arXiv:2202.02351v1 [math.OC] 4 Feb 2022

LOGO
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Abstract— A finite horizon optimal tracking problem is
considered for linear dynamical systems subject to para-
metric uncertainties in the state-space matrices and ex-
ogenous disturbances. A suboptimal solution is proposed
using a model predictive control (MPC) based explicit dual
control approach which enables active uncertainty learn-
ing. A novel algorithm for the design of robustly invariant
online terminal sets and terminal controllers is presented.
Set membership identification is used to update the pa-
rameter uncertainty online. A predicted worst-case cost is
used in the MPC optimization problem to model the dual
effect of the control input. The cost-to-go is estimated
using contractivity of the proposed terminal set and the
remaining time horizon, so that the optimizer can estimate
future benefits of exploration. The proposed dual control
algorithm ensures robust constraint satisfaction and recur-
sive feasibility, and navigates the exploration-exploitation
trade-off using a robust performance metric.

Index Terms— dual control, model predictive control, ref-
erence tracking, safe adaptive control, active learning

[. INTRODUCTION

N control problems involving unknown plants, the impor-

tance of balancing probing actions aimed at inferring prop-
erties of the system (exploration) and greedy decisions that
maximize the performance based on the current knowledge
(exploitation) has been well understood since the pioneering
work in adaptive control [1]. Feldbaum [2] indicated that
an optimal adaptive control law was characterized by the
right combination of these two, often conflicting, properties,
and coined the expression adaptive dual control systems.
This optimal trade-off can be characterized by means of the
principle of optimality, and thus the exact solution to the dual
control problem is given by stochastic dynamic programming
(DP) [3]. Because of its well-known curse of dimensionality,
tractable solutions to this problem are not available except
for trivial cases. This motivated approximate solutions which
can be broadly divided into two groups, namely implicit and
explicit dual control methods [4]. The former considers dif-
ferent types of approximations of the stochastic DP problems,
e.g. using the wide-sense property from adaptive control [5],
[6] or making use of approximate DP methods such as policy
iteration [7]. To apply approximate DP algorithms to unknown
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systems, a hyper-state is often considered, which augments
the system’s state with the vector of unknown parameters
[8], [9]. The main issue generally associated with implicit
approaches is scalability, as evidenced by their application
to date to only very low-order problems. On the other hand,
explicit methods relax the original optimal control problem
(OCP) into a more tractable form, and then reformulate it so
that the solution exhibits the desired dual properties. Even
though the optimality gap with respect to the original optimal
dual policy is generally unknown, this often represents a much
more computationally tractable solution and thus is by far the
most established of the two approaches [10], [11], [12], [13],
[14], [15]. In an important class of explicit methods, the dual
properties are introduced in an application-oriented fashion
[16]. That is, probing actions that decrease a measure of the
model uncertainty based on control-oriented measures (e.g. a
robust performance criterion) are incentivized.

An important consideration for the control of uncertain
systems is the guaranteed satisfaction of state and input
constraints, which is also referred to as safety in literature
[17]. Such safety guarantees can be achieved using model
predictive control (MPC), an optimization-based technique
where a control objective can be maximized while ensuring
constraint satisfaction [18]. When the plant is unknown, robust
approaches need to be employed to guarantee stability and
constraint satisfaction in the face of the uncertainty [19], [20].
If the initial uncertainty is large, robustness will come at
the cost of performance. Thus, it is beneficial to update the
uncertainty set online using measurements gathered from the
system. An adaptive MPC (AMPC) scheme was developed
in [21] and [22] for regulation of linear systems described by
state-space models subject to polytopic parametric uncertainty.
It uses a tube MPC approach to ensure robust constraint
satisfaction and updates the uncertainty using set-membership
identification [23]. Adaptive MPC has also been proposed for
nonlinear systems using a Lipschitz based method in [24], and
a general framework has been developed in [25]. Nevertheless,
there is no active uncertainty learning in these methods since
actions are designed for the purpose of exploitation only.
Another class of optimization-based methods for controlling
unknown dynamical systems has recently emerged from the
online learning community, where performance is commonly
established by means of the concept of regret [26], [27]. In the
case of unknown dynamics, these methods typically consider
unconstrained control problems and learning is effectively
passive.



In [28], we proposed an extension to [22] which introduces
dual actions in AMPC by means of a predicted state tube while
guaranteeing constraint satisfaction. The problem considered
was again only a regulation one, and was implicitly framed
in an infinite horizon setting. For linear systems with model
uncertainties, regulating the state to the origin is easier than
performing setpoint tracking. This is because the input setpoint
is assumed to be known, thereby simplifying the design of
MPC ingredients. Although this issue is partially addressed
in the tracking MPC literature, most methods assume that
the system is affected only by either additive disturbances
[29], [30], [31], [32] or parametric uncertainities [33], [34].
Two related works are also [13], [14], which proposed a
dual adaptive tracking MPC algorithm with uncertainty in the
measurement equation only. Moreover, studying the dual effect
of the control input is much more relevant in a finite horizon
setting [15]. This is because there is limited time for learning
the uncertainty and probing actions have decreasing rewards
with time. Thus, estimating the benefits of exploratory control
actions 1is difficult in this setting, compared to an infinite
horizon setting where it is almost always beneficial to reduce
model uncertainty. We therefore view finite horizon problems
as a more meaningful, albeit difficult, domain in which the
exploration-exploitation trade-off can be studied.

The goal of this paper is to propose an explicit dual
control approach for finite horizon optimal tracking control of
uncertain systems described by parametric state-space models.
There are two main technical contributions. First, we propose
a novel tracking adaptive MPC formulation in Section
for plants subject to parametric uncertainty in addition to
exogenous disturbances. The proposed algorithm estimates the
uncertain setpoints online and uses an online terminal set
and a control law dependent on the estimated setpoints. The
second contribution of the work is to leverage the viewpoint
of MPC as an approximate DP method [17], [35] to obtain
an application-oriented dual control algorithm to solve the
finite horizon optimal control problem. That is, the proposed
algorithm navigates the exploration-exploitation trade-off us-
ing a performance based metric as described in Section
To the best of the authors’ knowledge, this is thus the first
dual adaptive MPC scheme for optimal reference tracking of
systems with exogenous disturbances and model mismatch in
the dynamics.

A. Problem formulation and methodology

Consider an uncertain, discrete-time, linear system of the
form
Ti4+1 = A(G)J}t + B(G)ut + We, (1)

where x; € R™ represents the state, u; € R" the control
input and w; € R™ the additive disturbance at the time step .
The state space matrices A(f) and B(#) have the parametric
description

A0) = Ao+ Y Ailfl;, B(O) = Bo+ Y Bilfli, ()

where 6 € RP is an unknown constant parameter, [0]; refers
to the i element in 6 and {A;, B;}\_, are known matrices

modeling structured uncertainty. The true value of 6 = 6* is
known to lie inside the bounded set

O = {9 € RP|Hyf < hg}, 3)

where Hy € R™*P and hy € R™. The disturbance w;
has unknown statistical properties, but always lies within the
bounded set

W= {w e R"|Hyw < hy}, 4)

where H,, € R"»*"™ h,, € R",

Assumption 1: The state of the system is perfectly mea-
sured at each time step.

