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Actor-critic style two-time-scale algorithms are one of the most popular methods in reinforcement
learning, and have seen great empirical success. However, their performance is not completely under-
stood theoretically. In this paper, we characterize the global convergence of an online natural actor-critic
algorithm in the tabular setting using a single trajectory of samples. Our analysis applies to very general
settings, as we only assume ergodicity of the underlying Markov decision process. In order to ensure
enough exploration, we employ an e-greedy sampling of the trajectory.

For a fixed and small enough exploration parameter €, we show that the two-time-scale natural actor-

critic algorithm has a rate of convergence of (’3(1/ T/ 4), where T is the number of samples, and this

leads to a sample complexity of @(1/ 58) samples to find a policy that is within an error of § from the
global optimum. Moreover, by carefully decreasing the exploration parameter e as the iterations proceed,
we present an improved sample complexity of O(1/ 56) for convergence to the global optimum.

1. Introduction. In reinforcement learning (RL), an agent operating in an environment, modeled as
a Markov decision process (MDP), tries to learn a policy that maximizes its long-term reward. Methods
for solving this optimization problem include value function methods, such as -learning [60], and policy
space methods, such as TRPO [51], PPO [52], and actor-critic [33].

Policy space methods explicitly search for the maximum of the value function V™, which codifies the
expected long-term reward, through iterative optimization over the policy m. Although in general V'™ is
a nonconvex function of 7 [1], global optimality can be obtained by employing either gradient descent
[1, 41], mirror descent [23, 53], or natural gradient descent [1]. These methods, however, assume access to
an oracle that returns the gradient of the value function for any given policy. In many practical scenarios,
and in particular when the parameters of the MDP are only partially known, these gradients have to be
estimated from observations or simulations.

Actor-critic (AC) techniques integrate estimation of the gradient into the policy search. In this framework,
a critic estimates the value (Q-function) of a policy, usually through a temporal difference iteration. The
actor then uses this estimate to form a gradient to improve the policy. AC algorithms have been observed
to converge quickly relative to other methods [2, 59], and have enjoyed success in several applications
including robotics [25], computer games [20], and power networks [22].

AC algorithms can be classified into batch vs. online. In the batch setting, in each iteration of the AC, the
critic evaluates the policy using a set of collected data. This type of batch update, however, cannot be im-
plemented in an online manner, and requires simulations that need to be restarted in specific states, making
its implementation appropriate in artificial environments such as Atari games [52], but not in scenarios that
require the agent to “learn as they go”.

A truly online and two-time-scale AC variant was first proposed in [33], where at every iteration the actor
and critic updates depend only on one sample observed from the environment using the current policy. Later
[7, 45] presented a version of this algorithm using a natural policy gradient. These methods can be viewed
as two-time-scale stochastic approximation (SA) algorithms, where the actor and the critic operate at the
“slow” and “fast” time scales, respectively.

AC algorithms often use low-order approximations for the value and policy functions. While this type of
function approximation can dramatically simplify the learning process, thus allowing us to apply the algo-
rithm to complex, real-world problems, these approximations introduce non-vanishing, systematic errors,
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as the truly optimal policy typically does not lie in the set of functions considered. In this paper, however,
we are completely focussed on recovering the globally optimal policy, and so we will operate in the “tabu-
lar setting” that considers every possible distribution over the (finite number of) actions for every possible
state.

Main contributions:

* We analyze the two-time-scale natural AC algorithm in the tabular setting. Our setting can be seen as
a two-time-scale linear stochastic approximation with a time-varying Markovian noise. Unlike several
recent papers, we do not make an extensive set of assumptions. The only assumption we make is the
ergodicity of the underlying Markov chain under all policies.

* QOur analysis show the importance of the exploration in AC type algorithms. We argue that a naive exe-
cution of natural AC fails to properly explore all of the state-action pairs, a fact that we illustrate with a
simple example. Therefore, we employ e-greedy exploration to guarantee global convergence.

e For a fixed and small enough exploration parameter €, we show that using 7" number of samples, two-
time-scale natural AC Algorithm 1 converges to within O (5T+/4 + e) of the global optimum. We show
that for carefully chosen ¢, Algorithm 1 finds a policy within a §-ball around the global optimum using
O(1/6%) samples. )

 We show that using a time-varying e improves the sample complexity of Algorithm 1 to O(1/6°).

1.1. Related works. Stochastic approximation: This method was first introduced in [50]. Asymptotic
convergence of stochastic approximation (SA) was studied in [5, 9]. Recently, there has been a flurry of
work on the finite time analysis of SA for both linear [44] and nonlinear [15, 19] operators, under both i.i.d
[39] and Markovian [29] noise, with batch [31] or two-time-scale [9] updates. Our setting in this paper can
be categorized as a linear two-time-scale SA with the noise generated from a time-varying Markov chain.

