̆, h̆acc)/ρ̆ is the equilibrium speed
profile of a mixed flow of ACC vehicles and manual vehicles,
where Q(ρ̆, h̆acc) is the traffic flow given by the fundamental
diagram shown in Fig. 2. Define ρ̆c as the lowest density
value of the mixed time gap h̆mix, for which the traffic is
congested. Let h̆min and h̆max be the minimum and maxi-
mum possible time gap, namely, h̆min ≤ min{h̆acc, h̆m} and
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h̆max ≥ max{h̆acc, h̆m}. Define ρ̆min and ρ̆max as the lowest
density values of congested traffic that correspond to minimum
and maximum possible time gaps h̆min and h̆max, respectively.
From Fig. 2. we find Qh̆min

(ρ̆min) = vf ρ̆min is the maximal
flow at given time gap h̆mix ∈ [h̆min, h̆max]. If ρ̆ ≥ ρ̆min,
implying that the traffic is in congested state, we have

Qh̆mix
(ρ̆) = (1− lρ̆)

vf

1/ρ̆c − l
. (8)

Combined with (6), we get

Qh̆mix
(ρ̆, h̆acc) = ρ̆Vmix = (1− lρ̆)

1

h̆mix(h̆acc)
, (9)

which gives

h̆mix(h̆acc) =
1/ρ̆c − l

vf
. (10)

Fig. 2: Fundamental diagrams for h̆mix ∈ [h̆min, h̆max].

In other words, for each input h̆mix, there is a correspond-
ing ρ̆c, such as ρ̆min = 1

h̆minvf+l
, which guarantees 0 <

Vmix(ρ̆, h̆acc) ≤ vf . Fig. 2 shows that possible flow Qh̆mix(ρ̆)

for every h̆mix ∈ [h̆min, h̆max] lies between Qh̆max(ρ̆) and
Qh̆min(ρ̆). In congested regime, we define the feasible set of
the state and input variables: Φ = {(v̆, ρ̆, h̆acc) ∈ R3, 0 ≤
v̆ ≤ vf , ρ̆min ≤ ρ̆ ≤ 1/l, h̆min ≤ h̆acc ≤ h̆max}, for all
α ∈ [0, 1].

Using an analysis method similar to the one employed in
[36], one can find that system (1)-(4) is anisotropic.

B. Linearization of the ARZ model

Consider the same equilibria of system (1)-(4) as in [4],
dictated by a constant inflow qin and a constant, steady-state
time gap h̄acc for ACC vehicles, which results in the following
steady-state traffic speed and density:

v̄ =
l

(1/qin)− h̄mix
, ρ̄ =

1

l + h̄mixv̄
, (11)

with mixed time gap

h̄mix =
α+ (1− α) τacc

τm

α+ (1− α) τacc

τm
h̄acc

h̆m

h̄acc. (12)

We define the error variables

ρ(x, t) = ρ̆(x, t)− ρ̄,
v(x, t) = v̆(x, t)− v̄,

hacc(x, t) = h̆acc(x, t)− h̄acc.

Linearizing (1)-(4) around the equilibrium (11) and (12), we
get

ρt(x, t) = −v̄ρx(x, t)− ρ̄vx(x, t), (13)

vt(x, t) =
l

h̄mix
vx(x, t)− 1

ρ̄2τmixh̄mix
ρ(x, t)− 1

τmix
v(x, t)

− α(1− lρ̄)

τacch̄2
accρ̄

hacc(x, t−D), (14)

ρ(0, t) = − ρ̄
v̄
v(0, t), (15)

vt(L, t) = − 1

ρ̄2τmixh̄mix
ρ(L, t)− 1

τmix
v(L, t)

− α(1− lρ̄)

τacch̄2
accρ̄

hacc(L, t−D). (16)

Introducing a change of variable

z(x, t) = e
x

v̄τmix (ρ(x, t) + h̄mixρ̄
2v(x, t)), (17)

and denoting the input by u(x, t) = hacc(x, t), we obtain a
2 × 2 first-order hyperbolic linear PDE system in a diagonal
form

zt(x, t) = −c1zx(x, t)− ec2xc3u(x, t−D), (18)

vt(x, t) = c4vx(x, t)− c5e−c2xz(x, t)− c6u(x, t−D),
(19)

z(0, t) = −c7v(0, t), (20)

vt(L, t) = −c5e−c2Lz(L, t)− c6u(L, t−D), (21)
z(x, 0) = z0(x), v(x, 0) = v0(x), (22)

u(x, s−D) = ϑ0(x, s), s ∈ [0, D], (23)

where c1 = v̄, c2 = 1
τmixv̄

, c3 = αh̄mixρ̄
2

τacch̄2
acc

((1/ρ̄)−l), c4 = l
h̄mix

,

c5 = 1
ρ̄2τmixh̄mix

, c6 = α
τacch̄2

acc
((1/ρ̄) − l), c7 = lρ̄2

v̄ , and
one can easily find the equivalence relation of the coefficients:
c2c4 = c5c7 and c1c2 = c3c5

c6
. The initial conditions is defined

in (22). The initial actuator state, i.e., the control memory in
[0, D], is denoted by ϑ0(x, s) ∈ L2([0, L]× [0, D]) in (23).

Before we proceed, we make the following assumption on
the coefficients:

Assumption 1. Assume (c1 + c4)D < L, which gives (c1 +
c4)s < L for all 0 ≤ s ≤ D.

Remark 1. The assumption is reasonable for the traffic
application, because the length of the concerned highway
stretch L is usually far greater than the other parameters, such
that (c1+c4)D (delay D times the sum of steady speed c1 = v̄
and vehicle length l over mixed time gap h̄mix, c4 = l

h̄mix
)

much less than L.

Our goal is to find a control u(x, t) that exponentially
stabilizes the linearized system (18)-(23) with input delay. In
the next section, we present the control design.

III. PREDICTOR-FEEDBACK CONTROL DESIGN

Before we apply the PDE backstepping approach to the
linearized model (18)-(23) with input delay, we first introduce
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a 2D transport PDE representation of the delay on the 1D-
distributed input:

zt(x, t) =− c1zx(x, t)− ec2xc3ψ(x, 0, t), (24)
vt(x, t) =c4vx(x, t)− c5e−c2xz(x, t)− c6ψ(x, 0, t), (25)
z(0, t) =− c7v(0, t), (26)

vt(L, t) =−̇c5e−c2Lz(L, t)− c6ψ(L, 0, t), (27)
ψt(x, s, t) =ψs(x, s, t), (28)
ψ(x,D, t) =u(x, t), (29)
ψ(x, s, 0) =ϑ0(x, s). (30)

From the last three equations, we have

ψ(x, s, t) =

u(x, t+ s−D) s+ t > D

ϑ(x, t+ s) s+ t ≤ D
. (31)

A. Backstepping transformation

To design a stabilizing controller for the PDE-ODE sys-
tem (24)-(29) one has to understand first both its open-loop
structure and its actuation structure. Physically speaking, there
are three transport processes. Two of the transport processes
are in 1D and one is in 2D. One 1D transport is in the x
direction at speed c1 in (24). The other 1D transport is in the
−x direction at speed c4 in (25). The two 1D transports create
a (z, v) PDE feedback loop, which may be unstable. The 2D
transport is in the −s direction at unity speed (and stagnant
in the x direction) in (28).