The output to be tracked is given by

yr = Cy, &)

where y; € R™v. The states and inputs of the system are
required to satisfy the constraints

Z = {(zy,u) € R" x R™|Fay + Gu; < 1}, (6)

where Z is a compact set, and F' € R"*™ and G €
R™*™ are given matrices. Given an initial state x, the ideal
objective would be to compute the control policy II := {u; =
mi(x¢)}_, which solve the following finite horizon optimal
control problem (FHOCP)

T

min max D QW =r0) oo+ [R(me (1) —tf)[oor  (Ta)
t=0

s.t. A0z + B0 )m(xy) + we = Toq1, (7b)

Fay + Gmy(xy) < 1, (7¢0)

yr = Cxy, (7d)

A(0")xy + B(0" )ug= 27,4, (Te)

Caxi=r;,, VteNI, (70

T = 1, x§ = , (7g)

where T is the length of the finite control horizon, Q € R™*™
and R € R™*™ are positive definite matrices, and Ng denotes
the set of integers from 0 to 7. In addition, {r;}7_, is a known
reference trajectory for the output, {u}}7  is a sequence of
unknown input setpoints, and {z} }]_, represents an unknown
desired state trajectory satisfying (7e)),(7T). For legibility, the
state evolution predicted by the FHOCP is represented using
the same vaiables {z;}7_, used for the evolution of the true
state in (I). Solving (7) is difficult because 6* is not known,
which results in an uncertain cost function , state evolution
and setpoints (7¢). Hence, the objective of this work is
to compute suboptimal policies to minimize the cost (7d) for
the uncertain system while satisfying the constraints (6)).
Without any loss in robustness of constraint satisfaction, the
setpoint can be estimated using a nominal parameter estimate
6. In order to ensure robustness of constraint satisfaction in
face of the uncertainty, one can solve the robust optimization



problem

T
Qe — re)llooH[R(me (1) — uf)lloo,

min max
II 0€O,
wyeW t=0
S.t. A(Q)xt + B(Q)m(xt) + wy = Tt41,

Fay + Gmy(ay) < 1,

(®)
Yt = CIta
A(O)z; + B(O)u;= {4,
Cxi=ry, Vi€ NOT,
Ty = :%, xH = .

Nevertheless, the robustness guarantees provided by could
also result in conservatism when O is large. This conservatism
can be reduced by using the measurements from the system
to reduce the size of the uncertainty set @I) To this aim, set
membership identification [23] is used in this work (Section
[T-A). In this approach, the uncertainty set © is updated by
constructing non-falsified parameter sets from state measure-
ments and control inputs. This results in a dual effect for the
control, where the control inputs affect both tracking quality
and identification performance. It is well known that such
problems can be highly non-convex, even for scalar systems
with small control horizons 1" [36]. For this reason, the control
problem () is reformulated as described below.

The control policies 7 (x;) are restricted to be time invariant
and affine in the state variable, and are formulated by using
an estimate of the state and input setpoint, and a prestabilizing
feedback gain (Section [[I-B)). At each time step k, a feasible
input sequence for a shorter time interval [k,k + N — 1]
(called the prediction horizon, with length V) is computed
using MPC. In addition, a tube MPC approach [37] is used
to construct a robust state tube consisting of all the states that
the system could reach in the prediction horizon under the
defined control policy and an updated parameter set (Section
[I=C). Tube MPC controllers ensure that the last set of the
state tube lies inside a robust invariant set called the terminal
set, which is in general computed offline. In Section [[I-D| an
online algorithm to design robustly invariant terminal sets is
proposed, which uses the updated parameter set to improve
the tracking performance.

To enable dual control, the effect of control input on the
identification is modeled in Section [[II-A] and a predicted state
tube is constructed in Section [[II-Bl The robust cost function
in is then approximated by a worst-case cost over the
predicted state tube (Section [[II-C). This captures the dual
effect of the control using an application-oriented metric [16].
Moreover, the cost to be incurred after the end of the prediction
horizon (hereafter called cost-to-go) is approximated by using
the remaining time in the control horizon and the contractivity
of the terminal set. This allows a novel trade-off between
exploration and exploitation which will depend on, among
other things, the number of time steps remaining in the control
horizon. The dual adaptive MPC (AMPC) algorithm and its
properties are discussed in Section

B. Notation

The sets of real numbers and non-negative real numbers
are denoted by R and R>( respectively. For a vector b, ||b]x
represents the k—norm for k € {2,00}. The i*" row of a
matrix A is denoted by [A];, and ® represents the Kronecker
product. The dimensions of matrices and vectors are not
always specified when they can be inferred from the context.
For any real scalar-valued function J, Iillleaﬂ_)ﬂ( J(h) refers to the

maximization of J over the set H. The Minkowski sum of two
sets A and B is denoted by A @ B, and 1 denotes a column
vector of appropriate length whose elements are equal to 1.
The convex hull of the elements of a set S is represented by
co{S}. The notation a;);, denotes the value of a at time step
k + 1 computed at the time step k. The identity matrix of size
n X n is denoted by I,,.

[I. TRACKING FORMULATION FOR AMPC

In this section, the constraints in FHOCP (8) are refor-
mulated using MPC and set membership identification is
introduced to reduce the size of the uncertainty set online. An
existing tube MPC approach is modified to enable setpoint
tracking by defining the control law as a function of the
reference trajectory and the estimates of the system’s uncertain
parameters. Offline and online designs of terminal sets are then
proposed.

A. Parameter identification

Set-membership identification is a technique used to identify
systems affected by bounded noise with unknown statistical
properties [23]. In this method, the measurement data is used
to update a set of feasible parameters, denoted as ©,. In order
to ensure that the number of constraints in ©; does not increase
at every time step, it is defined as

O; = {9 S RP|H¢99 < het}7 ©)]

where hg, initialized with hy, and updated online using
measurement data. To perform the update, a set of non-falsified
parameters is constructed using the last 7 measurements as

A, :_{9 ERP| — HyDi0 < hy + Hydig1,Vi € Nij}
={0 € RP | HAO < ha}, (10)
where D; := D(z;,u;) € R"*? and d; 41 € R" are
D; = [Aizi+Biug, ..., Apri+Byu]
diy1 := Aowy + Boug — g1,  Vie N1 (b
Using (T0), ©; is updated such that
0, 20,1 NA; (12)

is satisfied. This is ensured by calculating hg, according to the
ng linear programs ( Vi € N7°)

(13)



The optimization problems in (I13)) ensure that the set update
satisfies ©®; C ©;_1, because the maximum value of the
objective is upper bounded by [hg, ,]; in the constraints. Thus,
the parameter identification in (T3] results in sets ©; of non-
increasing size. Note that the the quality of identification
improves by increasing the number of hyperplanes chosen to
represent the set ©;. However, this results in an increase in the
computational complexity of the MPC optimization problem
later formulated in Section

In addition, a parameter estimate 0, is computed, which
will be used to define the control law and the setpoints in
the cost function. At each time step, this estimate is computed
using the center of the maximum volume ¢5-norm ball that can
be inscribed inside the set Oy, also known as the Chebyshev
center of the set [38]. The estimate, 6y, is the optimal value
of 6. in the following quadratic program

Te — :LLHGC - ék—ngﬁ
s.t. [HoliOc + 7c||[Holil|2 < ho,, Vie N7,

where the second term in the cost function ensures that the
problem has a unique solution, and the parameter p > 0 must
be chosen to trade-off rate of change in the parameter estimate
with the distance from the Chebyshev center of the set.

