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Abstract—We study the problem of synthesizing a controller
that maximizes the entropy of a partially observable Markov
decision process (POMDP) subject to a constraint on the expected
total reward. Such a controller minimizes the predictability of
an agent’s trajectories to an outside observer while guaranteeing
the completion of a task expressed by a reward function. We
first prove that an agent with partial observations can achieve
an entropy at most as well as an agent with perfect observations.
Then, focusing on finite-state controllers (FSCs) with determin-
istic memory transitions, we show that the maximum entropy of
a POMDP is lower bounded by the maximum entropy of the
parametric Markov chain (pMC) induced by such FSCs. This
relationship allows us to recast the entropy maximization problem
as a so-called parameter synthesis problem for the induced pMC.
We then present an algorithm to synthesize an FSC that locally
maximizes the entropy of a POMDP over FSCs with the same
number of memory states. In numerical examples, we illustrate
the relationship between the maximum entropy, the number of
memory states in the FSC, and the expected reward.

I. INTRODUCTION

Entropy [1] is an information-theoretic measure to quantify
the unpredictability of outcomes in a random variable. In this
paper, we consider a sequential decision-making framework
of partially observable Markov decision processes (POMDPs)
in which a reward in terms of the entropy is introduced
in addition to the classical state-dependent reward. More
specifically, in the POMDP formulation that we consider,
we look for a controller that maximizes the entropy reward
while ensuring that the expected state-dependent reward is
above a given threshold. Intuitively, the entropy reward plays
a role to promote the unpredictability of the controlled process
to an outside observer. Therefore, the considered POMDP
formulation provides a meaningful framework for sequential
decision-making in stochastic environments with imperfect
information and nondeterministic choices, where a given task
should be accomplished in the most unpredictable way.

A controller in a POMDP resolves the nondeterminism and
induces a stochastic process. Following [2], [3], we quantify
the unpredictability of realizations in an induced stochastic
process by defining the entropy of the process as the joint
entropy of a sequence of random variables. We then mathemat-
ically show that the maximum entropy of a POMDP is upper
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bounded by the entropy of its corresponding fully observable
counterpart, which is a Markov decision process (MDP).

For a given POMDP, the main objective of this paper is to
synthesize a controller that induces a process whose realiza-
tions accumulate rewards in the most unpredictable way to an
outside observer. Controller synthesis problems for POMDPs
are notoriously hard to solve. The optimal controllers are often
required to take the full observation history into account which
makes searching for them undecidable in the infinite horizon
case and PSPACE-complete in the finite horizon case [4], [5].
For computational tractability, POMDP controllers are often
restricted to have finite states that represent finite observation
memory [6]. Furthermore, in contrast to classical POMDP
problems in which the optimal controllers are deterministic,
problems adopting information-theoretic performance criteria,
such as entropy, typically admit randomized controllers that
specify probability distributions over action selection.

In this paper, we synthesize a randomized finite-state
controller (FSC) for a POMDP that specifies a probability
distribution over actions for each of its memory states [7].
In particular, we consider the POMDP entropy maximization
problem over all FSCs with a fixed number of memory states.
A key observation is that one can use a parametric Markov
chain (pMC) to succinctly represent the product between a
POMDP and the set of all FSCs with a fixed number of
memory states [8], [9]. By restricting our attention to FSCs
with deterministic memory transitions, we recast the POMDP
controller synthesis problem as a so-called parameter synthesis
problem for a pMC whose entropy we aim to maximize.
To build a connection between the entropy of the POMDP
and that of the corresponding pMC, we first prove that
the maximum entropy of a pMC induced from a POMDP
by FSCs with deterministic memory transitions is a lower
bound on the maximum entropy of the POMDP. Furthermore,
for some specific memory transition functions in FSCs, we
show that one can monotonically obtain stochastic processes
induced from a POMDP with higher entropy by increasing
the number of memory states in the FSCs. Finally, we present
a computation algorithm, based on a nonlinear optimization
problem, to synthesize parameters in an FSC to maximize the
entropy of a pMC subject to expected reward constraints.

One application of this theoretical framework is the syn-
thesis of a controller for an autonomous agent carrying out
a mission in an adversarial environment. In particular, if
the agent’s sensor measurements are noisy and the mission
is defined in terms of a reward function, the synthesized
controller leaks the minimum information about the agent’s
trajectories to an outside observer while guaranteeing the
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completion of the task. Furthermore, the proposed methods
can be used to distribute traffic assignments over a network
with possibly noisy traffic information, which is known as
stochastic traffic assignment [10], since higher entropy in this
scenario promotes the use of different paths.

Related Work. A preliminary version of this paper has
appeared in [11], where we present solutions for entropy maxi-
mization over FSCs with a specific memory transition function
and the same number of memory states. This considerably
extended version includes detailed proofs for all theoretical
results, a nonlinear optimization problem formulating the
entropy maximization over all deterministic FSCs with the
same number of memory states, and an extended numerical
examples section.

In a recent study [3], we showed that an entropy-maximizing
controller for a fully observable MDP can be synthesized effi-
ciently by solving a convex optimization problem. Moreover,
we established that, when the maximum entropy of an MDP is
finite, it is sufficient to focus only on memoryless controllers
to induce a process with maximum entropy. It is known [12]
that the synthesis of a controller that accumulates a desired
level of total reward in a POMDP is, in general, intractable
and such a controller typically utilizes memory. Therefore,
the consideration of partial observability in the system model
dramatically changes the complexity of the problem at hand.
As a result, in this paper, we focus on finite-state controllers
and present a nonlinear optimization problem with bilinear
constraints to synthesize entropy-maximizing controllers.

In POMDPs, entropy has often been used for active sensing
applications [13]–[17], where an agent seeks to select actions
that decrease its uncertainty on the environment by taking
actions that minimize the entropy of a probability distribution.
Such a distribution typically expresses the agent’s belief on
the task-relevant aspects of the environment. In this paper, we
consider an agent that aims to maximize the entropy of its
true state trajectories instead of minimizing the entropy of
its final belief distribution on task-relevant aspects. Therefore,
despite the similarity of the information-theoretic measures
considered, the problem studied in this paper and the devel-
oped solution approach are significantly different from the
ones investigated in active sensing literature.

In the reinforcement learning literature, the entropy of a
controller has been used as a regularization term in an agent’s
objective to balance the trade-off between exploration and
exploitation [18]. As discussed in [19], using a controller with
high entropy, an agent can learn various ways of completing a
task, leading to a greater robustness when subsequently fine-
tuned to specific scenarios. The aforementioned work concerns
the synthesis of a controller that balances the accumulated
reward and the entropy of the induced process in a fully
observable setting. Here we aim to synthesize a controller that
maximizes the entropy in a partially observable setting while
ensuring the accumulation of a desired level of total reward.

A range of solution techniques exist for POMDP controller
synthesis using FSCs. For deterministic FSCs, existing ap-
proaches include branch-and-bound method [6], automaton
learning-based method [20], and expectation-maximization
[21]. They mainly target for finding an optimal transition

structure of the FSC. As for randomized FSCs, in addition
to the transition structure, one also needs to optimize the
probabilistic transition probabilities between FSC states and
the action selection probabilities. To this end, researchers
propose solutions using policy iteration [7], [22], gradient
descent [23], and nonlinear optimization [24], [25]. However,
the results mentioned above only consider state-dependent
reward optimization or the satisfaction of a given specification.
In contrast, we consider the synthesis of FSCs for entropy
maximization, which is a nonlinear objective that requires a
new optimization formulation as well as solution techniques.

Contribution. The contributions of this paper are four-fold.
First, we prove that the maximum entropy for a POMDP
is bounded by the maximum entropy of its underlying fully
observable MDP. Secondly, by restricting the scope of the
FSC synthesis problem to FSCs with deterministic memory
transitions, we prove that the maximum entropy of the in-
duced pMC is a lower bound on the maximum entropy of
the POMDP. Thirdly, we present a nonlinear optimization
problem whose solution provides a controller that maximizes
the entropy of the POMDP over all deterministic FSCs with
the same number of memory states. Lastly, for deterministic
FSCs, we propose a specific memory transition function which
increases the entropy of the induced stochastic process with
respect to an increasing number of memory states.

