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Abstract: A logical function can be used to characterizing a property of a state of Boolean network

(BN), which is considered as an aggregation of states. To illustrate the dynamics of a set of logical

functions, which characterize our concerned properties of a BN, the invariant subspace containing the

set of logical functions is proposed, and its properties are investigated. Then the invariant subspace of

Boolean control network (BCN) is also proposed. The dynamics of invariant subspace of BCN is also

invariant. Finally, using outputs as the set of logical functions, the minimum realization of BCN is

proposed, which provides a possible solution to overcome the computational complexity of large scale

BNs/BCNs.

Keywords: Boolean (control) network, logical function, invariant subspace, minimum realization,

semi-tensor product.

1 Introduction

The BN was firstly proposed by Kauffman in 1969 [7]. It has been proved to be a very efficient way

for modeling and analyzing genetic regulatory network. Recently, motivated by the semi-tensor product

(STP) of matrices, the investigation of BN and BCN becomes a heat research direction in control com-

munity. Nowadays, the STP approach becomes the mainstream in studying BNs and BCNs. We refer to

some survey papers for its current development in theory and applications [5], [10], [11], [9].

The major obstacle in applications of STP approach to BNs and BCNs is the computational complex-

ity. It is well known that BN structure analysis and BCN control design and many related problems are

NP hard problem [15], while BNs from gene regulatory networks are usually of large scale. For a network

with n nodes, the state space of BN or BCN in STP model is of 2n states. Hence, in general, the STP

approach can only handle n < 20 cases or so.

A proper tool in dealing with large-scale BN (BCN) is aggregation [13, 14, 12]. To the authors’ best

knowledge, the aggregation proposed so far is based on the structure of networks. This method has some

weaknesses. First, it requires the knowledge on the structure of networks. It is not an easy job to get

the structure of a large scale network. Second, such an aggregation does not represent certain properties

of the nodes. Sometimes, classifying nodes according to their various properties is more important then

their positions.

*Supported partly by NNSF 62073315 of China, and China Postdoctoral Science Foundation 2020TQ0184.
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Figure 1: Hyperplane For Point Separation
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Figure 2: Logical Function For State Separation

Support vector machine approach is a very powerful tool in aggregation, where it is called pattern

recognition [1, 6]. In support vector machine a hyperplane wTx + b, which separates points into two

groups: {x | wTx+ b > 0} and {x | wTx+ b < 0, (refer to Fig. 1).

This paper uses the idea of support vector machine to aggregation of nodes in a large-scale Boolean

network. A logical function g(x) is considered as a support vector, which classifies nodes into two groups:

{x | g(x) = 1} and {x | g(x) = 0, (refer to Fig. 2).

Several logical functions, which form a set of support vectors for various properties, become a sub-

space. Using this subspace, we may construct a logical dynamic system, which describes the dynamics

of aggregated classis. Since this dynamic system might be much smaller than the original one, the

computational complexity could be reduced a lot.

Roughly speaking, the idea for the approach in this paper is as follows: First, some logical functions
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are chosen to characterize some properties of a BN/BCN, concerned by us. Then the smallest subspaces

containing the set of logical functions, which is invariant under the dynamic evolution. The dynamic

equation for the subspace is revealed, which completely described the evolution of the concerned logical

variables, which correspond the set of logical functions. Finally, the outputs of a BCN are considered as

the set of concerned logical functions, which lead to a minimum realization of the original BCN.

The rest of this paper is follows: Section 2 presents some preliminaries as follows: (i) STP of matrices,

which is the fundamental tool for our approach; (ii) Matrix expression of BN and BCN, which is called

the algebraic state space representation (ASSR). Section 3 presents the separating subspace approach for

BNs. The separating logical functions and the invariant subspace containing the set of logical functions

is constructed, and its properties are investigated. Finally, the dynamic equation is obtained for the

invariant subspace. The invariant subspace and its dynamic equation of BCN are considered in Section

4. Section 5 considers the minimum realization of a BCN. Their dynamic equations are also revealed.

Section 6 is a brief conclusion.

2 Preliminaries

2.1 STP of Matrices

Definition 2.1. [3, 4]: Let M ∈ Mm×n, N ∈ Mp×q, and t = lcm{n, p} be the least common multiple

of n and p. The semi-tensor product (STP) of M and N , denoted by M ⋉N , is defined as

(
M ⊗ It/n

) (
N ⊗ It/p

)
∈ Mmt/n×qt/p, (1)

where ⊗ is the Kronecker product.

Note that when n = p, M ⋉N = MN . That is, the semi-tensor product is a generalization of con-

ventional matrix product. Moreover, it keeps all the properties of conventional matrix product available

[4]. Hence we can omit the symbol ⋉. Throughout this paper the matrix product is assumed to be STP,

and the symbol ⋉ is mostly omitted.

The following are some basic properties:

Proposition 2.2. 1. (Associative Law)

(F ⋉G)⋉H = F ⋉ (G⋉H). (2)

2. (Distributive Law)






F ⋉ (aG± bH) = aF ⋉G± bF ⋉H,

(aF ± bG)⋉H = aF ⋉H ± bG⋉H, a, b ∈ R.
(3)

Proposition 2.3. 1. Let X ∈ R
m, Y ∈ R

n be two columns. Then

X ⋉ Y = X ⊗ Y. (4)

2. Let ω ∈ R
m, σ ∈ R

n be two rows. Then

ω ⋉ σ = σ ⊗ ω. (5)
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About the transpose, we have

Proposition 2.4.