Actor-critic: AC algorithm was first proposed in [33] as a two-time-scale stochastic approximation [8,
10, 18, 30] variant of the policy gradient algorithm [55]. In this algorithm a faster time scale is used to
collect samples for gradient estimation, and a slower time scale is used to perform an update to the policy.
In this paper we are interested in such a two-time-scale version of the natural policy gradient [28]. While
natural gradient descent is closely related to mirror descent [24, 48], in the context of Markov decision
processes they are known to be identical [1, 23]. Even though the objective V™ is a nonconvex function of
the policy 7, convergence rate of natural policy gradient to the global optimum under the planning setting
(when the exact gradients are known) is recently established in [1, 12, 13, 23]. Natural AC, which is a
variant of AC with natural policy gradient in the actor, was studied in [7, 43, 45, 56].

While the asymptotic convergence of AC methods including natural AC is well-understood [7, 9, 33, 61,
70], their finite-time convergence was largely unknown until recently [14, 31, 35, 36, 38, 40, 47, 54, 58, 62,
64, 65, 66, 68, 69]. The authors in [35, 47, 66, 68] provide the convergence rate of AC where the parameter
of the critic is updated using a number of collected samples instead of only one single sample. Such a setting,
referred to as batch AC, cannot be implemented in an online fashion since at any iteration the critic has to
implement the current policy for a number of time steps to collect enough data. A similar batch approach
was used in [14, 31, 36, 40, 58, 64, 65] to study natural AC and in [38, 54] to study the TRPO algorithm,
which is a variant of mirror descent. The authors in [14, 31] study the finite time convergence bound of
off-policy natural AC algorithm under constant step size. However, due to the constant step size they do not
have convergence to the global optimum. [36, 67] study the finite time convergence of a regularized variant
of natural AC with batch data update. In [62] the convergence of two-time-scale AC is analyzed. However,
in [62] the convergence only to the local optimal is established.

In this paper, we study the original AC method [33] without considering a batch update. In other words,
data is collected through a single trajectory of a time-varying Markov chain and the update is performed
in a two-time-scale manner. To the best of our knowledge, the only paper in the literature that considers
such a setting is [62] which studies the AC algorithm under function approximation. Although their results
are remarkable, they make several assumptions on the space of approximation functions. In Section 2.1 we
will explain why these assumptions cannot be satisfied in the tabular setting with zero approximation error.
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Another related work is [65] where the authors claim to have a single trajectory algorithm. However, as
explained in [31, Appendix C], the proposed algorithm in [65] is not single trajectory.

e-greedy: One of the differences between our algorithm and the previous work is the inclusion of -
greedy to the natural AC. This greedy step ensures sufficient exploration of our algorithm, while keeping
the algorithm online. e-greedy [42] is commonly employed in various settings such as -learning [63],
multi-armed bandit [34, 57] and contextual bandit [11]. In these algorithms, e-greedy is usually employed
in order to ensure sufficient exploration [42]. In this paper, we show that this greedy step can ensure the
global convergence of the AC as well, and we characterize the rate of this convergence.

To summarize, the work in the literature over the last two decades has looked at various challenges
thrown by AC algorithms under various assumptions and different simplifying models. This paper studies
the greedy version of this algorithm and consequently in one place addresses several analytical challenges
which include: (i) two-time-scale analysis, (ii) an online or single trajectory update, (iii) Markovian data
samples, (iv) time-varying Markov chain, (v) asynchronous update in tabular setting, (vi) diminishing step
sizes, and (vii) global convergence with minimal assumptions.

2. Natural Actor-Critic Methods for Reinforcement Learning. The environment of our RL problem
is modeled by a Markov Decision Process (MDP) specified by M = (S, A,P,R,~), where S and A are
finite sets of states and actions, P is the set of transition probability matrices, v € (0,1) is the discount
factor, and R : S x A — [0,1] is the reward function, where without loss of generality we assume that
the rewards are in [0, 1]. We focus on randomized stationary policies, where each policy 7 assigns to each
state s € S a probability distribution 7(- | s) over .A. Each policy 7 on the MDP, induces a Markov chain
with transition probability P7(s'|s) =, P(s'|s,a)m(als) on the states. Assuming that this Markov chain
is irreducible, it induces a stationary distribution over states, which we denote by p”. By definition, this
distribution satisfies (u™)7 P™ = (u™)7 [26].

For a fixed policy 7, a sample trajectory of the states and actions is generated according to S ~
P(-|Sk, Ak), Ak+1 ~ m(-|Sk+1). The value function associated with 7 and the state s is defined as the
expected discounted cumulative reward, i.e.V™(s) = E [>7  Y*R(Sk, Ay) | So = s, A, ~ (- Sk)]. Fur-
thermore, given an initial state distribution P over S, we denote the expected cumulative reward for a policy
mas V™ (P). The goal is to find a policy that maximizes this expected cumulative reward:

n* € argmax V" (P). (1)

Throughout the paper, we denote V™ as V*. It can be shown [46] that the optimal policy 7* is independent
of the initial distribution P, and hence throughout this paper we assume P as fixed and we denote V" =
V7™ (P). It can be shown that value function can be written as V™ =} d"(s)m(als)R(s,a), where d™,

denoted as the discounted state visitation [55], is defined as d™ (s) = (1 — ) >3, ¥* P™(Sk = s| 50 ~ P),
with P (S = s| Sy ~ P) being the probability that Sj = s after executing policy 7 starting from the initial
distribution P at k& = 0. Throughout, we denote d% as d*.