Organization. We provide the modeling framework and
preliminary definitions in Section II. We then formally state
the entropy maximization problem for the finite and infinite
horizons in Section III. We show that the maximum entropy of
a POMDP is upper bounded by that of its underlying MDP in
Section IV. In Section V, we focus on FSCs and prove that the
maximum entropy of the pMC induced by a deterministic FSC
is a lower bound for the maximum entropy of the POMDP.
We then present a procedure to synthesize a local optimal
FSC to maximize the entropy of a POMDP subject to reward
constraints. We provide numerical examples in Section VI and
conclude with possible future directions in Section VII. Proofs
for all technical results are provided in Appendix A.

II. PRELIMINARIES

We denote the power set and cardinality of a set S by 2S and
|S|, respectively. Set of all probability distributions on a finite
set S, i.e., all functions f :S→[0, 1] such that

∑
s∈S f(s)=1, is

denoted by ∆(S). For a sequence {Xt, t∈N}, a subsequence
(Xk, Xk+1, . . . , Xl) is denoted by X l

k. The subsequence
(X1, X2, . . . , Xl) is simply denoted by X l.

A. Partially Observable Markov Decision Processes
Definition 1: A partially observable Markov decision process
(POMDP) is a tuple M = (S, sI ,A, P,Z, O,R) where S is a
finite set of states, sI∈S is a unique initial state, A is a finite
set of actions, P : S×A→∆(S) is a transition function, Z is
a finite set of observations, O : S→∆(Z) is an observation
function, and R : S×A→R is a reward function.

For simplicity, we assume that all actions a∈A are available
in all states s∈S. For the ease of notation, we denote the tran-
sition probability P (s′|s, a) and the observation probability
O(z|s) by Ps,a,s′ and Os,z , respectively.



For a POMDP M, the corresponding fully observable MDP
Mfo is obtained by setting Z=S and Os,s=1 for all s∈S.

A system history of length t∈N for a POMDP M is a
sequence ht=(sI , a1, s2, a2, s3, . . . , st) of states and actions
such that Psk,ak,sk+1

>0 for all k∈N. We denote the set
of all system histories of length t by Ht. For any system
history ht=(sI , a1, s2, . . . , st) of length t, there is an associ-
ated observation history ot=(z1, a1, z2, . . . , zt) of length t∈N
where Osk,zk>0 for all k∈N. Note that there are, in general,
multiple observation histories that are admissible for a given
system history ht. Finally, we denote the set of all observation
histories of length t by Ot.
Definition 2: A controller π:∪t∈NOt→∆(A) is a mapping
from observation histories to distributions over actions. For a
POMDP M, we denote the set of all controllers by Π(M).

The probability with which the controller π takes the action
a∈A upon receiving the history ot∈Ot is denoted by π(a|ot).

B. Entropy of Stochastic Processes

The entropy of a random variable X with a countable
support X and probability mass function (pmf) p(x) is

H(X) := −
∑
x∈X

p(x) log p(x). (1)

We use the convention that 0log0=0. Let (X1, X2) be a
pair of random variables with the joint pmf p(x1, x2) and the
support X × X . The joint entropy of (X1, X2) is

H(X1, X2) := −
∑
x1∈X

∑
x2∈X

p(x1, x2) log p(x1, x2), (2)

and the conditional entropy of X2 given X1 is

H(X2|X1) := −
∑
x1∈X

∑
x2∈X

p(x1, x2) log p(x2|x1). (3)

The definitions of the joint and conditional entropy extend
to collections of k∈N random variables as shown in [1].
A discrete stochastic process X is a discrete time-indexed
sequence of random variables, i.e., X={Xt∈X :t∈N}.
Definition 3: [26] The entropy of a stochastic process X is
defined as

H(X) := lim
t→∞

H(X1, X2, . . . , Xt). (4)

The above definition is different from the entropy rate of
a stochastic process, which is defined as limt→∞

1
tH(Xt)

when the limit exists [1]. The limit in (4) either converges
to a nonnegative number or diverges to positive infinity [26].

For a POMDP M, a controller π∈Π(M) induces a discrete
stochastic process {St∈S:t∈N} in which each St is a random
variable over the state space S. We denote the entropy of a
POMDP M under a controller π∈Π(M) by Hπ(M).

III. PROBLEM STATEMENT

We consider an agent whose behavior is modeled as a
POMDP and an outside observer whose objective is to infer
the states occupied by the agent in the future from the states
occupied in the past. Being aware of the observer’s objective,
the agent aims to synthesize a controller that minimizes

the predictability of its future states while ensuring that the
expected total reward it collects exceeds a specified threshold.

We measure the predictability of the agent’s future states by
the entropy of the underlying stochastic process. The rationale
behind this choice can be better understood by recalling (see,
e.g., Theorem 2.5.1 in [1]) that, for an arbitrary controller
π∈Π(M), the identity

Hπ(S1, S2, . . . , SN ) =Hπ(SNt |St−1) +Hπ(St−1) (5)

holds for any N∈N and t≤N . Therefore, by maximizing the
value of the left hand side of (5), one maximizes the entropy
of all future sequences (St, . . . , SN ) for any given history of
sequence (S1, . . . , St−1).

We first consider an agent with a finite decision horizon.
Problem 1 (Finite horizon entropy maximization): For a
POMDP M, a finite decision horizon N∈N, and a reward
threshold Γ∈R, synthesize a controller π?∈Π(M) that solves
the following problem:

maximize
π∈Π(M)

Hπ(S1, S2, . . . , SN ) (6a)

subject to: Eπ
[ N∑
t=1

R(St, At)
]
≥ Γ. (6b)

In the finite horizon entropy maximization problem, we
seek a controller that randomizes the agent’s finite length state
trajectories by using only the observation history information.

Next, we consider an agent with infinite decision horizon
whose aim is to randomize its infinite length state trajectories.
When the decision horizon is infinite, the total reward collected
by the agent, as well as the entropy of the underlying stochastic
process, may be infinite [3], [27]. A common approach to
ensure the finiteness of the solution in infinite horizon models
is to discount the collected rewards and the gained entropy in
the future [28]–[30]. Accordingly, noting that

lim
t→∞

Hπ(S1, S2, . . . , St) =Hπ(S1) +

∞∑
t=2

Hπ(St|St−1), (7)

we treat each term Hπ(St|St−1) as a virtual entropy re-
ward for the agent. Note that Hπ(S1)=Hπ′(S1) for any
π, π′∈Π(M) since the initial state distribution in a POMDP
is fixed. By discounting the agent’s future rewards R(St, At)
as well as its virtual entropy reward Hπ(St|St−1), we define
the infinite horizon entropy maximization problem as follows:
Problem 2 (Infinite horizon entropy maximization): For
a POMDP M, a discount factor β∈[0, 1), and a reward
threshold Γ∈R, synthesize a controller π?∈Π(M) that solves
the following problem:

maximize
π∈Π(M)

∞∑
t=2

βt−2Hπ(St|St−1) (8a)

subject to: Eπ
[ ∞∑
t=1

βt−1R(St, At)
]
≥ Γ. (8b)

For a reward function R:S×A→R, which is independent
of the controller π, it is known [31] that

sup
π∈Π(M)

Eπ
[ N∑
t=1

R(St, At)
]
≤ sup
π∈Π(Mfo)

Eπ
[ N∑
t=1

R(St, At)
]
.



The above inequality shows that an agent with perfect obser-
vations can collect a total reward that is at least as high as the
total reward collected by an agent with imperfect observations.
Since the virtual entropy rewards Hπ(St|St−1) are functions
of the agent’s policy, it is not obvious whether a similar claim
holds for the entropy maximization problems. In the next
section, we establish that an agent with perfect observations
can indeed randomize its state trajectories at least as well as
an agent with imperfect observations.

It is known that deciding the existence of a controller that
satisfies the constraint (6b) is, in general, PSPACE-complete
[12]. Moreover, for β∈[0, 1), the existence of a policy that
satisfies the constraint (8b) is, in general, undecidable [4].
Therefore, the synthesis of globally optimal controllers that
solve the entropy maximization problems is, in general, in-
tractable. In the second part of the paper, we restrict our
attention to a special class of controllers, namely finite-
state controllers (FSCs). We present a method to synthesize
FSCs that are local optimal solutions to entropy maximization
problems among all FSCs with fixed number of memory states
and fixed memory transition functions.