Remark 1: The Chebyshev center of a set reduces the
deviation of the estimate from the true parameter based on
all the points in parameter set. Alternatively, one can use a
least mean squares or a recursive least squares filter [39] to
obtain the parameter estimate.

max
C~,96

(14)

B. Control policy parameterization

In order to formulate a computationally tractable optimiza-
tion problem, a receding horizon approach is used, where at
each time step k, a feasible input sequence is computed for
the prediction horizon [k, k+ N — 1]. Note that k will be used
as the time index while formulating the MPC optimization
problem at time step k. Within the prediction horizon, the
control policies 7y (xy) are restricted to be affine functions of
xy, with the linear term being time-invariant. The policies also
depend on estimates of the state and input setpoints, which are
computed using the parameter estimate 6.

In order to estimate the state and input setpoints (z},uj)
along the prediction horizon, the following set of linear
constraints can be defined along the lines of (7¢),({7f)

A(Or) B(6k)] [Zyk,k D1k k N1
R = ’ Vie N 15
[ ¢ 0 ]|k Trptr | €No - (15

where the subscripts in 7 ;, denote that the estimate of the
setpoint at time step k-1 (first subscript) was computed using
the parameter estimate 6 (second subscript). The unknown
setpoints (2}, u[,,) can be approximated by (Zyx k, Ui|k,k)
within the MPC horizon, i.e., for I € N)'~'. In addition, the
setpoints at the end of the prediction horizon are defined as
AOr)—I, B(Ok)] [Znkk _| 0

C 0 UN |k, k Tk+N

The constraints define the setpoints (T .k, Un|k,k) s an

equilibrium state and input, which will be used in the design
of online terminal sets in Section

(16)

Assumption 2: The system satisfies m > n,, ie., the
system has at least as many inputs as the desired outputs to
be tracked. Additionally, for all § € ©, the system satisfies

o ([ 2407 ) e,

rank ( [A(ag_l” B (()9)} > =n-+ny,

where the matrices Ay () € RN"*Nn B () € RNmxNm
and Cy € RN™>Nny are defined as

A7)

A) T, 0 ... 0
0 A®) I, ... 0

Asl(e) = ) (18)
0 . AB) —I,
0 A(6)

By(0) =In® B(0), Cy=In®C,

and ® denotes the Kronecker product operator.
Note that Assumption [2] is made so that there exists a state
and input setpoint sequence satisfying (I3), (16) for any given
reference trajectory and any parameter in the set ©¢. Similar
assumptions are made in tracking MPC literature considering
systems with model uncertainty in the system matrices [33].
The control inputs in the prediction horizon are now param-
eterized as

we(r) = K(z — Zyer) + v, VIEN) (19)

where {vy;,} l]i 61 are decision variables in the MPC optimiza-
tion problem and K € R™*™ is a prestabilizing feedback
matrix which satisfies the following assumption.

Assumption 3: The parameter set ©¢ is such that there
exists a feedback gain K which asymptotically stabilizes
Au(9) = A(9) + B(O)K, V6 € ©.

Such a stabilizing feedback gain K can be computed using
standard robust control techniques, for example, as suggested
in [40].

C. Robust state tube

The robust tube MPC approach proposed in [21] is now
modified for the tracking problem using the setpoints Z
in the prediction horizon. A robust state tube is constructed
to contain all the states that the system can reach under the
control law (19), for all realizations of § € O and w € W.
Specifically, the state tube {X;;,}/Y satisfies

Xo\k > {xx}, Xl—',—llk' D A(@)X”k S>) B(Q)u”k OW, (20)
V0 €O, 1eNY

To ensure that the representation of the sets Xy, is tractable,
they are defined as a sequence of homothetic sets [37], that is,
as a translation and scaling of a predefined polytope Xg. This
polytope is designed offline, and has the description

Xo := {z|Hyz < 1} = co{z!,2?,... 29}, (21)

where H, € R"*" and {z',2%,... 29} are the vertices of
Xo. In the online optimization, the center of X is translated
using 7, € R™ and its size is scaled by oy, € R> to define



the set X;5. Thus, the propagation of the state tube is defined
by the optimization variables {2, oy k1Y, according to

Xije = {2x} © )Xo

— 1,2 q
b
{2k} © aqpeo{z™, 2%, ... 2}

= {2|Hz (v — z1) < ayi1}
(22)

Using the above parameterization, the constraints (6) and
set dynamics (20) can be reformulated as linear constraints
in terms of the optimization variables. For this purpose, the
following notation is used

Joo_ j Jo_ J =
Ty = 2k o’ w), =K (2], — Tyjee) ok,
; i j‘ jl j (23)
Dl|k = D(Il\k’ “1\k>7 dl\k:onl|k+B0ul|k Atk

where j € NY,1 € N)Y~'. Note that unlike the definition
in (TI) where D, and d, are functions of known states and
inputs, the quantities Dljlk and d{‘ ., linearly depend on the
optimization variables. Additionally, the vectors f and w are

n

computed offline such that for ¢ € Nj<, j € Nj~,

[f]: = max[F + GK];z,

D] = H,]w.
b [w]; = max [H,];w

wew (24

The following proposition reformulates the robust constraints
and set-dynamics as affine constraints.

Proposition 1 ([21, Proposition 9]): Let the state tube
{Xyk}L, be parameterized according to (22). Then, the
constraints (6) and set-dynamics (20) are satisfied if and only
if VjENY, IEN) ™, there exist matrices A, € REY™ with
non-negative elements such that

(F+ GK)zyp, + Guyp—GE Ty p, + ogpf <1, (252)
—Hyzo — ol < —Hyg, (25b)

A{|kh9k + sz{\k — okl < —w, (25¢)
H,Dj, = A}, Hy. (25d)

D. Terminal set

The system’s state must not be driven into the regions of
the state space which could result in constraint violations after
the prediction horizon. This can be guaranteed by ensuring
the MPC algorithm is recursively feasible, which is generally
achieved using a robustly invariant terminal set and a terminal
control law.

Definition 1 (Robust Invariance [20] ): A set X is said to
be robustly invariant under the dynamics (I) and a terminal
control law w(z) if A(f)z + B(O)n(z) + w € X and
(x,7m(z)) € Zforall z € X,0 € © and w € W.

In this paper, we use a similar approach to that followed in
[28] and impose terminal constraints to make sure that X
lies inside an invariant set. As the controller in [28] is designed
to perform regulation, the center 2y, was set as the origin
and ay |y, is bounded by a precomputed constant &. However,
a different strategy must be employed for reference tracking to
account for the uncertainty in the input setpoint. We propose
two different methods, offline and online, for the design of
terminal sets.

1) Offline terminal set design: To design the terminal set
offline, the initial parameter estimate A is used to generate
setpoint estimates (Zy|x,0,Un|k,0) for k € NOT*N. These
setpoints might not lie in the feasible region Z. For this reason,
the terminal set to be used at time step k is defined using an
artificial setpoint (0, %n|k,0) and an upper bound a s, €
R>0 on apyi. The size of the terminal set is thus specified
by @k, which is large when the setpoint (Zx/x,0, Un|k,0)
is far from the constraints (6). The terminal control law is
chosen to be of the form 77 (z) = K (2 —Z n),) + @) Hence
TN|k,0, UN|k,0 and & are computed offline by solving the
following T'—N+1 quadratic programs (for k € Ng*N )

_ omin 3+
TN|k,0,UN|k,0:¥N k>
ZLN|k,0:UN|k,0

|12 N|k,0 =T N |k,0
@ k0= TN k0l — E0n,
ot A(é@) -1 B(go) TN|k,0 _ 0
o C 0 UN|k,0 Tk+N
F(Znkotanpe’) + G(ingo + anvpKa’?) <1,
H (A(0")(Z Nk 0+an ke’ )+

B(0")(tn g0 + anpKa?))+w < ayppl, (260)

Vi e N¥? j e NY,

] , (26a)
(26b)

where the cost function tries to minimize the distance between
the artificial and estimated setpoints, and the constant & >
0 trades off this distance with the size of the terminal set.
Note that {0°}%, represent the vertices of the set ©¢. The
constraints (26b) ensure that the terminal set is within Z, and
imposes the robust invariance condition. The set Xy,
is constrained to lie inside the invariant region by setting:

2Nk = TN|k0s  ONk < ANk (27)

Although the terminal sets designed in (26) account for the
reference trajectory and can be tuned to find the largest
terminal sets, such an offline design would be conservative for
two reasons. The first reason is that the identification step (13)
updates the parameter set and can result in a larger terminal
region, which is not leveraged in this approach. The second
reason is that choosing the size of the terminal set apriori can
lead to poor performance. For example, choosing a small &
results in a small terminal set and reduces the feasible region
of MPC.

