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A Compressed Gradient Tracking Method for Decentralized Optimization
With Linear Convergence

Yiwei Liao , Zhuorui Li , Kun Huang , and Shi Pu

Abstract—Communication compression techniques are of
growing interests for solving the decentralized optimization prob-
lem under limited communication, where the global objective is
to minimize the average of local cost functions over a multia-
gent network using only local computation and peer-to-peer com-
munication. In this article, we propose a novel compressed gra-
dient tracking algorithm (C-GT) that combines gradient tracking
technique with communication compression. In particular, C-GT
is compatible with a general class of compression operators that
unifies both unbiased and biased compressors. We show that C-GT
inherits the advantages of gradient tracking-based algorithms and
achieves linear convergence rate for strongly convex and smooth
objective functions. Numerical examples complement the theoret-
ical findings and demonstrate the efficiency and flexibility of the
proposed algorithm.

Index Terms—Communication compression, decentralized opti-
mization, gradient tracking, linear convergence.

I. INTRODUCTION

In this article, we study the problem of decentralized optimization
over a multiagent network that consists of n agents. The goal is to
collaboratively solve the following optimization problem:

min
x∈Rp

f(x) := 1
n

n∑
i=1

fi(x) (1)

where x is the global decision variable, and each agent has a local
objective function fi : Rp → R. The agents are connected through a
communication network and can only exchange information with their
immediate neighbors in the network. Through local computation and
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local information exchange, they seek a consensual and optimal solution
that minimizes the average of all the local cost functions. Decentralized
optimization is widely applicable when central controllers or servers
are not available or preferable, when centralized communication that
involves a large amount of data exchange is prohibitively expensive due
to limited communication resources, and when privacy preservation is
desirable.

Problem (1) has attracted much attention in recent years and has
found a variety of applications in wireless networks, distributed control
of robotic systems, and machine learning, etc., [1]–[3]. To solve (1) over
a multiagent network, early work considered the distributed subgradient
descent (DGD) method with a diminishing step-size policy [4]. Under
a constant step-size, EXTRA [5] first achieved linear convergence rate
for strongly convex and smooth cost functions by introducing an extra
correction term to DGD. Distributed gradient tracking-based methods
were later developed in [6]–[9], where the local gradient descent direc-
tion in DGD was replaced by an auxiliary variable that is able to track
the average gradient of the local objective functions. As a result, each
agent’s local iteration is moving in the global descent direction and
converges exponentially to the optimal solution for strongly convex
and smooth objective functions [8], [9]. Compared with EXTRA,
gradient tracking-based methods are also suitable for uncoordinated
step-sizes [6], [10], and possibly asymmetric weight matrices while pre-
serving linear convergence rates. Some variants were also proposed to
deal with stochastic gradient information and time-varying or directed
network topologies, etc. For example, in [11], a distributed stochastic
gradient tracking method was considered which exhibits comparable
performance to a centralized stochastic gradient algorithm. Combin-
ing an approximate Newton-type method and gradient tracking leads
to Network-DANE, which enables further computational savings by
performing variance-reduced techniques [12]. Time-varying networks
were considered in [8], [13]–[15], and more recent development on
directed graphs can be found in [13], [16]–[20], and the references
therein.

In many application scenarios, it is vital to design communication-
efficient protocols for distributed computation due to limited communi-
cation bandwidth and power constraints. Recently, in order to improve
system scalability and communication efficiency, researchers have
considered a variety of communication compression methods, such
as sparsification and quantization [21]–[30], under the master–worker
centralized architecture. Several techniques were introduced to alleviate
compression errors, including compression error compensation and
gradient difference compression [21], [24], [26], [27].

In the decentralized setting, the difference compression and
extrapolation compression techniques were introduced to reduce model
compression error in [31]. A novel algorithm with communication
compression (CHOCO-SGD), which combines with DGD and pre-
serves the model average, was presented in [32] and [33]. But the
method converges sublinearly even when the objective functions are
strongly convex. In [34], a linearly convergent decentralized opti-
mization algorithm with compression (LEAD) was introduced for
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strongly convex and smooth objective functions. The method is based on
NIDS [35], a sibling of EXTRA. In light of an incremental primal-dual
method, a linearly convergent quantized decentralized optimization
algorithm was developed for unbiased randomized compressors in [36].
In [37], a black-box model was provided for distributed algorithms
based on finite-bit quantizers.

In light of the advantages of gradient tracking-based methods for
decentralized optimization, it is natural to consider the marriage be-
tween gradient tracking and communication compression. The first such
effort was made in [38] which considered a quantized gradient tracking
method based on a special quantizer. It was shown to achieve linear
convergence rate for strongly convex and smooth objective functions.
However, the algorithm design is rather complicated and relies on a
specific quantizer. In addition, the convergence conditions are not easy
to verify.