(A⋉B)T = BT
⋉AT. (6)

About the inverse, we have

Proposition 2.5. Assume A and B are invertible, then

(A⋉B)−1 = B−1
⋉A−1. (7)

The following property is for STP only.

Proposition 2.6. Let X ∈ R
m be a column and M a matrix. Then

X ⋉M = (Im ⊗M)X. (8)

Definition 2.7. [3] A matrix W[m,n] ∈ Mmn×mn, defined by

W[m,n] :=
[
In ⊗ δ1m, In ⊗ δ2m, · · · , In ⊗ δmm ,

]
(9)

is called the (m,n)-th dimensional swap matrix, where δim is the i-th column of Im.

The basic function of the swap matrix is to “swap” two vectors. That is,

Proposition 2.8. Let X ∈ R
m and Y ∈ R

n be two columns. Then

W[m,n] ⋉X ⋉ Y = Y ⋉X. (10)

Definition 2.9. Let A ∈ Mp×n and B ∈ Mq×n. Then the Khatri-Rao Product of A and B is

A ∗B = [Col1(A) ⋉ Col1(B), · · · ,Coln(A)⋉ Coln(B)] ∈ Mpq×n. (11)

2.2 Matrix Expression of BN

Definition 2.10. A BN is described by






x1(t+ 1) = f1(x1(t), · · · , xn(t)),

x2(t+ 1) = f2(x1(t), · · · , xn(t)),
...

xn(t+ 1) = fn(x1(t), · · · , xn(t)),

(12)

where xi(t) ∈ D = {0, 1}, fi : Dn → D, i = 1, 2, · · · , n are logical functions.

Using vector form expression: 1 ∼ δ12 = (1, 0)T , 0 ∼ δ22 = (0, 1)T . Then x(t) can be expressed as

x(t) ∈ ∆2, where ∆k is the set of columns of Ik.

A matrix M ∈ Mp×q is called a logical matrix, if Col(M) ⊂ ∆p. The set of p× q dimensional logical

matrices is denoted by Lp×q.

Then a BN has its matrix form, called the ASSR of BN, as follows:
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Proposition 2.11. (i) For a logical function f : Dn → D, there exists a unique logical matrix Mf ∈

L2×2n such that in vector form

f(x1, x2, · · · , xn) = Mf ⋉
n
i=1 xi. (13)

(ii) Let Mi be the structure matrix of fi, i = 1, 2, · · · , n. Then in vector form (12) can be expressed

into its componentwise ASSR as






x1(t+ 1) = M1 ⋉
n
i=1 xi(t),

x2(t+ 1) = M2 ⋉
n
i=1 xi(t),

...,

xn(t+ 1) = Mn ⋉
n
i=1 xi(t).

(14)

(iii) Setting x(t) = ⋉
n
i=1xi(t), (14) can further be expressed into its ASSR as

x(t+ 1) = Mx(t), (15)

where

M = M1 ∗M2 ∗ · · · ∗Mn ∈ L2n×2n

is called the structure matrix of BN (12).

Similarly, the BCN is described as follows:







x1(t+ 1) = f1(x1(t), · · · , xn(t);u1(t), · · · , um(t)),

x2(t+ 1) = f2(x1(t), · · · , xn(t);u1(t), · · · , um(t)),
...,

xn(t+ 1) = fn(x1(t), · · · , xn(t);u1(t), · · · , um(t)),

(16)

where uj(t) ∈ D, j = 1, · · · ,m are controls.

We also have similar algebraic expressions for BCN.

Proposition 2.12. Consider BCN (16).

(i) Its componentwise ASSR is






x1(t+ 1) = L1u(t)x(t),

x2(t+ 1) = L2u(t)x(t),
...,

xn(t+ 1) = Lnu(t)x(t),

(17)

where u(t) = ⋉
m
j=1uj(t), Li ∈ L2×2m+n is the structure matrix of fi, i = 1, · · · , n.

(ii) Its ASSR is

x(t+ 1) = Lu(t)x(t), (18)

where L = L1 ∗ L2 ∗ · · · ∗ Ln ∈ L2n×2m+n is is the structure matrix of BCN (16).
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Definition 2.13. [2] Consider BN (12) or BCN (13).

(i) Their state space, denoted by X , is defined as the set of all logical functions of x1, x2, · · · , xn,

denoted by Fℓ{x1, x2, · · · , xn}. That is,

X = Fℓ{x1, x2, · · · , xn}. (19)

(ii) Let z1, z2, · · · , zr ∈ X . Then the subspace generated by z1, z2, · · · , zr, is defined by

Z = Fℓ{z1, z2, · · · , zr}. (20)

Consider (20). Since zi ∈ X , there is a structure matrix of zi, denoted by Gi, such that in vector form

we have

zi = Gix, i = 1, · · · , r. (21)

where x = ⋉
n
i=1xi, Gi ∈ L2×2n . Denote z = ⋉

r
i=1zi, then we have

z = Tx, (22)

where T = G1 ∗G2 ∗ · · · ∗Gr ∈ L2r×2n .

Definition 2.14. Support Z = Fℓ{z1, z2, · · · , zn} has its algebraic expression (22) with non-singular T ,

then X → Z is called a coordinate change.

Remark 2.15. Since T is a logical matrix, if T is non-singular, then it is a permutation matrix. Hence

T−1 = T T . Now if f ∈ X , which can be expressed via its structure matrix Mf as

f(x) = Mfx,

then it can also be expressed as

f(x) = f̃(z) = MfT
T z.