The z(x, t) term in (25) creates a potentially destabilizing
feedback loop but is matched by the actuated term ψ(x, 0, t).
Likewise, the z(L, t) term in (27) creates a potentially desta-
bilizing feedback loop but is matched by the actuated term
ψ(L, 0, t). These two observations motivate the choice of a
target system as

zt(x, t) =− c1zx(x, t) + c1c2z(x, t)− c3ec2xβ(x, 0, t)

− kc3
c6

ec2xv(x, t), (32)

vt(x, t) =c4vx(x, t)− c6β(x, 0, t)− kv(x, t), (33)
z(0, t) =− c7v(0, t), (34)
vt(L, t) =− kv(L, t)− c6β(L, 0, t), (35)

βt(x, s, t) =βs(x, s, t), (36)
β(x,D, t) =0, (37)

where k > 0 is a free parameter which can be used to set the
desired rate of stability.

Remark 2. The dynamic equation (27) and (35) on the
boundary are not standard boundary conditions, which implies
that the hyperbolic PDE (24)-(29) and (32)–(37) are both
preceded by an ODE whose state is v(L, t). Introducing an
additional one-dimensional state X(t) ∈ R and Y (t) ∈ R for
(27) and (35), respectively, one can rewrite (27) as:

Ẋ =− c5e−c2Lz(L, t)− c6ψ(L, 0, t), (38)
v(L, t) =X(t). (39)

and (35) as:

Ẏ =− kY (L, t)− c6β(L, 0, t), (40)
v(L, t) =Y (t). (41)

Since the additional ODEs are relatively simple, we directly
use the boundary values v(L, t) and vt(L, t) in the following
computation for notational brevity. Introduce the following
transformation

β(x, s, t) = ψ(x, s, t) +

∫ L

0

γ(x, s, y)z(y, t)dy

+

∫ L

0

η(x, s, y)v(y, t)dy + r(x, s)v(L, t)

+

∫ L

0

∫ s

0

G(x, s, y, r)ψ(y, r, t)drdy, (42)

where γ(·, ·, ·), η(·, ·, ·), G(x, s, y, r) and r(·, ·) are kernel
functions defined on T1 = {[0, L] × [0, D] × [0, L]}, T2 =
{(x, s, y, r)|[0, L]× [0, D]× [0, L]× [0, s]} and T3 = {[0, L]×
[0, D]}, respectively. Mapping original system (24)–(30) to
target system (32)–(37) by transformation (42), one can get
the following equations of r:

rs(x, s) =c4η(x, s, L), (43)
r(x, 0) =0, (44)

which gives

r(x, s) =

∫ s

0

c4η(x, θ, L)dθ, (45)

and equations of γ and η, respectively:

γs(x, s, y)− c1γy(x, s, y) =− c5e−c2yη(x, s, y), (46)
ηs(x, s, y) + c4ηy(x, s, y) = 0, (47)

γ(x, s, L) =− c5
c1

e−c2Lr(x, s), (48)

γ(x, 0, y) =− c5
c6

e−c2xδ(x− y), (49)

η(x, s, 0) =− c1c7
c4

γ(x, s, 0), (50)

η(x, 0, y) =
k

c6
δ(x− y). (51)

Under Assumption 1, we solve kernel γ(·, ·, ·) and η(·, ·, ·)

Fig. 3: The regions of kernel γ(x, s, y).

by using the characteristic line method and the successive
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approximations method (more details please see Appendix A)
and get:

γ(x, s, y) = γ1(x, s, y) + γ2(x, s, y), (52a)

if 0 ≤ y ≤ c4(s− x

c1
);

γ(x, s, y) = γ2(x, s, y), (52b)
if x+ c4s < y ≤ L− c1s or 0 ≤ y ≤ x− c1s;

γ(x, s, y) = γ3(x, s, y), (52c)

if L− c1s < y ≤ min{x+ c4s,
c1 + c4
c4

L− c1
c4
x− c1s};

γ(x, s, y) = γ2(x, s, y) + γ3(x, s, y), (52d)

if max{c4(s− x

c1
), x− c1s} < y

≤ min{x+ c4s, L− c1s};
γ(x, s, y) = γ4(x, s, y), (52e)

if
c1 + c4
c4

L− c1
c4
x− c1s ≤ y ≤ L;

γ(x, s, y) = 0, otherwise; (52f)

with

γ1(x, s, y) = −c5(k + c5c7)

c6(c1 + c4)
e−c2(x+y), (53)

γ2(x, s, y) = −c5
c6

e−c2xδ(x− y − c1s), (54)

γ3(x, s, y) = − kc5
c6(c1 + c4)

e−
c1c2
c1+c4

x− c2c4
c1+c4

(y+c1s), (55)

γ4(x, s, y) = − kc5
c1c6

e−c2L. (56)

Fig. 3 shows all the regions that kernel γ(·, s, ·) takes differ-
ent value under a given s, in which the red line (y = x− c1s)
displays where the pulse appears, γ2 6= 0. The kernel function
γ(x, s, y) with s = 4 under parameters L = 100, c1 = 3.1048,
c2 = 0.0287, c3 = 0.0023, c4 = 3.5981, c5 = 5.5671,
c6 = 0.1438, c7 = 0.0186, k = 0.1, is shown in Fig. 4,
where we truncate unlimited pulse of Dirac Delta function for
clear displaying the kernel function. Similarly, we get

η(x, s, y) = η1(x, s, y) + η2(x, s, y), (57a)

if 0 ≤ y ≤ c4s−
c4
c1
x;

η(x, s, y) = η2(x, s, y), (57b)

if max{c4s−
c4
c1
x, 0} < y ≤ c4s;

η(x, s, y) = η3(x, s, y), (57c)
if c4s < y ≤ L;

η(x, s, y) = 0, otherwise; (57d)

with

η1(x, s, y) =
c1c5c7(k + c5c7)

c4c6(c1 + c4)
e−c2x, (58)

η2(x, s, y) =
c1c5c7
c4c6

e−c2xδ(x− c1s+
c1
c4
y), (59)

η3(x, s, y) =
k

c6
δ(x− y + c4s). (60)

(a)

(b)

(c)

Fig. 4: (a) The kernel function γ(x, s, y) with s = 4 and in
domain (x, y) ∈ ([0, 100]× [0, 100]), (b) the partially zoomed
(a) in domain (x, y) ∈ ([0, 50]× [0, 50]); and (c) the partially
zoomed (a) in domain (x, y) ∈ ([50, 100]× [50, 100]).