In this article, we consider a novel gradient tracking-based method
(C-GT) for decentralized optimization with communication compres-
sion. The algorithm compresses both the decision variables and the
gradient trackers to provide a communication-efficient implementation.
Unlike the existing methods which are mostly based on unbiased
compressors or biased but contractive compressors, C-GT is provably
efficient for a general class of compressors, including those which are
neither unbiased nor biased but contractive, e.g., the composition of
quantization and sparsification and the norm-sign compression oper-
ators. We show that C-GT achieves linear convergence for strongly
convex and smooth objective functions under such a general class of
communication compression techniques, where the agents may choose
different, uncoordinated step-sizes.

The main contributions of the article are summarized as follows.
1) We propose a novel compressed gradient tracking algorithm (C-

GT) for decentralized optimization, which inherits the advantages
of gradient tracking-based methods and saves communication costs
at the same time.

2) The proposed C-GT algorithm is applicable to a general class
of compression operators and works under arbitrary compression
precision. In particular, the general condition on the compression
operators unifies the commonly considered unbiased and biased
but contractive compressors and also includes other compression
methods such as the composition of quantization and sparsification
and the norm-sign compressors.

3) C-GT provably achieves linear convergence for minimizing
strongly convex and smooth objective functions under the general
condition on the compression operators, where the agents may
choose different, uncoordinated step-sizes.

4) Simulation examples show that C-GT is efficient compared to the
state-of-the-art methods and widely applies to various compressors.

The rest of this article is organized as follows. We present the general
condition on the compressors and the C-GT algorithm in Section III. In
Section IV, we perform the convergence analysis for C-GT. Numerical
examples are provided in Section V. Finally, Section VI concludes this
article.

A. Notation

Vectors are columns if not otherwise specified in this article. Let each
agent i hold a local copyxi ∈ Rp of the decision variable and a gradient
tracker (auxiliary variable) yi ∈ Rp. At the kth iteration, their values
are denoted by xk

i and yk
i , respectively. For notational convenience,

define X := [x1,x2, . . . ,xn]
ᵀ ∈ Rn×p, Y := [y1,y2, . . . ,yn]

ᵀ ∈
Rn×p, and X := 1

n
1ᵀX ∈ R1×p, Y := 1

n
1ᵀY ∈ R1×p, where 1 is

the column vector with each entry given by 1. At the kth iteration, their

values are denoted by Xk, Yk, X
k

and Y
k

, respectively. Auxiliary
variables of the agents (in an aggregative matrix form) Hx, Hy , Qx,
Qy , X̂, and Ŷ are defined similarly. Denote the aggregative gra-
dient ∇F(X) := [∇f1(x1),∇f2(x2), . . . ,∇fn(xn)]

ᵀ ∈ Rn×p, and
∇F(X) := 1

n
1ᵀ∇F(X) = 1

n

∑n
i=1∇fi(xi).

We use ‖ · ‖ to denote the Frobenius norm of vectors and matrices
by default. Specially, for square matrices, ‖ · ‖ represents the spectral
norm. The spectral radius of a square matrix M is denoted by ρ(M).

II. PROBLEM FORMULATION

In this section, we provide the assumptions on the communication
graphs and the objective functions. Then, we discuss different kinds of
compression methods and provide a general description for compres-
sion operators.

A. Preliminaries

We start with introducing the conditions on the communication
network/graph and the objective functions. Assume the agents are con-
nected over an undirected graph G = (V, E), where V = {1, 2, . . . , n}
is the set of vertices (nodes) and E ⊆ V × V is the set of edges. For an
arbitrary agent i ∈ V , we define the set of its neighbors asNi. Regarding
the network structure, we make the following standing assumption.

Assumption 1: The undirected graph G is strongly connected
and permits a nonnegative doubly stochastic weight matrix
W = [wij ] ∈ Rn×n. That is, agent i can receive information
from agent j if and only if wij > 0, and W1 = 1 and
1ᵀW = 1ᵀ.

Remark 1: Although we assume an undirected graph G, note that
the considered C-GT method also works with any balanced directed
graph, where it is convenient to construct a doubly stochastic weight
matrix.

The assumption on the objective functions is given below.
Assumption 2: The local cost function fi is μi-strongly convex, and

its gradient is Li-Lipschitz continuous, i.e., for any x,x′ ∈ Rp

〈∇fi(x)−∇fi(x′),x− x′〉 ≥ μi‖x− x′‖2 (2)

‖∇fi(x)−∇fi(x′)‖ ≤ Li‖x− x′‖. (3)

From Assumption 2, the objective function f is μ-strongly convex
and the gradient of f isL-Lipschitz continuous, whereμ = 1

n

∑n
i=1 μi

and L = max {Li}.1 Moreover, there exists a unique solution denoted
by x∗ ∈ R1×p to problem (1) under Assumption 2.

B. Compression Methods

In this section, we introduce some common assumptions on the
compression operators and then present a more general and unified
assumption.

1) Unbiased Compression Operators:
Assumption 3: The compression operator Q : Rd → Rd satisfies

EQ(x) = x and there exists a constant C ≥ 0 such that E‖Q(x)−
x‖2 ≤ C‖x‖2 ∀x ∈ Rd.