3 Separating Subspace Approach to BN

3.1 Separating Function and Invariant Subspace

Note that a logical function f(x1, x2, · · · , xn) can be considered as an index function of a subset of node

set N := {x1, x2, · · · , xn}. Given an S ⊂ N , then its index function, denoted by fS , can be defined as

follows:

fS(x) :=







1, x ∈ S,

0, Otherwise.
(23)

Let π : 2N → Fℓ{x1, x2, · · · , xn} determined by π(S) = fs, which is defined by (23). Then it is obvious

that π is bijective. Based on this observation we can define separating logical function.

For a large-scale BN, if there are n nodes, its number of states is 2n. Say, n = 32, then the states

are 4.295E + 9. So in its ASSR, the transition matrix, which has 2n × 2n dimension, is not practically
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computable. In fact, we may not be interested in its detailed state evolution. We are only interested in

some particular properties of the BN. Using the idea of separating logical function approach, the set of

separating logical functions of BN is proposed as follows: Assume we are interested in a property, say p,

for a BN. We may define a logical function zp as follows:

zp(x) =







1, p is true at x,

0, p is false at x,

zp ∈ X . Such zp is called a separating function, which classifies all states into two groups according to

property p.

In general, we are interested in a set of zi(x), i = 1, 2, · · · , r, where r << n. We then can aggregate

x into 2r groups as

xk :=
{
x‖z(x) = δk2r

}
, k = 1, · · · , 2r. (24)

Definition 3.1. Let zi, i = 1, · · · , r be a set of separating logical functions. Then {zi | i = 1, 2, · · · , r}

are called aggregating variables, and

Z := Fℓ{z1, z2, · · · , zr}

is called the {zi | i = 1, 2, · · · , r} aggregated subspace.

Support we are only interested the dynamics about Z, which might be much more smaller than the

original BN.

To find the dynamics of Z, we need some new concepts.

Definition 3.2. Given BN (12).

(i) Z1 = Fℓ{z1} = Fℓ{z11 , z
1
2 , · · · , z

1
r} is called a regular subspace, if there exist z2 = (z21 , z

2
2 , · · · , z

2
n−r),

such that z = (z11 , · · · , z
1
r , z

2
1 , · · · , z

2
n−r) is another coordinate frame. That is, X = Z = Fℓ{z1, z2}.

(ii) Assume Z1 is a regular subspace and z = (z1, z2) is a new coordinate frame. Moreover, under z,

(12) can be expressed as






z1(t+ 1) = F̃ 1(z1(t)), z1(t) ∈ Z1

z2(t+ 1) = F̃ 2(z(t)), z2(t) ∈ Z2, z(t) ∈ Z,
(25)

then Z1 is called an M -invariant subspace.

Recall the ASSR (15) of (12). We have the following result:

Theorem 3.3. Consider BN (12) with its ASSR (15). Suppose Z1 = Fℓ{z11 , z
1
2 , · · · , z

1
r} is a regular

space with its ASSR as

z1 = Qx, (26)

where z1 = ⋉
r
i=1z

1
i , Q ∈ L2r×2n . Then, Z1 is an M invariant subspace of (12), if and only if, there

exists H ∈ L2r×2r such that

QM = HQ. (27)
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Proof. (sufficiency) Since Z1 is a regular subspace, there exists z2 = (z21 , z
2
2 , · · · , z

2
n−r), such that

z = (z1, z2) is a new coordinate frame. Hence,

z1(t+ 1) = Qx(t+ 1) = QMx(t) = HQx(t) = Hz1(t). (28)

(28) shows that under coordinates z the BN has the form of (25).

(necessity) Assume under coordinate frame z NB (12) has the form of (25). Moreover, assume the

structure matrix of F̃1 is M̃1 ∈ L2k×2k . Then

z1(t+ 1) = M̃1z
1(t) = M̃1Qx(t).

On the other hand,

z1(t+ 1) = Qx(t+ 1) = QMx(t).

Since x(t) is arbitrary, we have

QM = M̃1Q.

Set H = M̃1, (28) follows.

Remark 3.4. According to 3.3, to verify whether a regular subspace is an invariant subspace we have

to check whether equation (28) has solution H. Since Z1 is a regular subspace, its structure matrix Q

should have full row rank. Hence, if H is the solution, then H = H∗, where

H∗ := QMQT(QQT)−1. (29)

Hence the see whether (28) has solution H we have only to verify if H∗ is logical matrix and it satisfies

(28).

We give an example.

Example 3.5. Consider the following BN:







x1(t+ 1) = (x1(t) ∧ x2(t) ∧ ¬x4(t)) ∨ (¬x1(t) ∧ x2(t))

x2(t+ 1) = x2(t) ∨ (x3(t) ↔ x4(t))

x3(t+ 1) = (x1(t) ∧ ¬x4(t)) ∨ (¬x1(t) ∧ x2(t)) ∨ (¬x1(t) ∧ ¬x2(t) ∧ x4(t))

x4(t+ 1) = x1(t) ∧ ¬x2(t) ∧ x4(t).

(30)

Its ASSR is calculated as

x(t+ 1) = Mx(t), (31)

where

M = δ16[11, 1, 11, 1, 11, 13, 15, 9, 1, 2, 1, 2, 9, 15, 13, 11].

Suppose Z = Fℓ{z1, z2, z3}, where







z1 = x1∨̄x4

z2 = ¬x2

z3 = x3 ↔ ¬x4.

