
1

Jacobi-Style Iteration for Distributed
Submodular Maximization

Bin Du†, Kun Qian‡, Christian Claudel‡, and Dengfeng Sun†

Abstract—This paper presents a novel Jacobi-style iteration
algorithm for solving the problem of distributed submodular
maximization, in which each agent determines its own strategy
from a finite set so that the global submodular objective function
is jointly maximized. Building on the multi-linear extension of
the global submodular function, we expect to achieve the solution
from a probabilistic, rather than deterministic, perspective, and
thus transfer the considered problem from a discrete domain
into a continuous domain. Since it is observed that an unbiased
estimation of the gradient of multi-linear extension function can
be obtained by sampling the agents’ local decisions, a projected
stochastic gradient algorithm is proposed to solve the problem.
Our algorithm enables the distributed updates among all individ-
ual agents and is proved to asymptotically converge to a desirable
equilibrium solution. Such an equilibrium solution is guaranteed
to achieve at least 1/2-suboptimal bound, which is comparable to
the state-of-art in the literature. Moreover, we further enhance
the proposed algorithm by handling the scenario in which agents’
communication delays are present. The enhanced algorithmic
framework admits a more realistic distributed implementation of
our approach. Finally, a movie recommendation task is conducted
on a real-world movie rating data set, to validate the numerical
performance of the proposed algorithms.

I. INTRODUCTION

In this paper, we focus on the distributed maximization of
submodular functions, involving a network of I agents, which
aims at cooperatively solving the following problem,

maximize F (a1, a2, · · · , aI)
subject to ai ∈ Ai, i = 1, 2, · · · , I.

(P)

In problem (P), each agent i ∈ I := {1, 2, · · · , I} within
the network is expected to select a desirable local strategy ai
from the private finite set Ai, such that the common objective
function F : A1 ×A2 × · · · × AI → R is jointly maximized.
Here, we assume that the objective function is submodular and
additionally monotone; see definitions in Section II. In fact,
such a (distributed) monotone submodular maximization prob-
lem has gained increasing attention in recent years, primarily
due to the fact that it can be widely adopted in numerous
applications, including resource allocation [1], [2], sensor
placement [3], [4], data summarization [5], [6], information
gathering [7], [8], to name a few.

†Bin Du is Ph.D. student, and Dengfeng Sun is Associate Profes-
sor, with the School of Aeronautics and Astronautics, Purdue University,
West Lafayette, IN 47907, {du185,dsun}@purdue.edu

‡Kun Qian is Ph.D. student, and Christian Claudel is Assistant Pro-
fessor, with the Department of Civil, Architectural, and Environmen-
tal Engineering, University of Texas at Austin, Austin, TX 78712,
{kunqian,christian.claudel}@utexas.edu

Bin Du and Kun Qian contributed equally to this manuscript.

While the submodular maximization problem has success-
fully found so many applications, solving problem (P) is
known to be NP-hard [9], even from a standard centralized
perspective. Due to this fact, the approximation methods which
are able to guarantee suboptimal solutions are broadly studied
in the literature [10]–[14]. Among these various approximation
methods, the greedy algorithm [12]–[14] attracts the most
attentions by researchers. The key idea of this greedy algo-
rithm is to determine the single best strategy at each time,
by maximizing the marginal gain of the submodular function.
It is shown in [13] that an 1/2-suboptimal solution can be
guaranteed by the greedy algorithm, i.e., the obtained solution
Ag is ensured to have F (Ag) ≥ 1/2 · F (A?) where A?

represents the global optimal solution. In particular, when
the considered submodular maximization problem has the
constraints of some specific forms [12], [14], the suboptimal
bound can be further improved to 1 − 1/e with e being the
natural constant. Nevertheless, it should be remarked that the
greedy algorithm is inherently a sequential updating scheme,
since the single best strategy needs to be determined one by
one. On this account, the greedy algorithm may not be useful
or even infeasible in many applications, especially when a
large number of agents are involved in the problem.

In order to address such a sequential updating issue, recent
papers [15]–[17] have developed distributed variants of the
greedy algorithm in which the best single strategies can be
determined simultaneously in a parallel architecture. However,
as shown in [16], when it comes to a distributed setting
(with limited information), the suboptimal bound needs to be
degraded from 1/2 to 1/(1+β) where β is a constant related to
the multi-agent network topology. Although the best network
topology is further designed in [17] to enhance performance
of the distributed algorithm, the fact that β ≥ 1 makes the
obtained solution worse than 1/2-suboptimal in nature.

It is worthy to note that some other distributed approaches
have also been devised to solve the problem of maximizing
submodular functions. The authors in [18] develop a new
distributed method while considering the application of multi-
agent task assignment. It is proved that the obtained solution is
at least 1/2-suboptimal. Moreover, the distributed submodular
maximization problem is studied in both discrete and continu-
ous settings [19], and the proposed algorithms are guaranteed
to converge asymptotically to the 1− 1/e suboptimal bound.
A similar algorithm is also developed in [20] which further
improves convergence performance. We remark that the prob-
lem considered in our paper is significantly different from the
ones in [18]–[20], where a separable structure of the global
objective function is specifically assumed. Precisely, in their

ar
X

iv
:2

01
0.

14
08

2v
1

 [
ee

ss
.S

Y
]

 2
7

O
ct

 2
02

0

2

problem setups [18]–[20], each agent (or task) maintains a
local utility function, and the global objective is to optimize the
summation of local functions. This inherently makes the prob-
lem easier to solve. For instance, given that the global gradient
is computed by summing all local gradients due to the specific
structure of the function, the desired global information can
be achieved by a standard consensus procedure as in [19], or
more directly, the technique of gradient tracking as in [20].
However, in our problem, such an idea is not applicable due
to the generality of the global objective function.

To sum up, while the 1/2-suboptimal bound is known
to be the best result that one can achieve in general, there
is no existing distributed algorithm yet, which guarantees
such a bound when solving problem (P). Motivated by this,
it is exactly the purpose of this paper to devise such a
distributed algorithm. Our contributions are summarized as
follows. A novel Jacobi-style algorithm is proposed for solving
the problem of distributed submodular maximization. Unlike
existing works which are based on the greedy algorithm,
we start from a probabilistic perspective, build on the multi-
linear extension of the submodular function, and eventually
transfer the considered problem from a discrete domain into
a continuous domain. By leveraging the fact that an unbiased
estimation of the gradient can be achieved by simply sampling
the agents’ local decisions, we develop a projected stochastic
gradient algorithm. It is proved that our algorithm converges
to an equilibrium solution which is guaranteed to be at least
1/2-suboptimal. In addition, by handling the scenario where
communication delays are present among agents, we further
enhance the proposed algorithm to be implementable in a
more realistic distributed architecture. The same convergence
performance is proved for the enhanced distributed algorithm.
Finally, the movie recommendation task is conducted on a
real-world movie rating data set, and the simulation results
validates the effectiveness of our algorithms.

The remainder of this paper is organized as follows. Sec. II
formally defines the considered distributed submodular maxi-
mization problem. Sec. III develops the projected stochastic
gradient algorithm, and Sec. IV further enhances the pro-
posed algorithm by dealing with the communication delays.
Numerical simulations are presented in Sec. V. Lastly, Sec. VI
concludes this paper. For the reader’s convenience, the proofs
of propositions and theorems are provided in Appendix.

II. PROBLEM STATEMENT

Let us first formalize the considered distributed submodular
maximization problem. For the sake of notational simplicity,
we here assume that each agent’s finite set Ai has the same
size K, i.e., |Ai| = K, ∀i ∈ I. In addition, we stack all
agents’ local strategies as a vector A = [a1, a2, · · · , aI]> ∈ A,
where the entire searching space A is the Cartesian product
of Ai’s, i.e., A :=

∏
i∈I Ai and |A| = KI . Based on the set

of collected strategies, the objective function in problem (P)
can be succinctly written as F (A). Note that we allow each
agent to choose the empty set as its strategy, i.e., ai = ∅; and
in particular, let F (∅) = 0. With slight abuse of notations, we
say that the set of strategies A′ is contained in A, denoted as

A′ ⊆ A, if some component a′i in A′ has a′i = ∅ and other
components have a′j = aj , ∀j 6= i. In this case, we also denote
A = A′∪{ai}. Furthermore, we restrict the objective function
F (A) to satisfy the following assumption.

Assumption 1: The function F (A) is assumed to satisfy:
(A.1) (Monotone) If two sets A′ and A have A′ ⊆ A, then

it implies F (A′) ≤ F (A).
(A.2) (Submodular) If two sets A′ and A have A′ ⊆ A, then

F (A′∪{a})−F (A′) ≥ F (A∪{a})−F (A) for any a.
Clearly, the ultimate goal of problem (P) is to find the

group of optimal strategies A? = [a?1, a
?
2, · · · , a?I]> ∈ A such

that F (A?) gives the maximal function value against all other
possible groups of strategies. However, as mentioned before
in Section I, achieving such a goal is NP-hard in general. The
challenges mainly come from the following two aspects. First,
the finite set Ai from which the agent chooses its strategy
is inherently discrete. Thus, the well-developed techniques of
continuous optimization cannot be adopted for solving the
problem. Although the bright side of this fact is that one
can apply some search-tree based approaches since the set
Ai is anyway finite, the computational demand during such a
searching procedure is often costly or even infeasible, espe-
cially when each individual searching space Ai is large-scale.
This is also related to the second aspect of the challenges.
Note that the objective function F (A) can be evaluated only
when all individual agents have decided their own strategies.
That is to say, the function F (A) mixes the decisions of each
agent within the network. In this sense, the size of the entire
searching space A also grows exponentially with respect to the
number of agents. This undoubtedly prohibits the idea of using
searching procedures to find the joint optimal strategies A?,
when a large number of agents are involved in the problem.