The equation of G(·, ·, ·, ·) depends on kernel γ(·, ·, ·) and
η(·, ·, ·) as follows:

Gs(x, s, y, r) =−Gr(x, s, y, r) = 0, (61)

G(x, s, y, 0) =− c3e−c2yγ(x, s, y)− c6η(x, s, y)

− c6δ(L− y)r(x, s), (62)

which is solved

G(x, s, y, r) =− c3e−c2yγ(x, s− r, y)− c6η(x, s− r, y)

− c6δ(L− y)r(x, s− r). (63)

Substitute the kernel functions (52), (57), (45) and (63) into
the transformation (42), which gives an explicit backstepping
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transformation as follows:

β(x, s, t) =



T1[ψ(t)](x, s) + Z1[z(t)](x, s)

+ Y1[v(t)](x, s), if 0 ≤ x ≤ c1s,

T2[ψ(t)](x, s) + Z2[z(t)](x, s)

+ Y2[v(t)](x, s), if c1s < x ≤ L− c4s,

T3[ψ(t)](x, s) + Z3[z(t)](x, s)

− k
c6
v(L, t), if L− c4s < x ≤ L,

(64)

where the operators on state ψ(·, ·, t) are

T1[ψ(t)](x, s) = ψ(x, s, t)

−
∫ x

c1

0

c1c2e−c1c2τψ(x− c1τ, s− τ, t)dτ

+

∫ s

x
c1

c5c7e−c2xψ(c4(τ − x

c1
), s− τ, t)dτ

−
∫ s

0

∫ x+c4τ

max{x−c1τ,c4(τ− x
c1

)}
g(x, y, τ)ψ(y, s− τ, t)dydτ,

+

∫ s

0

kψ(x+ c4τ, s− τ, t)dτ (65)

T2[ψ(t)](x, s) = ψ(x, s, t)

−
∫ s

0

c1c2e−c1c2τψ(x− c1τ, s− τ, t)dτ

+

∫ s

0

kψ(x+ c4τ, s− τ, t)dτ

−
∫ s

0

∫ x+c4τ

x−c1τ
g(x, y, τ)ψ(y, s− τ, t)dydτ, (66)

T3[ψ(t)](x, s) = ψ(x, s, t)

−
∫ s

0

c1c2e−c1c2τψ(x− c1τ, s− τ, t)rτ

+

∫ L−x
c4

0

kψ(x+ c4τ, s− τ, t)dτ

+

∫ s

L−x
c4

kψ(L, s− τ, t)dτ

−
∫ s

0

∫ min{x+c4τ,c(τ)}

x−c1τ
g(x, y, τ)ψ(y, s− τ, t)dydτ

−
∫ s

L−x
c4

∫ L

c(τ)

kc2e−c2Lψ(y, s− τ, t)dydτ, (67)

with

g(x, y, τ) =
kc1c2
c1 + c4

e−
c1c2
c1+c4

(x−y+c4τ), (68)

c(τ) =
c1 + c4
c4

L− c1
c4
x− c1τ. (69)

The operators on state z(·, t) are

Z1[z(t)](x, s) =

∫ c4(s− x
c1

)

0

c5(k + c5c7)

c6(c1 + c4)
e−c2(x+y)z(y, t)dy

+

∫ x+c4s

c4(s− x
c1

)

k(x, s)z(y, t)dy, (70)

Z2[z(t)](x, s) =
c5
c6

e−c2xz(x− c1s, t)

+

∫ x+c4s

x−c1s
k(x, s)z(y, t)dy, (71)

Z3[z(t)](x, s) =
c5
c6

e−c2xz(x− c1s, t) (72)

+

∫ L

c(s)

kc5
c1c6

e−c2Lz(y, t)dy +

∫ c(s)

x−c1s
k(x, s)z(y, t)dy

with k(x, s) = kc5
c6(c1+c4)e−

c1c2
c1+c4

x− c2c4(y+c1s)
c1+c4 . The operators

on state v(·, t) are

Y1[v(t)](x, s) = −c5c7
c6

e−c2xv(c4(s− x

c1
), t)

− k

c6
v(x+ c4s, t)

−
∫ c4(s− x

c1
)

0

c1c5c7(k + c5c7)

c4c6(c1 + c4)
e−c2xv(y, t)dy, (73)

Y2[v(t)](x, s) = − k
c6
v(x+ c4s, t). (74)

Lemma 1. If Assumption 1 holds, the transformation (64) is
bounded and continuous in x ∈ [0, L], which transforms the
original system (24)-(29) into the target system (32)-(37).

The proof of Lemma 1 is given in Appendix B.

Remark 3. The transformation of the plant (24)-(29) to the
target system (32)-(37) clearly has to be a 2D backstepping
transformation due to the 2D nature of the ψ-system and the
β-system. But it is not just the dimensionality that shall make
this 2D backstepping transformation complex. The reason for
its complexity is that the 1D PDE dynamics of (z, v) evolve
perpendicular to the direction of the 2D transport dynamics of
ψ through which backstepping is performed. The transverse
nature of the (z, v)-transport relative to the β-transport, in
both the downstream and upstream direction, will make the
backstepping transformation ψ 7→ β very complex.

B. Delay-compensated control

The control is obtained by substituting s = D into transfor-
mation (64), applying the boundary conditions (29) and (37),
and using the relation (31), we have if t > D,

u(x, t) =U1[u](x, t)− Z1[z(t)](x,D)

− Y1[v(t)](x,D), (75a)
if 0 ≤ x ≤ c1D,

u(x, t) =U2[u](x, t)− Z2[z(t)](x,D)

− Y2[v(t)](x,D), (75b)
if c1D < x ≤ L− c4D,

u(x, t) =U3[u](x, t)− Z3[z(t)](x,DL, τ)dτ

− k

c6
v(L, t), (75c)

if L− c4D < x ≤ L,
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where

U1[u](x, t) =

∫ t

t− x
c1

c1c2e−c1c2(t−τ)u(x− c1(t− τ), τ)dτ

−
∫ t− x

c1

t−D
c5c7e−c2xu(c4(t− τ − x

c1
), τ)dτ

−
∫ t

t−D
ku(x+ c4(t− τ), τ)dτ

+

∫ t

t−D

∫ x+c4(t−τ)

max{x−c1(t−τ),c4(t−τ− x
c1

)}

kc1c2
c1 + c4

× e−
c1c2
c1+c4

(x−y+c4(t−τ))u(y, τ)dydτ, (76)

U2[u](x, t) =

∫ t

t−D
c1c2e−c1c2(t−τ)u(x− c1(t− τ), τ)dτ

−
∫ t

t−D
ku(x+ c4(t− τ), τ)dτ

+

∫ t

t−D

∫ x+c4(t−τ)

x−c1(t−τ)

kc1c2
c1 + c4

e−
c1c2
c1+c4

(x−y+c4(t−τ))

× u(y, τ)dydτ, (77)

U3[u](x, t) =

∫ t

t−D
c1c2e−c1c2(t−τ)u(x− c1(t− τ), τ)dτ

−
∫ t

t−L−x
c4

ku(x+ c4(t− τ), τ)dτ

+

∫ t

t−D

∫ min{x+c4(t−τ),
c1+c4
c4

L− c1c4 x−c1(t−τ)}

x−c1(t−τ)

kc1c2
c1 + c4

× e−
c1c2
c1+c4

(x−y+c4(t−τ))u(y, τ)dydτ

+

∫ t−L−x
c4

t−D

∫ L

c1+c4
c4

L− c1c4 x−c1(t−τ)

kc2e−c2Lu(y, τ)dydτ.