(32)
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Denote x = ⋉
4
i=1xi, z = ⋉

3
i=1zi, then

z = Qx,

where Q can be calculated as

Q = δ8[8, 3, 7, 4, 6, 1, 5, 2, 4, 7, 3, 8, 2, 5, 1, 6].

Using (29), we have

H∗ = δ8[2, 4, 8, 8, 1, 3, 3, 3].

It is ready to verify (28). Hence Z is an invariant subspace of (30).

3.2 Union of Invariant Subspaces

Assume Vi, i = 1, 2 are two M invariant subspaces, where

V1 = Fℓ{z11 , · · · , z
1
p},

V2 = Fℓ{z21 , · · · , z
2
q}.

(33)

Then we have

Vi = Gix, i = 1, 2, (34)

where x = ⋉
n
i=1xi, G1 ∈ L2p×2n , G2 ∈ L2q×2n .

Theorem 3.6. Assume Vi, i = 1, 2 are M invariant subspaces. That is, there exist H1 ∈ Lp×p and

H2 ∈ Lq×q, such that

G1M = H1G1,

G2M = H2G2.
(35)

Then

V = V1

⋃

V2 = Fℓ{z
1
1 , · · · , z

1
p; z

2
1 , · · · , z

2
q}

is also M -invariant. Moreover, the structure matrix of V, denoted by

G = G1 ∗G2, (36)

satisfies

GM = HG, (37)

where

H = H1 ⊗H2. (38)

To prove this theorem, we need the following lemma, which itself is useful.

Lemma 3.7. Let A ∈ Mp×ℓ, B ∈ Mq×ℓ, and T ∈ Lℓ×r. Then

(A ∗B)T = (AT ) ∗ (BT ). (39)
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Proof. Denote

A = [A1, A2, · · · , Aℓ], B = [B1, B2, · · · , Bℓ],

where Ai = Coli(A) (B
i = Coli(B)) is the i-th column of A (B); and

T =
[
δi1ℓ , δi2ℓ , · · · , δimℓ

]
.

Then
(A ∗B)T =

(
[A1, A2, · · · , Aℓ] ∗ [B1, B2, · · · , Bℓ]

)
T

=
[
A1 ⊗B1, A2 ⊗B2, · · · , Aℓ ⊗Bℓ

]
T

=
[
Ai1 ⊗Bi1 , Ai2 ⊗Bi2 , · · · , Aim ⊗Bim

]
.

(AT ) ∗ (BT ) =
[
Ai1 , Ai2 , · · · , Aim

]
∗
[
Bi1 , Bi2 , · · · , Bim

]

=
[
Ai1 ⊗Bi1 , Ai2 ⊗Bi2 , · · · , Aim ⊗ Bim

]
.

(39) follows immediately.

Proof. (of Theorem 3.6) It is enough to prove (37) with (38). Denote G1 = (G1
1, · · · , G

2n

1 ), G2 =

(G1
2, · · · , G

2n

2 ), where Gi
1 = Coli(G1), G

i
2 = Coli(G2), i = 1, 2, · · · , 2n. Using Lemma 3.7,

GT = (G1 ∗G2)T = (G1T ) ∗ (G2T )

= (H1G1) ∗ (H2G2)

=
[
(H1G

1
1) ∗ (H2G

1
2), (H1G

2
1) ∗ (H2G

2
2), · · · , (H1G

2n

1 ) ∗ (H2G
2n

2 )
]

=
[
(H1G

1
1)⊗ (H2G

1
2), (H1G

2
1)⊗ (H2G

2
2), · · · , (H1G

2n

1 )⊗ (H2G
2n

2 )
]

=
[
(H1 ⊗H2)(G

1
1 ⊗G1

2), (H1 ⊗H2)(G
2
1 ⊗G2

2), · · · , (H1 ⊗H2)(G
2n

1 ⊗G2n

2 )
]

= (H1 ⊗H2)(G1 ∗G2) = (H1 ⊗H2)G.

3.3 Dynamics of Aggregated NB

Assume (12) is a large scale BN, and zi, i = 1, · · · , r are separating logical functions, which represent our

interested properties. Denote by

Z = Fℓ{zi | i = 1, · · · , r}

We first try to find the smallest subspace Z, which contains Z and is M -invariant.

Algorithm 3.8. • Step 1: Set z0 = ⋉
r
i=1zi, and assume

z0 = G0x.

Calculate

z1 = {G0x ∪G0Mx} := G1x.

• Step k: Assume zk−1 = Gk−1x is known. Then

zk = {Gk−1x ∪Gk−1Mx} := Gkx.

• Final Step: Assume zk
∗

= zk
∗+1, then

Z := Fℓ{z
k∗

}. (40)
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Remark 3.9. In Algorithm 3.8 at each step we assume in zi all the repeated functions have been deleted.

Otherwise, Gi maybe unnecessarily large.

By construction it is clear that the Z provided by (40) is the smallest subspace, containing Z and is

M -invariant.

Definition 3.10. The dynamics of Z is called the {zi | i = 1, · · · , r} aggregated BN.

Next, we try to find the dynamics of aggregated BN.

Assume Z = Fℓ(z̄) is a regular subspace, then

z̄ = Ḡx.

Using Theorem 3.3, we have that

z̄(t+ 1) = Ḡx(t+ 1) = ḠMx(t)

= HḠx(t) = Hz̄(t).
(41)

Summarizing the above arguments, we have the following result.

Theorem 3.11. (41) is the dynamics of aggregated BN.

Remark 3.12. It is obvious that in Theorem 3.11 the regularity of Z has been ignored. From Algorithm

3.8 one sees easily that (27) is enough for (41). In fact, we do not care about if Z is regular or not.