2) Online terminal set design: The reasons discussed above
motivate an online design where zy), is set equal to an
optimization variable Z y;, € R", whose distance from Ty x
can be minimized by the MPC optimizer. Additionally, x|y, is
upper bounded by a scalar optimization variable a |, € R>o,
which is constrained such that the terminal set XEl =
TNk © anpXo is robustly invariant for the system (T) under
the terminal control law

T

T (2) = K(x — Zn)s) + Uk (28)

where 1y, €R™ is an optimization variable. Using the nota-
tion
% N A J ~J Jj A ~
Ty = ENe +anpa’, Uy = K@y, — Zype) + e,
J ~J ~J - ~J ~] A
Dy = D(xN|k7uN|k)7 Ay = AOxN|k + Botiy ), — TN (ks
(29)



for j€N?, robust invariance of XEI , can be formulated as

Finpg + Gy + anef <1, (30a)
Ag\f\khek + deg\qk —anikl < —w, (30b)
H,DY, = Ay, Ho, (30¢)

where j € N{ and A, € RLH*™ are Lagrange multiplier
variables, similar to . The feasibility of the constraints
in (30) will be addressed in Proposition [2] The optimization
variables defining X ), are constrained as

ZNIE = TNk  ONJk < ANk (31)

Thus, the online terminal sets guarantee robust invariance for
parameters in Oy instead of O, and also provide flexibility to
increase their size depending on the feasibility of the reference
trajectory. In view of these advantages, the subsequent sections
formulate the MPC problem using online terminal sets.

Remark 2: Note that a terminal set is used in the MPC
approximation of for the time steps k& where k+N<T
in order to retain feasibility after time step k+N. When
k+N>T, i.e., towards the end of the control horizon, the ter-
minal constraints can be omitted from the MPC optimization
problem and the value of N can be appropriately shortened.

3) Design ofXy: An important aspect of the MPC algorithm
is the design of Xy, which is used to propagate the set
dynamics as well as parameterize the terminal set. Thus, an
essential design condition for X is that (30) can admit a fea-
sible solution. Using Assumption [} the following proposition
shows that the feasibility of the terminal constraints can be
guaranteed.

Assumption 4: The set Xg is such that there exists a scalar
Ac € [0,1) satisfying

H,(A0)z + BO)Kz) < A1, V0€O,zeX,

(32a)
(32b)
where f = max|[fl;,i € Nie.

K2
The conditions in (32a) imply that the set X is A-contractive

with contractivity factor A, for the undisturbed dynamics of
the system under the control law u = Kz.

Proposition 2: If AssumptionE] is satisfied, then the termi-
nal conditions (30) admit a feasible solution.
Proof: The contractivity of Xo (32a) implies

H,Aq(0)2? <A1, 6€©,jcNL. (33)

Using Definition [I] the conditions for robust invariance of
XJ|), can be written as

Fa+ Grl(x) <1, (34a)
Ho(A(0)z + B(O)m k() + w — Enp) < dnpel,  (34b)
Vo € Xy, 0 € O,w eW.

Substituting the control law (28) and using (24), (34a) can be
rewritten as (302). Similarly, (34D) can be reformulated as

—Inp) + 0 < anpel,
= H,(Aa(9)(anpa?) + A0)T N + B(0)dnye (35b)

Note that is equivalent to the pair of equations
(30D),(30c), where the Lagrange multipliers Ag\flk are used
to reformulate a maximization over # to ensure robustness.
The equivalence holds due to strong duality. Using (33), the
condition (35b) is always satisfied if

w + Hy (A0)Z N + BO) Nk — Tnpk) < dnje(l — Ae).
(36)

It can be seen that the conditions (30a) and (36)) admit Z s, =
unjk =0, and ), = 1/f as a feasible solution. [ |
Although the above proof provides a feasible terminal set with
center at the origin, the parameter ). is a design variable which
can be tuned to allow other feasible solutions. The offline
design procedure to be followed is described in Algorithm
1. Given the system dynamics, a control gain K is first
designed. Then, a A-contractive set Xy with a chosen A,
is constructed using the algorithm given in [41, p. 3]. An
important point to consider is that the design of X, affects
the control performance through the choice of A., and the
number of vertices ¢ and hyperplanes n, in X affect the
computational complexity as seen in (23).

Algorithm 1 Offline design procedure
Input: ©, Output: K, X,

1: Compute robustly stabilizing gain K (e.g., see [40])
2: Choose a contractivity rate A. € [0,1)

3: Compute X, as suggested in [41, p. 3]

4: Compute the constants w, f s f

5. if \c <1 —wf then
6
7
8
9

: STOP
. else

Return to step 1, redesign K, X,
: end if

Remark 3: Note that the design of polytopic contractive
sets is a difficult problem, which has been extensively studied
for linear systems [42], [43], [44]. The upper bound (32D}
in Assumption [ implies that the condition in step [3 of
Algorithm (1] is satisfied. If this condition is not satisfied,
one must redesign K and choose a new A.. Even though
there is no systematic way to ensure an improved design
at the next iteration, one heuristic that worked in practice
was to choose smaller )., and impose A-contractivity on the
ellipsoidal region stabilized by K [40].

[1l. DUAL CONTROL USING CONSTRAINT PREDICTIONS

The robust state tube defined in Section [l ensures that the
constraints are satisfied for any parameter in ©. This section
models the effect of the control inputs on the identification
scheme to enable dual control in closed loop. For this purpose,
we define predicted variables and sets which are analogous to
the ones defined in Section [lIl These predicted quantities are
denoted with a hat (©).
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Fig. 1: The parameter set © is bounded by the constraints
shown in red, and the parameter estimate 0, lies inside this set.
The predicted bounds are shown as dashed green lines, which
depend on the control input variables vy);. The green shaded
region shows the resulting predicted parameter set 6 Nolk-

A. Predicted parameter set

The parameter identification step (I2) connects the control
inputs to the parameter sets in closed loop. This link can be
leveraged within the MPC problem by predicting the future
state measurements as ;) according to

Ere1 = AOk) ik + B(Or)

W = K (e — Tuep) + o VLE N (37)

Lok = Tk,

where 0, is the parameter estimated by (T4), and Ny € NJ' is
the lookahead horizon. Using these predicted measurements,
the predicted non-falsified sets {4 k}i\fl are defined as

Ay = {0 &1 —A(0) 24— B(O)iy, € WVt € Ny}
(38)

The hyperplanes defining the sets A” . depend affinely on the
control input variables v, as seen in (37). This dependence
is omitted for clarity of presentation. A sequence of predicted
parameter sets {O;;}/v, C O}, can now be defined as
@l\k = 0L N A”k = {9 S RP|H9”k9 < h‘9L|k}' 39
An illustration of the parameter estimate, the predicted con-
straints and parameter set is shown in Fig [I]
Remark 4: Note that the lookahead horizon Ny must have
a minimum value of 2. This is because, when Ny = 1 the
predicted non-falsified set A No|k 18 described by the first
control input uy and the known state measurement zj. This
means that, if some uncertain parameters only affect the matrix
A(0), the predicted constraints on these parameters cannot be
characterized as a function of the MPC optimization variables.
As a result, there would be no dual action of the control input
for these parameters. Additionally, it can be seen that as Ny
increases, the length of the input sequence affecting the param-
eter estimation increases, allowing for improved identification.
However, this also results in higher computational costs due

to the non-convex constraints in the optimization problem, as
seen in Section [LII-BI

state

k+N time T

Fig. 2: Evolution of the robust state tube X;;, (red, solid) and
the predicted state tube X” . (green, dashed). The reference
trajectory (black, dashed) and the state constraint (blue, solid)
are also shown. The cost function is predicted using X”k, and
cost-to-go is estimated using A-contractivity (green, dotted).