Remark 2: The expectation is taken with respect to the ran-
dom vector corresponding to the internal compression random-
ness of Q. Some instances of feasible stochastic compression
operators satisfying Assumption 3, such as the unbiased b-
bits q-norm quantization compression method, can be found in
[32]–[34], and the references therein.

1We denote κ = L/μ as the condition number.
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2) Biased Compression Operators:
Assumption 4: The compression operator Cδ : Rd → Rd satisfies

ECδ‖Cδ(x)− x‖2 ≤ (1− δ)‖x‖2, ∀x ∈ Rd, where δ ∈ (0, 1].
Remark 3: If δ = 1, there is no compression error, i.e., Cδ(x) = x.

For instance, the Top-k and Random-k methods (see e.g., [29], [33])
satisfy Assumption 4, where δ is given by δ = k

p
.

3) General Compression Operators: We now present a gen-
eral assumption on the compression operators, which contains Assump-
tions 3 and 4 as special cases.

Assumption 5: The compression operator C : Rd → Rd satisfies

EC ‖C(x)− x‖2 ≤ C ‖x‖2 ∀x ∈ Rd (4)

and the r-scaling of C satisfies

EC

∥∥∥∥C(x)r
− x

∥∥∥∥2

≤ (1− δ) ‖x‖2 ∀x ∈ Rd (5)

for some constants δ ∈ (0, 1] and r > 0.
Remark 4: On one hand, if C < 1, Assumption 5 degenerates to

Assumption 4 by setting r = 1 and δ = 1− C. On the other hand,
if C is unbiased, i.e., EC(x) = x, then Assumption 5 degenerates to
Assumption 3 by setting r = C + 1 and δ = 1

C+1
. In short, Assump-

tion 5 gives a unified description of unbiased and biased compression
operators and thus Assumptions 3 and 4 can be regarded as its special
cases.

However, there also exist compression operators where C is bi-
ased and C ≥ 1 in Assumption 5, that is, they do not satisfy As-
sumptions 3 and 4. Examples include the norm-sign compressor
C(x) = ‖x‖qsign(x) and the composition of quantization and spar-
sification [23], [25], [39].

Remark 5: Although some compression operators (e.g., composi-
tion of quantization and sparsification) can be rescaled so that the new
compression operator satisfies the contractive condition in Assumption
4, applying the rescaled operator may hurt the performance of the
algorithm when compared with directly using the original compression
operator C. Considering Assumption 5 provides us with more flexibility
in choosing the most suitable compression method.

III. A COMPRESSED GRADIENT TRACKING ALGORITHM

In this section, we introduce the communication-efficient com-
pressed gradient tracking algorithm (C-GT). We also give some in-
terpretations as well as how C-GT connects to existing works.

Denote D = diag([η1, η2, . . . , ηn]), where ηi is the step-size of
agent i. Let Compress be the compression function, and the com-
pression operators are associated with the function Compress. The
proposed compressed gradient tracking algorithm (C-GT) is presented
in Algorithm 1.

The compression and communication steps are included in the
procedure COMMZ,H,Hw. The function Compress is the compression
operator that independently compresses the variables for each agent per
iteration. In Line 10, the difference betweenZ and the auxiliary variable
H is compressed and then added back to H in Line 11 for obtaining
Ẑ. Here, H acts as a reference point, and when it gradually approaches
Z such that the difference vanishes to 0, the compression error on the
difference will also decrease to 0 under Assumption 5. The low-bit
compressed value Q is transmitted in Line 12.

To control the compression error, particularly for a relatively large
constant C in Assumption 5, we introduce a momentum update H =
(1− αz)H+ αzẐ motivated by the centralized distributed method
DIANA [26] and the decentralized algorithm LEAD [34]. If αz = 1,
the update degenerates to that in the decentralized stochastic algorithm
CHOCO-SGD [32].

Algorithm 1: A Compressed Gradient Tracking (C-GT)
Algorithm.

Input: stopping time K, step-size {ηi}, consensus step-size γ,
scaling parameters αx, αy , and initial values X0, H0

x, H0
y ,

Y0 = ∇F(X0)
Output: XK ,YK

1: H0
x,w = WH0

x

2: H0
y,w = WH0

y

3: for k = 0, 1, 2, . . . ,K − 1do
4: X̂k, X̂k

w,H
k+1
x ,Hk+1

x,w = COMMXk,Hk
x,H

k
x,w

a

5: Ŷk, Ŷk
w,H

k+1
y ,Hk+1

y,w = COMMYk,Hk
y ,H

k
y,w

6: Xk+1 = Xk − γ(X̂k − X̂k
w)−DYk

7: Yk+1 = Yk − γ(Ŷk − Ŷk
w) +∇F(Xk+1)−∇F(Xk)

8: end for
9: procedure COMMZ,H,Hw

10: Q = Compress(Z−H) � Compression
11: Ẑ = H+Q
12: Ẑw = Hw +WQ � Communication
13: H← (1− αz)H+ αzẐ

14: Hw ← (1− αz)Hw + αzẐw

15: Return: Ẑ, Ẑw,H,Hw

16: end procedure

aIn Lines 4 and 5, αz in the compression function is replaced by
αx for decision difference compression and αy for gradient
tracker difference compression, respectively.