(78)

It is because of the aforementioned transverse motion of the
(z, v)-transport relative to the ψ-transport that the control law
in (75) is given in three distinct forms: from the inlet to c1D,
from L− c4D to the outlet, and in between. The control (75)
is for the linearized and diagonalized system (24)-(29), and
the control law for system (1)-(4) around the equilibrium (11)
is also required, so we rewrite it as follows: in the case of
t > D,

h̆acc(x, t) = h̄acc + U1[h̆acc − h̄acc]− e
c2
c1
xZ1[ρ̆− ρ̄](x,D)

− h̄mixρ̄
2Z1[v̆ − v̄](x,D)− Y1[v̆ − v̄](x,D), (79a)

if 0 ≤ x ≤ c1D,

h̆acc(x, t) = h̄acc + U2[h̆acc − h̄acc]− e
c2
c1
xZ2[ρ̆− ρ̄](x,D)

− h̄mixρ̄
2Z2[v̆ − v̄](x,D)− Y2[v̆ − v̄](x,D), (79b)

if c1D < x ≤ L− c4D,

h̆acc(x, t) = h̄acc + U3[h̆acc − h̄acc]− e
c2
c1
xZ3[ρ̆− ρ̄](x,D)

− h̄mixρ̄
2Z3[v̆ − v̄](x,D)− k

c6
(v̆(L, t)− v̄)

−
∫ t−L−x

c4

t−D
k(h̆acc(L, τ)− h̄acc)dτ, (79c)

if L− c4D < x ≤ L,

Since the transformation (64) is continuous in x, both the
control (75) for the linearized error system (24)-(29) and
the control (79) for the original system (1)-(4) around the
equilibrium (11) are continuous in x. The control (79) is
composed of the feedback of the states and the historical
actuator state, which is divided into three parts upon the spatial
variable x. It implies the ACC vehicles at different position of
the highway will apply different time gap strategies. Due to the
length of the concerned highway stretch L being far greater
than other parameters (Assumption 1), one can find that the
first and the last sections are much shorter than the second
section. Hence, most ACC vehicles on the highway adopt the
second part of control law when they enter the middle interval
c1D < x ≤ L−c4D. In order to control the traffic flow in the
interval near the exit of the highway, the feedback of the flow
speed v̆(L, t) at the exit is also required due to the dynamic
boundary condition.

IV. STABILITY ANALYSIS

In this section, we analyze the stability of the closed-loop
system. First, we state the main result concerning exponen-
tially stability.

Theorem 1. Consider the closed-loop system consisting of
plant (24) -(30) with control law (75), if the initial conditions
z(·, 0) ∈ H1[0, L], v(·, 0) ∈ H1[0, L], and ψ(·, ·, 0)) ∈
L2(0, L) × H1[0, D] are compatible, then the equilibrium
(z(·, ·), v(·, ·), ψ(·, ·, ·)) ≡ 0 is exponentially stable in the L2

sense, i.e., there exist positive constants ϑ and M such that
the following holds for all t > 0,

‖z‖2L2
+‖v‖2L2

+ |v(L, t)|2+‖ψ‖2L2
+‖ψ(L, ·, t)‖2L2

≤Me−ϑt
(
‖z(·, 0)‖2L2

+ |v(·, 0)|2+‖v(L, 0)‖2L2

+‖ψ(·, ·, 0)‖2L2
+‖ψ(L, ·, 0)‖2L2

)
. (80)

The proof of the theorem consists of two steps. The first
step is to prove the exponential stability of the target system
in L2 sense, and the second step is to prove the transformation
is invertible by obtaining the explicit inverse transformation,
which will establish the norm equivalence between the original
system and the target system.

A. The stability of the target system

Before proceeding, we first define two Lyapunov functions
for the original system (24)-(29) and the target system (32)-
(37), respectively

V1(t) =‖z‖2L2
+‖v‖2L2

+ |v(L, t)|2+‖ψ‖2L2
+‖ψ(L, ·, t)‖2L2

,
(81)

V2(t) =‖z‖2L2
+‖v‖2L2

+ |v(L, t)|2+‖β‖2L2
+‖β(L, ·, t)‖2L2

.
(82)

Lemma 2. Consider system (32)-(37). If the initial conditions
z(·, 0) ∈ H1[0, L], v(·, 0) ∈ H1[0, L], and β(·, ·, 0)) ∈
L2(0, L) × H1[0, D] are compatibles, then the equilibrium
(z(·, ·), v(·, ·), β(·, ·, ·)) ≡ 0 of (32)-(37) is exponentially
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stable in the L2 sense, i.e., there exist positive constants θ
and N such that the following holds for all t > 0,

‖z‖2L2
+‖v‖2L2

+ |v(L, t)|2+‖β‖2L2
+‖β(L, ·, t)‖2L2

≤Me−θt(‖z(·, 0)‖2L2
+‖v(·, 0)‖2L2

+ |v(L, 0)|2

+‖β(·, ·, 0)‖2L2
+‖β(L, ·, 0)‖2L2

). (83)

Proof. First, define a Lyapunov function for target system
(32)-(37)

V0(t) =

∫ L

0

e−σxz2(x, t)dx+ k2

∫ L

0

eσxv2(x, t)dx

+ k3v
2(L, t) + k4

∫ L

0

∫ D

0

eσ(s+x)β2(x, s, t)dsdx

+ k5

∫ D

0

eσsβ2(L, s, t)ds, (84)

where ki, σ > 0, i = 2, 3, 4, 5, whose ranges will be
determined later.

Differentiating (84) with respect to time, we get

V̇0(t) = I(t) + II(t) + III(t), (85)

where

I(t) =− 2

∫ L

0

c1e−σxz(x, t)zx(x, t)dx

2

∫ L

0

c1c2e−σxz2(x, t)dx

− 2

∫ L

0

c3e(c2−σ)xz(x, t)β(x, 0, t)dx

− 2

∫ L

0

kc3
c6

e(c2−σ)xz(x, t)v(x, t)dx, (86)

II(t) =2k2

∫ L

0

c4e
σxv(x, t)vx(x, t)dx

− 2k2

∫ L

0

keσxv2(x, t)dx

− 2k2

∫ L

0

c6eσxv(x, t)β(x, 0, t)dx

− k3c6v(L, t)β(L, 0, t)− 2k3kv
2(L, t), (87)

III(t) =− k4σ

∫ L

0

∫ D

0

eσ(x+s)β2(x, s, t)dx

− k4

∫ L

0

eσxβ2(x, 0, t)dx

− k5σ

∫ D

0

eσsβ2(L, s, t)ds− k5β
2(L, 0, t). (88)

By using Cauchy-Schwarz Inequality, Young’s Inequality and
letting E = supx∈[0,L]{ec2x}, we get

I(t) ≤ 2Ekc3
c6

∫ L

0

eσxv2dx+ c1c
2
7v

2(0, t)

−
(
c1σ − 2c1c2 −

Ec3
2
− Ekc3

2c6

)∫ L

0

e−σxz2dx

+ 2Ec3

∫ L

0

eσxβ2(x, 0, t)dx, (89)

II(t) ≤ −k2(c4σ −
c6
2

+ 2k)

∫ L

0

eσxv2dx− k2c4v
2(0, t)

+ 2k2c6

∫ L

0

eσxβ2(x, 0, t)dx+
p

2
k3c6β

2(L, 0, t)

− (2k3k −
k3c6
2p
− k2c4eσL)v2(L, t), (90)

where
∫ L

0
e−σxβ2(x, 0, t)dx ≤

∫ L
0

eσxβ2(x, 0, t)dx is used
for getting (89) and p > 0 is a free parameter of Young’s
Inequality. Thus, we get

V̇0(t) ≤ −
[
k2(c4σ −

c6
2

+ 2k)− 2Ekc3
c6

] ∫ L

0

eσxv2dx

−
(
c1σ − 2c1c2 −

Ec3
2
− Ekc3

2c6

)∫ L

0

e−σxz2dx

− k4σ

∫ L

0

∫ D

0

eσ(x+s)β2(x, s, t)dx

−
(

2k3k −
k3c6
2p
− k2c4eσL

)
v2(L, t)

− (k4 − 2Ec3 − 2k2c6)

∫ L

0

β2(x, 0, t)

− (k2c4 − c1c27)v2(0, t)− k5σ

∫ D

0

eσsβ2(L, s, t)ds

− (k5 −
p

2
k3c6)β2(L, 0, t). (91)