IV. AN UPPER BOUND ON MAXIMUM ENTROPY

In this section, we prove that an agent with perfect ob-
servations can randomize its trajectories at least as well as
an agent with imperfect observations. The presented proof is
based on the principle of optimality [27] and paves the way
for the formulation of an optimization problem using which
we synthesize entropy-maximizing controllers.

Formally, we show that, for any N∈N ∪ {∞},

sup
π∈Π(M)

Hπ(S1, S2, . . . , SN ) ≤ sup
π∈Π(Mfo)

Hπ(S1, S2, . . . , SN ).

We first prove that the above inequality holds for N∈N. Then,
using a monotonocity argument, we show that the inequality
still holds as N→∞.

For a given system history ht=(sI , a1, s2, a2, s3, . . . , st),
let the sequences st=(sI , s2, . . . , st) and at=(a1, a2, . . . , at)
be the corresponding state and action histories of length t,
respectively. We denote the set of all state and action histories
of length t by SHt and AHt, respectively.

It can be shown that, for a POMDP M under a controller
π∈Π(M), the realization probability Prπ(st+1|st) of the state
history st+1∈SHt+1 for a given st∈SHt is

Prπ(st+1|st) =
∑

at∈AHt

t∏
k=1

µk(ak|hk)Pst,at,st+1 . (9)

In the above equation, hk are prefixes of ht from which the
state sequence st is obtained, and µt :Ht→∆(A) is a mapping
such that

µt(a|ht) :=
∑
ot∈Ot

π(a|ot)Pr(ot|ht). (10)

We note that, for t=1, we have Pr(o1=z1|h1)=OsI ,z1 , and
for all t≥2, Pr(ot|ht) can be recursively written as

Pr(ot|ht) = Ost,ztPst−1,at−1,stPr(o
t−1|ht−1). (11)

For a given controller π∈Π(M) and a constant N∈N, let
V πt,N : SHt→R be the value function such that, for all t<N ,

V πt,N (st) :=

N−1∑
k=t

Hπ(Sk+1|Skt , St = st). (12)

Lemma 1: For a POMDP M, a controller π∈Π(M), and a
finite constant N∈N, the value function V πt,N , defined in (12),
satisfies the equality

V πt,N (st) =Hπ(St+1|St = st)

+
∑

st+1∈SHt+1

Prπ(st+1|st)V πt+1,N (st+1) (13)

for all t<N and st ∈ SHt.
We remind the reader that the proof of all technical results,

including the proof of Lemma 1, are provided in Appendix A.
For t<N , let V ?t,N : SHt→R be a function such that

V ?t,N (st) := sup
π∈Π(M)

V πt,N (st). (14)

Using Lemma 1, together with the principle of optimality [27,
Chapter 4], we conclude that, for all t<N and st ∈ SHt,

V ?t,N (st) = sup
π∈Π(M)

[
Hπ(St+1|St = st)

+
∑

st+1∈SHt+1

Prπ(st+1|st)V ?t+1,N (st+1)
]
. (15)

Then, the summation in (7), together with the definition of the
value function in (12), implies that, for any N∈N, we have

sup
π∈Π(M)

Hπ(S1, S2, . . . , SN ) = V ?1,N (sI).

The derivations presented above shows that an agent hav-
ing access to state histories st can synthesize an entropy-
maximizing controller by recursively computing the values
V ?t,N (st) via dynamic programming. In a POMDP, only ob-
servation histories are available to the agent; hence, the above
derivations cannot be directly used for controller synthesis.
In the next section, we consider finite-state controllers whose
memory states represent statistics of the state histories and
present a tractable controller synthesis method by utilizing the
results of Lemma 1.

We now prove that the maximum entropy of a POMDP is
upper bounded by the maximum entropy of its corresponding
fully observable MDP. For a given controller π∈Π(M) on
a POMDP M, we can construct, through (10), a controller
π′∈Π(Mfo) on the corresponding fully observable MDP Mfo

which satisfies Prπ(st+1|st)=Prπ′(st+1|st) for all st∈SHt
and st+1∈SHt+1. Then, for all st∈SHt, we have

sup
π∈Π(M)

Hπ(St+1|St = st) ≤ sup
π∈Π(Mfo)

Hπ(St+1|St = st).

Informally, having access to the state history st, a
controller π′∈Π(Mfo) can attain an immediate reward
Hπ′(St+1|St=st) in (15) that is at least as high as the
immediate reward achieved by a controller π∈Π(M). Then,
we have the following result as a consequence of Lemma 1.



Theorem 1: For a POMDP M and a finite constant N ∈ N,

sup
π∈Π(M)

Hπ(S1, S2, . . . , SN ) ≤ sup
π∈Π(Mfo)

Hπ(S1, S2, . . . , SN ).

(16)
The extension of Theorem 1 to infinite state sequences, i.e.,

to the case where N→∞, is rather straightforward. Since V πt,N ,
defined in (12), is monotonically non-decreasing in N for all
π∈Π(M), i.e., V πt,N+1≥V πt,N , we have

sup
π∈Π(M)

lim
N→∞

V πt,N (st) = lim
N→∞

sup
π∈Π(M)

V πt,N (st) (17)

for all st∈SHt. Therefore, by taking the limits of both sides in
(16), we conclude that the inequality between supremums still
holds as N→∞. Finally, we conclude this section by noting
that, with a slight modification of the statement of Lemma 1,
it can be shown that all results presented in this section hold
even if the future entropy rewards are discounted as in (8a).

V. ENTROPY MAXIMIZATION OVER FINITE-STATE
CONTROLLERS

Optimal controllers solving the entropy maximization prob-
lems may, in general, use the complete system history to
determine the next action to perform. To synthesize controllers
in a POMDP, one can construct the so-called belief MDP
whose (potentially infinite) states represent sufficient statistics
of the system histories [31], [32]. However, such an approach
is, in general, intractable as the number of states in the
belief MDP grows exponentially with the length of the system
histories. A common approach to overcome intractability is
to restrict attention to finite-state controllers (FSCs) whose
memory states represent (potentially insufficient) statistics of
the system histories [6], [7], [33]. Accordingly, in this section,
we focus on FSCs with a fixed number of memory states
and develop methods to synthesize locally optimal controllers
within this restricted domain.
Definition 4: For a POMDP M, a k-finite-state controller (k-
FSC) is a tuple C=(Q, q1, γ, δ), where Q={q1, q2, . . . , qk}
is a finite set of memory states, q1∈Q is the initial
memory state, γ:Q×Z→∆(A) is a decision function and
δ:Q×Z×A→∆(Q) is a memory transition function. We de-
note the collection of all k-FSCs by Fk(M).

In Fig. 1, we present an illustration of k-FSCs. As can
be seen in the figure, in a memory state representing certain
statistics of system histories in a POMDP, the agent receives
an observation, makes a decision based on the function γ, and
updates its memory state based on the function δ.

For a POMDP, a k-FSC induces a Markov chain (MC)
which is an MDP with a single available action, i.e., |A|=1.
It is shown in [25] that the set of all MCs that can be induced
by a k-FSC is the set of all well-defined instantiations of
a specific parametric MC (pMC). Therefore, without loss of
generality, one can work on that specific pMC to synthesize
an instantiation which corresponds to the MC induced by an
entropy-maximizing FSC. In the following sections, we first
provide formal definitions of pMCs and their instantiations.
We then reformulate the entropy maximization problem over
k-FSCs as another optimization problem over pMCs.

q1

z1 γ(a|q1, z1)

a1

a2

z2 γ(a|q1, z2)

a1

a2

δ(q′|q1, z1, a1)

δ(q′|q1, z1, a2)

δ(q′|q1, z2, a1)

δ(q′|q1, z2, a2)
q2

Fig. 1: An illustration of finite-state controllers. In a memory
state q, the agent receives an observation z, chooses an action
a based on the decision function γ(a|q, z), and transitions to a
memory state q′ based on the transition function δ(q′|q, z, a).
The functions γ and δ are design variables, and their outcomes
are indicated with dashed lines.

Remark 1: Any given instance of the finite horizon entropy
maximization problem can be reduced to an instance of
the infinite horizon entropy maximization problem in time
polynomial in the size of the POMDP and the decision horizon
N . For brevity, we establish our results only for the infinite
horizon entropy maximization problem and provide the details
of the aforementioned reduction in Appendix B.