In Line 14, Hw is used as a backup copy for the neighbor-
ing information. By introducing such an auxiliary variable, there
is no need to store all the neighbors’ reference points H [32].
Noticing that H0

w = WH0 from the initialization in Lines 1 and
2, we have Ẑw = WẐ and then Hw = WH by induction. It fol-
lows that X̂k

w = WX̂k and Ŷk
w = WŶk from Lines 4 and 5.

Therefore, the decision variable update in Line 6 becomes

Xk+1 = Xk − γ(X̂k −WX̂k)−DYk

= Xk − γ(I−W)X̂k −DYk (6)

and the gradient tracker update in Line 7 is given by

Yk+1 = Yk − γ(Ŷk −WŶk) +∇F(Xk+1)−∇F(Xk)

= Yk − γ(I−W)Ŷk +∇F(Xk+1)−∇F(Xk). (7)

One key property of C-GT is that gradient tracking is efficient
regardless of the compression errors, i.e., for k ≥ 0

1ᵀYk+1 = 1ᵀ(Yk− γ(I−W)Ŷk+∇F(Xk+1)−∇F(Xk))

= 1ᵀYk + 1ᵀ∇F(Xk+1)− 1ᵀ∇F(Xk)

= 1ᵀ∇F(Xk+1). (8)

The second equality holds because 1ᵀ(I−W) = 0, and the last equal-
ity is obtained by induction under the initial condition Y0 = ∇F(X0).
Therefore, as long as yk

i reaches (approximate) consensus among all
the agents, each yk

i is able to track the average gradient 1ᵀ∇F(Xk)/n.
Moreover, by multiplying 1ᵀ and dividing n on both sides of Line 8,
we obtain

X
k+1

= X
k − 1

n
1ᵀDYk. (9)
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Hence, the update of X
k

does not involve any compression error from
the current step.

Remark 6: If no communication compression is performed in the
algorithm, i.e., X̂k = Xk and Ŷk = Yk, then C-GT recovers the
typical distributed gradient tracking algorithm in [8] and [9] for ηi = η.
To see such a connection, note that C-GT reads

Xk+1 = Xk − γ(I−W)Xk − ηYk

= [(1− γ)I+ γW]Xk − ηYk (10)

and

Yk+1 = Yk − γ(I−W)Yk +∇F(Xk+1)−∇F(Xk)

= [(1− γ)I+ γW]Yk +∇F(Xk+1)−∇F(Xk) (11)

where we substitute X̂k = Xk and Ŷk = Yk in (6) and (7), respec-
tively. By denoting W̃ := (1− γ)I+ γW, C-GT takes the same form
as the typical gradient tracking method.

On the other hand, C-GT performs an implicit error compensation
operation that mitigates the impact of the compression error, as can be
seen from the following argument. The decision variable is updated as

Xk+1 = Xk − γ(I−W)(Xk −Ek)−DYk

= [(1− γ)I+ γW]Xk −DYk + γ(I−W)Ek (12)

where Ek := Xk − X̂k measures the compression error for the deci-
sion variable. The additional term (I−W)Ek implies that each agent
i transmits its total compression error −∑

j∈Ni∪{i} wjie
k
i = −ek

i to
its neighboring agents and compensates this error locally by adding
ek
i , where ek

i ∈ R1×p is the ith row of Ek. Similarly, the compression
errors for the gradient trackers are also mitigated.

IV. CONVERGENCE ANALYSIS

In this section, we study the convergence properties of the proposed
compressed gradient tracking algorithm for minimizing strongly con-
vex and smooth cost functions. Our analysis relies on constructing
a linear system of inequalities that is related to the optimization er-

ror Ωk
o := E[‖Xk − x∗‖2], consensus error Ωk

c := E[‖Xk − 1X
k‖2],

gradient tracking error Ωk
g := E[‖Yk − 1Y

k‖2], and compression
errors Ωk

cx := E[‖Xk −Hk
x‖2], and Ωk

cy := E[‖Yk −Hk
y‖2].

In order to derive the main results, we introduce some useful lemmas
first.

Lemma 1: Under Assumption 2, for all k ≥ 0, there holds

‖∇f((Xk
)ᵀ)− (Y

k
)ᵀ‖ ≤ L√

n
‖Xk − 1X

k‖. (13)

In addition, if η < 2/(μ+ L), then we have

‖x− η∇f(x)− (x∗)ᵀ‖ ≤ (1− ημ)‖x− (x∗)ᵀ‖ ∀x ∈ Rp. (14)

Lemma 2: Suppose Assumption 1 holds. For any ω ∈ Rn×p, we
have ‖Wω − 1ω̄‖ ≤ ρw‖ω − 1ω̄‖, where ω̄ = 1

n
1ᵀω and ρw < 1 is

the spectral norm of the matrix W − 1
n
11ᵀ.

The proofs of Lemma 1 and Lemma 2 can be found in
[9, Lemma 10].