B. Predicted state tube

In order to capture the effect of uj on the performance via
the cost, a predicted state tube is constructed such that

Xouc > {71},
Xl-i—llk ) A(@)X”k S B(G)u“k eW, Vo e é”k,l € N(I)Vg_l
Xl-f-llk D) A(@)X”k S B(G)u“k eW, Vo e éNg\kal € N%;l.
(40)
Note that the same control law (I9) is used to propagate the
robust and predicted state tubes. However, the parameter sets
in (20) and (@0) are different. The sets X, = {2} ® dxXo
are parameterized using Z;, € R™, &y, € Ry forall l € NYY.
The following notation is now defined for j € N%,1 € Ny’ ~*

J
.Z‘llk— Zl|k + Otl|kl’
Dl|k D(T’uk’“uk)

dl|k = AO:’:W@ + Boul|k = Z 1k
Ul|k = K(%\k—xuk k) T Uik
(4D

The next proposition formulates the dynamics of the predicted
state tube as affine constraints.

Proposition 3: The predicted state tube {X” k1Y, satisfies
the set -dynamics @I} if and only if, for all j € Nq and [ €
N~ there exists Al| L € Rnfx(nﬁn“’) such that

—HyZoj, — doipl < —Hyg, (42a)
Allkhellk + H dl‘k‘ &l-‘rl‘kl < 7'11) (42b)
H, Dlj\k A?\kHauk (42¢)

The constraints (@2b) and (@2c) are bilinear in the optimization
variables, because the hyperplanes defining A” . are affinely
dependent on the control input variables v, as seen in
(37).(38). An illustration of the robust and predicted state tubes
is shown in Fig. 2] It can be seen that predicted state tube
always lies within the robust state tube (X”k C Xjjx), because
@llk C Oy according to (39).

C. Predicted cost function

The predicted state tube captures the effect of the control
input on the resulting uncertainty as well as the dynamics.
However, its dependence on the parameter estimate §;, means
that it cannot guarantee the trajectories to lie within the con-
straint set. A popular strategy used in safe-learning literature
is to decouple the robustness and learning [45]. This approach



is used here, whereby the constraint satisfaction is ensured by
the robust state tube, and the predicted state tube is used to
define the AMPC cost function as the sum of stage costs and
a terminal cost,

QXK yes Taji, s T Moo LV oo i) 1=

N-1

E J Xk T s Wtk o> Vi )+
1=0

(43)

JT (XN ks TNk k> UN|k k> UN|E)-
The stage cost J (X, Zy|k k, Uik, V1) is defined as

max [|Q(Cr — ri41)||oc (44)

ZGX”k

+R(K (7 — Zyjie k) + Vi — Wi i) oo

T X1 s Tt o> Ut o> Vi) =

where the maximization over the predicted state tube is used to
approximate the worst-case performance due to the uncertainty
and disturbance. Using an epigraph reformulation, (@4) can
be described as a linear cost function [38]. The terminal
cost function JT(XNUC7 TN|k,k» UN|k k> UN|,) Must capture the
cost-to-go from time step k + N to 7. This is approximated
using the A-contractivity of the terminal set as

JT(XNUijUc,ImaN\k,kaﬁN\k) =
max Bk -+ N) (I1Q(Cz = rin)lle

ZEEXNW
+|R(K(2—ZN|kk) + Unjg — ﬂN\k,k)”OO)a

where B(k) = (1 — AT=%)/(1 — \.) is a time dependent
factor. The cost-to-go is approximated using S(k) under the
assumption that the reference trajectory does not change and
that the system is undisturbed in the time horizon [k + N, T].
Thus, the cost function defined in @) estimates the perfor-
mance benefits of exploration within the prediction horizon
in the stage cost (@4), and approximates the benefits after
the prediction horizon in the terminal cost (@3) by using
the contractivity and remaining length of the control horizon.
Moreover, the cost function (@3) enables application-oriented
dual control, since the optimizer can trade-off exploration with
exploitation based on the estimated improvement of a robust
performance metric.

Remark 5: The optimal control problem (7)) uses an infinity
norm in the cost function, which enables to describe the
MPC worst-case cost (3] as a linear function using epigraph
reformulation. Instead, if a more standard quadratic cost is
considered in (7) and in MPC, the maximization of a quadratic
function over the predicted state tube sets can be described
using second order cone constraints.

(45)

IV. DUAL ADAPTIVE MPC

In this section, we formulate the dual adaptive MPC algo-
rithm using the robust and predicted state tubes described in
Sections [l and [T} An overview of the different parts of the
algorithm is shown in Figure 3] The two main contributions of
the paper can also be seen in the figure, as (i) improvements
to tracking MPC using the blocks from Section [[I] and (ii)
the proposition of a novel application-oriented dual control
scheme using the blocks from Section [ITI]

A. Algorithm

The decision variables of the MPC optimization problem
are

N . . AN
{Zl|k7al|k}l:07 {Zl|k7al|k}l:07
j Aj N-1
e = 4 vk {Aﬂk}g’:l’ {A{\k}?:l}z:o ) )
N

L L i 4
{20k Wik § g NI AN O s {AN 3y

46)
and the optimization problem can be written as
min Q({XKuprer aji Tk Heo {00k g v i)
st (F+GK)z + Guye + ogpef < 1, (47a)
—Hyzopp — aoipl < —Hyxy, (47b)
A pho, + Hod))y — ipqpl < —, (47c)
H,Dj, =N Hy,  (47d)
—HyZoj — Gojpl < —Hyxyg, (47e)
[\g‘lkﬁ@”k + HIcZg"k — &l < -, (47
H,D, = N Hy,,, (472
A(6r) B(Hk)] [331|k k:| |:xl+1k: k:|
TR = 1, (47h
|: C 0 Uik, k Tk @7
(F+GK)9~CN|k+GﬂN‘k+dN‘kf§ 1, “471)
Al ho, + Hedy ) — anppl < —o, (47j)
H,DY\, = Ay Ho,  (47K)
2Nk = TNk ONk < ANk, @m
A(Ox)—I B(Or)] [Znpk i 0
i ' R = , 47m
[ c 0 UN |k k TheN (47m)
ar 20, . = 0, anpg >0, (47n)
Ay >0, A, >0, A%, >0, 470)

Vi e N4, 1 e NY L.