Choose the parameters as:

σ > 2c2 + Ec3
2c1

+ Ekc3
2c1c6

,

p > c6
4k ,

k2 > max{ 2Ekc3
c6(c4σ− c62 +2k)

,
c1c

2
7

c4
},

k3 > k2c4eσL

2k− c62p

,

k4 > 2Ec3 + 2k2c6,

k5 > 2k3c6
p ,

(92)

such that

V̇0(t) ≤ −
[
k2(c4σ −

c6
2

+ 2k)− 2Ekc3
c6

] ∫ L

0

eσxv2dx

−
(
c1σ − 2c1c2 −

Ec3
2
− Ekc3

2c6

)∫ L

0

e−σxz2dx

− k4σ

∫ L

0

∫ D

0

eσ(x+s)β2(x, s, t)dx

−
[
k3(2k − c6

2p
)− k2c4eσL

]
v2(L, t)

− k5σ

∫ D

0

eσsβ2(L, s, t)ds ≤ −ϑV (t),

where

ϑ = min{k2(c4σ −
c6
2

+ 2k)− 2Ekc3
c6

,

k4σ, (c1σ − 2c1c2 −
Ec3

2
− Ekc3

2c6
),

k3(2k − c6
2

)− k2c4eσL, k5σ}.
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Therefore, we get

V0(t) ≤V0(0)e−ϑt. (93)

It is obvious that V0(t) defined by (84) is equivalent to V2

defined by (82), i.e., there exist positive constants %1 and %2,
such that %1V2 ≤ V0 ≤ %2V2. Hence, (83) is proved.

B. The inverse transformation

Lemma 3. The transformation (64) is invertible, and whose
inverse transformation is

ψ(x, s, t) =Q1[β(t)](x, s) +R1[v(t)](x, s), (94a)
0 ≤ x < c1s;

ψ(x, s, t) =Q2[β(t)](x, s) +R2[v(t)](x, s)

+ B[z(t)](x, s), (94b)
c1s < x ≤ L− c4s;

ψ(x, s, t) =Q3[β(t)](x, s) +R3[v(t)](x, s)

+ B[z(t)](x, s), (94c)
L− c4s < x ≤ L;

where

Q1[β(t)](x, s) = β(x, s, t)

−
∫ s

x
c1

∫ x+c4τ

c4(τ− x
c1

)

kc1c2
c1 + c4

e
k(x−y−c1τ)

c1+c4 β(y, s− τ, t)dydτ

−
∫ x

c1

0

∫ x+c4τ

x−c1τ

kc1c2
c1 + c4

e
k(x−y−c1τ)

c1+c4 β(y, s− τ, t)dydτ

−
∫ s

x
c1

c2c4ek( xc1
−τ)β(c4(τ − x

c1
), s− τ, t)dτ

+

∫ x
c1

0

c1c2β(x− c1τ, s− τ, t)dτ

−
∫ s

0

ke−kτβ(x+ c4τ, s− τ, t)dτ, (95)

Q2[β(t)](x, s) = β(x, s, t)

−
∫ s

0

∫ x+c4τ

x−c1τ

kc1c2
c1 + c4

e
k(x−y−c1τ)

c1+c4 β(y, s− τ, t)dydτ

+

∫ s

0

c1c2β(x− c1τ, s− τ, t)dτ

−
∫ s

0

ke−kτβ(x+ c4τ, s− τ, t)dτ, (96)

Q3[β(t)](x, s) = β(x, s, t)

−
∫ s

0

∫ min{L,x+c4τ}

x−c1τ

kc1c2
c1 + c4

e
k(x−y−c1τ)

c1+c4

× β(y, s− τ, t)dydτ

+

∫ s

0

c1c2β(x− c1τ, s− τ, t)dτ

−
∫ s

L−x
c4

(c1c2e
k(x−L−c1τ)

c1+c4 − c1c2e−kτ + ke−kτ )

× β(L, s− τ, t)dτ

−
∫ L−x

c4

0

ke−kτβ(x+ c4τ, s− τ, t)dτ, (97)

R1[v(t)](x, s) =
c2c4
c6

ek( xc1
−s)v(c4(s− x

c1
), t)

+
k

c6
e−ksv(x+ c4s, t)

+

∫ x+c4s

c4(s− x
c1

)

kc1c2
c6(c1 + c4)

e
k(x−y−c1s)

c1+c4 v(y, t)dy, (98)

R2[v(t)](x, s) =
k

c6
e−ksv(x+ c4s, t)

+

∫ x+c4s

x−c1s

kc1c2
c6(c1 + c4)

e
k(x−y−c1s)

c1+c4 v(y, t)dy, (99)

R3[v(t)](x, s) =

∫ L

x−c1s

kc1c2
c6(c1 + c4)

e
k(x−y−c1s)

c1+c4 v(y, t)dy

+

(
c1c2
c6

(e
k(x−L−c1s)

c1+c4 − e−ks) +
k

c6
e−ks

)
v(L, t), (100)

B[z(t)](x, s) = −c5
c6

ec2(c1s−x)z(x− c1s, t). (101)

The inverse transformation is bounded and continuous in x ∈
[0, L].

The proof of Lemma 3 is similar to the proof of Lemma 1,
so we will omit the proof due to limited space.

Lemma 4. The Lyapunov functions V1 defined in (81) and
V2 defined in (82) are equivalent in the sense of the L2 norm,
i.e., there exist positive constants α1 and α2 , such that

α1V2(t) ≤ V1(t) ≤ α2V2(t). (102)

Since the transformation (64) and the inverse transformation
(94) are presented in explicit form and they are bounded, the
L2 norm equivalence between the Lyapunov functions V1 and
V2 is easily established from Theorem 1.2 [1]. Combining
Lemma 2-4, we reach Theorem 1.

V. SIMULATION

In this section, we illustrate our results with an numerical
example. We apply the control law (79) directly on the non-
linear model (1)-(4). The parameters utilized in the simulation
are shown in Table I, for which we choose the same values
as those in [4].

TABLE I: PARAMETERS OF SYSTEM

L = 1000 m l = 5 m qin = 1200 veh/h

τacc = 2 s τm = 60 s h̆m = 1 s
h̄acc = 1.5 s ρ̆min = 37veh/km

From (12), we get the value of the mixed steady-state
time gap h̄mix = 1.35 s. The steady-state values for density
and speed derived from (11) are ρ̄ = 107.36 veh/km, v̄ =
11.18 km/h. The system is discretized with time step ∆t =
0.5 s and spatial step ∆x = 5 m. The initial conditions are
chosen as ρ̆(x, 0) = 10 cos(8πx/L) and v̆(x, 0) = qin/ρ̆(x, 0),
which imitates the stop-and-go wave in congested regime.
Considering the time delay D = 4 s and the coefficient
k = 0.1(1/s) of the target system, we first investigate the
numerical solution of the nonlinear system (1)-(4) with the
non-delay-compensation state-feedback control proposed in
[4], whose results are shown in Fig. 5 (a)-(c). It is evident
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5: The evolution of the traffic states and the actuator: (a) ρ̆(x, t) without delay-compensation; (b) v̆(x, t) without delay-
compensation; (c) control effort h̆acc(x, t) with no delay-compensation; (d) ρ̆(x, t) with delay-compensator; (e) state v̆(x, t)
with delay-compensator; (f) control effort h̆acc(x, t) with delay-compensator; (g) the L2 norm of state ρ̆(x, t) for delay matched
and delay mismatched cases; (h) the L2 norm of state v̆(x, t) for delay matched and delay mismatched cases; (i) the L2 norm
of control h̆acc(x, t) for delay matched and delay mismatched cases.

that the response of the system without delay-compensation
exhibits an unstable and oscillatory behavior and the stop-
and-go wave propagates backward without being attenuated.
In contrast, as it is shown in Fig. 5 (d) and (e), the traffic
system (1)-(4) is stabilized under the delay-compensator and
the oscillations in the speed response are suppressed first
and then the oscillations in density response converges to the
equilibrium as well. The control effort (79) is shown in Fig.
5 (f), which indicates the resulting values for the time gap
of ACC vehicles lie within the interval [0.8, 2.2] s which is
typically implemented in ACC vehicles settings, see, e.g., [21].
In order to illustrate the converging evolution of the states and
the actuator more clearly, we plot the states and the control
effort in L2 norm in solid line, respectively, shown in Fig. 5
(g)-(i), where the dashed line represents the steady-state value.