When it is not, we can not get the second part of equation (25), which is not interesting to us.

In the following an example is given to describe the technique for constructing aggregated BN. .

Example 3.13. An opinion dynamic network is depicted in Fig. 3, where xi, i = 1, 2, · · · , 9 are players.

Each player chooses his next opinion 1 (with whit circle) for “agree” and 0 (with block circle) for “disagree”

based on its neighborhood information. The boundary players A,B,C,D,E, F have invariant opinion 1,

and U, V,W,X, Y, Z have invariant opinion 0.

Each player always follows the majority. Counting himself, a player has 5 neighbors. So the decision

is unique. Note that they might have boundary neighbors, who have fixed attitude.

Using ASSR, we have

x(t+ 1) = Mx(t), (42)

where x = ⋉
9
i=1xi and M ∈ M256×256 is in Appendix.

Now assume we are particularly interested in three situations: S := {x1, x2, x3}, where

x1 = δ43512 ∼ {1, 1, 1, 0, 1, 0, 1, 0, 0},

x2 = δ143512 ∼ {1, 0, 1, 1, 0, 1, 1, 1, 1},

x3 = δ165512 ∼ {1, 0, 1, 0, 1, 1, 0, 1, 1}.

Then the index function for S is defined as

g1(x) =







1, x ∈ S,

0, Otherwise.

11
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Figure 3: Social Network

Correspondingly, we have its structure matrix

Coli(G1) =







δ12 , δi512 ∈ S,

δ22 , Otherwise.

Then G2 = G1M can be expressed as

Coli(G2) =







δ12 , i = 22, 89, 150, 278,

δ22 , Otherwise.

Furthermore,

G2M = G1.

Set z = z1z2, where

z1 = G1x, z2 = G3x,

with x = ⋉
9
i=1xi. It follows that

z1(t+ 1) = G1x(t+ 1)

= G1Mx(t) = G2x(t)

= z2(t).

z2(t+ 1) = G2x(t+ 1)

= G2Mx(t) = G1x(t)

= z1(t).

12



Hence the smallest M invariant subspace containing g1 is

G = Fℓ{g1, g2}.

The aggregated system becomes

z1(t+ 1) = z2(t) = (JT
2 ⊗ I2)z(t)

z2(t+ 1) = z1(t) = (I2 ⊗ JT
2 )z(t),

(43)

where z(t) = z1(t)z2(t). Hence, the ASSR of z(t) is

z(t+ 1) =
[
(JT

2 ⊗ I2) ∗ (I2 ⊗ JT
2 )

]
z(t) = δ4[1, 3, 2, 4]z(t). (44)

The aggregated BN (44) is much smaller that the original BN (41), but it is enough to describe the

dynamics of the state z∗ = g1(x), which is concerned by us.

Remark 3.14. From Example 3.13 one sees easily that as the related attractor of a BN is of small

size, then the aggregated BN might reduce the size of the original BN tremendously. Now one may ask

if the related attractor is of large size, then what can we do? Of course, if the M invariant subspace

containing the separating logical functions, which represent the properties interesting to us, involves large

size attractors, then the aggregated BN may still have large scale. Fortunately, as pointed by Kauffman

[8]: The “vast order” of a large scale cellular network is decided by “tiny attractors”. This fact makes

the aggregation technique more useful.

4 Invariant Subspace of BCN

Consider BCN (16) with its ASSR (18). Splitting L into 2m blocks as

L = [M1,M2, · · · ,M2m ], (45)

where

Mr = Lδr2m ∈ L2n×2n , r = 1, 2, · · · , 2m.

Definition 4.1. (i) Z is said to be L invariant, if Z is Mi invariant for all i = 1, 2, · · · , 2m.

(ii) Z is said to be partly L invariant with respect to U ⊂ δ2m{1, 2, · · · , 2m}, if Z is Mi invariant for

all u ∈ U .

Definition 4.2. (i) V is called a control invariant subspace containing Z, if it contains Z, and for

any control u it is Lu invariant.

(ii) The intersection of all control invariant subspaces containing Z is called the smallest control in-

variant subspace containing Z, and denoted by Z.

(iii) V is called a partly control invariant subspace containing Z with respect to U , if it contains Z, and

for any control u ∈ U it is Lu invariant.

(ii) The intersection of all partly control invariant subspaces containing Z with respect to U is called

the smallest partly control invariant subspace containing Z with respect to U , and denoted by Z
U
.

13



Assume Z = Fℓ{z1, z2, · · · , zr} and Z = Fℓ{z1, · · · , zr, zr+1, · · · , zs}. Denote z = ⋉
s
i=1zi, then there

exists a G ∈ L2s×2n , such that

z = G⋉
n
i=1 xi := Gx.

Since Z is control invariant subspaces, for u = δi2m we have

GMi = HiG, i = 1, 2, · · · , 2m. (46)

It follows that
z(t+ 1) = Gx(t + 1) = GLu(t)x(t)

= [H1, H2, · · · , H2m ]Gx(t)

= [H1, H2, · · · , H2m ]u(t)z(t)

Define H := [H1, H2, · · · , H2m ], then we have the aggregated BCN as

z(t+ 1) = Hu(t)z(t). (47)

Next, we consider the case when there is a constrain on control, as u(t) ∈ U ⊂ ∆2m . Assume U is

state-depending. That is,

U = {u 6= δα2m if z ∈ Xα ⊂ X = ∆2n | α ∈ Ξ ⊂ ∆2m} .