A. Parametric Markov Chains

We develop solutions to entropy maximization problems
through the use of parametric Markov chains.
Definition 5: For a POMDP M and a constant k∈N,
the induced parametric Markov chain (pMC) is a tuple
DM,k=(SM,k, sI,M,k,VM,k, PM,k, RM,k) where entries are
as follows;
• SM,k = S × {1, 2, ..., k} is the finite set of states.
• sI,M,k = 〈sI , 1〉 is the initial state.
• VM,k = {γq,za |z ∈ Z, q ∈ Q, a ∈ A}

∪ {δq,z,aq′ |z ∈ Z, q, q
′ ∈ Q, a ∈ A}

is the finite set of parameters.
• PM,k : SM,k→∆(SM,k) is a transition function such that
PM,k(〈s′, q′〉 | 〈s, q〉) :=

∑
a∈A P (〈s′, q′〉 | 〈s, q〉, a) for

all 〈s, q〉, 〈s′, q′〉∈SM,k where P : SM,k×A→∆(SM,k)
is a mapping such that

P (〈s′, q′〉 | 〈s, q〉, a) :=
∑
z∈Z

Os,z Ps,a,s′ γ
q,z
a δq,z,aq′ . (18)

• RM,k(〈s, q〉, a) := R(s, a) for all s∈S, q ∈ Q, and a∈A.
An MC can be obtained from an induced pMC by instantiat-

ing the parameters VM,k in a way that the resulting transition
function is well-defined. Formally, a well-defined instantiation
for VM,k is a function u : VM,k→[0, 1] such that, for all a ∈ A,
q ∈ Q, and z ∈ Z ,∑

a∈A
u(γq,za ) = 1 and

∑
q′∈Q

u(δq,z,aq′ ) = 1.

Applying a well-defined instantiation u to the induced pMC
DM,k, denoted DM,k[u], replaces each parametric transition
probability PM,k by PuM,k. It is straightforward to verify that
DM,k[u] is an MC. Let ΥM,k denote the set of all well-defined
instantiations for a pMC DM,k. For an induced pMC DM,k,
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Fig. 2: An illustration of an MC DM,k[u] (right) induced from a POMDP M (left) by a k-FSC Cu (middle). Note that, the
number of states in DM,k[u] is larger than M due to the stochasticity in the memory transition function δ.

every instantiation u∈ΥM,k describes a k-FSC Cu∈Fk(M)
[25]. Thus, we can synthesize all admissible MCs that can be
induced from a POMDP M by a k-FSC C∈Fk(M) through
well-defined instantiations u over VM,k. In Fig. 2, we provide
a simple example to illustrate the derivation of the instantiation
DM,k[u] from a given POMDP M and a k-FSC Cu.

B. A Reformulation of Entropy Maximization Problem over
Parametric Markov Chains

Recall that we are interested in maximizing the entropy of
the state sequence of a given POMDP M. As can be seen
from Fig. 2, the number of states that are reachable from
the initial state of a pMC DM,k is, in general, larger than
that of the POMDP M. It is known [1] that the maximum
entropy of a random variable increases as the cardinality of its
support increases. Hence, it is possible to have a well-defined
instantiation DM,k[u] whose entropy of state sequences is
higher than the maximum entropy of the state sequences of
the POMDP M. This observation implies that, in general, the
maximum entropy of a POMDP M is not an upper bound on
the maximum entropy of the induced pMC DM,k.

The maximum entropy of DM,k is, in general, higher than
that of M due to the stochasticity introduced to the process
by the parameters δq,z,aq′ . To synthesize an entropy-maximizing
k-FSC for a POMDP M using the induced pMC DM,k, we
impose restrictions on the memory transition function of the
k-FSCs. For each memory state q∈Q in a given k-FSC, let

Succ(q) := {q′ ∈ Q : δ(q′|q, z, a) > 0, z ∈ Z, a ∈ A}.
Definition 6: A deterministic k-FSC C=(Q, q1, γ, δ) is a k-
FSC such that for all q∈Q, |Succ(q)|= 1. We denote the set
of all deterministic k-FSCs by Fdetk (M).

For a k-FSC C∈Fdetk (M), let uC:VM,k→R be the corre-
sponding instantiation of the induced pMC DM,k such that

uC(γq,za ) := γ(a|q, z) and uC(δq,z,aq′ ) := δ(q′|q, z, a).

Moreover, let Υdet
M,k denote the set of all well-defined instanti-

ations uC that corresponds to a deterministic k-FSC C. Noting
that DM,k[uC] is a stochastic process, we denote its sequence
of states by (SM,k,1, SM,k,2, . . .). Moreover, for a given state
SM,k,t−1, we denote the one-step entropy of DM,k[uC] by
HuC(SM,k,t|SM,k,t−1).

Proposition 1: For a given POMDP M, a controller
C∈Fdetk (M), and constants t, k∈N, we have

HC(St|St−1) = HuC(SM,k,t|SM,k,t−1). (19)

Proposition 1 shows that the local (one-step) entropy gained
in a POMDP M under a deterministic k-FSC C is equal to
the local entropy gained in DM,k[uC]. Note that, since the
memory states q are explicitly represented in the states 〈s, q〉
of DM,k[uC], one-step entropy in DM,k[uC] depends only on
the state occupied in the previous step.

Proposition 1, together with the definition of the induced
pMC, implies that, for any C∈Fdetk (M),

C ∈ arg max
C′∈Fdet

k (M)

∞∑
t=2

βt−2HC′(St|St−1) (20a)

subject to: EC′
[ ∞∑
t=1

βt−1R(St, At)
]
≥ Γ (20b)

if and only if

uC ∈ arg max
u∈Υdet

M,k

∞∑
t=2

βt−2Hu(SM,k,t|SM,k,t−1) (21a)

subject to: Eu
[ ∞∑
t=1

βt−1R(SM,k,t, At)
]
≥ Γ. (21b)

The following result is due to the fact that Fdetk (M)⊆Π(M)
and shows that the maximum entropy of the pMC induced
from FSCs with deterministic memory transitions is upper
bounded by that of the corresponding POMDP.
Corollary 1: Let G?1 and G?2 be the optimal values of the
problems given in (8a)-(8b) and (21a)-(21b), respectively.
Then, we have G?1≥G?2.
Remark 2: We emphasize that the equivalence between the
problems (20a)-(20b) and (21a)-(21b) does not hold if we con-
sider the entropy maximization problem over the set Fk(M)
instead of the set Fdetk (M). Note that for a POMDP M under
a controller C∈Fk(M), we have |Succ(s)|≤|S| for all s∈S,
whereas on the corresponding induced pMC, it is possible to
have |Succ(〈s, q〉)|>|S| as can be seen in Fig. 2. The entropy



of a distribution with a support of size |Succ(〈s, q〉)| can be
made larger than the entropy of a distribution with a support of
size |Succ(s)|. Hence, if one performs the maximization over
the set Fk(M), the maximum entropy of the induced pMC
DM,k is not necessarily equal to the maximum entropy of the
corresponding POMDP M.

C. Finite-State Controller Synthesis: Optimization Problem
We now present a nonlinear optimization problem to syn-

thesize a deterministic k-FSC that maximizes the entropy of
a POMDP over all deterministic k-FSCs.

Recall that for a POMDP M and a constant k>0, the
induced pMC DM,k represents all possible MCs that can
be induced from M by a k-FSC. Moreover, Proposition 1
implies that the maximum entropy of DM,k is equal to the
maximum entropy of M if one restricts attention to k-FSCs
with deterministic memory transitions. In what follows, we for-
mulate an optimization problem to synthesize a well-defined
instantiation u for the pMC DM,k such that the entropy of the
MC DM,k[u] is maximized over all MCs DM,k[u′] for which
Pu
′

M,k(〈s′, q′〉 | 〈s, q〉)>0 for a single q′∈Q.
To restrict the search space to FSCs with deterministic

memory transitions, we introduce the following constraints

u(δq,z,aq′ ) ∈ {0, 1} and
∑
z∈Z

∑
a∈A

u(δq,z,aq′ ) ∈ {0, |Z||A|}.

Intuitively, the above constraints ensure the transition to a
single successor memory state regardless of the received
observation and the taken action. We note that, for a given
memory state pair (q, q′), the second integer constraint can
be implemented as |Z||A| equality constraints. Finally, the
above constraints do not prevent the agent from randomizing
its actions. The agent can still randomize its actions at a given
state s∈S by instantiating the parameters γq,za appropriately.