Remark 7: For γ ∈ (0, 1], if we define W̃ = (1− γ)I+ γW, then
‖W̃ω − 1ω̄‖ ≤ ρ̃‖ω − 1ω̄‖, where ρ̃ = 1− γs, and s = 1− ρw.

Denote η̄ = 1
n

∑n
i=1 ηi, η̂ = maxi ηi. We introduce below the key

lemma for establishing the linear convergence of the C-GT algorithm
under Assumptions 1, 2, and 5.

Lemma 3: Suppose Assumptions 1, 2, and 5 hold and η̂ <
min{ 2

μ+L
, 1
3μ
}. Then we have the following linear system of inequal-

ities:

wk+1 ≤ Awk

where wk := [Ωk
o ,Ω

k
c ,Ω

k
g ,Ω

k
cx,Ω

k
cy]

ᵀ. The inequality is to be taken
component-wisely, where A ∈ R5×5 is nonnegative.2

Proof: See Appendix B in [40]. �
Based on Lemma 3, we present the preliminary convergence result

for the C-GT algorithm below.
Lemma 4: Suppose Assumptions 1, 2 and 5 hold, the scaling param-

eters αx, αy ∈ (0, 1
r
], η̄ ≥Mη̂ for some M > 0, and

nε1 ≥ 12κ2

M2
ε3, ε2 ≥ 12Cλ

s2
ε4, ε3 ≥Mε2

ε3 ≥ 12λ (3ε2 + C(3ε4 + ε5))

s2
, ε4 > 0, ε5 > 0 (15)

γ ≤ min

{
1,

1− cx
mx

ε4,
1− cy
my

ε5

}
(16)

η̂ ≤ min

{√
ε2
12

,

√
ε3
36

}
sγ√

2nε1 + 2ε2 + ε3L
(17)

where s = 1− ρw, λ := ‖I−W‖2, mx := tx(2nε1 + 2ε2 +
ε3) + txλ(ε2 + Cε4) +

Mε4
2κ

, my := 3ty(2nε1 + 2ε2 + ε3) +

tyλ(3ε2 + ε3 + 3Cε4 + Cε5) +
Mε5
2κ

, cx = τx(1− αxrδ) < 1,

cy = τy(1− αyrδ) < 1, tx = 3τx
τx−1 , ty =

3τy
τy−1 , constants τx, τy > 1,

and ε1-ε5 are some positive constants. Then, the spectral radius of
A satisfies ρ(A) ≤ 1− 1

2
Mη̂μ, and the optimization error Ωk

o

and the consensus error Ωk
c both converge to 0 at the linear rate

O((1− 1
2
Mη̂μ)k).

Proof: See Appendix A2. �

A. Main Results

By taking some concrete values for the constants in Lemma 4,
we derive the main convergence result for the C-GT algorithm under
Assumptions 1, 2, and 5 in the following theorem, which demonstrates
the linearly convergent property of C-GT for the general compression
operators.

Theorem 1: Suppose Assumptions 1, 2, 5 hold, η̄ ≥Mη̂ for some
M > 0, αx, αy = 1/r, the consensus step-size γ satisfies

γ ≤ min

{
1,

δ

m(2− δ)

}
(18)

and the maximum step-size η̂ satisfies

η̂ ≤ s2√
12

[(
24κ2

M2 + 1
)
(4 s2 + 36λ) + 2 s2

] γ

L
(19)

where κ = L/μ and m = 6
δ

[(
72κ2

M2 + λ + 3
)(

432Cλ2

s4
+ 48Cλ

s2

)
+(3λ + 6) 12Cλ

s2
+ 4Cλ

]
+ M

2κ
with λ = ‖I−W‖2. Then, the opti-

mization error Ωk
o and the consensus error Ωk

c both converge to 0 at the

linear rate O
((

1− 1
2
Mη̂μ

)k)
.

Proof: See Appendix A3. �

2The elements of the transition matrix A correspond to the parameters of the
inequalities in the proof.



5626 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 10, OCTOBER 2022

Remark 8: If the compression error is sufficiently small, i.e.,C → 0
and δ → 1, we have m ≈ M

2κ
< 1. Then, we obtain γ ≤ 1 and

η̂ ≤ s2√
12

[(
24κ2

M2 + 1
)
(4 s2 + 36λ) + 2 s2

]
1

L
∼O

(
(1− ρw)

2

κL

)
.

The convergence rate of C-GT is then comparable to those of the typical
gradient tracking methods; see, e.g., [9].

Remark 9: In practice, the restrictions on αx and αy can be relaxed
to αx, αy ∈ (0, 1

r
] as in Lemma 4. The condition η̄ ≥Mη̂ is always

satisfied for some fixed M , e.g., M = 1
n

. If in addition that all ηi are
equal, then we can take M = 1.

Remark 10: Comparing the performance of C-GT with the existing
linearly convergent algorithm LEAD [35], C-GT enjoys more flexi-
bility in the mixing matrix, compression methods, and the stepsize
policy, while LEAD achieves faster convergence in theory under more
restricted conditions.