Given policy 7, the Natural Policy Gradient (NPG) algorithm [1, 28] under the softmax parametrization
updates the policy in every time step according to

ren(a]s)= TS XP(BO™ (5, 0))
> ow me(ad']s)exp(BiQ™ (s,a’))

where Q7 (s,a) = E[Y 52 o Y*R(Sk, Ax) | So = s, Ag = a, Ay, ~ 7(+|S)] is the Q-function corresponding
to the policy 7. Here [; is the step size which might be time dependent.

The update rule in (2) has multiple interpretations [32]. Firstly, as explained in [23], it can be seen as
the update of the mirror descent for problem in (1) using negative entropy as the divergence generating
function. Secondly, the NPG update in (2) can be seen as a pre-conditioned gradient ascent with softmax
parameterization, where the pseudoinverse of the Fisher information matrix [49] multiplies the gradient as a
preconditioner [28]. While mirror descent and natural gradient descent are distinct but related algorithms in
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general [23, 24, 48], they are both identical to (2) in our setting of solving the problem in (1) using softmax
policy parametrization.

In the setting above, the NPG method finds a globally optimal policy with a provable rate; [1] shows
that after 7" iterations of the update (2) with constant step size [5; = (3, it finds a policy whose expected
cumulative reward is within O(1/T") of the optimal policy. The convergence bound in [1] is for the “MDP
setting”, where the (-function is computed exactly for every candidate policy ;. In the vast majority of
reinforcement learning applications, however, Q™ has to be estimated from simulations or observations.

2.1. Two-Time-Scale Natural Actor-Critic Algorithm. In order to perform the NPG update (2) for an
unknown environment, one can first estimate Q™ using a batch of samples of state-action-rewards. How-
ever, using batch of data for the update of the ()-function has practical drawbacks. In particular, sampling
of the batch data requires the state of the system to be reset frequently, which is not possible in environ-
ments such as robotics. A truly online, completely data-driven technique that keeps a running estimate of
the Q-functions while performing NPG updates based on these estimates is presented in Algorithm 1 with
€; = 0. In this algorithm, the “critic” implements an asynchronous update to the ()-function, where the only
entry in the table that is changed at every iteration is the one corresponding to the observed state-action
pair (S, A¢). After this, the “actor” uses the estimated ()-table to update the policy using a natural policy
gradient update of the form in (2). The critic and the actor use different step sizes (o and [, respectively),
a fact that is crucial to maintaining the algorithm’s stability.

Due to the existence of two different step sizes, Algorithm 1 can be viewed as a variant of two-time-scale
stochastic approximation [8]. Intuitively, the critic has to collect information about the gradient at a faster
time scale than the time scale at which the actor executes the gradient update — in other types of policy
gradient algorithms, this takes the form of multiple samples being generated in an inner loop. Since the AC
method performs both updates from a single sample, we can achieve a similar effect by having the actor
take a more conservative step.

One of the main differentiators of our work with the existing literature on the convergence of AC algo-
rithms is the update of the policy that mixes in a small multiple of the uniform distribution. This mixing is
necessary to ensure sufficient exploration of the state-action space. In this algorithm, at each iteration ¢, the
action A4 is sampled from the policy 7;, which is a convex combination of the policy 7; and the uniform
distribution. This strategy ensures that the sampling policy 7; attains at least ¢; weight in all it’s elements,
even though some elements of 7; might be arbitrary small. Furthermore, with introducing this step, we can
ignore the technical assumptions which is made by the previous works. In Section 4, we give an example of
an MDP with 4 states and 2 actions where a naive implementation of AC without this e-greedy exploration
step results in a suboptimal policy.

In the existing literature, this exploration is ensured through more stringent conditions on the problem
structure, which if satisfied, can guarantee enough exploration by the AC algorithm (Assumption 1 in [65]
and [64], Assumption 4.2 in [40], Assumption 4.3 in [21], and Assumption 4.1 in [62]). These assumptions,
however, need not necessarily be satisfied in the tabular MDP setting. In particular, all these assumptions
require ¢ (a|s) to be bounded away from zero for all states and actions s, a uniformly over time. However,
we know that in an MDP, there always exist a deterministic policy which is a global optimal. This means
that 7 (a|s) can very likely go to zero for some sate-action pair s, a, and the assumption can be violated.

3. Main Result: Finite Time Convergence Bounds of Greedy Natural Actor-Critic. In this section,
we provide a finite-time performance guarantee for Algorithm 1. In this algorithm, we can either choose
a constant e-greedy parameter, or a time-varying one. The advantage of the constant € is faster rate of
convergence to a neighborhood of the optimal, and the advantage of the time-varying greedy parameter is
global convergence without any necessary pre-specified error.

In order to characterize our convergence results, first we make the following assumption.

ASSUMPTION 3.1. For every deterministic policy 7, the Markov chain induced by the transition prob-
ability P™ is ergodic.