In order to address the above two challenges, in this paper,
our ideas are: 1) utilizing the multi-linear extension of the
function F (A); see Section III-A, and transferring the consid-
ered problem into a continuous domain, so that the techniques
of continuous optimization can be exploited; and 2) developing
the Jacobi-style iteration to decompose the mixing of individ-
ual agents’ decisions. In particular, the algorithmic framework
of our Jacobi-style iteration for each agent i can be abstracted
as the following mapping Mi : A1 × A2 × · · · × AI → Ai
such that

a+i =Mi

(
a−i , A

r
−i

)
. (1)

Here, a−i is the i-th agent’s previous decision of the desired
strategy; Ar−i = [ar1, · · · , ari−1, ari+1 · · · arI]> ∈ A−i is the
collection of the received decisions which have been made by
the other agents j 6= i; and a+i is the i-th agent’s updated de-
cision based on the previous a−i and the received information
arj ’s. It should be emphasized that, under such a framework
(1), each agent only needs to take charge in its own decision,
by receiving the information arj from other agents. Thus, the
computational complexity is expected to be primarily reduced,
compared to the aforementioned searching procedure. In ad-
dition, another advantage of the framework is that individual
agents can perform the update of decisions simultaneously, so
that the overall processing time can be further saved. However,

3

it is also worthy to note that there are two potential issues
regarding the framework. First, the mapping Mi suggests
that an instantaneous all-to-all communication is required, i.e.,
each agent i needs to communicate with all other agents
to receive the most updated information arj ’s. Second, it is
not clear that what kind of solution will be produced by
the iteration (1). For the first concern, we here remark that
the communication requirement will be eliminated later on;
see Section IV, so that our algorithm is implementable in a
distributed architecture with communication delays. For the
second one, we are interested in finding an equilibrium solu-
tion Ae which is formally defined as below. Interestingly, it can
be proved that such an equilibrium is guaranteed to be at least
1/2-suboptimal which is comparable to the state-of-art in the
literature; see Section I. Before defining the equilibrium Ae, let
us first introduce another assumption related to the objective
function F (A).

Assumption 2 (Maximum Distinguishable): It is assumed
that, once other agents j 6= i have decided their strategies A−i,
the i-th agent’s best strategy ai, which gives the maximum
function value F (ai;A−i), is unique.

Here, to concentrate on the effect of strategy ai on the func-
tion value, F (A) is expressed as the specific form F (ai;A−i).
We note that the above Assumption 2 is easily satisfied in
many applications, especially when some certain randomness
is involved in the function values. In particular, we denote
∆max the maximum discrepancy of function values between
two individual strategies ai and a′i when other strategies A−i
have been fixed, i.e.,

∆max = max
A−i∈A−i

{
max

ai,a′i∈Ai

{F (ai;A−i)− F (a′i;A−i}
}
. (2)

It is trivial to see that ∆max has to be strictly greater than zero
due to Assumption 2. Next, we formalize the definition of the
equilibrium Ae.

Definition 1: A solution Ae = [ae1, a
e
2, · · · , aeI]> ∈ A is said

to be the equilibrium to problem (P), if and only if it satisfies
the following condition:

aei = arg max
ai∈Ai

F (ae1, · · ·, aei−1, ai, aei+1, · · ·, aeI), i ∈ I. (3)

Remark that the uniqueness of aei in (3) is guaranteed by
the maximum distinguishable assumption of the objective
function F (A). Moreover, by the definition of the equilibrium
solution, it is clear that Ae is not unique for problem (P)
and A? is just a specific equilibrium which has the maximal
function value. Next, we show, by the following proposition,
that any equilibrium Ae satisfying (3) must be at least 1/2-
suboptimal to our problem.

Proposition 1: Suppose that the function F (A) satisfies the
conditions in Assumption 1. Let A? be an optimal solution
to problem (P) and Ae be an equilibrium solution following
Definition 1, then it holds that

F (Ae) ≥ 1

2
· F (A?). (4)

Proof: See Appendix A.

III. STOCHASTIC GRADIENT BASED METHOD

To solve for the equilibrium solution Ae, we develop a
stochastic gradient based solution method in this section. As
an important building block of our method, the multi-linear
extension of the function F (A) is first introduced.

A. Multi-Linear Extension
Let us recall that A = [a1, a2, · · · , aI]> is the set of I local

strategies in which each ai is chosen from the finite set Ai.
Now, instead of expecting the individual agents to seek the de-
sired deterministic strategies from Ai’s, we assign each agent a
discrete probability distribution pi = [pi(ai)]ai∈Ai ∈ [0, 1]K ,
where pi(ai) represents the probability of choosing ai as the
i-th agent’s strategy. On this account, we define the multi-
linear extension of F (A) as the function f(P) : [0, 1]I·K → R,

f(P) =
∑
a1∈A1

p1(a1)
∑
a2∈A2

p2(a2) · · ·
∑
aI∈AI

pI(aI) · F (A),

(5)

where the argument P is a compact vector which stacks all
pi’s, i.e., P = [p>1 ,p

>
2 , · · · ,p>I]> ∈ [0, 1]I·K . We shall

emphasize that a core property of the multi-linear extension (5)
is its natural connection to the original function F (A). That is,

f(P) = Eãi∼pi,i∈I
[
F (Ã)

]
, (6)

where the expectation is taken from Ã = [ã1, ã2, · · · , ãI]>
and each ãi is an independent random variable following the
discrete distribution pi. Moreover, consider that each pi has
to be subject to pi(ai) ≥ 0 and 1>pi = 1, let us express those
constraints as the following probability simplex S, i.e.,

pi ∈ S :=
{
p |1>p = 1, p ∈ [0, 1]K

}
. (7)

In particular, we say pi is a vertex of the simplex S if it has
‖pi‖∞ = 1. i.e., there is exactly one component pi(ai) which
equals one and all others are zeros.

With the help of this multi-linear extension function f(P),
our goal now becomes to seek the desired probability distribu-
tion pi’s such that f(P) is optimized. Therefore, the submod-
ular maximization problem can be equivalently written as,

maximize f(P) = Eãi∼pi,i∈I
[
F (Ã)

]
subject to pi ∈ S, i ∈ I.

(8)

Recall that, in the original problem (P), we are interested
in seeking the equilibrium solution Ae which is defined by
Definition 1. Now, following the same path, we introduce a
similar equilibrium solution P e to problem (8), based on the
defined Ae.

Definition 2: A solution P e = [pe1
>,pe2

>, · · ·,peI
>]> where

each pei is a vertex of the probability simplex, i.e., there exists
aei such that pei (a

e
i) = 1 and pei (ai) = 0 for ∀ai 6= aei , is said

to be an equilibrium, if and only if Ae = [ae1, a
e
2, · · · , aeI]> is

an equilibrium to problem (P).
In fact, combining the above Definition 1 and 2 together

establishes the equivalence between problem (P) and (8). In
other words, the desired equilibrium Ae to problem (P) can be
easily resulted from the solution P e by solving problem (8).
Next, we develop the projected stochastic gradient algorithm
to solve for the equilibrium solution P e.

4

B. Projected Stochastic Gradient Algorithm

Before proceeding to the development of our algorithm, let
us first investigate the gradient of function ∇f(P). Recall that
the function f(P) is a multi-linear extension of F (A) and can
be expressed as (5), thus the gradient of f(P) with respect to
each single component pi(ai) can be represented as

∇pi(ai)f(P) =
∑
a1∈A1

p1(a1) · · ·
∑

ai−1∈Ai−1

pi−1(ai−1)

∑
ai+1∈Ai+1

pi+1(ai+1) · · ·
∑
aI∈AI

pI(aI) · F (ai;A−i).

(9)
Since F (A) has its expectation interpretation as shown in (6),
the gradient ∇pi(ai)f(P) can be also expressed as the follow-
ing expectation form,

∇pi(ai)f(P) = Eãj∼pj ,j 6=i
[
F (ai; Ã−i)

]
. (10)

We remark that, to evaluate the gradient ∇pi(ai)f(P) for
the i-th agent in the form of (9), it is required to sum all
possibilities that are governed by the probability distribution
pj’s for all other agents j 6= i. However, due to its expec-
tation form (10), a key observation here is that an unbiased
estimation of the gradient can be obtained by sampling the
strategies aj based on pj for ∀j 6= i. In this sense, we call
∇pi(ai)f(P) the full gradient which is computed by (9), and
meanwhile denote the following ∇pi(ai)f̂(P) as the sampled
stochastic gradient with the sample-size M ∈ N+,

∇pi(ai)f̂(P) =
1

M
·
M∑
s=1

F (ai; Â
s
−i), (11)

where Âs−i = [âs1, · · ·, âsi−1, âsi+1, · · ·, âsI]> and each âsj , j 6= i
is the independent and identically distributed (i.i.d.) sampled
strategy based on the probability distribution pj . Taking ad-
vantage of this stochastic gradient ∇pi(ai)f̂(P), our projected
stochastic gradient algorithm performs the following iteration,
with index k ∈ N+,

pk+1
i = ΠS

(
pki + γ · ∇pi

f̂(P k)
)
, ∀i ∈ I. (12)

In (12), P k is the collection of pki ’s for all agents at the k-th
iteration, i.e., P k = [pk1

>
,pk2
>
, · · · ,pkI

>
]>; ∇pi

f̂(P k) is a
vector which stacks the stochastic gradients for all ai ∈ Ai,
i.e., ∇pi f̂(P k) = [∇pi(ai)f̂(P k)]ai∈Ai ; γ > 0 is a constant
step-size; and the operator ΠS(·) : RK → S defines the
projection on the probability simplex S, i.e.,

ΠS(p) := arg min
x∈S

‖x− p‖2. (13)

Our ultimate goal here is to drive the sequence of P k

generated by the iteration (12) to the desired equilibrium
solution P e as defined in Definition 2. Before proceeding to
the convergence analysis of our algorithm, let us first show, by
the following proposition, an alternative way to characterize
the equilibrium solution P e.