For notational simplicity, let s denote an arbitrary state
〈s, t〉∈SM,k. Let Lu:SM,k→R be the local entropy function
such that, for all s∈SM,k,

Lu(s) := −
∑

s′∈SM,k

PuM,k(s′|s) logPuM,k(s′|s). (22)

Note that we have Lu(s)=Hu(SM,k,t|SM,k,t−1=s) for any
t∈N. Hence, Lu(s) corresponds to the one-step entropy reward
gained in the MC DM,k[u] from the state s. Recalling the
equivalence given in (19), the local entropy function Lu allows
us to transfer the results of Section IV, which are obtained for
a POMDP M, to the pMC DM,k. Specifically, by slightly
modifying the statement of Lemma 1 and defining variables
ν∈R|SM,k|, it can be shown that the maximum entropy (21a)
of DM,k is the unique fixed-point of the system of equations

ν(s) = max
u∈ΥM,k

{
Lu(s) + β

∑
s′∈SM,k

PuM,k(s′|s)ν(s′)

}
(23)

and equal to ν(sI):=ν(sI,M,k). Hence, the maximum entropy
(21a) of DM,k can be computed by finding the maximum
ν(sI) that satisfies

ν(s) ≤ Lu(s) + β
∑

s′∈SM,k

PuM,k(s′|s)ν(s′) ∀s ∈ SM,k.

In the above inequality, both PuM,k(s′|s) and ν(s′) are vari-
ables. Hence, standard methods, e.g., value iteration, cannot
be used to compute ν(sI); instead, one needs to solve a
nonlinear optimization problem, which we present shortly, for
the computation of ν(sI).

Let Ru:SM,k→R be the expected immediate rewards on
DM,k such that, for all s∈SM,k,

Ru(s) :=
∑

s′∈SM,k

∑
a∈A

P
u
(s′|s, a)R(s′, a) (24)

where P
u
:SM,k×A→∆(SM,k) is defined by replacing pa-

rameters γq,za and δq,z,aq′ in (18) with their corresponding
instantiations u(γq,za ) and u(δq,z,aq′ ). Then, the problem in
(21a)-(21b) can be formulated as a nonlinear optimization
problem (NLP) as follows:

maximize
ν,u,η

ν(sI) (25a)

subject to:

ν(s) ≤ Lu(s) + β
∑

s′∈SM,k

PuM,k(s′|s)ν(s′) ∀s ∈ SM,k
(25b)

η(s) ≤ Ru(s) + β
∑

s′∈SM,k

PuM,k(s′|s)η(s′) ∀s ∈ SM,k
(25c)

η(sI) ≥ Γ (25d)

u(δq,z,aq′ ) ∈ {0, 1},
∑
q′∈Q

u(δq,z,aq′ ) = 1 (25e)

0 ≤ u(γq,za ) ≤ 1,
∑
a∈A

u(γq,za ) = 1 (25f)∑
z∈Z

∑
a∈A

u(δq,z,aq′ ) ∈ {0, |Z||A|}. (25g)

In the above optimization problem, the variable η(s) denotes
the expected reward collected by starting from the state
s∈SM,k. It follows from [27] that the constraint (25d) ensures
that a solution u? to the above problem collects an expected
total reward exceeding the threshold Γ.

Recall that the transition function PuM,k of the MC DM,k[u],
which results from the instantiation u of the pMC DM,k, is
given by PuM,k(s′|s)=

∑
a∈A P

u
(s′|s, a) where

P
u
(s′|s, a) :=

∑
z∈Z

Os,z Ps,a,s′ u(γq,za )u(δq,z,aq′ ), (26)

s=〈s, q〉, and s′=〈s′, q′〉. Therefore, the problem in (25a)-
(25g) involves nonlinear constraints in (25b) where three
variables are multiplied with each other. Even though certain
relaxation techniques, e.g., McCormick envelopes [34], can be
used to replace the constraints in (25b) with specific bilinear
constraints, finding an optimal solution to the resulting NLP
remains as a challenge due to binary constraints in (25e).
One can employ branch-and-bound algorithms [35] to obtain a
solution to the problem in (25a)-(25g), but unfortunately, such
algorithms scale poorly with the size of the problem instances.

For practical purposes, instead of computing a globally opti-
mal solution, one can aim to obtain a locally optimal solution
to the problem in (25a)-(25g) after setting the instantiation
u(δq,z,aq′ ) of memory transitions to a constant. In the next
section, we provide a technique to obtain a local optimal



solution to the problem in (8a)-(8b) over all k-FSCs with a
specific deterministic memory transition function.

D. Finite-State Controller Synthesis: A Solution Approach

In this section, we consider the entropy maximization
problems over k-FSCs with a specific deterministic transition
function and present an algorithm to synthesize a controller
which locally maximizes the entropy of a given POMDP.

We first set the variables u(δq,z,aq′ ) in the problem (25a)-
(25g) to constants such that they satisfy the constraint in
(25e). Note that this operation is equivalent to restricting the
search space in (8a)-(8b) to k-FSCs with a specific determin-
istic transition function, where the transition function satisfies
δ(q′|q, z, a)=u(δq,z,aq′ ). The resulting optimization problem
has decision variables ν(s), η(s), and u(γq,za ), i.e., u(δq,z,aq′ )
is not a variable anymore. The resulting problem has bilinear
constraints in (25b) and (25c), and hence, it is not a con-
vex optimization problem. However, we can obtain a locally
optimal solution to the resulting problem using a variant of
the convex-concave-procedure (CCP) [36]. In particular, we
employ penalty CCP which is introduced in [37] and used in
the context of pMCs in [8]. The algorithm described below
follows closely from the one proposed in [8].

Penalty CCP algorithm takes five inputs: a threshold con-
stant ε>0, an initial penalty constant τ0>0, a multiplica-
tion factor µ>1, a maximum penalty constant τmax, and
initial estimates ν̂0(s), η̂0(s), and û0(γq,za ) for the vari-
ables ν(s), η(s), and u(γq,za ), respectively. Moreover, for
each iteration k∈Z+ of the algorithm, we recursively define
τk+1:=min{µτk, τmax}.

Let v denote an arbitrary tuple (s′, q, z, a)∈SM,k×Q×Z×
A. For each v, we introduce two new variables Φν,v≥0 and
Φη,v≥0. The introduced variables are typically referred to as
slack variables and quantify the infeasibility of the constraints
in (25b)-(25c) [37]. In particular, when

∑
v(Φη,v + Φν,v)=0,

the output of the penalty CCP algorithm becomes feasible for
the problem in (25a)-(25g).

At each iteration k∈Z+ of the algorithm, we first convexify
the constraints in (25b)-(25c) (explained below). We then solve
the resulting convex optimization problem by replacing the
objective function (25a) with

maximize
ν,u,η

ν(sI)− τk
∑
v

(Φη,v + Φν,v).

Intuitively, the second term in the above objective function
is a penalty term which encourages the algorithm to output
feasible solutions for the original problem in (25a)-(25g).

Let V alk be the optimal value of the problem described
above. We terminate the algorithm if |V alk − V alk−1|<ε
and the optimal solution satisfies

∑
v(Φη,v +Φν,v)=0. Other-

wise, we set the optimal decision variables ν?(s), η?(s), and
u?(γq,za ) for the current iteration as the estimates ν̂k+1(s),
η̂k+1(s), and ûk+1(γq,za ) for the successive iteration, and solve
the resulting optimization problem. The procedure explained
above has no theoretical convergence guarantees to a feasible
solution [37], i.e., a solution that satisfies

∑
v(Φη,v+Φν,v)=0.

However, any feasible solution that is obtained through the
above procedure is guaranteed to be locally optimal for the

problem in (25a)-(25g). In practice, we observe that the
penalty CCP usually converges to a feasible solution.

In what follows, we explain the convexification procedure
for the constraint in (25b); the convexification of (25c) is
performed by following the same procedure. Note that the last
term on the right hand side of (25b) is the summation of bi-
linear terms c(s, s′, a, z, u)ν(s′)u(γq,za ) where c(s, s′, a, z, u)
is a constant such that

c(s, s′, a, z, u) := Os,z Ps,a,s′ u(δq,z,aq′ ).