Algorithm 1 Two-time-scale natural AC algorithm with e-greedy exploration

Input: Iteration number 7" > 0, step sizes oy, 3¢, exploration parameter e, Qq(s,a) € ]R'SH‘Al,

1
W,Vs,a.

mo(als) = o (als) =

Draw S from some initial distribution and Ay ~ 7 (+|sg)
for t=0,1,2,....T do
Sample Sy 1 ~P(-[St, At), Agr1 ~ T (-[S41)
at(s,a) =y 1{Sy = s, Ay = a},Vs,a
Qry1(s,a) = Qi(s,a) + ar(s,a) [R(St, Ar) +¥Qe(St11, Apy1) — Qe(St, Ap)], Vs, a

41 (als) = mi(als) RO LA Ty

Tpp1 = fjﬂ + (1 =€) mp1

Vs,a

end for .
Sample 7" from {0,1,...,T} by distribution P(T' =) = T’Bi

> j=0 Bi
Output: frT

For more explanation regarding this assumption, look at Section 4.
We now present the main result of the paper. We bound the deviation of the value of the policy returned
by 1 from the value of the optimal policy.

THEOREM 3.1. Suppose Assumption 3.1 holds. Consider Algorithm 1 under the following step size
parameters

e b=t = 3)

(t+1)’ (t+1)8’
with0<&<v<o<l1, a,e<1. Then,

O~ if 1>20 O if ¢4+0>1
O ow O(eT~¢)  ow

E[V* — V] <O(T° 1) + {

N O(TO5W+E=1) /05 if 4 €41 > 20, O(t05E=) 105) if 94 € > v+ 20,
O(T7~1/€%5) 0.W. O(T7~1/€5) 0. W.

Ot=95)  if 1> 20, O(t0-5(E+v=20) 105 if 9 L€ 41> 4o,
oI 1 ow. O(T7 1 /€%5) 0.W,

Ot /e) if 24 2+ 2¢ > 4o,
OT/e)  owm,
where O(-) ignores the log(T) terms.

The proof of Theorem 3.1 is provided in Section 5. Note that while V* is not random, but V7T is, since
the policy 77 is a function of all the random variables drawn in Algorithm 1.
Furthermore, we state two corollaries of Theorem 3.1 for different choices of &.

COROLLARY 3.1.1.  Suppose Assumption 3.1 holds. Consider Algorithm I under the parameters in (3).
Suppose £ =0, v =0.5, and 0 = 0.75. We have:

N ~ 1
* T < o
E[V* —V ]O<€T1/4—|—e). @)
Hence, the algorithm requires O(1/6*) number of samples to get € + /€ close to the global optimum.

Furthermore, by taking € = O(6), we get E[V* — V72| < O(5) after T = O(1/6%) iteration of Algorithm
1.



The sample complexity in Corollary 3.1.1 is relatively poor due to the % term on the upper bound in (4),
which is due to a constant exploration factor in AC. In the next corollary we show how to achieve a better
sample complexity by gradually reducing the exploration factor e;.

COROLLARY 3.1.2.  Suppose Assumption 3.1 holds. Consider Algorithm I under the parameters in (3).
Suppose £ =1/6, v =0.5, and 0 = 5/6. We have:

E[V* — V] < O(1/T"/5).
In particular, we have E[V* — V7] < § after T = O(1/59) iterations of Algorithm 1.

Corollaries 3.1.1 and 3.1.2 are direct application of Theorem 3.1. In particular, in the case of £ = 0, the
term €7'~¢ in the bound of Theorem 3.1 will be a constant proportional to €, and the best rate of convergence
is obtained by picking v = 0.5 and o = 0.75 which gives Corollary 3.1.1. Also assuming ¢ > 0, the best
rate of convergence can be obtained by £ =1/6,v =0.5,0 =5/6.

We should emphasize that Corollaries 3.1.1 and 3.1.2 characterize the sample complexity for global
convergence of Algorithm 1 with the only assumption of ergodicity of the underlying MDP. This is indeed
a much weaker assumption compared to the related work.

4. Need for Exploration and Ergodicity. In this section we explain the necessity of the e-greedy
step in Algorithm 1 and the ergodicity Assumption 3.1. In iteration ¢ of the natural AC algorithm, the
objective of the critic is to estimate the ()-function corresponding to the policy 7. In two-time-scale natural
AC, in each iteration ¢ the algorithm estimates the ()-function by updating only a single random element
(s = Si,a = Ay) of the @, table. In our analysis, the e-greedy step ensures that in each iteration of the
algorithm, each of the actions are being sampled with probability at least ¢;. Furthermore, Assumption
3.1 ensures that all the states of the MDP are visited infinitely often. In the following we show why both
e-greedy and Assumption 3.1 are essential for the convergence of the natural AC algorithm.

(I) e-greedy: Following the update of the policy in Algorithm 1, we have

exp(Y1Zg BiQus1(s,a)) ‘
S exp(X1Zg BiQus (s, )

If for some state s, action & satisfies Qi (s,a) < Qk(s,a), Va # a, by (5), m(a|s) converges to zero geo-
metrically. Thus, with high probability (s,a) will not be explored, and we might converge to a suboptimal
policy. Note that the scenario explained here can very likely happen when R (s, a) is negligible with respect
to R(s,a) for other actions a.