Proposition 2: Under Assumption 2, the probability dis-
tribution P e is an equilibrium solution to problem (8); see
Definition 2, if and only if the following condition is satisfied,

E
[∥∥pei −ΠS

(
pei + γ · ∇pi f̂(P e)

)∥∥2] = 0, ∀i ∈ I. (14)

With the help of the above proposition, we are now in the
position to analyze the convergence of our projected stochastic
gradient algorithm.

Theorem 1: Suppose that Assumption 2 is satisfied, and let
{P k}k∈N+

be the sequence generated by the iteration (12)
with a small enough constant step-size γ and a large enough
constant sample-size M . Then, it holds that

lim
k→∞

E
[∥∥pki −ΠS

(
pki + γ · ∇pi

f̂(P k)
)∥∥2] = 0, ∀i ∈ I,

(15)

and furthermore, the running average converges at the rate of
O(1/T) where T is the number of iterations, i.e., there exists
a constant η1 > 0 such that

1

T

T∑
k=0

E
[∥∥pki −ΠS

(
pki + γ · ∇pi

f̂(P k)
)∥∥2] ≤ η1

T
. (16)

Note that the proofs of both Proposition 2 and Theorem 1
are provided in Appendix B and C, respectively; in addition,
the detailed conditions of the step-size γ and sample-size M
are also specified in the proof. Now, combining the above
Proposition 2 and Theorem 1 together, it has been shown that
the projected stochastic gradient algorithm converges to the
desired equilibrium P e. To sum up, we outline our scheme as
the following Algorithm 1 and provide a few remarks on it.

Algorithm 1: Projected Stochastic Gradient Algorithm

Initialization: Each agent i initializes its own probability
distribution p0

i (not vertex), samples a set of M strategies
[âsi]1≤s≤M based on p0

i , and sends it to all other agents.
Set the maximum iteration K, and initialize index k = 0.

while 0 ≤ k ≤ K is satisfied do
Each sensor i simultaneously does
(S.1) Receive the sampled strategies âsj from all

other agents j, and evaluate the stochastic
gradient as (11);

(S.2) Update the distribution pk+1
i as (12);

(S.3) Sample the M strategies âsi ’s based on the
updated pk+1

i , and send it to other agents;
(S.4) Let k ← k + 1, and continue.

end

Remark 1: It is worth noting that the multi-linear extension
function f(P) is neither convex nor concave, thus the consid-
ered problem (8) belongs to the category of nonconvex opti-
mization. Besides, our problem is also inherently nonsmooth,
since the probability simplex constraints are present. In order
to achieve the exact convergence for solving such nonsmooth
nonconvex optimization (normally to the stationary point),
typical stochastic gradient based approaches follow two paths:
1) increasing the sample-size with iteration numbers [21]; and
2) applying the techniques of variance reduction [22], [23].
One major novelty of our algorithm herein is the provable
exact convergence with a constant sample-size. This primarily
benefits from the fact that the stochastic gradient is not only
bounded but also has finite possibilities in our problem.

5

Remark 2: We also remark that our algorithm is closely re-
lated to the well-known EXP3 algorithm [24]–[26] for solving
the multi-armed bandit problems. In fact, the iteration (12) of
our algorithm can be equivalently rewritten as

pk+1
i = arg min

x∈S

{
−〈∇pi

f̂(P k), x〉+ 1

2γ
‖x−pki ‖2

}
. (17)

Once substituting the proximal regularization in (17) by the
Kullback–Leibler divergence [27] regularization, it is straight-
forward to verify that our algorithm is equivalent to the EXP3
algorithm with full information feedback. To understand this
connection, we can view each agent as a player choosing
the desired arm from a bandit while the obtained reward is
dynamically affected by all other players. In this sense, our
algorithm drives all players to an equilibrium in which nobody
can obtain more rewards by unilaterally changing its strategy.
Other related works can be found in [28]–[31], which focus on
the analysis of regret bound in the context of online learning.

IV. DISTRIBUTED ALGORITHM WITH
COMMUNICATION DELAYS

As mentioned before, one major concern of the proposed
Algorithm 1 is that individual agents are required to commu-
nicate with all others instantaneously, in order to received the
sampled strategies âsi ’s based on the most updated distributions
pki ’s. This undoubtedly brings restrictions on the algorithm
implementation. In this section, we relax such a requirement
and further enhance the proposed algorithm by considering the
scenario in which the communication delays are present.

Suppose that each individual agent can only receive oth-
ers’ strategies sampled from the time-delayed distributions.
Concretely, let us assume, at the k-th iteration, each agent i
receives the sampled strategy âsj from the agent j which is
based on the distribution p

k−τij
j . Note that τij here represents

the length of time-delays when the agent i receives the infor-
mation from agent j. In addition, to ensure the informational
flow between any pair of agents, we restrict, in the following
assumption, that the time-delay τij is bounded for any i, j ∈ I.

Assumption 3: It is assumed that there exists a constant
D > 0 such that τij ≤ D for ∀i, j ∈ I.

We remark that the above Assumption 3 is quite standard
in the study of algorithms with delayed communications. It
inherently ensures that each agent receives others’ information
at least once within the time-window k ≤ t ≤ k +D − 1.

Since the agents’ strategies are sampled from the delayed
distributions, it is natural to see that the stochastic gradients
are also subject to the time-delays. Let us denote the delayed
stochastic gradient with respect to pi(ai) as

∇pi(ai)f̂δ(P
k−
i) =

1

M
·
M∑
s=1

F (ai; Â
s
−i), (18)

in which we use P k−i to represent the delayed distributions
p
k−τij
j ’s associated with the agent i, and Âs−i is the set of

sampled strategies based on the delayed P k−i . As a result, the
iteration of our projected stochastic gradient algorithm with
communication delays becomes

pk+1
i = ΠS

(
pki + γ · ∇pi

f̂δ(P
k−
i), (19)

where ∇pi
f̂δ(P

k−
i) is the vector that stacks ∇pi(ai)f̂δ(P

k−
i)’s

for all ai ∈ Ai.
Herein, let us refer to the scheme (19) as our Algorithm 2.

As similar to Algorithm 1, in order to establish the conver-
gence of Algorithm 2, we first characterize the condition of
equilibrium solutions when communication delays are present.

Proposition 3: Suppose that Assumptions 2 and 3 hold,
and let PkD = [P k, P k+1, · · · , P k+D−1] be a collection of
probability distributions which are generated by Algorithm 2
within the time-window k ≤ t ≤ k + D − 1. Then, each
P t within the time-window is an equilibrium solution to
problem (8), if the following condition is satisfied,

k+D−1∑
t=k

E
[∥∥pti −ΠS

(
pti + γ · ∇pi f̂δ(P

t−
i)
)∥∥2] = 0, ∀i ∈ I.

(20)

Now, we establish the convergence of Algorithm 2 by the
following theorem.

Theorem 2: Suppose that Assumptions 2 and 3 hold, and let
{P k}k∈N+

be the sequence generated by Algorithm 2 with a
small enough constant step-size γ and a large enough sample-
size M . Then, it holds that, for ∀i ∈ I,

lim
k→∞

k+D−1∑
t=k

E
[∥∥pti −ΠS

(
pti + γ · ∇pi f̂δ(P

t−
i)
)∥∥2] = 0,

(21)

and furthermore, the running average converges at the rate of
O(1/T) where T is the number of iterations, i.e., there exists
a constant η2 > 0 such that

1

T

T∑
k=0

E
[∥∥pti −ΠS

(
pti + γ · ∇pi f̂δ(P

t−
i)
)∥∥2] ≤ η2

T
. (22)

As earlier, we present the theoretical proofs of the above
Proposition 3 and Theorem 2 in Appendix D and E, respec-
tively; the detailed conditions of the step-size γ and sample-
size M are also provided in the proof. In the end of this
section, we make a few remarks on the implementation of
the enhanced Algorithm 2 with delayed communications.

Remark 3: For the first D iterations, individual agents might
not be able to receive all others’ information, due to the
presence of communication delays. Under such circumstance,
our algorithm allows the agent to arbitrarily initialize the
received strategies, and the convergence of algorithm will not
be affected. For instance, each agent can choose the empty
as the corresponding strategy if no information is received. In
this sense, we remark that the delayed probability distribution
P k−i is actually well-defined for all k ≥ 0.

Remark 4: It is also noteworthy that, since the enhanced Al-
gorithm 2 is robust against the communication delays, one can
implement it in a fully distributed architecture where agents
only need to communicate with their neighbors. Suppose that
the communication channels among agents are governed by a
peer-to-peer network, denoted as a general graph G. Then, the
time-delay τij in Algorithm 2 corresponds to the distance δij
between node i and j, i.e., the minimum number of edges that
connect those two nodes. Therefore, as long as the graph G is

6

connected, meaning that δij is bounded, our algorithm is still
effective. In this case, however, the price is that each agent
needs to maintain a memory buffer to store the information
for all others within the network.

V. SIMULATION

In this section, we evaluate the effectiveness of the proposed
algorithms by considering a real-world movie recommenda-
tion application [32], [33]. Our numerical simulations are
conducted based on the well-known MovieLens dataset [34],
which contains over 25 million ratings (ranging from 1 to 5)
applied to 62, 423 movies by 162, 541 different users. In
particular, we denote ri,j the rating submitted by the user i to
the movie j, and say that the movie j is liked by the user i
if ri,j ≥ r̄ where r̄ is some certain pre-defined threshold. The
objective herein is to identify the top I movies, in the sense
that those movies are liked by the maximum number of users.
It should be noted that the considered problem is not trivial,
since we count each user only once for all the chosen I movies.
For example, suppose that the user i likes the movies j and
j′ at the same time and both of them are chosen as the top
movies, then the user i will be counted only once, rather than
twice, when counting the number of users for the top movies.