The cost function of the optimization problem is defined in
(@3). The constraints (@7a) model the state and input con-
straints, @7b)-@7d) propagate the robust state tube according
to Proposition [T} The constraints (@7¢)-@7g) propagate the
predicted state tube as defined in Proposition [3] and (@7h)
computes the setpoint estimates used in the stage cost and in-
put parameterization as stated in (T3). The terminal constraints
from (30) are reproduced in @7i)-(@7I), and estimates
the terminal setpoint as defined in (I6). The optimization
problem is a nonconvex bilinear program due to the
bilinear constraints @71), @7g).

The dual AMPC algorithm that can be used to solve () is
described in Algorithm [2] The prestabilizing gain K and the
state tube shape X are designed offline using Algorithm
The value of hg, is initialized according to (E[), and an initial
guess is used for 6.

Remark 6: An important property of tracking MPC algo-
rithms is to guarantee offset free tracking. Nevertheless, such
a guarantee can only be proven asymptotically for systems
affected by disturbances and model uncertainties [29], [33].
This cannot be achieved in a finite horizon setting, such as
the one considered in this paper. However, the modifications



MPC Optimization Problem
Control input Robust State Tube
Parameterization Tube Inclusions Terminal Set
(2) X X7
Parameter L :z:- llkm N |’“-
Section [[I-Bl Section Section [I-D
"ksk+N| - Identification | T ug
Tk @k,ak o
Section [CA] Predicted State Tube
Predicted Tube Inclusions Predicted
Parameter Set S Cost Function
éNe|k ) S -XWTIIEE ] Q(Xuk)
Section [II=A] cction Section [[I=C|

Fig. 3: A schematic highlighting the different parts of the proposed dual adaptive MPC algorithm. Each block shows the main
variable, set or function computed in that block. The measurements x; are obtained from the system, and the control inputs
uy, computed by the optimization problem are applied to the system.

Algorithm 2 Reference tracking using dual AMPC

Input: z, 7

Offline Design K, X using Algorithm

Online

1 k+1

2: repeat

3 Obtain the measurement xy,

4: Construct Ay, according to (10)

5: Update hg, using (T3) and compute 6, using (T4)
6: Solve optimization problem (47)

7 Apply the control input uy, = K(x} — Zg,k) + vo|k
8: k< k+1

9: until k£ + T

proposed in Section are not restricted to finite horizon
problems, and can be used along with AMPC to achieve offset
free tracking. For such an objective, the exploration based
cost function must be replaced by a certainty equivalence
one, based on the parameter ), which is updated using a
stable observer. Additionally, the algorithm must ensure that
the estimate satisfies f, — 6* asymptotically, using conditions
such as persistence of excitation [22].

B. Recursive feasibility

One of the main objectives of the proposed dual AMPC
method is to ensure robust constraint satisfaction while navi-
gating the exploration-exploitation trade-off.

Theorem 1: Let Assumptions [2] 3] and [4] be satisfied, and
the optimization problem be feasible for the initial time
step k = 0. The trajectories of the closed loop system using
the dual AMPC algorithm (2)) will satisfy the constraints (6)),
and the optimization problem (47) will remain feasible for all
ke NT.

Proof: The recursive feasibility of will be proven by
induction. The feasibility at time step k = 0 is assumed. Let
the solution of at time step % be denoted as y;;, where the
superscript * is added to all the variables in (46). Moreover,
denote the robust state tube as {Xj o}, and the terminal
set as X%Tk Using these variables, a feasible solution can be
computed at the time step k + 1.

Because the robust state tube also satisfies the set-dynamics
of the predicted state tube (40), one only needs to find a feasi-
ble solution for the input variables {v;| ,C_,_l}lzi 61, robust state

; N J q N-1

tube variables {Zl|k+17 al|k+1}l:0a {{Al|k+1}j:~1}l:0 )
; : = -~ ~ J q

terminal set variables & n|41, UN/|k+1, AN k41 {AleH}j:l.

Before the optimization problem is solved at the next
time step, the parameter estimate 6, and set ©y, are updated to
~ . _ _ N
011 and Oy respectively. Let {1 511, Urlkt1,h+1 )
be a set of feasible solutions to the equations (I5)) and
calculated at time step k£ + 1, which exists due to Assumption
Consider the sequence of input variables for | € N

and

Vi—1jk+1 = V) + K(Zi1jk1 — Z)jk)- (48)
This results in the control law
U _1|p41(2) = K (T — Zj_1jpg1) + Vi—1jk1 49)

= K(z —z),) + vjj, VIENY,

which is equivalent to the optimal control law computed at
time step k. Similarly, by defining vy_jjp41 = ff;\,lk +
K(Zn_1jp41 — j?\uk)’ the terminal control law computed
at the time step k£ can be used to compute a feasi-
ble solution for vy_,41. Because the updated parameter
set satisfies ©r41 C Oy, the robust state tube variables
{Zuk41, s {A{‘kﬂ}g:l}ﬁgl can be computed by setting

Xi_pe1 = Xfjp,  VIENY. (50)
The robust invariance of the set XE*“C implies that
XL 2 Aa(0)X e @ BV & W. (51)

Thus, the values of the robust state tube variables
{z a } are computed by setting X = XTx
N|k+1, AN |k+1 p Yy g AN|k+1 Nk
Additionally, robust invariance of X%Tk also implies that the
terminal set variables iN|k+17ﬂN|k.+1,&N‘k+1, {Ajwkﬂ}?:l
can remain unchanged from the optimal values at time step k.
Using the above procedure, a feasible solution to can
be constructed for the time step k + 1, proving the recursive
feasibility of Algorithm 2]by induction. Finally, the constraints



(6) are always satisfied because the robust state tube lies within
the constraint set, as shown in Proposition [T} [ |

Remark 7: Tt can be seen that the optimization problem 7))
is recursively feasible due to the flexibility provided by the
online terminal sets. This is because even if ri41 # 7, the
optimizer can choose to center the terminal set at Typ11 =
:ch‘\” o ensure constraint satisfaction. This would not be
possible with the offline design of terminal sets presented in

(26) and 27).

C. Tube inclusion approximation

It can be seen that the number of constraints and variables
involved in the optimization problem depends on the
number of vertices of Xg, i.e., ¢. This means that the com-
putational complexity of the optimization problem can grow
combinatorially with the state dimension. This drawback of
robust adaptive MPC has been addressed either by choosing
a restrictive structure on the ©p matrix [46], or using a
distributed optimization approach by imposing structure on
the system dynamics [47]. In this work, we propose a novel
way to limit the optimization problem size by parameterlzlng
the Lagrange multiplier variables A”k, Az| & A

Define the matrices E; = [A;+B;K —B; K B i), Vi € Nj

T

and vectors ey = [z;lk Tk v;‘k} , VI € N). At each
time step, before solving the MPC optimization problem, the

matrices A} € R™»*" ¥j € N{ are computed such that

N Hy = H,D(27, Kz7). (52)

Then, the following quantities are defined
A;, = min A A\, = maxAihgk + H,(Ap + BoK)a’
jEN? jEN?
(53)

where the minimization and maximization are performed ele-
mentwise. Then, the following lemma reformulates the vertex-
wise tube inclusion constraints so that they can be applied on
the state tube variables.

Proposition 4: Let the matrices Ay, satisfy

Ay + gy, >0, (54a)
A”kHQ = HL [El E2 e Ep] X el|k:7 (54b)
Ayrhe, + A + HeEoey — Hezppa e — agprpl < —0.

(54¢)

Then A{Ik = Ay, +ay), A satisfies the constraints @7c), @7d)
Vj € Ni.
Proof:  First, consider the constraints (47d), where the
term Hlejl , can be written as
J
H,Dj,
Thus, the vertex dependent part of the equality constraint can
be separated from the vertex-independent part. The former
is ensured by (32), and the latter by (34B). Then, consider
the inequality constraints (#Tc). Here, the term Hdj), can be
written as

H,d!