With an abuse of notation, we denote c(s, s′, a, z, u) by c. As
explained in [8], a bilinear function f(x, y)=2Cxy, where C
is a constant, can be written as a difference of convex func-
tions f(x, y)=f1(x, y)−f2(x, y) where f1(x, y)=C(x+y)2

and f2(x, y)=C(x2 + y2). Since we have a constraint of the
form 0≤Lu(s)+f(x, y) in (25b), we linearize the function
f1(x, y) around the point ν̂k(s) and ûk(γq,za ). Specifically, at
iteration k∈Z+, we replace each bilinear term cν(s′)u(γq,za )
in (25b) with

c

2

(
ν̂k(s′) + ûk(γq,za )

)2

− c

2

(
(ν(s′))2 + (u(γq,za ))2

)
+ c
(
ν̂k(s′) + ûk(γq,za )

)(
ν(s′)− ν̂k(s′)

)
+ c
(
ν̂k(s′) + ûk(γq,za )

)(
u(γq,za )− ûk(γq,za )

)
+ Φν,v.

Note that the above expression is concave in the variables
ν(s′) and u(γq,za ). Therefore, the problem resulting from the
replacement of the bilinear terms with the above expression is
a convex optimization problem.

E. Finite-State Controller Synthesis: A Monotonocity Result

In the previous section, we presented an algorithm to solve
the problem in (25a)-(25g), which requires one to set the
variables u(δq,z,aq′ ) to constants that satisfy the constraint in
(25e). As discussed earlier, the choice of these constants
establishes the memory transition structure of the k-FSCs over
which the entropy maximization is performed. In this section,
we present a particular memory transition function which has
a monotonocity property. That is, when this memory transition
function is used, by increasing the number of memory states,
one can only increase the optimal value of the optimization
problem in (8a)-(8b).

For a POMDP M, consider a k-FSC C=(Q, q1, γ, δ) with
the memory transition function δ:Q×Z×A→∆(Q) such that

δ(qi+1|qi, z, a) = 1 ∀z ∈ Z, a ∈ A, 1 ≤ i < k

δ(qk|qk, z, a) = 1 ∀z ∈ Z, a ∈ A
δ(qi|qj , z, a) = 0 otherwise.

(27)

We present an illustration of the k-FSC described above in
Fig. 3. Intuitively, the transition function δ represents a finite
horizon memory. In the first k−1 steps, the agent summarizes
the set Hi of system histories using the memory state qi and
makes a decision based on the decision function γ(a|qi, z). For
the rest of the process, the agent stays in the memory state
qk and follows a memoryless strategy by making stationary
decisions based on the decision function γ(a|qk, z).
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Fig. 3: An illustration of the proposed deterministic k-FSC
structure. Regardless of the received observations and taken
actions, the controller transitions from the memory state qi to
qi+1 for all i<k, and finally, stays in the state qk indefinitely.

Let Fk(M)⊂Fdetk (M) be the set of k-FSCs whose memory
transition function is given in (27). Additionally, let

Ek,max := max
C∈Fk(M)

∞∑
t=2

βt−2HC(St|St−1).

Lemma 2: For all j≤k, we have Ej,max≤Ek,max.
The above monotonocity result establishes that, by fixing the

memory transition function to δ given in (27), one can obtain
nondecreasing maximum entropy values by increasing the
number of memory states in the k-FSC. Such a monotonocity
result hold due to the specific structure of the transition func-
tion δ and may not hold if one considers transition functions
other than δ. For example, consider a periodic transition
function δ̃ such that δ̃(qj |qi, z, a)=δ(qj |qi, z, a) for all 1≤i<k,
and δ̃(q1|qk, z, a)=1. Due to the periodic structure of δ̃, the
agent necessarily makes the same decisions in every k steps.
One can construct POMDP instances in which higher entropy
values can be obtained by making the same decisions in every
k steps than in every k+1 steps. Therefore, the monotonocity
result does not hold for the memory transition function δ̃.

Using the result of Lemma 2, we can obtain a practical
algorithm to synthesize an entropy-maximizing controller as
follows. First, fix the number of memory states to an initial
value k. Then, by setting u(δq,z,aq′ )=δ(q′|q, z, a), find a local
optimal solution to the problem in (25a)-(25g). Next, increase
the number of memory states to k+1, solve the resulting
problem, and compare the optimal value of the problem with
the previous result. Repeat this procedure until the percent in-
crease in the optimal value is below a predetermined threshold.

We note that since the algorithm described in the previous
section computes a locally optimal solution for the problem in
(25a)-(25g), the procedure described above has no theoretical
guarantees to yield improving solutions for the problem in
(8a)-(8b). However, we observe that, in practice, the described
procedure works considerably well.

VI. NUMERICAL EXAMPLES

We now provide several numerical examples to demonstrate
the relation between the maximum entropy, the time horizon,
the threshold on the total reward, and the number of memory
states in the FSC. We use the MOSEK [38] solver with the
CVX [39] interface to solve the convex optimization problems.
To improve the approximation of exponential cone constraints,
we use the CVXQUAD [40] package.
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Fig. 4: Example illustrating the relation between the maximum
entropy and the threshold Γ. (Left) A POMDP instance with
6 states and a single observation. (Right) The entropy of the
processes induced by the synthesized controllers as a function
of the threshold Γ.

A. The Relation Between the Maximum Entropy and the
Expected Total Reward Threshold

We first consider a POMDP instance with 6 states shown in
Fig. 4 (Left). There is a single observation Z={z1}, yielding
Os,z1=1 for all states s. We use a deterministic 2-FSC whose
memory transition function δ is given in (27). Since there is
only one observation, the synthesized controller is an open-
loop controller. We suppose that the agent aims to reach state
s4 and encode this objective by defining a reward function R
such that R(s2, a1)=R(s3, a1)=1 and R(s, a)=0 otherwise.

We investigate the effect of the threshold Γ in (8b) on
the maximum entropy by synthesizing controllers for values
between Γ=0.5 and Γ=1. For each value of Γ, we use the
memory transition function in (27), run the optimization prob-
lem given in Section V-C 10 times by randomly initializing
the CCP, and report the best result of these 10 trials. For each
Γ, we plot the maximum entropy of the stochastic process
induced by the synthesized controllers in Fig. 4 (Right). For
comparison, we synthesize controllers by solving a feasibility
problem given in [8]. We obtain the feasibility problem from
(25a)-(25g) by removing the entropy constraint in (25b) and
replacing the objective function in (25a) with a constant value.

The proposed approach yields the globally optimal con-
troller by attaining a tight bound on Γ. The global optimality
of the controller is evident in Fig. 4 (Right), as the entropy of
the proposed approach exactly matches that of the underlying
MDP for each value of Γ. Because the feasibility problem only
seeks to find a feasible instantiation of the parameters that
satisfy the expected total reward constraints in (25c)-(25d),
the entropy of the induced stochastic processes is less than
the maximum attainable entropy.

B. The Relation Between the Maximum Entropy and the
Number of Memory States

We now consider a POMDP instance with 15 states shown
in Fig. 5 (a). As in the previous example, there is only a
single observation Z={z1} yielding Os,z1=1 for all states s.
We suppose that the agent aims to reach s14 with probability
1. To encode this objective, we set Γ=1 with R(s10, a2)=1,
R(s11, a2)=1, R(s12, a2)=1, and R(s, a)=0 otherwise.
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(b) Trajectories under the synthesized entropy maximizing 6-FSC.
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Fig. 5: Example illustrating the relation between the maximum
entropy and the number of memory states.

We study the relation between the number of memory
states and the maximum entropy of the induced pMC by
synthesizing controllers with k=1, . . . , 6 memory states. We
run the optimization problem given in Section V-C 10 times
by randomly initializing the CCP and report the best result
of these 10 trials. Fig. 6 shows the maximum entropy of the
induced stochastic process for each k. Moreover, in Fig. 5
(b), we illustrate the entropy-maximizing 6-FSC, where edge
weights correspond to the probability of action selection.

As can be seen in Fig. 6, the maximum entropy of the
POMDP under 1-FSCs is 0 since, under such controllers,
the agent needs to follow the shortest path to the goal for
collecting a total reward of 1. When we increase the number
of memory states, the agent starts to randomize its action
selection. However, after 5 memory states, memory does not
affect the maximum entropy of the induced process. Note in
Fig. 6 that, unlike the previous example, a gap between the
maximum entropy of the MDP and that of the induced pMC
remains. The maximum entropy of the POMDP must lie within
this gap. Finally, this example demonstrates that the maximum
entropy of the induced process is monotonically nondecreasing
in the number of memory states when we consider controllers
with memory transition function given in (27).