To formalize the above movie recommendation problem, let
us denote S the set of all movies and U(js) := {i | ri,js ≥ r̄}
the set of users who like the movie js. Then, the considered
movie recommendation application can be formulated as the
following maximization problem,

max
js∈S

F (j1, j2, · · · , jI) := | ∪Is=1 U(js)|. (23)

It can be verified that the objective function F is both
monotone and submodular; see definitions in Assumption 1.
Thus, (23) is a well-defined monotone submodular maximiza-
tion problem which can be solved by the proposed algorithms.

In our simulations, we specify the rating threshold as r̄ = 3
and aim to identify the top I = 10 movies. In addition,
to reduce the size of the candidate movie set S, we pre-
process the dataset and only consider the movies which are
liked by no less than 300 users. As a result, totally 1,160
movies are picked up to comprise the candidate set S. In the
following, we conduct two separate simulations which are cor-
responding to the two proposed algorithms. Each simulation
is compliant with a network composed of I = 10 agents.
Therefore, each individual agent only needs to take charge in
the determination of one (out of 1,160) movie, so that the
entire network cooperatively finds the top 10 movies. In the
first simulation, a fully-connected network is assumed, i.e.,
the all-to-all communications are available for each single
agent, so that the Algorithm 1 can be implemented without
time-delays. Additionally, in order to take into account the
delayed communications, we assume a general but connected
undirected network in the second simulation. In this case,
agents only communicate with their neighbors. As mentioned
in Remark 4, the length of time-delays τij is governed by the
distance between the agent i and j presented in the network.

The following Fig. 1 first plots the evolution of individual
agents’ probabilities of choosing the final top 10 movies, in

Fig. 1: Evolution of agents’ probabilities (fully-connected graph).

Fig. 2: Averaged gradient mapping with different graphs.

the case that the fully-connected network is assumed. Note
that the step-size and sample-size are set as γ = 0.0005 and
M = 3. As one can observe from Fig. 1, each agent decides its
own choice after around 350 iterations, and it is confirmed that
the collection of the top 10 movies is an equilibrium solution
to problem (23). More specifically, it turns out that the chosen
top 10 movies are liked by 10, 700 users, while totally 11, 842
users are involved in all the 1,160 candidate movies. Although
it is unknown how many users are covered by the optimal
collection of the ten movies, given that this quantity has to be
no larger than 11, 842, thus, it is immediately confirmed that
the 1/2-suboptimal bound is achieved.

Furthermore, in order to evaluate the statistical performance
of our stochastic gradient based algorithm, we carry out the
Monte-Carlo simulation for 20 times. The simulation setting
is the same as before. Fig. 2 plots the running average of the
generated gradient mappings (blue curve), averaged by the 20
independent trials. Note that the running average of gradient
mappings Jk at each iteration k is computed as

Jk :=
1

k
·
k∑
t=1

I∑
i=1

‖pti − pt−1i ‖
2. (24)

According to Proposition 2, it is implied that the algorithm
converges to the desired equilibrium solution when Jk → 0.
Therefore, Fig. 2 validates the convergence of the proposed

7

1
7

2

4

5 3

6

8

9

10

(a) The general connected graph

1

7

2

4

5

3

6 8

9

10

(b) The string graph

Fig. 3: Multi-agent network topologies.

Fig. 4: Evolution of agents’ probabilities (general graph).

Algorithm 1 and one can also observe a sublinear convergence
rate as stated in Theorem 1.

In the second simulation, we run the proposed Algorithm 2
with delayed communications, under a general connected
network as shown in Fig. 3(a). It can be seen that from the
topology that the maximum distance between two nodes is
four, and thus the communication delays are bounded by the
constant D = 3. Fig. 4 shows the the evolution of agents’
probabilities of choosing the top 10 movies, in the case that
γ = 0.0005 and M = 3. Based on this figure, we conclude
that Algorithm 2 also converges with the presence of delayed
communications. However, compared to the case without time-
delays as shown in Fig. 1, more iterations are needed to arrive
at the final decisions of the top 10 movies.

Moreover, as similar to the first simulation, we conduct the
Monte-Carlo simulation with 20 independent trails as well.
Besides the general connected network as shown in Fig. 3(a),
in this simulation, we additionally consider a specific string
graph as shown in Fig. 3(b). It should be noted that, under
such a string graph, the maximum distance between two nodes
is nine and thus the communication delays are bounded by
D = 8. The averaged Jk’s in these two cases are also demon-
strated in Fig. 2; see the red curve for the general connected
graph and the black curve for the string graph. Based on
Proposition 3, it is confirmed that Algorithm 2 converges to the
equilibrium solution and a sublinear convergence rate is shown
as expected. In addition, we also observe from the figure that
a larger number of iterations are needed to obtain the solution
when more communication delays are present in the network.

VI. CONCLUSION

In this paper, we developed a projected stochastic gradient
algorithm for solving the distributed submodular maximization
problem. Unlike the commonly-studied greedy algorithm, our
approach enables the simultaneous updates among all indi-
vidual agents. It is proved that the algorithm converges to an
equilibrium solution, which is guaranteed to be at least 1/2-
suboptimal. Furthermore, we enhanced the proposed algorithm
by handling the scenario in which agents’ communication
delays are present. The similar convergence result is proved for
the enhanced distributed algorithm. Finally, a real-world movie
recommendation application is considered to demonstrate the
effectiveness of our algorithms. It should be also remarked
that, compared to the brute-force searching scheme which has
exponential complexity in terms of the number of agents I , the
complexity of our distributed algorithms is primarily reduced.
We leave the rigorous complexity analysis of the algorithms
as our future work.

APPENDIX

A. Proof of Proposition 1
According to the definition of the function F (A), let us first

define its marginal function as

δ(a |A) := F ({a} ∪A)− F (A), (25)

It can be shown that the submodularity of function F (A)
implies that if A′ ⊆ A, then

δ(a |A′) ≥ δ(a |A). (26)

Recall that we use A−i to denote the set of elements aj’s in
A where j 6= i. In addition, we use A<i (or A≤i) to represent
the set of elements aj where j < i (or j ≤ i). Then, by the
definition of the equilibrium Ae; see Definition 1, we can have

δ(aei |Ae−i) ≥ δ(ai |Ae−i), ∀ai ∈ Ai, i ∈ I. (27)

Now, based on Assumption 1 of the function F (A) (mono-
tonicity and submodularity), it holds that

F (A?)
(1a)

≤ F (A? ∪Ae)

= F (Ae) +

I∑
i=1

(
F (A?≤i ∪Ae)− F (A?<i ∪Ae)

)
(1b)
= F (Ae) +

I∑
i=1

δ(a?i |A?<i ∪Ae)

(1c)

≤ F (Ae) +

I∑
i=1

δ(a?i |Ae−i)

(1d)

≤ F (Ae) +

I∑
i=1

δ(aei |Ae−i)

(1e)

≤ F (Ae) +

I∑
i=1

δ(aei |Ae<i)

(1f)
= F (Ae) +

I∑
i=1

(
F (Ae≤i)− F (Ae<i)

)
(1g)
= 2F (Ae).

(28)

8

Note that (1a) comes from the monotonicity of F (A); (1b)
and (1f) is due to the definition of marginal function; (1c) and
(1e) comes from the submodularity of F (A); (1d) is based on
the inequality (27); and (1g) is due to the fact that F (∅) = 0.
Therefore, the proof is completed.

B. Proof of Proposition 2

We start the proof by investigating properties of the projec-
tion on the probability simplex S. According to the definition
of the projection ΠS(·), as shown in (13), it can be verified
in [35], [36] that the projection is computed as

ΠS(p) = [p− λ1]+, (29)

where λ is the solution of the equation 1>[p − λ1]+ = 1.
Subsequently, we show the following two lemmas regarding
the projection ΠS(p).

Lemma 1: Suppose that p ∈ [0, 1]K is a vertex of the
simplex, i.e., ‖p‖∞ = 1, and let us denote its non-zero
component as p(n), i.e., p(n) = 1 and p(k) = 0 for ∀k 6= n.
Then, one can have p = ΠS(p + ∆p) if and only if ∆p(n)
is the maximum component of ∆p, i.e., ∆p(n) ≥ ∆p(k) for
∀k = 1, 2, · · · ,K.

Proof: Let us recall that ΠS(p+∆p) = [p+∆p−λ1]+.
Suppose that p = ΠS(p + ∆p), since p is a vertex of the
simplex and p(n) = 1, then the n-th component of vector
p+ ∆p− λ1 must be one, and all its other components must
be non-positive. It means that p(n) + ∆p(n) − λ = 1 and
p(k) + ∆p(k)− λ ≤ 0 for ∀k 6= n. The former equality tells
that ∆p(n) = λ and the latter yields ∆p(k) ≤ λ. Combining
those two proves the first half of the statement.

Conversely, assume ∆p(n) ≥ ∆p(k) for ∀k = 1, 2, · · · ,K,
then it holds that

(
p(n) + ∆p(n)

)
−
(
p(k) + ∆p(k)

)
≥ 1.

Thus, to satisfy the equation 1>[p+∆p−λ1]+ = 1, we must
have λ = ∆p(n). On this account, we can further have that
p(n)+∆p(n)−λ = 1 and p(k)+∆p(k)−λ ≤ 0 for ∀k 6= n,
and thus [p−∆p − λ1]+ = p. Therefore, the second part of
the statement is proved.

Lemma 2: Suppose that p ∈ [0, 1]K is not a vertex of the
simplex, and without loss of generality, let us assume its first
n components (2 ≤ n ≤ K) to be non-zeros. Then, one can
have p = ΠS(p + ∆p) if and only if there exists δ such that
∆p(k) = δ for k ≤ n and ∆p(k) ≤ δ for k > n.