The following experiment illustrates the necessity of the e-greedy policy update. Consider the MDP
depicted in Fig. 1. This MDP has 4 states and 2 actions. All the transition probabilities depicted in the
figure are positive, and the rest are zero. Furthermore, R(s1,a1) = 0.1 and R(s4,a1) = 1, and the rest
of the rewards are zero. Suppose P(s1|si,a1) = 0.999, i = 1,2,3, P(si+1]si,a1) = 0.001, i =1,2,3,
7)(84‘84,6“) = 0999, 77(51|54,a1) = 0001, P(81|Si,a2) = 0001, 1= 2,3, P(SiJrl‘Si,aQ) == 0999, 1=
2,3, P(s2|s1,a2) =1, P(s4|s4,a2) = 0.001, P(s1|s4,a2) = 0.999. In this MDP, the optimal policy in state
s1 is to play action as. Fig. 2 shows 7 (ag|s1) for 10 trajectories achieved by the natural AC. The straight
lines show the output of the algorithm when e-greedy is employed, and the dashed lines are the output
without e-greedy. It is clear that almost always the trajectories of the algorithm without e-greedy converge
to a suboptimal policy.

(II) Ergodicity Assumption: This assumption implies that under all policies, the induced Markov chain
over the states of the MDP is irreducible and aperiodic. We discuss these two assumptions separately in the
next two paragraphs.

First, for an example of an MDP which does not satisfy irreducibility assumption, consider any episodic
MDP, where there is a terminal state in which the episode ends [42]. This system can be modeled as an
infinite horizon MDP with an absorbing state corresponding to the terminal state. It is clear that this MDP

&)
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FIG 1. A 4 states, and 2 actions MDP. Orange and blue correspond to the non zero transition probabilities of actions a1 and a2
respectively.
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FIG 2. m¢(ag|sy) for 10 trajectories generated by the natural AC algorithm over the MDP in Fig. 1. Straight and dashed lines
show the result with and without e-greedy, respectively. Since here ™*(ag|s1) = 1, it shows that the algorithm without e-greedy
converges to a suboptimal policy.

does not satisfy irreducibility assumption. Furthermore, since after a finite time, with high probability we
reach to the absorbing state, it is impossible to find the optimal policy using a single trajectory.

Second, since here we assume finite state and action spaces, the aperiodicity assumption along with
irreducibility is equivalent to the existence of a mixing time, which is common in the literature [21, 36, 37,
62, 64, 65]. We make this more precise in Lemma 5.7.

5. Proof of Theorem 3.1: Two-Time-Scale Analysis . Next we provide the proof of Theorem 3.1.
Before expressing the proof, we state the following Proposition on the convergence of the natural AC along
with its proof.

PROPOSITION 5.1. Consider the two-time-scale natural AC Algorithm 1 with T iterations, and the
output 7t 7. Suppose the step size B and the exploration parameter €; are non-increasing with respect to t.
We have the following:

T

. 1 273 10g|¢4’ 2 [ ) Iy ‘A| )

VT -v™]< + + BENQ™ — Qu1|| + ——— 8¢ +eBe| ¢
Zfzoﬁt (I=7)?% (1-9) l—fy; (1—7) t

where || - || is the euclidean norm and L is a constant whose precise value is given in Lemma 5.9 in Section

54.



5.1. Proof of Proposition 5.1. In this section we provide the proof of Proposition 5.1. A similar result
was proved for NPG in [1], when the actor has access to the exact (-function. However, since the actor in
Algorithm 1 has only access to Q¢(s, a), rather than the exact Q-function Q™ (s, a), establishing the bound
in Proposition 5.1 is more challenging. Note that Q);(s,a) is obtained by the critic carrying out only one
step of the TD-learning using a single sample update at each time step. Consequently, the error bound in
Proposition 5.1 involves the term 7 ZtT:o BE||Q™ — Q¢41]|, which accounts for the time-average error in
the critic’s estimate of the Q)-function. Proposition 5.1 is also different from the results in [1] is terms of
the step size. In particular, while [1] only considers the case of constant step size, the result in Proposition
5.1 is stated for general choice of non-increasing step sizes. Furthermore, a similar type of upper bound has
been established in [14, 31] for the analysis of off-policy natural AC. However, in those works the e term
is absent.

When the actor has access to the exact (Q-functions, it was observed in [1] that using a constant step size
results in O(1/T) rate of convergence. This result can be reproduced from Proposition 5.1 by eliminating
the % Ztho BE||Q™ — Q11| term in the upper bound, and taking a constant 3;, and choosing e7 = 0.
However, due to the existence of €7, and the 7 ZtT:o BE||Q™* — Q¢41]| term, the optimal convergence rate
can only be obtained by a carefully diminishing step size, which has been shown in Theorem 3.1.

Next we provide the proof of Proposition 5.1.