C. The Relation Between the Maximum Entropy and the Time
Horizon

In this example, we examine the relation between the
maximum entropy of a POMDP and the number of time steps
in the finite-horizon problem. We consider the POMDP whose
state-space is given by the 4×4 grid world shown in Fig. 7
(Left). The brown state is the unique initial state of the agent,
the red states are error states to be avoided, and the green
state is the target state. In each state, the agent can select one
of four possible actions: move left, move right, move up, or
move down. Under the selected action, the agent transitions to
its intended state with probability 0.95−ε/3, slips to the left or
to the right with probability 0.025−ε/3, and slips backwards
with probability ε=0.005. If the agent were to transition off
the grid world, it instead remains in its current state.
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Fig. 6: The maximum entropy of the stochastic processes
induced by deterministic k-FSCs. The maximum entropy is
monotonically nondecreasing in the number of memory states.

The agent can make 9 possible observations: error (target)
state to the left, error (target) state to the right, error (target)
state above, error (target) state below, and no observation.
The observations in each state are deterministic. For example,
in the state to the left of the target state, the agent makes the
observation target state to the right with probability 1.

We investigate how the variation of the finite time hori-
zon T affects the maximum entropy of the POMDP. We
use values of T ranging from T=16 to T=30 time steps.
The minimum expected total reward threshold is set to
Γ=0.9, which we encode by setting the values of the reward
function R as R((3, 1), right)=R((4, 2), down)=0.95−ε/3,
R((3, 1), up)=R((4, 2), left)=0.025−ε/3, and R((3, 1),left)
=R((4, 2), up)=ε, and 0 otherwise. We use a deterministic 1-
FSC and run the optimization problem given in Section V-C a
total of 5 times for each value of T . In Fig. 7 (Right), we plot
the maximum entropy of the induced stochastic processes as
a function of the finite time horizon T .

From Fig. 7 (Right), we see that the maximum entropy
of the POMDP increases with the size of the finite time
horizon. Intuitively, a longer time horizon allows the agent
to more uniformly distribute its actions. With a shorter time
horizon, the agent must allocate more probability mass towards
selecting actions that lead it down and to the right in order

15 20 25 30

9

11

13

15

Time Horizon (T )

E
nt

ro
py

of
th

e
Pr

oc
es

s
[b

its
]

Fig. 7: Example illustrating the relation between the maximum
entropy and the time horizon. (Left) Grid world with 16 states
and 9 observations. The agent starts from the brown state and
aims to reach the green state while avoiding red states. (Right)
The entropy of the processes induced by the synthesized 1-
FSCs as a function of the time horizon.
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Fig. 8: Relation between the maximum entropy of the induced
stochastic process and the expected total reward Γ for finite
time horizon T=20.

to reach the target state within the time horizon. For longer
time horizons, the agent is able to more uniformly distribute
its actions, yielding a higher maximum entropy.

D. The Relation Between the Maximum Entropy and the
Finite-Horizon Expected Total Reward

In this example, we again consider the 4×4 grid world
shown in Fig. 7 (Left) with identical transition, observation,
and reward functions as those used in Section VI-C. We
now suppose that the agent must collect an expected total
reward above some minimum threshold Γ within a finite time
horizon of T=16 time steps. We use values of Γ varying
from Γ=0.5 to Γ=0.975. Using a deterministic 1-FSC, we
run the optimization problem given in Section V-C a total of
5 times for each value of Γ and store the largest value of the
maximum entropy observed. Fig. 8 plots the relation between
the maximum entropy of the induced stochastic process as a
function of the lower bound Γ on the total expected reward.

Lower values of Γ allow the agent to more uniformly
distribute its probabilities for action selection, as the agent
need not reach the blue state with high probability. For
increasingly large values of Γ, the agent must select its actions
such that it drives itself towards the blue state, reducing the
maximum entropy of the induced stochastic process. As the
value of Γ approaches 1, the maximum entropy of the induced
stochastic process begins to level off. For large values of Γ,
and for Γ=0.95 and Γ=0.975 in particular, the synthesized
controllers only slightly deviate from one another. Because
the synthesized policies are nearly identical, the resulting
maximum entropies of their respective induced stochastic
processes are likewise nearly identical.

E. Reaching a Target While Minimizing Predictability

We consider an agent that aims to reach a target in an ad-
versarial environment. We model the environment as a 10×10
grid world, shown in Fig. 9 (Left), that consists of 4 rooms
and 4 doors using which the agent can transition between
the rooms. The rooms are numbered clockwise starting from
the bottom left corner, and the doors are numbered clockwise
starting from the door between room 1 and room 4. Finally,
the thick black lines represent the walls in the environment.

Fig. 9: Motion planning example (Left) Grid world with 100
states and 36 observations. The agent starts from the brown
state and aims to reach the green state. (Right) The partition
of a room with respect to the agent’s observation function.

The agent observes its current room and its relative position
with respect to the doors (36 total observations, 9 in each
room). We illustrate the partition of a room with respect to the
agent’s observation function in Fig. 9 (Right). For example, if
the agent is at the bottom left corner of the environment, its
observation is room 1, below door 1, left of door 2.

In Fig. 9 (Left), the brown state is the initial state of the
agent, and the green state is the target state. We set the discount
factor to β=0.9, and the expected total reward threshold to
Γ=β12, i.e., the agent needs to reach the target state in at
most 12 steps. Note that 12 steps is the minimum number of
steps to reach the target from the initial state. Hence, the agent
can follow only the shortest trajectories to the target.

We focus on 1-FSCs and synthesize two controllers for
the agent. We synthesize the first controller using the pro-
posed approach based on the convex-concave procedure. For
comparison, we also synthesize a controller by solving a
feasibility problem given in [8]. In Fig. 10, we demonstrate
the expected number of times the agent visits each state under
the synthesized controllers.

As can be seen from Fig. 10, under the entropy-maximizing
controller, the agent reaches the target state by passing through
room 1 and room 3 with equal probability. Hence, it minimizes
the predictability of the room it visits to an outside observer by
maximizing the entropy of its trajectories. On the other hand,
under the controller synthesized by the feasibility approach,
the agent always reaches the target by passing through room
1. Consequently, it becomes trivial for an outside observer to
predict the agent’s trajectory.

1

0.5

0

Fig. 10: The expected number of times the agent visits
each state under the synthesized controllers. (Left) Entropy-
maximizing controller. (Right) Feasibility approach.



VII. CONCLUSIONS

We studied the synthesis of a controller which, from a given
POMDP, induces a stochastic process with maximum entropy
among the ones whose realizations accumulate a certain level
of expected reward. Since the entropy maximization objective
is considerably different than the traditionally used expected
reward maximization objective, we first showed that the maxi-
mum entropy of a POMDP is upper bounded by the maximum
entropy of its corresponding fully observable counterpart.
Then, by restricting our attention to FSCs with deterministic
memory transitions, we recast the entropy maximization prob-
lem as a so-called parameter synthesis problem for pMCs. We
present a nonlinear optimization problem for the synthesis of
an FSC that maximizes the entropy of a POMDP over all FSCs
with the same number of memory states and deterministic
memory transitions. Considering the intractability of finding a
global optimal solution to the presented optimization problem,
we proposed a convex-concave procedure approach to obtain
a local optimal solution after setting the memory transition of
FSCs to a fixed structure.

Even though finding a solution to the constrained entropy
optimization problem is at least PSPACE-hard due to expected
reward constraints, the computational complexity of the un-
constrained entropy maximization problem is still an open
problem. Additionally, developing the computational methods
to synthesize a controller that maximizes the entropy of a
POMDP over all FSCs with the same number of memory states
may be a fruitful research direction.
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APPENDIX A

In this appendix, we provide proofs for all theoretical results
presented in the paper.