Proof: Recall again that ΠS(p+∆p) = [p+∆p−λ1]+.
Let us assume p = ΠS(p+∆p), since the first n components
of p are non-zeros, then we have p(k) = p(k) + ∆p(k)− λ
for k ≤ n and ∆p(k)−λ ≤ 0 for k > n. Thus, simply taking
δ = λ proves the first half of the statement.

Conversely, suppose that ∆p has ∆p(k) = δ for k ≤ n and
∆p(k) ≤ δ for k > n. Since it is known that 1>p = 1, in
order to ensure the equation 1>[p+∆p−λ1]+ = 1, we must
have δ = λ. Thus, it holds that ΠS(p + ∆p) = [p]+ = p.

With the help of the above two lemmas, we are now ready
to prove the proposition in both directions separately.

Definition 2 ⇒ Equation (14):

Let us assume that P e = [pe1
>,pe2

>, · · ·,peI
>]> is an equi-

librium following Definition 2. According to the definition,

we know that each pei must be a vertex of the simplex S ,
i.e., there exists aei such that pei (a

e
i) = 1 and pei (ai) = 0

for ∀ai 6= aei ; and in addition, the collection of aei ’s, i.e.,
Ae = [ae1, a

e
2, · · · , aeI]>, is the equilibrium following Defini-

tion 1. Provided that P e is the collection of simplex vertices
and the stochastic gradient ∇pi

f̂(P e) in (14) is sampled based
on the probability distributions pei ’s, thus it can be shown that
the stochastic gradient has the following fixed form

∇pi
f̂(P e) = [F (ai;A

e
−i)]ai∈Ai

, (30)

and we can simply get rid of the expectation in (14). Moreover,
by the definition of equilibrium Ae (see equation (3)), it holds
that, for ∀i ∈ I,

F (aei ;A
e
−i) ≥ F (ai;A

e
−i), ∀ai ∈ Ai. (31)

On this account, we know that each gradient ∇pi f̂(P e) has
F (aei ;A

e
−i) as its maximum component. Therefore, based on

Lemma 1, it is proved that

pei = ΠS
(
pei + γ · ∇pi f̂(P e)

)
, (32)

and thus the proof of the first half is completed.

Equation (14) ⇒ Definition 2:

Suppose that the point P e has already satisfied the con-
dition (14). Next, we first show that each pei in P e has to
be the vertex of the simplex S. In fact, suppose that pei is
not a vertex and let pei (a

1
i) and pei (a

2
i) be the two non-zero

components. Then, based on Lemma 2 and in order to ensure
the condition (14), we must have that for ∀ai ∈ Ai,

M∑
s=1

F (a1i ; Â
s
−i) =

M∑
s=1

F (a2i ; Â
s
−i)≥

M∑
s=1

F (ai; Â
s
−i), (33)

where Âs−i represents any possible sample of strategies. This
clearly contradicts the maximum distinguishable assumption
of the function F (A) (see Assumption 2). As a result, we have
proved that P e must be the collection of simplex vertices, and
the expectation in (14) can be removed. Next, let us assume
that each pei has pei (a

e
i) = 1 and pei (ai) = 0 for ∀ai 6= aei ,

by the fact that it is simply a vertex. Applying Lemma 1 once
again, it can be shown that the gradient ∇pi

f̂(P e) has its
maximum component at F (aei ;A

e
−i), i.e.,

aei = arg max
ai∈Ai

F (ai;A
e
−i). (34)

Thus, the second half of the proposition is proved.

C. Proof of Theorem 1

We begin the proof by recalling that the stochastic gradient
∇pi

f̂(P k) computed as (11) is an unbiased estimation of
the full gradient ∇pi

f(P k). In fact, this statement has been
verified in the derivation of our projected stochastic gradient
algorithm; see Section III-B. Thus, to facilitate the subsequent
proof, we here extract the statement as the following lemma
and omit the detailed proof.

Lemma 3: Suppose that the stochastic gradient ∇pi
f̂(P) is

defined as (11), then it holds that

Eâj∼pj ,j 6=i
[
∇pi f̂(P)

]
= ∇pif(P). (35)

9

Next, let us introduce an additional notion, namely gradient
mapping, which is defined as below,

Gγ(g,p) =
1

γ
·
(
p−ΠS(p + γg)

)
. (36)

Here, g ∈ RK a general gradient, p ∈ S is a general point
from the probability simplex, and γ is a constant which repre-
sents the step-size. Recall that our projected stochastic gradient
algorithm performs the iteration (12), it can be equivalently
rewritten into the following gradient mapping form,

pk+1
i = pki − γ · Gγ(∇pi f̂(P k),pki). (37)

The iteration (37) can be interpreted as a standard line search
algorithm with the constant step-size γ, while the searching
direction is the gradient mapping Gγ(∇pi f̂(P k),pki).

Associated with the gradient mapping, we next show the
following two lemmas, which will play key roles in the proof
of the theorem.

Lemma 4: Given the gradient mapping Gγ(g,p), for any
g ∈ RK , p ∈ S and γ ∈ R+, it holds that

−〈g, Gγ(g,p)〉 ≥ ‖Gγ(g,p)‖2. (38)

Proof: Recall that the projection on the probability sim-
plex ΠS(·) is defined as (13). Thus, within the gradient
mapping, the term ΠS(p + γg) can be computed as

ΠS(p + γg) = arg min
x∈S

{−〈g, x〉+
1

2γ
‖x− p‖2}. (39)

By noticing that the optimization problem in (39) is convex,
the optimality condition of solution ΠS(p+ γg) ensures that,
for ∀x ∈ S,〈
− g +

1

γ

(
ΠS(p + γg)− p

)
, x−ΠS(p + γg)

〉
≥ 0. (40)

Now, let x = p, it can be shown that

−
〈
g, p−ΠS(p + γg)

〉
≥ 1

γ
‖p−ΠS(p + γg)‖2. (41)

Provided that the gradient mapping Gγ(g,p) is define as (14),
thus the proof is completed.

Lemma 5: Given the gradient mapping Gγ(g,p), for any
g1,g2 ∈ RK , p ∈ S and γ ∈ R+, it holds that

‖Gγ(g1,p)− Gγ(g2,p)‖ ≤ ‖g1 − g2‖. (42)

Proof: Applying again the optimality condition (40) with
the gradient g substituted by g1 and g2 respectively, it yields
that,〈
− g1+

1

γ

(
ΠS(p+γg1)−p

)
, x−ΠS(p + γg1)

〉
≥ 0; (43a)〈

− g2+
1

γ

(
ΠS(p+γg2)−p

)
, x−ΠS(p + γg2)

〉
≥ 0. (43b)

Now, let x = ΠS(p + γg2) in (43a) and x = ΠS(p + γg1)
in (43b), summing both inequalities gives that〈

g2 − g1, ΠS(p + γg2)−ΠS(p + γg1)
〉

≥ 1

γ
‖ΠS(p + γg1)−ΠS(p + γg2)‖2

(44)

By the definition of gradient mapping Gγ(g,p) and Cauchy-
Schwartz inequality, the proof is completed.

It should be remarked that, while Lemma 3 verifies that
the stochastic gradient ∇pi

f̂(P k) is an unbiased estimation,
Lemma 4 and 5 both characterize the properties of the
gradient mapping. Next, let us show another lemma which
investigates the variance of the stochastic gradient. Before
stating the lemma, some more notations and a supporting
lemma are needed to be first introduced. Let us simply denote
∇f(P) (also ∇f̂(P)) the stacked full (stochastic) gradient
for each agent i ∈ I, i.e., ∇f(P) = [∇pi

f(P)]i∈I . Similarly,
we use G̃γ

(
∇f(P), P

)
and Π̃S

(
P + γ · ∇f̂(P)

)
to denote

the stacked gradient mapping and also the updated probability
distributions respectively, i.e.,

P k+1 = Π̃S
(
P k + γ · ∇f̂(P k)

)
= P k − γ · G̃γ

(
∇f̂(P k), P k

)
.

(45)

Lemma 6: Suppose that the current iterate P k is a collection
of simplex vertices but not an equilibrium. Let the step-size
satisfy γ < 2/∆max, then the next iterate P k+1 generated by
Algorithm 1 must not be the collection of simplex vertices.

Proof: Let us first recall that the iterate P k is a collection
of pki ’s, i.e., P k = [pk1

>
,pk2
>
, · · · ,pkI

>
]>. Since it is assumed

that each pki is the simplex vertex, then we let pki = eni with
eni ∈ RK being the unit vector whose ni-th component is one
and others are zeros. In addition, according to the iteration
of Algorithm 1 and the fact that the projection ΠS can be
computed as (29), thus we know

pk+1
i =

[
eni

+ γ · F−i − λ1
]+
, (46)

where λ is governed by the equation 1>pk+1
i = 1. Note

that here the sampled gradient is deterministic since P k is a
collection of vertices, thus we use F−i ∈ RK to represent
the sampled gradient based on the probability distribution
pkj , j 6= i. Furthermore, we denote F−i(n) the n-th component
of the vector F−i.

Given that P k is not an equilibrium, thus there exist indices
i ∈ I and nmax

i 6= ni, such that F−i(nmax
i) > F−i(ni) and

F−i(n
max
i) ≥ F−i(n), ∀n = 1, 2, · · · ,K. (47)

In fact, if F−i(ni)’s are the maximum components for ∀i ∈ I,
then P k must be the equilibrium by definition. Consequently,
according to the equation (46), we know that pk+1

i (nmax
i) > 0

must be true. On this basis, in order to prove the lemma, it will
suffice to show that pk+1

i (nmax
i) < 1 if γ < 2/∆max. Next, we

prove this statement by contradiction.
Suppose that pk+1

i (nmax
i) < 1 is false, i.e., pk+1

i (nmax
i) = 1.