We need the following notation: A ∈ Mp×q is called a zero-extended logical matrix if

Col(A) ⊂ ∆p ∪ 0p.

That is A may contain some zero columns.

Now consider partly control invariant subspaces containing Z. Assume when z = δk2s , u = δα2m is

forbidden. Then in equation (47) we set

Colk(Hα) = 02s .

Finally, we can construct the modified H , denoted by HU , to describe the partly control invariant

aggregated BCN, which has its dynamic equation as

z(t+ 1) = HUu(t)z(t). (48)

We use an example to depict it.

Example 4.3. Recall Example 3.13. Assume the boundary player V is replaced by a control u(t), ( refer

to Fig. 3).

Then it is a normal routine to figure out the dynamics of this BCN as

x(t+ 1) = [N,M ]u(t)x(t), (49)

where M is the same as in Example 3.13, N is also in Appendix.

Assume we are still particularly interested in the S as in Example 3.13, i.e., S := {x1, x2, x3}, where

x1 = δ43512, x
2 = δ143512 ∼ {1, 0, 1, 1, 0, 1, 1, 1, 1}, x3 = δ165512 .

14



Then it is easy to calculate that G1N = G3, G3N = G4, G4N = G5, G5N = G7; G2N = G6,

G6N = G5; G7M = G7, G7N = G7, where

Coli(G3) =







δ12 , i = 43, 47, 143, 164, 229, 420,

δ22 , Otherwise.

Coli(G4) =







δ12 , i = 59, 118, 278,

δ22 , Otherwise.

Coli(G5) =







δ12 , i = 164, 299, 420,

δ22 , Otherwise.

Coli(G6) =







δ12 , i = 278,

δ22 , Otherwise.

Coli(G7) = δ22 , i = 1, 2, · · · , 512.

Set

zi = Gix, i = 1, 2, · · · , 7,

W = {3, 4, 5, 6} and we assume the feasible control set

U = {u(t) 6= δ22 | x(t) ∈ W}

Finally, the partly control invariant aggregation BCN, is obtained as follows.

z(t+ 1) = HUu(t)z(t), (50)

where z(t) = (z1(t), z2(t), z3(t), z4(t), z5(t), z6(t), z7(t))
T , and

HU = δ7[6, 3, 4, 5, 7, 5, 7, 2, 1, 0, 0, 0, 0, 7].

The state-transition graph is depicted in Fig. 4.

5 Minimum Realization of BCN

Consider a BNC (16) with outputs (observers)

y1(t) = ξ1(x1(t), · · · , xn(t)),

y2(t) = ξ2(x1(t), · · · , xn(t)),
...

yr(t) = ξr(x1(t), · · · , xn(t)).

(51)

Then the input-output BCN (16)-(51) has ASSR as






x(t+ 1) = Lu(t)x(t),

y(t) = Hx(t).
(52)
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Figure 4: State Transition Graph of aggregated BCN (50) )

After a coordinate change T : x → z, expressed by z = Tx, where T ∈ L2n×2n , (18) becomes [3]







z(t+ 1) = L̃u(t)z(t),

y(t) = H̃z(t),
(53)

where
L̃ = TL

(
I2m ⊗ T T

)
,

H̃ = HT T .

If under the coordinate frame z (51), expressed as (53), has the form of (25), then it is clear that

Z = Fℓ{z
1} is a control invariant subspace, containing Y. In fact, we can ignore z2 and give the following

definition.

Definition 5.1. Consider BCN (51), if there exists a subspace Z = Fℓ{z11 , x
1
2, · · · , z

1
r} such that







z1(t+ 1) = F 1(z1, u),

y(t) = ξ(z1(t)),
(54)

then (54) is called a realization of (16)-(51).

Remark 5.2. (i) From Definition 5.1, Z is a control invariant subspace, containing Y.

(ii) In Definition 5.1 Z is not required to be a regular subspace.

(iii) It is obvious that (54) and (16)-(51) have the same input-output mapping.

Definition 5.3. Consider BCN (51), if Z = Fℓ{z11 , x
1
2, · · · , z

1
r} is the smallest control invariant subspace

containing Y, then the corresponding BN (54) is called the minimum realization of (16)-(51).
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Proposition 5.4. Assume Z = Fℓ{z
1
1 , x

1
2, · · · , z

1
r} is the smallest control invariant subspace containing

Y and Z = Gx. then

(i) there exists a set of logical matrix Hi ∈ Lr×r, ı = 1, 2, · · · , 2m such that

GMi = HiG, i = 1, 2, · · · , 2m; (55)

(ii) the minimum realization of (16)-(51) has its ASSR as







z1(t+ 1) = Hu(t)z1(t),

y(t) = Ξz1(t),
(56)

where Ξ is the structure matrix of ξ, and

H = [H1, H2, · · · , H2m ].

The following algorithm provides a way to construct the minimum realization of a BCN.

Algorithm 5.5. • Step 1:

Set

O0 = {y1, y2, · · · , yp} .

Calculate

O1 = {yM1, yM2, · · · , Y M2m | y ∈ O0}\{O0}.

• Step s: (s > 0)

Calculate

Os+1 = {yM1, yM2, · · · , yM2m | y ∈ Os}\{Or | r =, 0, 1, · · · , s}.

• Last Step. If

Os∗+1 = ∅.

then

Z∗ := Fℓ{Or | r = 0, 1, · · · , s∗}

is the smallest control invariant subspace containing y.