=H, [El FEo Ep] ®€l|k —&—oz”kHzD(xj,Kxj)

e = HxE()e”k - H'szl+1|k + aukaD(l‘j, Ka:j).

When the parameterization A{l e = Nk g kAi is applied to
([@TJ), it can be seen that oy, A, bounds the effect of the vertex
dependent terms. Thus, the inequality ensures for
all the vertices of the state tube. [ ]

Thus, by using the proposed parameterization, the robust
state tube can be constructed using fewer optimization vari-
ables and constraints as shown in (54), instead of using the
constraints #7c) and @7d) defined at each vertex of the state
tube. A similar approach can be used to parameterize A N1k
as A NIkt an kAk, thereby replacing the terminal constraints

@T)). @) with

AN|k +anipA, >0, (55a)
AnpHy = H, [Ey By ... E,)| @ énp, (55b)
Ay iho, +an At He Eoen e — Holing, — qgpnpl < —,

(55¢)

~ ~T ~T ~T T
where €y, = {lek TNk ule]
Finally, the Lagrange multipliers defining the predicted state
tube are parameterized as

A= [f\uk + oA, Aﬁk} ~ (56)

It can be seen that the first ny columns of MI , are pa-

rameterized using the precomputed Aj , while the predicted
constraints in A” r Will be multlphed by Al| .- Using (56), the
tube inclusion constraints and (@7g) can be replaced by
the sufficient conditions

Ay + agjedy, > 0, Al|k (57a)

A AR Ho = Ho [B1 Bo o Byl @éne,  (57H)
{f\uk Aﬁk] gy AN+ Ha Eoéy

—HeZipe — qppl < —w. (57¢)

The sufficiency of [57] follows from a similar proof as in
Proposition ] Thus the number of nonconvex constraints in
the optimization problem do not increase with the number of
vertices in the state tube set Xj.

The amount of conservatism induced by the proposed
sufficient conditions depends on the matrices Aj computed
according to (52)). Since the matrix Hy describes the bounded
set ©y,, it has more rows than columns. Thus, the choice of
A, is non-unique based on (52) alone. The quantities A, Ay
can be used to optimize over the feasible values of AJ. As
seen in (33) and (34a), negative values in Aj result in a
minimum positive magnitude for Ay, thereby growing the
state tube quickly as seen in (53c). In addition, large values
for Ay, directly influence the growth of the state tube in (55¢).
The following optimization problem is solved at each time
step to compute the matrices A7:

m%_n ||5‘7€H2 + M9||Ai”mam
k

st ALHy= H,D(, Ka), ©8)

Ak > ALhg, + Ho (Ao + BoK)a?, Vj e NY,



where 119 is a tuning parameter which must be chosen such
that the precomputed AJ, matrices do not have large negative
numbers or result in large \g.

V. SIMULATION STUDIES

In this section, we illustrate the advantages of the proposed
dual adaptive MPC scheme using comparative simulations
on two systems. The first example considers a 2 state, 2
input system with 2 uncertain parameters. The second example
considers a 6 state, 3 input system with 5 uncertain parameters
in the model. The code to simulate both the examples is
available in the online repository [48].

A. Two state example

For the first example, the model of the system is parame-
terized by the matrices

0.85 0.5 0.1 0 00
=102 07 M= 0 0.2]’A2_ 00]" s
5| 104 5 _ 00 B, _ |0 02
= 10206/ “t " |oo|’ 2710 0.35]°

where the state and input matrices are affected by different
uncertain parameters. The outputs to be tracked are the two
state variables, and thus a target state trajectory is given by
r,. In addition, because m = n, = 2 the constraint (T3]
defines a unique input setpoint. The uncertainty is defined by
the parameter set © = {§ € R?| ||0||oo < 1}. Note that the
parameter [f] is affecting the second input channel only, and
its relative effect on B(6) is larger compared to the effect of
[0]1 on A(#). The constraint set Z is defined as

||2]|oe <3 }

_ 2x2
Z—{(x,u)ER lulloo < 2

and the disturbance set is W := {w € R?|||w||s < 0.1}. The
cost function is defined by the matrices Q) = 215 and R = Is.

The controller using Algorithm [2] is referred to as dual
AMPC (DAMPC) in this section. The performance of DAMPC
is compared to the adaptive MPC algorithm proposed in
[21], referred to as passive AMPC (PAMPC). This is because
PAMPC updates the parameter set using set membership, but
does not model the dual effect of the control input in the
optimization problem. This makes the uncertainty learning
passive. The PAMPC controller was proposed in [21] for a
regulation task. For the sake of comparison, the algorithm is
modified to enable setpoint tracking using the offline termi-
nal set approach presented in Section [[I-D} In addition, the
PAMPC controller also uses (I3) to estimate the setpoints in
the MPC cost function. Both the controllers are used to track
a piecewise constant reference trajectory with five different
setpoints for 7" = 100 time steps, and use a prediction horizon
of N = 8 steps. The DAMPC controller used a lookahead
horizon Ny = 8 steps. The control gain K is designed such
that the unit hyperbox in 2 dimensions satisfies Assumption
E[, with A, = 0.96. This implies n,=4 and g=4 for the
chosen X,. The simulations are performed for 50 different
realizations of the parameter §* € ©. For each realization
of 6*, 4 simulations with different disturbance sequences
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Fig. 4: Comparison of closed loop costs over 200 simulations
with different realizations of uncertainty and disturbance.

{wi}I_, € W are performed. The values of 0* and {wy}7_,
are generated at random with a uniform distribution, and the
same parameters and disturbance sequences are used in closed
loop for the two controllers. Moreover, a third controller is
also designed with perfect knowledge of 6*. This controller,
called the FHOCP controller, computes an input sequence for
the whole remaining control horizon (from k to T') instead
of the a shorter prediction horizon. Moreover, the controller
also constructs a state tube using X, to be robust against the
additive disturbance. This controller is used to quantify the loss
of performance caused by the exploratory inputs applied to the
system in order to identify the parameters. All the controllers
are initialized with the same initial guess §, = [0.1,0.1]T, and
the initial state of the system is at the origin.

The closed loop costs achieved by the controllers for the
200 simulations are compared in Fig. ] where the frequency
of occurrence of the costs is shown on y-axis. The average
closed loop cost achieved by the FHOCP controller is 75.5,
DAMPC is 81.5 and PAMPC is 172.1. It can be seen from
the distribution of costs that the FHOCP controller results in
a slightly improved performance over DAMPC, especially in
the simulations with low closed loop costs. In order to provide
more insight on the variance of the costs, the distribution of
the costs achieved by PAMPC and DAMPC is plotted as a
function of #* in Fig. 5] where the costs are averaged over
the 4 realizations of wy for each #*. In this figure, each
circle is centered at the true parameter and its area represents
the averaged closed loop cost for that parameter. The figure
can be analyzed in four quadrants. In the upper-left quadrant,
both controllers show similar performance and relatively small
closed loop costs. This represents a region where passive
exploration is sufficient to reduce the uncertainty and track
the given trajectory. In the upper- and lower-right quadrants,
the DAMPC algorithm shows noticeably smaller costs. This
indicates that true systems from this region of parameter space
benefit from the active uncertainty learning. Finally, most
systems from the lower-left quadrant have relatively higher
costs for both algorithms. This is because some of the true
input setpoints u; lie outside the feasible region for these
systems.