Provided that nmax
i 6= ni, thus we have γ ·F−i(nmax

i)− λ = 1
and 1 + γ · F−i(ni) − λ ≤ 0. Substitute the former equation
to the latter one and get rid of λ, it yields,

2 + γ ·
(
F−i(ni)− F−i(nmax

i)
)
≤ 0. (48)

Recall the definition of ∆max; see equation (2), and the fact
that F−i(nmax

i) > F−i(ni), we have

0 < F−i(n
max
i)− F−i(ni) ≤ ∆max. (49)

10

Combining both (48) and (49) shows that γ ≥ 2/∆max. Thus,
the proof is completed.

Now, we are ready to show the following lemma which
characterizes the variance of stochastic gradients.

Lemma 7: Suppose that the sequence {P k}k∈N+ is the set of
iterates generated by Algorithm 1 and the initialization P 0 is
not a collection of simplex vertices. Let the step-size γ satisfy
the condition γ < 2/∆max, then there exist constants B0 > 0
and B1 > 0 such that the following holds,

T∑
k=0

E
[
‖∇f̂(P k)−∇f(P k)‖2

]
≤ B0

+B1/M ·
T∑
k=0

E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]
,

(50)
where the expectation is taken with respect to the sampling of
stochastic gradient ∇f̂(P) for all iterations 0 ≤ k ≤ T and
M is the sample-size.

Proof: Before starting the proof, we first note that it is
only needed to consider the case when none of P k, 0 ≤ k ≤ T
is the equilibrium. In fact, it can be immediately verified that
the algorithm will stay at the equilibrium P e forever once it
reaches the point. In addition, due to the fact that

E
[
‖∇f̂(P e)−∇f(P e)‖2

]
= E

[
‖G̃γ

(
∇f̂(P e), P e

)
‖2
]

= 0,
(51)

thus we only need to prove the case in which the algorithm
has not reach the equilibrium.

Now, let us begin the proof by introducing an additional
notion, namely the reachable set of the iterates P k. We define
the reachable set Sk at each iteration k as follows,

Sk :=
{
P k |P t = Π̃S

(
P t−1 + γ · ∇f̄(P t−1)

)
, 1 ≤ t ≤ k

}
.

(52)

Note that here the gradient ∇f̄(P t−1) is any possible real-
ization of the stochastic gradient ∇f̂(P t−1). Due to the fact
that each ∇f̄(P t−1) only has finite possibilities and P 0 is
well initialized, thus we know each Sk is also a finite set,
but its cardinality grows quickly as the index k increases.
Subsequently, let us divide each of the reachable sets Sk into
two subsets, i.e., Sk = S̄k ∪ S̄kc where S̄k only contains the
iterates P k’s which are collections of the simplex vertices and
S̄kc is the complement set. On this account, we next prove the
following statements: there exists a constant ε > 0 such that

1) if it is known that P k+1 ∈ S̄k+1
c , then

E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]
≥ ε; (53)

2) if it is known that P k ∈ S̄k, then

E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]
≥ ε. (54)

Proof of statement 1): Recall again that the iterate P k is
the collection of pki ’s. Since it is known that P k+1 ∈ S̄k+1

c ,
then let us assume, without loss of generality, that pk+1

i has

two non-zero components pk+1
i (u) and pk+1

i (v) such that
pk+1
i (u) ≥ pk+1

i (v). Then, the expectation term in (53) has,

E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]

= 1/γ2 · E
[
‖P k − P k+1‖2

]
= 1/γ2 · E

[I∑
i=1

‖pki − pk+1
i ‖2

]
≥ 1/γ2 · E

[
‖pki − pk+1

i ‖2
]
.

(55)
According to the iteration of Algorithm 1 and the computa-
tion (29) of the projection ΠS , then we have{

pk+1
i (u) = pki (u) + γ · F−i(u)− λ;

pk+1
i (v) = pki (v) + γ · F−i(v)− λ.

(56)

Note that F−i(u) and F−i(v) are the u-th and v-th components
of the sampled gradient ∇f̂(P k). Since we have assumed that
pk+1
i (u) ≥ pk+1

i (v) > 0, it can be verified that F−i(u) has to
be the maximum one against all other F−i(n)’s. Next, based
on the maximum distinguishable assumption, we know that
E[F−i(u)] has to be strictly greater than E[F−i(v)]. Then, let
∆ = E[F−i(u)]− E[F−i(v)] > 0, it holds that

E
[
‖pki − pk+1

i ‖2
]

(2a)

≥ ‖E
[
pki − pk+1

i

]
‖2

≥
(
γ · E[F−i(u)]− E[λ]

)2
+
(
γ · E[F−i(v)]− E[λ]

)2
=

1

2

(
2γE[F−i(v)] + γ∆− 2E[λ]

)2
+

1

2
γ2∆2

≥ 1

2
γ2∆2.

(57)

Note that (2a) follows from the Jensen’s inequality. Thus, the
proof of statement 1) is completed.

Proof of statement 2): According to the above Lemma 6,
we know that P k+1 must be not the collection of simplex
vertices, if the step-size γ is choose under the condition and
P k is the collection of vertices. In other words, P k ∈ S̄k
implies P k+1 ∈ S̄k+1

c , and conversely, P k+1 ∈ S̄k+1 implies
P k ∈ S̄kc . Therefore, the proof of statement 2) can be done
by following exactly the same path of statement 1).

Now, recall that the stochastic gradient ∇f̂(P k) is i.i.d.
sampled with the sample-size M . Let us denote ∇f̂s(P k) as
the gradient decided by one single sample s = 1, 2, · · · ,M ,
thus we know

E
[
‖∇f̂(P k)−∇f(P k)‖2

]
= E

[∥∥∥ 1

M

M∑
s=1

(
∇f̂s(P k)−∇f(P k)

)∥∥∥2]

=
1

M2
·
M∑
s=1

E
[
‖∇f̂s(P k)−∇f(P k)‖2

]
.

(58)

Furthermore, by the definition of the function f(P), it can
be immediately verified that its gradient ∇f(P k) is always
bounded for ∀P k, so is the i.i.d. sampled stochastic gradient
f̂s(P

k). Based on this, we can have that the variance term
E
[
‖∇f̂s(P k)−∇f(P k)‖2

]
is bounded. Therefore, the above

two statements can further imply the following two conditions:
there exists a constant B1 such that,

11

1) if it is known that P k+1 ∈ S̄k+1
c , then

E
[
‖∇f̂(P k)−∇f(P k)‖2

]
≤ B1/M · E

[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]
;

(59)

2) if it is known that P k ∈ S̄k, then

E
[
‖∇f̂(P k−1)−∇f(P k−1)‖2 + ‖∇f̂(P k)−∇f(P k)‖2

]
≤ B1/M · E

[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]
.

(60)
With the help of the above two inequalities (59) and (60),

we are now ready to prove the statement in the lemma. Let
us first denote qk the probability that P k is a collection of
simplex vertices, i.e.,

qk := Pr(P k ∈ S̄k). (61)

For the notational convenience, we denote
Ik = E

[
E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
] ∣∣P k ∈ S̄k];

IIk = E
[
E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
] ∣∣P k∈ S̄kc , P k+1∈S̄k+1

c

]
;

IIIk = E
[
E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
] ∣∣P k+1 ∈ S̄k+1

]
.

(62)

It should be remarked that, in (62), while the inner expectation
is taken with respect to the stochastic gradient ∇f̂(P k), the
outer expectation is taken with respect to the randomness of
P k and P k+1. Consequently, it holds that, for ∀k ≥ 1,

E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]

= qk · Ik + (1− qk − qk+1) · IIk + qk+1 · IIIk

(3a)

≥ qkM/B1 · E
[
‖∇f̂(P k−1)−∇f(P k−1)‖2

]
+ (1− qk+1)M/B1 · E

[
‖∇f̂(P k)−∇f(P k)‖2

]
.

(63)

Note that (3a) is due to the inequalities (59), (60) and the fact
that IIIk ≥ 0. According to (63), we have

T∑
k=0

E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]

(4a)
= (1− q1) · II0 + q1 · III0

+

T∑
k=1

(
qk · Ik + (1− qk − qk+1) · IIk + qk+1 · IIIk

)
(4b)

≥ (1− q1)M/B1 · E
[
‖∇f̂(P 0)−∇f(P 0)‖2

]
+

T∑
k=1

qkM/B1 · E
[
‖∇f̂(P k−1)−∇f(P k−1)‖2

]
+

T∑
k=1

(1− qk+1)M/B1 · E
[
‖∇f̂(P k)−∇f(P k)‖2

]
= M/B1 ·

T∑
k=0

E
[
‖∇f̂(P k)−∇f(P k)‖2

]
− qT+1M/B1 · E

[
‖∇f̂(PT)−∇f(PT)‖2

]
(4c)

≥ M/B1 ·
T∑
k=0

E
[
‖∇f̂(P k)−∇f(P k)‖2

]
−MB0/B1.

(64)

Note that (4a) is due to the fact that the initialization P 0 is
not the collection of vertices, i.e. q0 = 0; (4b) comes from the
inequality (63); and (4c) is based on the fact that the variance
term E

[
‖∇f̂(PT)−∇f(PT)‖2

]
can be upper bounded by the

constant B0. Rearranging the inequality (64) and noticing the
definition (45) of the stacked gradient mapping complete the
proof of the lemma.

After showing the above lemmas, we are now in the position
to prove the theorem. Since the Hessian of the function f(P)
is always bounded, it can be immediately verified that the
gradient of f(P) is Lipschitz continuous, so is the gradient of
−f(P). Thus, there exists a constant L > 0 such that,

− f(P k+1)

≤ −f(P k) +
〈
−∇f(P k), P k+1 − P k

〉
+
L

2
‖P k+1 − P k‖2

(5a)
= −f(P k) + γ

〈
∇f(P k)±∇f̂(P k), G̃γ

(
∇f̂(P k), P k

)〉
+
γ2L

2
‖G̃γ

(
∇f̂(P k), P k

)
‖2

(5b)

≤ −f(P k) + (
γ2L

2
− γ)‖G̃γ

(
∇f̂(P k), P k

)
‖2

+ γ
〈
∇f(P k)−∇f̂(P k),

G̃γ
(
∇f̂(P k), P k

)
± G̃γ

(
∇f(P k), P k

)〉
(5c)

≤ −f(P k) + (
γ2L

2
− γ)‖G̃γ

(
∇f̂(P k), P k

)
‖2

+ γ
〈
∇f(P k)−∇f̂(P k), G̃γ

(
∇f(P k), P k

)〉
+ γ‖∇f(P k)−∇f̂(P k)‖2.