Assume Z∗ = Fℓ{z1, z2, · · · , zr}, set z = ⋉
r
i=1zi, then

z(t+ 1) = [H1, H2, · · · , H2m ]u(t)z(t),

y(t) = Ξz(t)
(57)

is the minimum realization of BCN (16)-(51).

Next, we consider an example.
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Example 5.6. Consider a BCN, with its ASSR as







x(t+ 1) = Lu(t)x(t),

y(t) = Ξx(t),
(58)

where x(t) = ⋉
n
i=1xi(t), u(t) = u1(t)u2(t), and

L = [M1,M2,M3,M4],

with

M1 =













0 0 1

1 0 0

0 1 0




 0

0 X








, M2 =













0 1 0

1 0 0

0 0 1




 0

0 X








,

M3 =













1 0 0

0 1 0

0 0 1




 0

0 X








, M4 =













0 0 1

0 1 0

1 0 0




 0

0 X








,

where X ∈ L(2n−3)×(2n−3) is an uncertain logical matrix.

Ξ = δ2[1, 2, 1, 2, 2, · · · , 2
︸ ︷︷ ︸

2n−3

].

Denote y1 = y, then it is easy to calculate that

y1M1 = δ2[2, 1, 1, 2, · · · , 2] := y2,

y1M2 = y2,

y1M3 = y1,

y1M4 = y1,

y2M1 = δ2[1, 1, 2, 2, · · · , 2] := y3,

y2M2 = y1,

y2M3 == y2,

y2M4 == y3,

y3M1 = y1,

y3M2 == y3,

y3M3 = y3,

y3M4 = y2.

Let

z1 = y1, z2 = y2, z3 = y3.

Hence we have
z1(t+ 1) = [Z2, Z2, Z1, Z1]u(t)z(t),

z2(t+ 1) = [Z3, Z1, Z2, Z3]u(t)z(t),

z3(t+ 1) = [Z1, Z3, Z3, Z2]u(t)z(t),
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Figure 5: State Transition Graph of aggregated BCN (59) )

where u(t) = u1(t)u2(t), z(t) = z1(t)z2(t)z3(t), and

Z1 = I2 ⊗ JT
4 = δ2[1, 1, 1, 1, 2, 2, 2, 2],

Z2 = J2 ⊗ I2 ⊗ J2 = δ2[1, 1, 2, 2, 1, 1, 2, 2],

Z3 = J4 ⊗ I2 = δ2[1, 2, 1, 2, 1, 2, 1, 2].

Finally, the minimum realization of (58) is obtained as







z(t+ 1) = L∗u(t)z(t),

y(t) = Z1z(t),
(59)

where
L∗ = δ8[ 1, 3, 5, 7, 2, 4, 6, 8, 1, 2, 5, 6, 3, 4, 7, 8,

1, 2, 3, 4, 5, 6, 7, 8, 1, 3, 2, 4, 5, 7, 6, 8].

The state-transition graph of this minimum realization is depicted in Fig. 5.

Motivated by Example 5.6, the following result is easily verifiable.

Proposition 5.7. Consider BCN (16)-(51). If there exists a coordinate change

z = Tx,
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such that

TMiT
T =









J i
1 0 · · · 0

0 J i
2 · · · 0

. . . 0

0 0 · · · J i
s









, i = 1, 2, · · · , 2m,

where z = (z1, z2, · · · , zs) and zk corresponds to J i
k. Moreover, if y ∈ Fℓ{zk}, then there exists a

realization






z(t+ 1) =
[
J1
k , J

2
k , · · · , J

2m

k

]
u(t)z(t),

y(t) = Ξkz(t).
(60)

Moreover, if J i
k, i = 1, 2, · · · , 2m can not be further diagonized simultaneously for any 1 ≤ k ≤ s, then

(60) is a minimum realization.

Remark 5.8. (i) Minimum realization can also be considered as a kind of aggregations, which separate

states into two categories: related states and unrelated states. Then only related states are modeled.

(ii) For a large scale BN, we can inject controls on different nodes and observe some other nodes (which

are considered as outputs). Then observe the input-output relations to investigate the minimum

realization, which reveals part structure of the BN. By changing input nodes and output nodes,

another part structure may be revealed. The minimum realizations might be of much smaller sizes,

which makes the investigations easier. This method may provide a way to solve the problem of

computational complexity.

An alternative way to deal with a large-scale BN is to observe some special interested states. Then

the observers, as a set of logical functions, can be considered as separating functions. Then we may define

the follows:

Definition 5.9. A BN with some outputs is called an observe-based BN. Using observers as a set of logical

functions, the dynamic equations of the minimum-invariant subspace containing observers are called the

observe-based minimum realization of the observe-based BN.

In fact, through observed data, we may construct the dynamic equations of the observe-based min-

imum realization. In this way, part of the structure of overall BN can be constructed. Using different

observes, the interested parts of structure of overall BN might be construct.

6 Conclusion

In this paper a logical function is considered as an index function of a subset of nodes of a BN or BCN.

Using this idea, a set of logical functions are used as separating functions to aggregate nodes. Then

the (minimum) invariant subspace containing the preassigned set of logical functions, is constructed.

Furthermore, the dynamic equations for the invariant subspace, which represents the aggregated nodes,

are obtained. Then the (minimum) invariant subspace of BNC is also defined and the corresponding

dynamic equations are also constructed. Finally, as the outputs of a BC/BNC are considered as the set
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of separating functions, the minimum realization of a BCN (or the observe-based minimum realization

for BC) is defined, and their properties are investigated.