To examine the robustness of the proposed delay-
compensated control law, we conducted some additional sim-

ulations with mismatched delays. First, we consider the over-
compensation case where the actual delay is less than the delay
used in control. The numerical result is shown in Fig. 5 (g)-(i)
in dotted line when the actual delay is 3s, while the delay used
in control is 4s. Then, we consider the under-compensation
case where the actual delay is larger than the delay used in
control. The numerical result is also shown in Fig. 5 (g)-(i),
where the dash-dotted line represents L2 norm of the states ρ̆,
v̆ and the control effort, respectively, when the actual delay is
5s, while the delay used in control is 4s. From the simulation
results, we find the closed-loop system remains stable in delay
mismatched conditions. The performance improvement of the
closed-loop system under the proposed controller (79) is also
illustrated in simulation by employing three metrics, namely,
total travel time (TTT), fuel consumption and comfort, where
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we use the same definition as in [30]:

JTTT =

∫ T

0

∫ L

0

ρ(x, t)dxdt, (103)

Jfuel =

∫ T

0

∫ L

0

ξ(x, t) · ρ(x, t)dxdt, (104)

Jcomfort =

∫ T

0

∫ L

0

(
a(x, t)2 + at(x, t)

2
)
ρ(x, t)dxdt, (105)

where we also select the same functions and
parameters as those in [30]: a(x, t) = vt(x, t) +
v(x, t)vx(x, t), b0 = 25 · 10−3, b1 = 24.5 · 10−6,
b3 = 32.5 · 10−9, b4 = 125 · 10−6, ξ(x, t) =
max {0, b0 + b1v(x, t) + b3v(x, t) + b4v(x, t)a(x, t)} and
T = 300 s.

TABLE II: PERFORMANCE INDICES

Performance indices Percentage with improvement
JTTT 3.91%
Jfuel 3.76%
Jcomfort 92.1%

As shown in the Table II, three indicators are improved
compared to the open-loop system. Since the open-loop system
is unstable, we only consider the first 300 seconds in the
simulation. In particular, the driving comfort is significantly
improved due to the homogenization of speed which alleviates
the phenomenon of stop-and-go oscillation.

VI. CONCLUSION

In this paper, we present a control design methodology
for compensation of unstable traffic flow with input delay.
The delay is resulting from the time required for the trans-
mission of the control command from the control to the
ACC vehicles. Applying the PDE backstepping method, we
develop an explicit feedback delay-compensator, composed of
the feedback of the traffic speed, the traffic density and the
historical actuator states, which is divided into three parts
upon the spatial domain along the highway. The closed-loop
system, under the developed compensator, was shown to be
exponentially stable in the L2 sense. Although the control
design is based on a linearized system, the numerical sim-
ulation shows the effectiveness of the proposed controller on
the original nonlinear system. Further research would include
delay-robustness and the output feedback control based on
observer design.

APPENDIX A
SOLVING KERNEL EQUATIONS

Under Assumption 1, we get the integral equations from
(46)–(51) by using the characteristic line method,

γ(x, s, y) =− c5
c6

e−c2xδ(x− y − c1s)

−
∫ y+c1s

y

c5
c1

e−c2θη(x,
y − θ
c1

+ s, θ)dθ, (106)

if y ≤ L− c1s,

γ(x, s, y) =−
∫ s−L−y

c1

0

c4c5
c1

e−c2Lη(x, θ, L)dθ

−
∫ L

y

c5
c1

e−c2θη(x,
y − θ
c1

+ s, θ)dθ, (107)

if y > L− c1s,

η(x, s, y) =− c1c7
c4

γ(x, s− y

c4
, 0), (108)

if y ≤ c4s,

η(x, s, y) =
k

c6
δ(x− (y − c4s)), (109)

if y > c4s.

Substitute (108) and (109) into (106) and (107), which gives
three-branch expression of γ(x, s, y)

γ(x, s, y) =−
∫ y+c1s

0

kc5
c6(c1 + c4)

e−
c1c2
c1+c4

θ− c2c4
c1+c4

(y+c1s)

× δ(x− θ)dθ

+

∫ s− y
c4

0

c1c5c7
c1 + c4

e
c2c4
c1+c4

(c1θ−y−c1s)γ(x, θ, 0)dθ

− c5
c6

e−c2xδ(x− y − c1s), (110)

if 0 ≤ y ≤ c4s,

γ(x, s, y) =−
∫ y+c1s

y−c4s

kc5
c6(c1 + c4)

e−
c1c2
c1+c4

θ− c2c4
c1+c4

(y+c1s)

× δ(x− θ)dθ

− c5
c6

e−c2xδ(x− y − c1s), (111)

if c4s < y ≤ L− c1s,

γ(x, s, y) =−
∫ c1+c4

c1
L− c4c1 y−c4s

y−c4s

kc5
c6(c1 + c4)

× e−
c1c2
c1+c4

θ− c2c4
c1+c4

(y+c1s)δ(x− θ)dθ

− kc5
c1c6

e−c2L, (112)

if L− c1s < y ≤ L.
We use successive approximations method for (110) and get
the following iterations:

γn+1(x, s, y) = − kc5
c6(c1 + c4)

e−
c1c2
c1+c4

x− c2c4
c1+c4

(y+c1s)

− c5
c6

e−c2xδ(x− y − c1s)

+

∫ s− y
c4

0

c1c5c7
c1 + c4

e
c2c4
c1+c4

(c1θ−y−c1s)γn(x, θ, 0)dθ,

if 0 ≤ x ≤ y + c1s, for n = 0, 1, 2, ... (113)

Let

∆γn(x, s, y) =γn+1(x, s, y)− γn(x, s, y), (114)

then,

∆γ0(x, s, y) =− kc5
c6(c1 + c4)

e−
c1c2
c1+c4

x− c2c4
c1+c4

(y+c1s)

− c5
c6

e−c2xδ(x− y − c1s), (115)

∆γn(x, s, y) =

∫ s− y
c4

x
c1

c1c5c7
c1 + c4

e
c2c4
c1+c4

(c1θ−y−c1s)

×∆γn−1(x, θ, 0)dθ, (116)



12

After a series of iterations of γn, we have

∆γn = −c5
c6

e−
c1c2
c1+c4

x− c2c4
c1+c4

(y+c1s)×[
c5c7(c1c5c7(s− y

c4
− x

c1
))n−1

(n− 1)!(c1 + c4)n
−
k(c1c5c7(s− y

c4
− x

c1
))n

n!(c1 + c4)n+1

]
if 0 ≤ y ≤ c4s−

c4
c1
x, (117)

then,

γ(x, s, y) =

+∞∑
n=1

∆γn(x, s, y) + ∆γ0(x, s, y)

=− c5(k + c5c7)

c6(c1 + c4)
e−c2(x+y) − c5

c6
e−c2xδ(x− y − c1s),

if 0 ≤ y ≤ c4s−
c4
c1
x. (118)

After a direct computing from (111) and (112), we reach (52).