(65)
Note that (5a) is due to the definition of gradient mapping;
(5b) comes from Lemma 4; and (5c) is due to the Cauchy-
Schwartz inequality and Lemma 5. Now, let us take expecta-
tion on the inequality (65), with respect to the random sam-
pling of stochastic gradient ∇f̂(P k) by given the probability
distribution P k. Since ∇f̂(P k) is the unbiased estimation of
the full gradient ∇f(P k) according to Lemma 3, it holds that

E
[
f(P k+1)

]
− f(P k) ≥(γ−γ

2L

2
) · E

[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]

− γ · E
[
‖∇f(P k)−∇f̂(P k)‖2

]
.
(66)

Consequently, summing up the above inequality (66) for all
0 ≤ k ≤ T and taking the expectation with respect to the
random sampling for all iterations, we have

E
[
f(PT+1)

]
− f(P 0)

≥ (γ − γ2L

2
) ·

T∑
k=0

E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]

− γ ·
T∑
k=0

E
[
‖∇f(P k)−∇f̂(P k)‖2

]
(6a)

≥ −γB0 + (γ−B1γ

M
−γ

2L

2
) ·

T∑
k=0

E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]
.

(67)
Note that (6a) follows from Lemma 7. Now, suppose that
P ? is the optimal solution for solving problem (8), i.e.,

12

E
[
f(PT+1)

]
≤ f(P ?), ∀T ∈ R+. Then, the above inequal-

ity (67) implies that, if the sample-size M and step-size γ are
chosen satisfying M > B1 and γ − B1γ/M − γ2L/2 > 0,
the non-negative sequence

{
E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]}
k∈N+

is summable, i.e.,
∞∑
k=0

E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]
≤ f(P ?)− f(P 0) + γB0

γ −B1γ/M − γ2L/2
.

(68)

Thus, E
[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]

converges to zero; and further-
more, its running average converges at the rate of O(1/T).

D. Proof of Proposition 3
Let us first remark that the condition (20) simply implies

that the following equation holds for all k ≤ t ≤ k +D − 1,

E
[∥∥pti −ΠS

(
pti + γ · ∇pi

f̂δ(P
t−
i)
)∥∥2] = 0, ∀i ∈ I. (69)

According to the iteration (19), it can be immediately verified
that P t+1 = P t is true for all k ≤ t ≤ k +D − 2. Therefore,
to prove the statement in Proposition 3, it will suffice to show
that P k+D−1 is an equilibrium solution.

Since each P t is identical within the entire time-window
k ≤ t ≤ k+D− 1, then let t = k+D− 1, the equation (69)
implies that, for all i ∈ I,

E
[∥∥pk+D−1i −ΠS

(
pk+D−1i + γ · ∇pi

f̂(P k+D−1)
)∥∥2] = 0.

(70)

Note that, in (70), the stochastic gradient ∇pi f̂(P k+D−1)
is evaluated without time-delays. As a result of the above
Proposition 2, we know that P k+D−1 has to be an equilibrium.
Therefore, the proof is completed.

E. Proof of Theorem 2
As similar to the previous proof, let us first mention that the

iteration (19) of Algorithm 2 can be compactly expressed as,

P k+1 = P k − γ · G̃γ
(
∇f̂δ(Pk−D), P k

)
, (71)

where G̃γ
(
∇f̂δ(Pk−D), P k

)
is the stacked gradient mapping

and Pk−D = [P k−i]i∈I collects the delayed distributions P k−i
for all i ∈ I. Now, according to the Lipschitz continuous
gradient of the function−f(P), we invoke the descent lemma
again and it holds that,

− f(P k+1)

≤ −f(P k) +
〈
−∇f(P k), P k+1 − P k

〉
+
L

2
‖P k+1 − P k‖2

= −f(P k) + γ
〈
∇f̂δ(Pk−D), G̃γ

(
∇f̂δ(Pk−D), P k

)〉
+ γ
〈
∇f(P k)−∇f̂δ(Pk−D), G̃γ

(
∇f̂δ(Pk−D), P k

)〉
+
γ2L

2
‖G̃γ

(
∇f̂δ(Pk−D), P k

)
‖2

(7a)

≤ −f(P k) + (
γ2L

2
− γ)‖G̃γ

(
∇f̂δ(Pk−D), P k

)
‖2

+ γ
〈
∇f(P k)−∇fδ(Pk−D), G̃γ

(
∇f̂δ(Pk−D), P k

)〉
+ γ
〈
∇fδ(Pk−D)−∇f̂δ(Pk−D), G̃γ

(
∇f̂δ(Pk−D), P k

)〉
.

(72)

Note that the inequality (7a) is due to Lemma 4; furthermore,
we use ∇fδ(Pk−D) to denote the full gradient which is based
on the delayed probability distributions Pk−D . It should be em-
phasized that the sampled gradient ∇f̂δ(Pk−D) is an unbiased
estimation of the full gradient ∇fδ(Pk−D). Thus, according to
the Cauchy-Schwartz inequality and Lemma 5, the above (72)
can be continued as
− f(P k+1)

≤− f(P k) + (
γ2L

2
− γ)‖G̃γ

(
∇f̂δ(Pk−D), P k

)
‖2

+ γ
〈
∇f(P k)−∇fδ(Pk−D), G̃γ

(
∇f̂δ(Pk−D), P k

)〉
+ γ
〈
∇fδ(Pk−D)−∇f̂δ(Pk−D),

G̃γ
(
∇f̂δ(Pk−D), P k

)
± G̃γ

(
∇fδ(Pk−D), P k

)〉
≤− f(P k) + (

γ2L

2
− γ)‖G̃γ

(
∇f̂δ(Pk−D), P k

)
‖2

+ γ
∥∥∇f(P k)−∇fδ(Pk−D)

∥∥∥∥G̃γ(∇f̂δ(Pk−D), P k
)∥∥

+ γ
〈
∇fδ(Pk−D)−∇f̂δ(Pk−D), G̃γ

(
∇fδ(Pk−D), P k

)〉
+ γ
∥∥∇fδ(Pk−D)−∇f̂δ(Pk−D)

∥∥2.
(73)

Now, taking the expectation on both sides and summing up
the inequalities for all 0 ≤ k ≤ T , it holds that

E
[
f(PT+1)

]
− f(P 0)

≥ (γ − γ2L

2
) ·

T∑
k=0

E
[
‖G̃γ

(
∇f̂δ(Pk−D), P k

)
‖2
]

− γ ·
T∑
k=0

E
[
‖∇fδ(Pk−D)−∇f̂δ(Pk−D)‖2

]
︸ ︷︷ ︸

:=T1

− γ ·
T∑
k=0

E
[
‖∇f(P k)−∇fδ(Pk−D)‖‖G̃γ

(
∇f̂δ(Pk−D), P k

)
‖︸ ︷︷ ︸

:=T2

]
.

(74)
As shown in the above inequality, let us denote the last two
summation terms as T1 and T2, respectively. Next, we prove
the following two lemmas which upper bound T1 and T2 by
the summation of gradient mappings.

Lemma 8: Suppose that the sequence {P k}k∈N+ is the set of
iterates generated by Algorithm 2 and the initialization P 0 is
not a collection of simplex vertices. Let the step-size γ satisfy
the condition γ < 2/∆max, then there exist constants C0 > 0
and C1 > 0 such that the following holds,

T1 ≤ C0 + C1/M ·
T∑
k=0

E
[
‖G̃γ

(
∇f̂δ(Pk−D), P k

)
‖2
]
. (75)

Proof: This proof can be done by following exactly the
similar path of Lemma 7, and thus we omit the details.

Lemma 9: Suppose that the conditions on Lemma 8 are
satisfied, then there exist constants C2 > 0 and C3 > 0 such
that the following holds,

T2 ≤ γC2 + γC3 ·
T∑
k=0

E
[
‖G̃γ

(
∇f̂δ(Pk−D), P k

)
‖2
]
. (76)

13

Proof: We first recall that ∇fδ(Pk−D) represents the
stacked full gradient with respect to the delayed probability
distributions Pk−D . Precisely, let us denote

∇fδ(Pk−D) = [∇pif(P k−i)]i∈I , (77)

where P k−i captures all the delayed distributions associated
with the i-th agent. On this account, we can have

‖∇f(P k)−∇fδ(Pk−D)‖2

=

I∑
i=1

‖∇pif(P k)−∇pif(P k−i)‖2

(8a)

≤
I∑
i=1

L2
i ‖P k − P k−i ‖

2

=

I∑
i=1

I∑
j 6=i

L2
i ‖pkj − p

k−τij
j ‖2

(8b)

≤
I∑
i=1

I∑
j 6=i

L2
i

τij−1∑
t=0

‖pk−tj − pk−t−1j ‖2,

(78)

where (8a) is due to the fact that each gradient ∇pi
f(P)

is Li-Lipschitz continuous and (8b) comes from the triangle
inequality. In addition, according to Lemma 4 and Cauchy-
Schwartz inequality, it holds that

‖Gγ
(
∇pi

f̂δ(P
k−
i),pki

)
‖2

≤ −
〈
∇pi f̂δ(P

k−
i), Gγ

(
∇pi f̂δ(P

k−
i),pki

)〉
≤ ‖∇pi f̂δ(P

k−
i)‖ · ‖Gγ

(
∇pi f̂δ(P

k−
i),pki

)
‖,

(79)

and thus for ∀k ∈ N+,

‖pk+1
i − pki ‖2 = γ2‖Gγ

(
∇pi

f̂δ(P
k−
i),pki

)
‖2

≤ γ2‖∇pi
f̂δ(P

k−
i)‖2.