Proof of Lemma 1. For any t<N , we have

V πt,N (st) =Hπ(St+1|St = st) +

N−1∑
k=t+1

Hπ(Sk+1|Skt , St = st)

since the random variable St is a part of the sequence St. The
last term in the above equation satisfies

Hπ(Sk+1|Skt , St = st) = Hπ(Sk+1|Skt+1, S
t = st)

= Hπ(Sk+1|Skt+2, St+1, S
t = st)

since Skt =(St, St+1, S
k
t+2). Moreover, the term on the left

hand side of the above equality satisfies

Hπ(Sk+1|Skt+2, St+1, S
t = st) = Hπ(Sk+1|Skt , St+1, S

t = st)

since the introduced conditioning on the sequence (St, St+1)
does not change entropy as the random variable St+1 is already
included in the conditioning and the value of the random
variable St is already fixed to st. Using the definition of
conditional entropy [1, Chapter 2], we obtain

Hπ(Sk+1|Skt , St+1, S
t = st) =∑

st+1∈S
Pr(St+1 = st+1|St = st)Hπ(Sk+1|Skt , St+1 = st+1).

Note that, under the policy π, Pr(St+1=st+1|St=st) is
equal to the realization probability Prπ(st+1|st). Furthermore,
Prπ(st+1|st)>0 for a given state history st+1∈SHt+1 if and
only if st+1=(st, st+1) where st+1∈S. As a result, we have

V πt,N (st) = Hπ(St+1|St = st)

+

N−1∑
k=t+1

∑
st+1∈SHt+1

Prπ(st+1|st)Hπ(Sk+1|Skt , St+1 = st+1)

(32a)
= Hπ(St+1|St = st)

+
∑

st+1∈SHt+1

Prπ(st+1|st)
N−1∑
k=t+1

Hπ(Sk+1|Skt , St+1 = st+1)

(32b)
= Hπ(St+1|St = st)

+
∑

st+1∈SHt+1

Prπ(st+1|st)V πt+1,N (st+1) (32c)

where (32b) follows from the fact that the expression
Prπ(st+1|st) does not depend on k, and (32c) follows from
the definition of the value function V πt,N (st): �

Proof of Theorem 1: Recall that, for any π∈Π(M), we
have V π1,N (sI)=H

π(S1, S2, . . . , SN ). We prove the claim by
showing that

sup
π∈Π(M)

V π1,N (sI) ≤ sup
π∈Π(Mfo)

V π1,N (sI).

We do so by considering the value function V πt,N (st) and
performing induction on t.

Denote the value function for an arbitrary controller
π∈Π(M) as V πt,N (st) and the value function for the cor-
responding controller π′=(µ′1, µ

′
2, . . . , µ

′
N−1)∈Π(Mfo) con-

structed through (10) as V π
′

t,N (st), respectively. For the base
case, t=N−1, we have

V πN−1,N (sN−1) = Hπ(SN |SN−1 = sN−1) (33a)

= Hπ′(SN |SN−1 = sN−1) (33b)

by the definition of π′. In particular, the equality in (33b)
follows from the fact that we can construct an equivalent
history-dependent controller on the fully observable MDP that
achieves the same transition probabilities for any observation-
based controller. Since the above equality holds for any
π∈Π(M), using the fact that Π(M)⊆Π(Mfo), we conclude

sup
π∈Π(M)

V πN−1,N (sN−1) ≤ sup
π∈Π(Mfo)

V πN−1,N (sN−1).

Now assume that, for any st+1∈SHt+1, we have

sup
π∈Π(M)

V πt+1,N (st+1) ≤ sup
π∈Π(Mfo)

V πt+1,N (st+1).

Let π=(µ1, µ2, . . . , µN−1)∈Π(Mfo) be a history-dependent
controller that attains the maximum on the right hand side of
the above inequality. Then, for any st∈SHt, we have

V πt,N (st) =Hπ(St+1|St = st)

+
∑

st+1∈SHt+1

Prπ(st+1|st)V πt+1,N (st+1) (36a)

≤Hπ(St+1|St = st)

+
∑

st+1∈SHt+1

Prπ(st+1|st)V πt+1,N (st+1) (36b)

due to Lemma 1 and the induction hypothesis. We define
a controller π̃=(µ′1, µ

′
2, . . . , µ

′
t, µt+1, . . . , µN−1)∈Π(Mfo)

which is a combination of the controllers π′ and π. Note that

V πt,N (st) ≤H π̃(St+1|St = st)

+
∑

st+1∈SHt+1

Prπ̃(st+1|st)V π̃t+1,N (st+1) (37a)

since the controller π̃ achieves the same transition probabilities
with the controller π for all state histories of length t+ 1 and
the same value function for all state histories that has a length
greater than t+ 1. Consequently, for any st∈SHt, we have

sup
π∈Π(M)

V πt,N (st) ≤ sup
π∈Π(Mfo)

V πt,N (st). �

Proof of Proposition 1: The result follows from the fact that
the controller C only allows deterministic memory transitions
and that DM,k[uC] is a Markov chain. By the definition of
conditional entropy [1, Chapter 2],

HC(St|St−1) =
∑

st∈SHt

PrC(st, s
t−1) logPrC(st|st−1). (39)

Note that the summation on the right hand side of the above
equation is over state histories. For any given state history
st, there is a corresponding memory history (q1, q2, . . . , qt),
where qk∈Q, for the controller C. Let MHt denote the set



of all possible memory histories of length t∈N. Then, by the
law of total probability, we have

PrC(st|st−1) =
∑

qt∈MHt

PrC(st, qt|qt−1, st−1)PrC(qt−1|st−1).

Since the memory transitions are deterministic under
C∈Fdetk (M), by recursively expanding the right hand side of
the above equality, it can be observed that PrC(qt−1|st−1)=1
for a given state history realization st−1. Since for each
state history realization st on the POMDP M under the
controller C, there is a unique state history realization
(〈s1, q1〉, 〈s2, q2〉, . . . , 〈st, qt〉) on the instantiation DM,k[uC]
of the induced pMC DM,k, we have

HC(St|St−1) = HuC(SM,k,t|St−1
M,k).

Finally, since the instantiation DM,k[uC] constitutes an
MC, as a result of the Markov property [1], we have
HuC(SM,k,t|St−1

M,k)=HuC(SM,k,t|SM,k,t−1). �
Proof of Lemma 2: We prove the claim by showing that,

for any k∈N, we have Ek−1,max≤Ek,max.
Consider an arbitrary (k−1)-FSC C∈Fk−1(M) with the

decision function γ. Let k-FSC C′∈Fk(M) be such that
its decision function γ′ satisfies γ′(a|qi, z)=γ(a|qi, z) for
i=1, . . . , k−1, and γ′(a|qk, z)=γ(a|qk−1, z). Note that the
state sequences in M under the controllers C and C′ are
the same. This is true since we can explicitly write down
the decisions taken by the agent under the controllers C and
C′ thanks to the specific transition function given in (27). In
particular, the sequence of decisions under the controller C
is (γ(a|q1, z), γ(a|q2, z), . . . , γ(a|qk−1, z), γ(a|qk−1, z), . . .),
and the sequence of decisions under the controller C′

is (γ′(a|q1, z), γ
′(a|q2, z), . . . , γ

′(a|qk, z), γ′(a|qk, z), . . .),
which are the same by construction. Hence, the state
sequences induced by these decision sequences are the same.
Consequently, we have

∞∑
t=2

βt−2HC(St|St−1) =

∞∑
t=2

βt−2HC′(St|St−1).

Since, for an arbitrary (k−1)-FSC C∈Fk−1(M), there exists
a k-FSC C′∈Fk(M) that achieves the same entropy of state
sequences in M, we conclude that Ek−1,max≤Ek,max. �

APPENDIX B

In this appendix, we describe a method to transform the fi-
nite horizon entropy maximization problem to infinite horizon
entropy maximization problem with discount factor β=1. Even
though the transformation requires us to use the discount factor
β=1, the resulting POMDP includes a ”sink state” which
allows us to extend all theoretical results provided in the paper
to finite horizon entropy maximization problem.

For a given POMDP M and a finite decision horizon N∈N,
we append the time as an additional state to the underlying
transition system. In particular, instead of using S, we use
(S×[N ])∪Sink as the state space, where [N ]={1, 2, . . . , N}.

The initial state of the resulting POMDP is sI ×1, and the set
of actions are the same as M. The transition function P is

P ((s′, t′)|(s, t), a) =


P (s′|s, a) if t′ = t+ 1 ∧ t′ < N

1 if (s′, t′) = Sink ∧ t = N

1 if (s′, t′) = (s, t) = Sink

0 otherwise.

Intuitively, the process moves forward in time and get absorbed
in the Sink state after N -th stage. Now, on the resulting
POMDP, all results provided for the infinite horizon setting
can be extended to the finite horizon setting.
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