APPENDIX B
THE PROOF OF LEMMA 1

First, we prove that the transformation is continuous. Sub-
stitute x = c1s into the first and the second case of the
transformation (64), which gives

T1[ψ(t)](c1s, s) + Z1[z(t)](c1s) + Y1[v(t)](c1s)

=ψ(c1s, s, t)

−
∫ s

0

c1c2e−c1c2τψ(c1s− c1τ, s− τ, t)dτ

+

∫ s

0

kψ(c1s+ c4τ, s− τ, t)dτ

−
∫ s

0

∫ c1s+c4τ

c1s−c1τ

kc1c2
c1 + c4

e−
c1c2
c1+c4

(c1s−y+c4τ)

× ψ(y, s− τ, t)dydτ

+

∫ c1s+c4s

0

kc5
c6(c1 + c4)

e−c1c2s−
c2c4
c1+c4

yz(y, t)dy

− c5c7
c6

e−c1c2sv(0, t)− k

c6
v(c1s+ c4s, t), (119)

and

T2[ψ(t)](c1s, s) + Z2[z(t)](c1s) + Y2[v(t)](c1s)

=ψ(c1s, s, t)

−
∫ s

0

c1c2e−c1c2τψ(c1s− c1τ, s− τ, t)dτ

+

∫ s

0

kψ(c1s+ c4τ, s− τ, t)dτ

−
∫ s

0

∫ c1s+c4τ

c1s−c1τ

kc1c2
c1 + c4

e−
c1c2
c1+c4

(c1s−y+c4τ)

× ψ(y, s− τ, t)dydτ

+
c5
c6

e−c1c2sz(0, t)

+

∫ c1s+c4s

0

kc5
c6(c1 + c4)

e−c1c2s−
c2c4
c1+c4

yz(y, t)dy

− k

c6
v(c1s+ c4s, t), (120)

It shows that (119) equals to (120) by using the the boundary
condition (26). In a similar way, one can get

T2[ψ(t)](L− c4s, s) =T3[ψ(t)](L− c4s, s),
Z2[z(t)](L− c4s) =Z3[z(t)](L− c4s),

Y2[v(t)](L− c4s, s) =
k

c6
v(L, t),

which implies the transformation (64) in the second and third
case has a same value at x = L− c4s.

Second, it is obvious that the transformation is bounded
from the explicit form of each kernel function.

Third, differentiating the transformation (64) with respect to
t and s, respectively, and then substituting them into (36) and
(37), one can prove the system (24)-(29) can be transformed
into (32)-(37) via (64) after a lengthy computation. The details
are shown as follows: in the case of 0 ≤ x < c1s,

βs(x, s, t) = ψs(x, s, t)

+
c4c5(k + c5c7)

c6(c1 + c4)
e−c2(c4s+

c1−c4
c1

x)z(c4(s− x

c1
), t)

+
kc4c5

c6(c1 + c4)
e−c2(x+c4s)z(x+ c4s, t)

− kc4c5
c6(c1 + c4)

e
c2(c4−c1)

c1
x−c2c4sz(c4(s− x

c1
), t)

−
∫ x+c4s

c4(s− x
c1

)

kc1c2c4c5
c6(c1 + c4)2

e−
c1c2
c1+c4

x− c2c4
c1+c4

(y+c1s)

× z(y, t)dy

− c4c5c7
c6

e−c2xvx(c4(s− x

c1
), t)

− kc4
c6
vx(x+ c4s, t)

− c1c5c7(k + c5c7)

c6(c1 + c4)
e−c2xv(c4(s− x

c1
), t)

−
∫ x

c1

0

c1c2e−c1c2rψs(x− c1r, s− r, t)dr

+

∫ s

x
c1

c5c7e−c2xψs(c4(r − x

c1
), s− r, t)dr

+ c5c7e−c2xψ(c4(s− x

c1
), 0, t)

+

∫ s

0

kψs(x+ c4r, s− r, t)dr

+ kψ(x+ c4s, 0, t)

−
∫ s

0

∫ x+c4r

max{x−c1r,c4(r− x
c1

)}

kc1c2
c1 + c4

e−
c1c2
c1+c4

(x−y+c4r)

× ψs(y, s− r, t)dydr

−
∫ x+c4s

c4(s− x
c1

)

kc1c2
c1 + c4

e−
c1c2
c1+c4

(x−y+c4s)ψ(y, 0, t)dydr;

(121)

in the case of c1s < x ≤ L− c4s,

βs(x, s, t) = ψs(x, s, t)

− c1c5
c6

e−c2xzx(x− c1s, t)
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+
kc4c5

c6(c1 + c4)
e−c2(x+c4s)z(x+ c4s, t)

+
kc1c5

c6(c1 + c4)
e−c2xz(x− c1s, t)

−
∫ x+c4s

x−c1s

kc1c2c4c5
c6(c1 + c4)2

e−
c1c2
c1+c4

x− c2c4
c1+c4

(y+c1s)z(y, t)dy

− kc4
c6
vx(x+ c4s, t)

−
∫ s

0

c1c2e−c1c2rψs(x− c1r, s− r, t)dr

− c1c2e−c1c2sψ(x− c1s, 0, t)

+

∫ s

0

kψs(x+ c4r, s− r, t)dr

+ kψ(x+ c4s, 0, t)

−
∫ s

0

∫ x+c4r

x−c1r

kc1c2
c1 + c4

e−
c1c2
c1+c4

(x−y+c4r)

× ψs(y, s− r, t)dydr

−
∫ x+c4s

x−c1s

kc1c2
c1 + c4

e−
c1c2
c1+c4

(x−y+c4s)

× ψ(y, 0, t)dy; (122)

and in the case of L− c4s < x ≤ L,

βs(x, s, t) = ψs(x, s, t)

− c1c5
c6

e−c2xzx(x− c1s, t)

− kc1c5
c6(c1 + c4)

e−c2Lz(
c1 + c4
c4

L− c1
c4
x− c1s, t)

+
kc1c5

c6(c1 + c4)
e−c2xz(x− c1s, t)

−
∫ c1+c4

c4
L− c1c4 x−c1s

x−c1s

kc1c2c4c5
c6(c1 + c4)2

× e−
c1c2
c1+c4

x− c2c4
c1+c4

(y+c1s)z(y, t)dy

+
kc5
c6

ec2Lz(
c1 + c4
c4

L− c1
c4
x− c1s, t)

−
∫ s

0

c1c2e−c1c2rψs(x− c1r, s− r, t)dr

− c1c2e−c1c2sψ(x− c1s, 0, t)