V. NUMERICAL EXAMPLES

In this part, we provide some numerical examples to confirm our
theoretical results. Consider the ridge regression problem

min
x∈Rp

f(x) =
1

n

n∑
i=1

fi(x)
(
= (uᵀ

i x− vi)
2
+ ρ‖x‖2

)
(20)

where ρ > 0 is a penalty parameter. The pair (ui, vi) is a sample that
belongs to the ith agent, where ui ∈ Rp represents the features and
vi ∈ R represents the observations or outputs. In the simulations, pairs
(ui, vi) are pregenerated: input ui ∈ [−1, 1]p is uniformly distributed,
and the output vi satisfies vi = uᵀ

i x̃i + εi, where εi are independent
Gaussian noises with mean 0 and variance 25, and x̃i are predefined
parameters evenly located in [0, 1]p. Then, the ith agent can calculate
the gradient of its local objective function fi(x) with gi(x, ui, vi) =
2(uᵀ

i x− vi)ui + 2ρx. The unique optimal solution of the problem is
x∗ = (

∑n
i=1 uiu

ᵀ
i + nρI)−1

∑n
i=1 uivi.

In our experimental settings, we consider penalty parameter ρ = 0.1.
The number of nodes is n = 100, and the dimension of variables is
p = 500. Meanwhile, x0

i is randomly generated in [0, 1]p and other
initial values satisfy H0

x = 0, H0
y = 0, and Y0 = ∇F(X0).

We compare C-GT with CHOCO-SGD [32], LB [36], LEAD [34]
and the uncompressed linearly convergent methods, NIDS [35] and
GT [9], for decentralized optimization over a randomly generated
undirected graph. In order to guarantee the fairness, all algorithms use
their equivalent matrix forms. The considered compression methods
are 2-b∞-norm quantization (Q), Top-10 sparsification, composition
of quantization and sparsification (Q-T) and its rescaled version (Q-
T-R). Note that Q-T only satisfies Assumption 5 and does not satisfy
Assumptions 3 and 4. The communication bits of these compression
methods are given in [32]–[34], [39].3 The parameter settings of the
algorithms are given in Table I, which are hand-tuned to achieve the
best performance for each algorithm.

In Fig. 1, we compare the communication efficiency of C-GT,
LEAD, LB, and CHOCO-SGD with the uncompressed methods
GT and NIDS. For C-GT, LEAD, LB, and CHOCO-SGD,
we apply the compressors that work the best for them,

3Note that C-GT requires two times the communication bits of the other
algorithms per iteration since it compressed both the decision variable and the
gradient tracker.

TABLE I
PARAMETER SETTING FOR DIFFERENT ALGORITHMS AND

COMPRESSION METHODS

Fig. 1. Residuals E[‖Xk − x∗‖2] against the communication bits for
C-GT, LEAD, LB, CHOCO-SGD, and the uncompressed methods GT
and NIDS.

Fig. 2. Residuals E[‖Xk − x∗‖2] against the communication bits for
C-GT and LEAD under different compression methods.

respectively. Apparently, C-GT and LEAD outperform the
other methods, while C-GT achieves the best communication
efficiency.

In Fig. 2, we further present a detailed comparison between C-GT
and LEAD under different types of compressors. Note that LEAD
works the best under the unbiased compressor Q, while C-GT is
more efficient under the biased compression operator Top-10 and the
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composition of quantization and sparsification Q-T. In particular, the
performance of C-GT under Q-T is the most favorite among all the
combinations.

It can also be seen from Fig. 2 that using the rescaled compressors
leads to slower convergence, which suggests that rescaling the com-
pression operators to satisfy the typical contractive requirement (i.e.,
Assumption 4) may harm the algorithmic performance. Therefore, we
can conclude that considering Assumption 5 provides users with more
freedom in choosing the best compression method. These experimental
findings demonstrate the effectiveness of C-GT.

VI. CONCLUSION

In this article, we consider the problem of decentralized optimization
with communication compression over a multiagent network. Specif-
ically, we propose a compressed gradient tracking algorithm, termed
C-GT, and show the algorithm converges linearly for strongly convex
and smooth objective functions. C-GT not only inherits the advantages
of gradient tracking-based methods, but also works with a wide class
of compression operators. Simulation examples demonstrate the ef-
fectiveness and flexibility of C-GT for undirected networks. Future
work will consider equipping C-GT with accelerated techniques such as
Nesterov’s acceleration and momentum methods. Nonconvex objective
functions are also of future concern.

APPENDIX A
PROOFS FOR THE C-GT ALGORITHM

A. Supplementary Lemmas

The following vector and matrix inequalities are often invoked.
Lemma 5: For U,V ∈ Rn×p and any constant τ > 0, we have the

following inequality:

‖U+V‖2 ≤ (1 + τ)‖U‖2 +
(
1 +

1

τ

)
‖V‖2. (21)

In particular, taking τ = τ ′ − 1, τ ′ > 1, we have

‖U+V‖2 ≤ τ ′‖U‖2 + τ ′

τ ′ − 1
‖V‖2. (22)

In addition, for any U1,U2,U3 ∈ Rn×p, we have ‖U1 +
U2 +U3‖2 ≤ τ ′‖U1‖2 + 2τ ′

τ ′−1 [‖U2‖2 + ‖U3‖2] and ‖U1 +U2 +
U3‖2 ≤ 3‖U1‖2 + 3‖U2‖2 + 3‖U3‖2.