When a BN/BCN is of large scale, the structure matrix of overall BN might be huge and practically

uncomputable. Using input-output realization and observe-based minimum realization, the interested

parts of structure of the BN could be obtained. These might be much smaller sub-BN may dominate the

behaviors of whole BN. Hence, this technique may provide an efficient way to solve the computational

complexity of large scale BN/BCN.
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7 Appendix

(i) The structure matrix of BN (41):

M = δ512[ 1 1 1 2 1 1 5 8 1 10 2 10 1 10 6 16

1 9 1 12 33 43 39 48 9 10 26 28 41 44 64 64

1 1 5 6 37 37 37 40 1 10 22 30 37 46 54 64

33 41 53 64 37 47 55 64 57 58 62 64 61 64 64 64

1 9 1 10 1 9 5 16 73 74 74 74 73 74 78 80

9 9 9 12 41 43 47 48 73 74 90 92 105 108 128 128

1 9 5 14 37 45 37 48 73 74 94 94 109 110 126 128

41 41 61 64 45 47 63 64 121 122 126 128 125 128 128 128

1 1 1 2 1 1 5 8 65 74 82 90 65 74 86 96

1 9 17 28 33 43 55 64 89 90 90 92 121 124 128 128

257 257 277 278 293 293 309 312 337 346 342 350 373 382 374 384

305 313 309 320 309 319 311 320 377 378 382 384 381 384 384 384

65 73 65 74 65 73 69 80 73 74 90 90 73 74 94 96

201 201 217 220 233 235 255 256 217 218 218 220 249 252 256 256

321 329 341 350 357 365 373 384 345 346 350 350 381 382 382 384

505 505 509 512 509 511 511 512 505 506 510 512 509 512 512 512

1 1 1 2 33 33 37 40 1 10 2 10 33 42 38 48

33 41 33 44 33 43 39 48 41 42 58 60 41 44 64 64

289 289 293 294 293 293 293 296 289 298 310 318 293 302 310 320

289 297 309 320 293 303 311 320 313 314 318 320 317 320 320 320

1 9 1 10 33 41 37 48 73 74 74 74 105 106 110 112

169 169 169 172 169 171 175 176 233 234 250 252 233 236 256 256

289 297 293 302 293 301 293 304 361 362 382 382 365 366 382 384

425 425 445 448 429 431 447 448 505 506 510 512 509 512 512 512

257 257 257 258 289 289 293 296 321 330 338 346 353 362 374 384

417 425 433 444 417 427 439 448 505 506 506 508 505 508 512 512

289 289 309 310 293 293 309 312 369 378 374 382 373 382 374 384

433 441 437 448 437 447 439 448 505 506 510 512 509 512 512 512

449 457 449 458 481 489 485 496 457 458 474 474 489 490 510 512

489 489 505 508 489 491 511 512 505 506 506 508 505 508 512 512

481 489 501 510 485 493 501 512 505 506 510 510 509 510 510 512

505 505 509 512 509 511 511 512 505 506 510 512 509 512 512 512].

(ii) Structure matrix for Example 4.3.
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N = δ512[ 1 1 1 2 1 1 5 8 1 10 2 10 1 10 6 16

1 9 1 12 1 11 7 16 9 10 26 28 9 12 32 32

1 1 5 6 5 5 5 8 1 10 22 30 5 14 22 32

1 9 21 32 37 47 55 64 25 26 30 32 61 64 64 64

1 9 1 10 1 9 5 16 73 74 74 74 73 74 78 80

9 9 9 12 9 11 15 16 73 74 90 92 73 76 96 96

1 9 5 14 5 13 5 16 73 74 94 94 77 78 94 96

9 9 29 32 45 47 63 64 89 90 94 96 125 128 128 128

1 1 1 2 1 1 5 8 65 74 82 90 65 74 86 96

1 9 17 28 1 11 23 32 89 90 90 92 89 92 96 96

257 257 277 278 261 261 277 280 337 346 342 350 341 350 342 352

273 281 277 288 309 319 311 320 345 346 350 352 381 384 384 384

65 73 65 74 65 73 69 80 73 74 90 90 73 74 94 96

201 201 217 220 201 203 223 224 217 218 218 220 217 220 224 224

321 329 341 350 325 333 341 352 345 346 350 350 349 350 350 352

473 473 477 480 509 511 511 512 473 474 478 480 509 512 512 512

1 1 1 2 1 1 5 8 1 10 2 10 1 10 6 16

1 9 1 12 33 43 39 48 9 10 26 28 41 44 64 64

257 257 261 262 293 293 293 296 257 266 278 286 293 302 310 320

289 297 309 320 293 303 311 320 313 314 318 320 317 320 320 320

1 9 1 10 1 9 5 16 73 74 74 74 73 74 78 80

137 137 137 140 169 171 175 176 201 202 218 220 233 236 256 256

257 265 261 270 293 301 293 304 329 330 350 350 365 366 382 384

425 425 445 448 429 431 447 448 505 506 510 512 509 512 512 512

257 257 257 258 257 257 261 264 321 330 338 346 321 330 342 352

385 393 401 412 417 427 439 448 473 474 474 476 505 508 512 512

257 257 277 278 293 293 309 312 337 346 342 350 373 382 374 384

433 441 437 448 437 447 439 448 505 506 510 512 509 512 512 512

449 457 449 458 449 457 453 464 457 458 474 474 457 458 478 480

457 457 473 476 489 491 511 512 473 474 474 476 505 508 512 512

449 457 469 478 485 493 501 512 473 474 478 478 509 510 510 512

505 505 509 512 509 511 511 512 505 506 510 512 509 512 512 512].
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