+

∫ L−x
c4

0

kψs(x+ c4r, s− r, t)dr

+

∫ s

L−x
c4

kψs(L, s− r, t)dr

+ kψ(L, 0, t)dr

−
∫ s

0

∫ min{x+c4r,
c1+c4
c4

L− c1c4 x−c1r}

x−c1r

kc1c2
c1 + c4

× e−
c1c2
c1+c4

(x−y+c4r)ψs(y, s− r, t)dydr

−
∫ c1+c4

c4
L− c1c4 x−c1s

x−c1s

kc1c2
c1 + c4

× e−
c1c2
c1+c4

(x−y+c4s)ψ(y, 0, t)dy

−
∫ s

L−x
c4

∫ L

c1+c4
c4

L− c1c4 x−c1r
kc2e−c2Lψs(y, s− r, t)dydr

−
∫ L

c1+c4
c4

L− c1c4 x−c1s
kc2e−c2Lψ(y, 0, t)dy. (123)

Then, differentiating (64) with respect of t, substituting (24),
(25), (27) and (28) to the time derivative of (64), and using
integration by parts, we have βt in three cases as follows: in
the case of 0 ≤ x < c1s,

βt(x, s, t) = ψt(x, s, t)

− c1c5(k + c5c7)

c6(c1 + c4)
e−c2(c4s+

c1−c4
c1

x)z(c4(s− x

c1
), t)

+
c1c5(k + c5c7)

c6(c1 + c4)
e−c2xz(0, t)

−
∫ c4(s− x

c1
)

0

c1c2c5(k + c5c7)

c6(c1 + c4)
e−c2(x+y)z(y, t)dy

−
∫ c4(s− x

c1
)

0

c1c2(k + c5c7)

c1 + c4
e−c2xψ(y, 0, t)dy

− kc1c5
c6(c1 + c4)

e−c2(x+c4s)z(x+ c4s, t)

+
kc1c5

c6(c1 + c4)
e
c2(c4−c1)

c1
x−c2c4sz(c4(s− x

c1
), t)

−
∫ x+c4s

c4(s− x
c1

)

kc1c2c4c5
c6(c1 + c4)2

e−
c1c2
c1+c4

x− c2c4
c1+c4

(y+c1s)

× z(y, t)dy

−
∫ x+c4s

c4(s− x
c1

)

kc1c2
c1 + c4

e−
c1c2
c1+c4

(x−y+c4s)

× ψ(y, 0, t)dy

− c4c5c7
c6

e−c2xvx(c4(s− x

c1
), t)

+
c25c7
c6

e−c2(c4s+
c1−c4
c1

x)z(c4(s− x

c1
), t)

+ c5c7e−c2xψ(c4(s− x

c1
), 0, t)

− kc4
c6
vx(x+ c4s, t)

+
kc5
c6

e−c2(x+c4s)z(x+ c4s, t)

+ kψ(x+ c4s, 0, t)

− c1c5c7(k + c5c7)

c6(c1 + c4)
e−c2xv(c4(s− x

c1
), t)

+
c1c5c7(k + c5c7)

c6(c1 + c4)
e−c2xv(0, t)

+

∫ c4(s− x
c1

)

0

c1c2c5(k + c5c7)

c6(c1 + c4)
e−c2(x+y)z(y, t)dy

+

∫ c4(s− x
c1

)

0

c1c5c7(k + c5c7)

c4(c1 + c4)
e−c2xψ(y, 0, t)dy

−
∫ x

c1

0

c1c2e−c1c2rψt(x− c1r, s− r, t)dr

+

∫ s

x
c1

c5c7e−c2xψt(c4(r − x

c1
), s− r, t)dr

+

∫ s

0

kψt(x+ c4r, s− r, t)dr
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−
∫ s

0

∫ x+c4r

max{x−c1r,c4(r− x
c1

)}

kc1c2
c1 + c4

e−
c1c2
c1+c4

(x−y+c4r)

× ψt(y, s− r, t)dydr; (124)

in the case of c1s < x ≤ L− c4s,

βt(x, s, t) = ψt(x, s, t)

− c1c5
c6

e−c2xzx(x− c1s, t)

− c1c2e−c1c2sψ(x− c1s, 0, t)

− kc1c5
c6(c1 + c4)

e−c2(x+c4s)z(x+ c4s, t)

+
kc1c5

c6(c1 + c4)
e−c2xz(x− c1s, t)

−
∫ x+c4s

x−c1s

kc1c2c4c5
c6(c1 + c4)2

e−
c1c2
c1+c4

x− c2c4
c1+c4

(y+c1s)z(y, t)dy

−
∫ x+c4s

x−c1s

kc1c2
c1 + c4

e−
c1c2
c1+c4

(x−y+c4s)

× ψ(y, 0, t)dy

− kc4
c6
vx(x+ c4s, t)

+
kc5
c6

e−c2(x+c4s)z(x+ c4s, t)

+ kψ(x+ c4s, 0, t)

−
∫ s

0

c1c2e−c1c2rψt(x− c1r, s− r, t)dr

+

∫ s

0

kψt(x+ c4r, s− r, t)dr

−
∫ s

0

∫ x+c4r

x−c1r

kc1c2
c1 + c4

e−
c1c2
c1+c4

(x−y+c4r)

× ψt(y, s− r, t)dydr; (125)

in the case of L− c4s < x ≤ L,

βt(x, s, t) = ψt(x, s, t)

− c1c5
c6

e−c2xzx(x− c1s, t)

− c1c2e−c1c2sψ(x− c1s, 0, t)

− kc1c5
c6(c1 + c4)

e−c2Lz(
c1 + c4
c4

L− c1
c4
x− c1s, t)

+
kc1c5

c6(c1 + c4)
e−c2xz(x− c1s, t)

−
∫ c1+c4

c4
L− c1c4 x−c1s

x−c1s

kc1c2c4c5
c6(c1 + c4)2

× e−
c1c2
c1+c4

x− c2c4
c1+c4

(y+c1s)z(y, t)dy

−
∫ c1+c4

c4
L− c1c4 x−c1s

x−c1s

kc1c2
c1 + c4

× e−
c1c2
c1+c4

(x−y+c4s)ψ(y, 0, t)dy

− kc5
c6

ec2Lz(L, t)

+
kc5
c6

ec2Lz(
c1 + c4
c4

L− c1
c4
x− c1s, t)

−
∫ L

c1+c4
c4

L− c1c4 x−c1s
kc2e−c2Lψ(y, 0, t)dy

+
kc5
c6

ec2Lz(L, t)

+ kψ(L, 0, t)dr

−
∫ s

0

c1c2e−c1c2rψt(x− c1r, s− r, t)dr

+

∫ L−x
c4

0

kψt(x+ c4r, s− r, t)dr

+

∫ s

L−x
c4

kψt(L, s− r, t)dr

−
∫ s

0

∫ min{x+c4r,
c1+c4
c4

L− c1c4 x−c1r}

x−c1r

kc1c2
c1 + c4

× e−
c1c2
c1+c4

(x−y+c4r)ψt(y, s− r, t)dydr

−
∫ s

L−x
c4

∫ L

c1+c4
c4

L− c1c4 x−c1r
kc2e−c2Lψt(y, s− r, t)dydr.

(126)

For each case, one can reach βt(x, s, t) − βs(x, s, t) = 0. In
order to get (32), (33) and (35) of the target system, we get
the relation between ψ and β at s = 0 via transformation (64)
as follows:

ψ(x, 0, t) = β(x, 0, t)− c5
c6

e−c2xz(x, t) +
k

c6
v(x, t). (127)

Substitute (127) into (24), (25) and (27), respectively, which
gives (32), (33) and (35). Hence, the transformation (64) can
transform the original system (24)-(29) into the target system
(32)-(37).
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