(80)

Note that the above inequality also shows that the gradient
mapping is always bounded by the stochastic gradient. Next,
based on the inequalities (78), (80) and the facts that the
gradient ∇pi

f̂δ(P
k−
i) is bounded and τij ≤ D, ∀i, j ∈ I,

we know that there must exist a constant β > 0 such that

‖∇f(P k)−∇fδ(Pk−D)‖ ≤ γβ. (81)

Consequently, the summation term T2 can be bounded by

T2 ≤ γβ ·
T∑
k=0

E
[
‖G̃γ

(
∇f̂δ(Pk−D), P k

)
‖
]
. (82)

Now, the rest of the proof follows the similar path of the
proof in Lemma 7 (or Lemma 8). It can be shown that there
exist two constants ρ0 > 0 and ρ1 > 0 such that

T∑
k=0

E
[
‖G̃γ

(
∇f̂δ(Pk−D), P k

)
‖2
]

≥ 1

ρ1
·
T∑
k=0

E
[
‖G̃γ

(
∇f̂δ(Pk−D), P k

)
‖
]
− ρ0
ρ1
.

(83)

Combining the inequalities (82) and (83), we can have

T2 ≤ γβρ0 + γβρ1 ·
T∑
k=0

E
[
‖G̃γ

(
∇f̂δ(Pk−D), P k

)
‖2
]
. (84)

Therefore, let C2 = βρ0 and C3 = βρ1 respectively, the proof
is completed.

Next, we prove the statement in Theorem 2. Taking into
account Lemma 8 and Lemma 9 together, the inequality (74)
can be continued as
E
[
f(PT+1)

]
− f(P 0)

≥ (γ − γC1

M
− γ2C3 −

γ2L

2
) ·

T∑
k=0

E
[
‖G̃γ

(
∇f̂δ(Pk−D), P k

)
‖2
]

− γC0 − γ2C2.
(85)

As a result, it holds that,
∞∑
k=0

E
[
‖G̃γ

(
∇f̂δ(Pk−D), P k

)
‖2
]

≤ f(P ?)− f(P 0) + γC0 + γ2C2

γ − γC1/M − γ2C3 − γ2L/2
.

(86)

Therefore, if the sample-size M and step-size γ are chosen
satisfying M > C1 and γ − γC1/M − γ2C3 − γ2L/2 > 0,
then we can have that E

[
‖G̃γ

(
∇f̂(P k), P k

)
‖2
]

converges to
zero; and furthermore, its running average converges at the
rate of O(1/T).

REFERENCES

[1] Jason R Marden. The role of information in distributed resource
allocation. IEEE Transactions on Control of Network Systems, 4(3):654–
664, 2016.

[2] Matthew Streeter and Daniel Golovin. An online algorithm for max-
imizing submodular functions. In Advances in Neural Information
Processing Systems, pages 1577–1584, 2009.

[3] Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sen-
sor placements in gaussian processes: theory, efficient algorithms and
empirical studies. Journal of Machine Learning Research, 9:235–284,
2008.

[4] Syed Talha Jawaid and Stephen L Smith. Submodularity and greedy al-
gorithms in sensor scheduling for linear dynamical systems. Automatica,
61:282–288, 2015.

[5] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause.
Distributed submodular maximization: identifying representative ele-
ments in massive data. In Advances in Neural Information Processing
Systems, pages 2049–2057, 2013.

[6] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi,
and Andreas Krause. Streaming submodular maximization: massive data
summarization on the fly. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pages 671–680, 2014.

[7] Nikolay Atanasov, Jerome Le Ny, Kostas Daniilidis, and George J
Pappas. Decentralized active information acquisition: Theory and
application to multi-robot slam. In 2015 IEEE International Conference
on Robotics and Automation (ICRA), pages 4775–4782. IEEE, 2015.

[8] Brent Schlotfeldt, Dinesh Thakur, Nikolay Atanasov, Vijay Kumar,
and George J Pappas. Anytime planning for decentralized multirobot
active information gathering. IEEE Robotics and Automation Letters,
3(2):1025–1032, 2018.

[9] László Lovász. Submodular functions and convexity. In Mathematical
Programming the State of the Art, pages 235–257. Springer, 1983.

[10] Maxim Sviridenko. A note on maximizing a submodular set function
subject to a knapsack constraint. Operations Research Letters, 32(1):41–
43, 2004.

[11] Niv Buchbinder, Moran Feldman, Joseph Seffi, and Roy Schwartz.
A tight linear time (1/2)-approximation for unconstrained submodular
maximization. SIAM Journal on Computing, 44(5):1384–1402, 2015.

[12] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An
analysis of approximations for maximizing submodular set functions—i.
Mathematical programming, 14(1):265–294, 1978.

[13] Marshall L Fisher, George L Nemhauser, and Laurence A Wolsey. An
analysis of approximations for maximizing submodular set functions—ii.
In Polyhedral Combinatorics, pages 73–87. Springer, 1978.

14

[14] Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. Maxi-
mizing a monotone submodular function subject to a matroid constraint.
SIAM Journal on Computing, 40(6):1740–1766, 2011.

[15] Bahman Gharesifard and Stephen L Smith. Distributed submodular
maximization with limited information. IEEE Transactions on Control
of Network Systems, 5(4):1635–1645, 2017.

[16] David Grimsman, Mohd Shabbir Ali, Joao P Hespanha, and Jason R
Marden. The impact of information in greedy submodular maximization.
IEEE Transactions on Control of Network Systems, 6(4):1334–1343,
2019.

[17] Haoyuan Sun, David Grimsman, and Jason R Marden. Distributed
submodular maximization with parallel execution. arXiv preprint
arXiv:2003.04364, 2020.

[18] Guannan Qu, Dave Brown, and Na Li. Distributed greedy algorithm for
multi-agent task assignment problem with submodular utility functions.
Automatica, 105:206–215, 2019.

[19] Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. Decentralized
submodular maximization: Bridging discrete and continuous settings.
In International Conference on Machine Learning, pages 3616–3625,
2018.

[20] Jiahao Xie, Chao Zhang, Zebang Shen, Chao Mi, and Hui Qian. Decen-
tralized gradient tracking for continuous DR-submodular maximization.
In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 2897–2906, 2019.

[21] Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch
stochastic approximation methods for nonconvex stochastic composite
optimization. Mathematical Programming, 155(1-2):267–305, 2016.

[22] Sashank J Reddi, Suvrit Sra, Barnabas Poczos, and Alexander J Smola.
Proximal stochastic methods for nonsmooth nonconvex finite-sum opti-
mization. In Advances in Neural Information Processing Systems, pages
1145–1153, 2016.

[23] Zhize Li and Jian Li. A simple proximal stochastic gradient method for
nonsmooth nonconvex optimization. In Advances in Neural Information
Processing Systems, pages 5564–5574, 2018.

[24] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire.
Gambling in a rigged casino: The adversarial multi-armed bandit prob-
lem. In Proceedings of IEEE 36th Annual Foundations of Computer
Science, pages 322–331. IEEE, 1995.

[25] Gilles Stoltz. Incomplete Information and Internal Regret in Prediction
of Individual Sequences. PhD thesis, 2005.

[26] Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham M Kakade. Towards
minimax policies for online linear optimization with bandit feedback.
In Conference on Learning Theory, pages 41–1, 2012.

[27] Solomon Kullback and Richard A Leibler. On information and suffi-
ciency. The Annals of Mathematical Statistics, 22(1):79–86, 1951.

[28] Tim Roughgarden. Intrinsic robustness of the price of anarchy. In
Proceedings of the Forty-First Annual ACM symposium on Theory of
Computing, pages 513–522, 2009.

[29] Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E Schapire.
Fast convergence of regularized learning in games. In Advances in
Neural Information Processing Systems, pages 2989–2997, 2015.

[30] Thodoris Lykouris, Vasilis Syrgkanis, and Éva Tardos. Learning and
efficiency in games with dynamic population. In Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 120–129. SIAM, 2016.

[31] Dylan J Foster, Zhiyuan Li, Thodoris Lykouris, Karthik Sridharan, and
Eva Tardos. Learning in games: Robustness of fast convergence. In
Advances in Neural Information Processing Systems, pages 4734–4742,
2016.

[32] Jianxin Ma, Chang Zhou, Peng Cui, Hongxia Yang, and Wenwu Zhu.
Learning disentangled representations for recommendation. In Advances
in Neural Information Processing Systems, pages 5711–5722, 2019.

[33] Yongfeng Zhang, Xu Chen, et al. Explainable recommendation: A
survey and new perspectives. Foundations and Trends® in Information
Retrieval, 14(1):1–101, 2020.

[34] F Maxwell Harper and Joseph A Konstan. The movielens datasets:
History and context. ACM Transactions on Interactive Intelligent
Systems (TIIS), 5(4):1–19, 2015.

[35] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra.
Efficient projections onto the L1-ball for learning in high dimensions. In
Proceedings of the 25th International Conference on Machine learning,
pages 272–279, 2008.

[36] Weiran Wang and Miguel A Carreira-Perpinán. Projection onto the
probability simplex: An efficient algorithm with a simple proof, and
an application. arXiv preprint arXiv:1309.1541, 2013.

	I Introduction
	II Problem Statement
	III Stochastic Gradient Based Method
	III-A Multi-Linear Extension
	III-B Projected Stochastic Gradient Algorithm

	IV Distributed Algorithm with Communication Delays
	V Simulation
	VI Conclusion
	VI-A Proof of Proposition 1
	VI-B Proof of Proposition 2
	VI-C Proof of Theorem 1
	VI-D Proof of Proposition 3
	VI-E Proof of Theorem 2

	References