The closed loop trajectories of the system for one realization
of the true parameters (9* = [—0.06,0.07]T) are shown in
Fig. [f] Only the first 60 time steps of the simulation are
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Fig. 5: Distribution of costs as a function of the true parameter,
averaged over the disturbance realizations. The center of each
circle represents the true parameter, and the area of the circle
is proportional to the averaged cost.

shown, because both DAMPC and PAMPC controllers identify
the parameters and have a similar response after this time
for this system. For the DAMPC controller, three different
values of Ny were used, and the trajectories are labeled as
Do, D5, Dg for Ny=2,5,8 respectively. It can be seen that
all the DAMPC controllers excite the system before ¢ = 20,
although the reference to be tracked is O and the system is
already close to the origin. This is an exploratory input signal,
which the controller activates immediately after a change of
reference setpoint is seen in the prediction horizon. The Dy
controller uses large input signals to identify the plant, since
it has assumes a short experiment length for identification.
The D5 and Dg controllers use smaller excitation signals,
and achieve lower closed loop costs. The PAMPC controller
does not use any exploratory excitation in the initial part of
the trajectory, as expected. This means that the uncertainty
set used by the PAMPC controller when the setpoint change
occurs is difficult to ensure robustness compared to the one
used by the DAMPC controllers, and it results in a poor
setpoint tracking performance. Moreover, it can be seen that
due to the large uncertainty in the second input channel, the
PAMPC controller does not fully use [u] until ¢ = 34 when
passive exploration has considerably reduced the uncertainty.

The simulations were performed using a Intel Xeon Gold
5118 processor with 2GB RAM. All the optimization problems
were implemented using YALMIP [49]. The optimization
problem of the PAMPC algorithm is a linear program, and was
solved using MOSEK [50]. The average computation times
for the solving the PAMPC optimization problem was 0.5s.
The DAMPC optimization problem is nonconvex, due to the
bilinear equalities and inequalities in (7). This optimization
problem was solved using I[POPT [51], which uses an interior-
point based line-search algorithm. The optimization problems
were warm-started with the solution obtained at the previous
time step. The average computation times for solving the
DAMPC algorithm for Ny = 2,5,8 were 0.5s,1.1s,1.8s

|— — Reference —e— PAMPC Dy Dy Dy

0 10 20 30 40 50
Timesteps

Fig. 6: Comparison of trajectories for PAMPC and DAMPC
(with Ny = 2,5, 8) for the first 60 timesteps. The true state and
input setpoints are shown as a dashed line, and the constraints
are shown in blue. Recall that the controllers do not have
knowledge of the true input setpoints.

respectively. The average values of the relative increase in
closed loop cost, of DAMPC compared to FHOCP were
16.3%, 11.6%, 10.8% for Ny = 2,5,8 respectively. Thus, it
can be seen that increasing Ny improves performance and also
increases the computational cost.

B. Six state example

As a second simulation example, we consider a mass-spring
damper system with three masses m;, mo, ms, each weighing
lkg and connected along a line by two springs and dampers.
Using the position and velocity of each mass as the state of
the system, the state matrix can be written as

0 1 0 0 0 0
—k12 —c12 k12 c12 0 0
A— 0 0 0 1 0 0
k1o ci2 —kia—ko3 —cia—ca3 0 0 ’
0 0 0 0 0 1
0 0 ka3 ca3  —kaz —ca3

and the input matrix as

0F, 0000
000F,00
0000 0F,

B =

where k;; and c;; represent the spring constant and damping
coefficient of the elements connecting masses ¢ and j respec-
tively. In addition, Fy, is an actuator gain on the control input to
give the force acting on each mass. The spring constants have
the nominal values k1o = 3.2Nm™! ko3 = 5.8Nm~! and
an uncertainty of +10% of their nominal value. The damping
coefficients are given as cjp = 2.3Nsm ™!, co3 = 4.5Nsm ™!



with a 5% uncertainty. The actuator gain Fy, = 6.4 with a
+7% uncertainty. The system dynamics are discretized using
Euler discretization with a sampling time of 0.1s to preserve
the uncertainty structure. The resulting model has 6 states (po-
sitions and velocities of the masses) and 3 inputs. Additionally,
an additive disturbance with a maximum magnitude of 0.05 is
acting on each state of the system. The outputs to be tracked
are the positions of the masses, and a reference trajectory of
75 timesteps is considered. The states and inputs of the system
are constrained to be within the bounds £5. The cost function
is defined by the matrices () = 2I5 and R = I3.

The tracking performance with PAMPC and DAMPC con-
trollers is shown in Figure [/| where the highest and lowest
values of the positions at each timestep over 150 simulations
(50 random realizations of 6*, each with 3 random realizations
of wy) are plotted. The DAMPC controller has a prediction
horizon of N = 6 steps and lookahead horizon Ny = 4.
The set X, is designed using Algorithm [I] and is defined
by 24 hyperplanes and 322 vertices. The system is affected
by 5 parameters (2 springs, 2 dampers and 1 actuator gain),
and the uncertainty set ©y, is represented as a hyperbox in 5
dimensions. Due to the large size of the resulting optimization
problem, it was chosen to use the tube inclusion approxima-
tions proposed in Section The PAMPC controller also
uses a prediction horizon of N = 6 steps. It can be seen that
the DAMPC controller tracks the reference better, as shown by
the closeness of the upper and lower bounds to the reference
trajectory.

The closed loop cost achieved by the DAMPC controller
is 85.4, and that of PAMPC is 135.6. This improved perfor-
mance comes at the cost of computational complexity. The
simulations were performed on a Intel Xeon E3-1585Lv5
processor with 6GB RAM. The average computation time
to solve the DAMPC optimization problem was 110.7s and
that of the PAMPC optimization problem is 105.4s. Note that
the DAMPC optimization problem was solved using the tube
inclusion approximations proposed in Section while the
PAMPC optimization problem was setup using tube inclusion
constraints at each vertex.

VI. CONCLUSIONS

In this paper, we propose an explicit dual control approach
to approximate a finite horizon optimal tracking problem for
uncertain linear systems. In order to learn the uncertainty,
an adaptive MPC scheme is used. A tracking formulation is
proposed to enable the computation of online terminal sets
which are robustly invariant. This is particularly beneficial for
adaptive MPC algorithms, since the uncertainty set is reduced
online. In addition, the cost function uses a predicted state
tube in order to model the dual effect of the control input,
and the contractivity of the proposed terminal sets is used to
approximate the cost-to-go of the optimal control problem. The
proposed algorithm guarantees recursive feasibility in the face
of changing reference trajectories and parameter estimates.
The resulting optimization problem is nonconvex due to terms
in the constraints, and its size can grow combinatorially with
the state dimension of the system. A novel tube inclusion
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Fig. 7: Reference tracking performance of the DAMPC and
PAMPC controllers when applied to the mass spring damper
example. For each mass, the highest and lowest values of
positions at each timestep over 150 simulations are plotted.

approximation is proposed to prevent this growth, which
can also be applied to other adaptive MPC schemes in the
literature. Two simulation studies highlight the performance
improvement achieved by the proposed algorithm over an
adaptive MPC approach which does not model the dual control
effect.

An interesting direction for future research is to extend
the algorithm for time varying systems, where exploration
would be beneficial throughout the control horizon. This is
not the case for time invariant systems, since exploration can
be stopped once the uncertainty set has been reduced to a
small size. Another promising direction is to implement the
algorithm using ellipsoidal sets to parameterize the state tube,
which would simplify the offline design of contractive sets.
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