Lemma 6: (Corollary 8.1.29 in [41]) Let M ∈ Rl×l and v ∈ Rl be
a nonnegative matrix and an element-wise positive vector, respectively.
If Mv ≤ θv, then ρ(M) ≤ θ.

B. Proof of Lemma 4

In light of Lemma 3, we consider the following linear system of
inequalities:

Aε ≤
(
1− 1

2
Mη̂μ

)
ε (23)

where ε := [ε1, ε2, L
2ε3, ε4, L

2ε5]
ᵀ, and the elements ofA correspond

to the coefficients in Lemma 3. From Lemma 6, if there exists an
element-wise positive ε, then we obtain ρ(A) ≤ (

1− 1
2
Mη̂μ

)
.

1) First Inequality in (23):(
1− 3

2
Mη̂μ

)
ε1 +

6η̂L2

μn
ε2 +

6η̂L2

μnM
ε3 ≤

(
1− 1

2
Mη̂μ

)
ε1.

(24)
Inequality (24) holds if 6η̂L2

μn
ε2 ≤ 6η̂L2

μnM
ε3 and 2 6η̂L2

μnM
ε3 ≤Mη̂με1.

That is, ε3 ≥Mε2 and nε1 ≥ 12κ2

M2 ε3, where κ = L/μ is the condition
number.

2) Second Inequality in (23):(
1 + ρ̃2

2
+

4L2η̂2

sγ

)
ε2 +

2η̂2

sγ
L2ε3 +

2Cλγ

s
ε4 +

4nL2η̂2

sγ
ε1

≤
(
1− 1

2
Mη̂μ

)
ε2. (25)

Recalling 1−ρ̃2
2

= (1 + ρ̃) 1−ρ̃
2

> 1−ρ̃
2

= γs
2

, relation (25) holds if

2(2nε1 + 2ε2 + ε3)

s
L2 η̂

2

γ
+

2Cλ

s
γε4 ≤

(
sγ

2
− 1

2
Mη̂μ

)
ε2.

(26)

Dividing γ on both sides of (26), we get

Mμε2
2

η̂

γ
+

2(2nε1 + 2ε2 + ε3)

s
L2 η̂

2

γ2
+

2Cλ

s
ε4 ≤ sε2

2
. (27)

It is sufficient that 3Mμε2
2

η̂
γ
≤ sε2

2
, 3 2(2nε1+2ε2+ε3)

s
L2 η̂2

γ2 ≤
sε2
2

, and 3 2Cλ
s

ε4 ≤ sε2
2

. Therefore, if we have η̂ ≤ min{ s
3M

γ
μ
,√

ε2
12(2nε1+2ε2+ε3)

s γ
L
} and ε2 ≥ 12Cλ

s2
ε4, then (25) can be demon-

strated.
3) Third Inequality in (23):

12nL4 η̂
2

sγ
ε1+

(
12L4 η̂

2

sγ
+
6λL2γ

s

)
ε2 +

(
1 + ρ̃2

2
+

6L2η̂2

sγ

)
L2ε3

+
6CλL2γ

s
ε4 +

2Cλγ

s
L2ε5 ≤

(
1− 1

2
Mη̂μ

)
L2ε3.

(28)

Dividing L2 on the both side of (28), we have

12nL2 η̂
2

sγ
ε1 +

(
12L2 η̂

2

sγ
+

6λγ

s

)
ε2 +

(
1 + ρ̃2

2
+

6L2η̂2

sγ

)
ε3

+
6Cλγ

s
ε4 +

2Cλγ

s
ε5 ≤

(
1− 1

2
Mη̂μ

)
ε3. (29)

Based on arguments similar to those for deriving the second inequality,
the third inequality holds if

Mμε3
2

η̂

γ
+

6(2nε1 + 2ε2 + ε3)

s
L2 η̂

2

γ2

+
2λ (3ε2 + C(3ε4 + ε5))

s
≤ sε3

2
. (30)

It is sufficient that 3Mμε3
η̂
γ
≤ sε3

2
, 3 6(2nε1+2ε2+ε3)

s
L2 η̂2

γ2 ≤
sε3
2

, and 3 2λ(3ε2+C(3ε4+ε5))
s

≤ sε3
2

. Thus, if there holds ε3 ≥
12λ(3ε2+C(3ε4+ε5))

s2
and η̂ ≤ min{ s

3M
γ
μ
,
√

ε3
36(2nε1+2ε2+ε3)

s γ
L
}, we

can demonstrate (28).
4) Fourth Inequality in (23):

2ntxL
2η̂2ε1 + (2txL

2η̂2 + txλγ2)ε2

+ txη̂
2L2ε3 + (cx + txCλγ2)ε4 ≤

(
1− 1

2
Mη̂μ

)
ε4. (31)

It is equivalent to

tx(2nε1 + 2ε2 + ε3)L
2η̂2

+ (txλε2 + txCλε4)γ
2 +

1

2
Mη̂με4 ≤ (1− cx)ε4. (32)

Inequality (32) holds if η̂ ≤ γ
L

and γ ≤ min{1, 1−cx
mx

ε4}, wheremx :=

tx(2nε1 + 2ε2 + ε3) + txλ(ε2 + Cε4) +
Mε4
2κ

.