Proof of Proposition 5.1: We will use a Lyapunov drift based argument to prove the proposition using
the KL-divergence [16] as a Lyapunov or potential function. This is a natural choice because it is known to
be the right potential function for mirror descent [3] in optimization and it is known [1, 23] that the natural

gradient ascent is equivalent to mirror descent.
Let M(r) = Eqg- [Drcr, (" (3)|[7(-]s))]. Then,

M(ﬂ't—H) - M( s~d Zﬂ- a| log 71"1?_5(| ‘))]
Zd* s)(log Z(s) — BiQi+1(s,a))
—@Zd* $)(Q™ (s,a) = V7 (s))

+ B Z d*(s)m*( <Qt+1(3 a) — Q™ (s,a) — Qi1 (s,a) + V™ (3)>
+ Zd* s)(log Zi(s) — BiQi11(s,a))

(C)(1 — B {V’” V*] +ﬁt2d als) [Qm(s a) — Qt—&-l}

PXC ) [tog Zi(s) - ﬂtvf“},

where, (a) is by the update rule of the policy 7 in Algorithm 1 with Z,(s) =), m¢(als) exp(B:Qi+1(s,a)),
(b) is by adding and subtracting terms, and (c¢) is by Performance Difference Lemma [27]. Rearranging the
terms, we get:

VE Vi = [M(m) — M(m41)]

b ) (als) [Q7(5,) ~ Qua(s.0) ©



Zd* [loth() Vﬁt(s)} (7)

‘We bound the terms in (6) and (7) separately.
Using the Cauchy-Schwarz inequality in (6), we have:

* T 1 7AT
Zd als) [Q7 (5,0) = Quan(s.0)| <7 1Q™ ~ Quiall
In order to bound the term (7), we use the following lemma.

LEMMA 5.1.  Consider Algorithm 1 with Z(s) =, m(als)exp(BiQi+1(s,a)). For any t > 0 we
have the following inequality:

Zd* [lothU V’“(s)}sWﬁﬂ(d*)—V”t(d*HHQm Q+1\|+2(L1¢‘)7‘5t =

where e_1 :=0.

Employing Lemma 5.1 in (7), multiplying by /; and summing from 0 to 7', we get:
T

Zﬁt V) €D s M) — M)
t=0
+ TEEQM = Quaall+ o VT () = V()]
2L1\/ | Al €t—1Pt
BTEE (e
1 T
(1= Z {M(ﬁt) = M(7eg1) + By [VTHH (") — VT (d7)] } ®)
t=0
[ 2B o 2L TA] L, | aiBi
+Z{ Q" - Quall + ol g4 S ©)
We evaluate (8) and (9) separately. First, we have:
R 1
(g):mz [,Bt (V7o (d) — V”t(d*)]} A [M(mo) — M (7r41)]
t=0
@ 1 [ e gy gy | 108l Al
S 2 B v+ B
_ 1 T - T | S Br41 mpir ey, 108 |A]
1 < B eer (g 5T+1 S log\A\

=0
T
Br+1 log | A|
3(1_7)2 Z(ﬁt Brt1) + (1—7)? + (-7
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_ 1 Bri1 log |A|
_(1 ) (BO_IBT“Fl) (1 '7) (1_7)
23 log | Al
ST T -y 1o

where (a) is due to 0 < Dy (P(X)||Unif(X)) <log|X|, where P(X) is any distributieseseon over X’
and Uni f(X) is uniform distribution over X, and |X’| is the cardinality of the random variable X [16], and
(b) is due to Lemma 5.5 and 3; being non-increasing with respect to ¢.

Furthermore, we have

2 L
®:LW;%
2 L
SM;

Dividing both sides of (10) and (11) with ZtT:o B¢, and noting that ZizoBr - =

get the proposition.l

According to Proposition 5.1, to establish a bound for the performance metric E[V* —
— @Q¢41]| for all 0 <t < T'. Next we provide the proof of Theorem 3.1

to characterize a bound for E|Q™

5t||Qm Qt+1||+(

Bl Q™ — Qusa | + (

Al 2
7)

Al 2
")

Bt + 0.5¢;— 1ﬁt]

B e (1)

E(V*—V7t)

E[V* — V7], we

t=0

V71], we need

which essentially corresponds to the characterization of this bound.

5.2. Proof of Theorem 3.1.
the proof.

Ot - (St7 At? St+17 At+1)
r(O¢) =[0;0;
A(O) € RISIAIXIS[IA|

30 R(St, Ap); 05

First, we introduce some notations and lemmas which will be used within

0] e RISIA

7=1 i=j=(s,a)=(s,d
-1 (s,a) # (s',a"),i=j=(s,a
AO’LEA s Uy /7 /iA:

O =AEGS@Nd =0 (0) # (o) = (5,0),5 = (5,0

0 otherwise
= Qi - Q™ (12
AT =By () amr(-|5),5'~P(|s,a).0'~(-]s") [A(s,a,5",d)] (13)
D(7,0,0)=0"(r(0) + A(0)Q™) + 6T (A(O) — A™)6.

Note that with the above notation, the update of the @)-function in Algorithm 1 in the vector form can be

written as:

Qt+1=Qt + ar(1(Or) + A(O1)Q1),

which by adding and subtracting terms, can be equivalently written as:

Or1 + (Q™ — Q™) =

0; 4 a(r(Oy) + A(O) Q™1 + A(Oy)6y).

Lemmas 5.2 and 5.3 characterize an upper bound on the one step drift of Q™ and 6.
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LEMMA 5.2. One step drift of the Q-function with respect to the sampling policy 7; satisfies the fol-
lowing:

A A €t—
|Q — Q| < La(Ls =+ + L1 ),

where the constants Ly, Lo, and L3 are defined in Lemmas 5.8 and 5.9.