5628 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 10, OCTOBER 2022

5) Fifth Inequality in (23):

6ntyL
4η̂2ε1 + (6tyL

4η̂2 + 3tyλL2γ2)ε2 + (tyλγ2 + 3tyL
2η̂2)L2ε3

+ 3tyCλL2γ2ε4 + (cy + tyCλγ2)L2ε5 ≤
(
1− 1

2
Mη̂μ

)
L2ε5.

(33)

Dividing L2 on both sides of (33), we have

3ty(2nε1 + 2ε2 + ε3)L
2η̂2 + tyλ(3ε2 + ε3

+ 3Cε4 + Cε5)γ
2 +

Mμε5
2

η̂ ≤ (1− cy)ε5. (34)

Inequality (34) holds if η̂ ≤ γ
L

and γ ≤ min{1, 1−cy
my

ε5}, wheremy :=

3ty(2nε1 + 2ε2 + ε3) + tyλ(3ε2 + ε3 + 3Cε4 + Cε5) +
Mε5
2κ

. In
short, if the positive constants ε1-ε5, consensus step-size γ and
step-size η̂ satisfy the following conditions:

nε1 ≥ 12κ2

M2
ε3, ε2 ≥ 12Cλ

s2
ε4, ε3 ≥Mε2

ε3 ≥ 12λ (3ε2 + C(3ε4 + ε5))

s2
, ε4 > 0, ε5 > 0 (35)

γ ≤ min

{
1,

1− cx
mx

ε4,
1− cy
my

ε5

}
(36)

η̂ ≤ min

{
s

3M
γ

μ
,
γ

L
,

√
ε2

12(2nε1 + 2ε2 + ε3)

sγ

L√
ε3

36(2nε1 + 2ε2 + ε3)

sγ

L
,

}
. (37)

We can establish the linear system of inequalities in (23). For
(35), it is easy to verify that there exist solutions to ε1-ε5.

Noticing that
√

ε2
12(2nε1+2ε2+ε3)

sγ
L

=
√

1
12(2nε1/ε2+2+ε3/ε2)

sγ
L

and√
ε3

36(2nε1+2ε2+ε3)
sγ
L

=
√

1
36(2nε1/ε3+2ε2/ε3+1)

sγ
L

are both less than
s

3M
γ
μ

and γ
L

, we obtain the upper bound on the maximum
step-size.

C. Proof of Theorem 1

Taking τx = τy = 1
1−0.5δ and noticing that αx = αy = 1/r, we

have tx = ty = 6
δ

and cx = cy = 1−δ
1−0.5δ . Recalling the relations of ε1-

ε5 in Lemma 4, we can take ε4 = ε5 = 1, ε2 = 12Cλ

s2
, ε3 = 432Cλ2

s4
+

48Cλ

s2
≥ 4ε2 and nε1 = 12κ2

M2

(
432Cλ2

s4
+ 48Cλ

s2

)
. Then, we know

ε2
12(2nε1+2ε2+ε3)

≤ ε3
36(2nε1+2ε2+ε3)

. Meanwhile, noticing that my :=

3 6
δ
[(2nε1 + 2ε2 + ε3) + λ(ε2 + C)] + M

2κ
+ 6

δ
λ(ε3 + C) and mx =

6
δ
[(2nε1 + 2ε2 + ε3) + λ(ε2 + C)] + M

2κ
, we get my ≥ mx. For sim-

plicity, denotem = my where the specific values for the constants ε1-ε5
are given above. Then from Lemma 4, we obtain the upper bounds on
the consensus step-size and the maximum step-size, which completes
the proof.
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[19] R. Xin, S. Pu, A. Nedić, and U. A. Khan, “A general framework for
decentralized optimization with first-order methods,” Proc. IEEE, vol. 108,
no. 11, pp. 1869–1889, Nov. 2020.

[20] S. Pu, “A robust gradient tracking method for distributed optimization
over directed networks,” in Proc. 59th IEEE Conf. Decis. Control, 2020,
pp. 2335–2341.

[21] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and application to data-parallel distributed training of speech
DNNs,” in Proc. Interspeech, 2014, pp. 1058–1062.

[22] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 1709–1720.

[23] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“SIGNSGD: Compressed optimisation for non-convex problems,” in Proc.
35th Int. Conf. Mach. Learn., 2018, pp. 559–568.

[24] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with mem-
ory,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 4452–4463.

[25] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi, “Error feedback
fixes signSGD and other gradient compression schemes,” in Proc. 36th
Int. Conf. Mach. Learn., 2019, pp. 3252–3261.

[26] K. Mishchenko, E. Gorbunov, M. Takáč, and P. Richtárik, “Distributed
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