LEMMA 5.3. The one step drift of the vector 0y can be bounded as

2
€
10s+1 — 04]|* < 207 A + 4Lo* L3? (ti 12)2 +4L°L*B7 4,

where Ag is defined in Lemma A.6 in the Appendix.

The following lemma is directly used to create a negative drift, which is essential for the convergence
proof of Theorem 3.1.

LEMMA 5.4.  Consider the policy 7ty in the t — 1’th iteration of Algorithm 1, and the vector 0, and
the matrix A™~ defined in (12) and (13), respectively. We have:

N €4
elﬂmag—u—wﬁﬁmaﬁ

where p > 0 is some absolute constant. Later in Lemma 5.10 we explain the intuition behind the constant
L.

The following Lemma provides some absolute bounds on the value and @-function.

LEMMA 5.5. Let Quax = ﬁ Then we have

L 0< V7™ < Qmax

2. 0<Q™(s,a) < Qmax
3@ < V/IS||A|Qmax
4. Qell < VISIIA|Qrmax-

A major part of the proof of Theorem 3.1 is to establish a bound on E[I'(7;_1, 0k, Ok )]. In the following,
we provide such a bound in Lemma 5.6. The proof of this lemma is provided in Section 5.3.

LEMMA 5.6. Forany T < t, we have:

(T+1)2%e 7o

E[F(ﬁt_l, 975, Ot)] §Cbmp7 + KQAQTOét_T + (CuLg + Kq1Ls+ K2L2L3) Pe—

+ (CuLy + K1 Ly + KoLy Lo) (7 + 1) B r 1.

We further define
7 :=min {r > 0|M,p" < B¢, integral} (14)

where M, = (—c/1In(p))?/(p' /™)), It is easy to see that 1 < 7, <t for all ¢, and 7, = O(log(t)) =
O(1).

In order to establish the convergence result in Theorem 3.1, we use the bound in Proposition 5.1. By the
definition of the step sizes, it is clear that Z;f:o B; = ©(T'~7). Hence, by Proposition 5.1 and assumptions
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on the step sizes, it is straightforward to show that

. i 1 O(£) if 1>20 [O(ps) if £+o>1
E[V* -V ]SO<T1—(’>+{@(T&) o +{@< ) ow

1 d i
+T100{ZBtEHQm = Qesll ¢ (15)
t=0

Next, we aim at bounding the term ZtT:O BE|Q™ — Q44 1]|. We have:

ZﬁtEHQm Qt+1H—Zﬁl/2a TPENQ — Qe

T —1
Zﬂ” 73\ [ 308, 7 ENQF - Qe (16)

t=0

where the inequality is due to Cauchy—Schwarz inequality. Furthermore, we have Zt 0B 1o =0O(log(T)) =

(’)(1). Hence, we only left to bound the last term in (16) which we will do in the rest of the proof.
Using ||6;]|? as the Lyapunov function, we have:

101112 — [|0:]1> =20, (1 — 01 — e AT =70;) + || 0p1 — Oc|® + 2040, A™—16,

Do (71,00, Op) + 207 Q7 — QF) + (|41 — 0% + 2067 AT-19,

T1 Ty T3

o, —— 3 o T
§2atf(7rt_1,0t,0t) + 2”625” HQ =l — Q t” + H9t+1 — gt” +2at 97& A f*10t, (17)

where (a) is by definition of I, and (b) is due to the Cauchy—Schwarz inequality. We bound each of the
terms 17, T», T3 using Lemmas 5.2, 5.3, and 5.4, respectively. We have

2
€
H0t+1H2 — ||9t||2 <20¢tr(ﬂ't 139t70t) +2Lo (Lg + L1 5— 1) ||0t|| +2a§A —|—4L22L32 t=2

(t—1)?

20 =8 el (18)

i
FAL2L 2R — Sk

Define \; = ﬁt Multlplymg both sides of (18) with )\; and denoting y; = \¢||0;|%, we have y; <

er(10e1% = 10r1112) + e + hey /i, where e = 5242 and g = 52— (204D (71,0, Oy) +
20242 +4L22L32(§ 2o HALo2Ly267 ) and by = gAY o), (Lgﬂ 2 L [1B, 1) Summing from
Tt + 2 to t, we have
Z Yk < Z k(061 = 10k 1%) + /B (19)
k=142 k=71,+2 T2 T3
T

We bound the summation of each of the terms 77, T5, and T3 separately. First we have

t

Ty =er 1|02l — el fa |+ ) (e — ex—1)|16k]°.
k=1:+2
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20—

We have eg, ~ A /(aper) ~ B, ° Jower ~ kY T5H1729 /e, For the case v + £ + 1 — 20 > 0, ey, is increasing.
Hence, we have

t

Tl < 4‘8H”4’Qmax [eTz+1 + Z (ek - ek‘fl)
k=1:+2

() -
< 4IS|IA| Qiax [er, 1 + ] SO T2 /),

where (a) is due to Lemma 5.5, and (b) is due to e; > 0. Furthermore, if v + £ + 1 — 20 < 0, we have ey,

decreasing, and hence 77 < O(er,41) = O(1/e). Tt is also easy to show that for v + & + 1 — 20 = 0, we
have 71 < O(1/¢). Hence, in total we have

. Ot T8+1-29 /) if v+ £+1> 20, 20)
=101/ 0.W.

Furthermore, for the term 75 we have

t

A A A AL B2
ET, =0( Y. “FED(fy_1,0p,0p) + 50k 4 Z5% 4 60y
ket 2 €L €L k (677 Q€L

@ - A D Ve TR VRSN V¥
<O — - .
< ( Z e (/Bk: + o+ L ) + % + k2cy, + Q€

t
S@( Z klfQU(kffu/e_i_kfl +k§+V720'/6))

k=1,+2
_ O2HE20v /e) if 24 &> v+ 20, N O(t'~27) if 1> 20,
~10(1/e) O.W. O(1) 0.W.

{ O(2HEFv=19 /) if 2+ €+ v > do, on

O(1/e) o.W,

where in (a) we use Lemma 5.6 with 7 = 7, and in (b) we use the assumptions on the step sizes.
Finally, for the term 75 we have

a t
ETy (g) Z h2 x E
\ k=71.+2

(b) t t
g\ > hix, | Y Ey,

k=71,+2 k=71,+2

where (a) is by Cauchy—Schwarz inequality and (b) is by concavity of square root and Jensen’s inequality.
Denoting G(t) = >} _, ., h?, we have

S VRNV -
Z O‘sz—’_ 2.2

€
k=742 kk

t
_@( Z k_l +kl—40’+2u+2§/62>

k=7,+2

G

G(t) <
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~ {@(t2—40+2V+2€ /€2) if 24 2w+ 2¢ > do, )

=OW 160176 ow.
Denote H (t) = ZZ:’T}, 1o Eyg. Taking expectation on both sides of (19), we have
H(t) <ET) +ETy +\/G(t).\/H(t)
— (VH() - %\/@)2 <ETy +ET, + 1/4G(t)
— H(t) — %\/G(t) <VET, +ET; + 1/4G(¢)

— H(t) <2ET} +2ET> + G(t) (23)
Combining (20), (21), (22), and (23), we have

() < Ot T+1=29fe) if v+£4+1>20, [O@W*HE20V/e) if 246> v+ 20,
~ 101/ 0.W. O(1/e) 0.W.

Ot'=27) if 1>20, |O@*HEH=49/e) if 24 €+ v > 4o,
o) 0.W. O(1/e) 0.W,

A($2—40+20+26 /.2) s ~
{O(t [&) i 24205

O(1/€?) 0.W.

Combining the above bound, (15) and (16), we get the result.l

5.2.1. Proof of Corollary 3.1.1. 1In the case of constant exploration parameter, we have { = 0, and
the optimal step size can be achieved by o = 3/4 and v = 1/2. In this case, we get E[V* — V7] <

O (wa + e). Hence, to get to a solution policy within 8 /e + ¢ of the global optimum, we need O(1/6%)

€
number of samples. Furthermore, to get d-close to the global optimum, we should have @( T%M) <4§/2

and @N(e) < 0/2, which means we have @(T -1/ 8) < 6. Hence, to get d-close to the global optimum, we
need O(1/6%) number of samples. B

5.2.2. Proof of Corollary 3.1.2.  For £ > 0 we get E[V* — V72| < O(T~1/%) convergence to the global
optimum which can be achieved by { = 1/6, v =1/2, and 0 = 5/6. Hence, in this case to get d-close to the
global optimum, we need O(1/6%) number of samples. This proves Corollaries 3.1.1 and 3.1.2. ®

5.3. Proof sketch of Lemma 5.6. In Algorithm 1, the actions { A; }+>1 are sampled from a time-varying
policy ;1. Hence the tuple (S, A;) follows a time-varying Markov chain as follows

Tt—1

[T P T r P P T
St—r e At—r — St—T—l-l — At_7—+1 cee— St — At — St+1 == At+1.

Since the sampling policy is changing over time, the convergence analysis of this Markov chain is difficult.
In order to analyze this time-varying Markov chain, at each time step ¢, we construct the following
auxiliary Markov chain (This idea was first employed in [6]):

Tir—1 P& Mgl % P & Tieeer 7 P54 Teoro1 %
St_fr S d At—T — St_7—+1 —_— At_7—+1 A St e At — St+1 —_— At+1.

Due to the geometric mixing of the Markov chain, which is stated formally in Lemma 5.7, by choosing 7
large enough, the distribution of (S;y1, A¢11) is “sufficiently close” to the stationary distribution p™-"-! ®
ﬁ-t—T—l'
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LEMMA 5.7.  Suppose Assumption 3.1 holds for an MDP. Then there exist m > 0 and p € (0, 1), such
that

dry (" (+), P™(S; =+|S1=1s)) <mp",Vs € S,Vn, (24)

where dry (-,-) denotes the total variation distance between two distributions. Furthermore, aperiodicity
and the existence of m and p in inequality (24) are equivalent, i.e., if there exist a policy such that the
underlying Markov chain is periodic, then (24) does not hold.

Define O, = (S’t, Ay, §t+1, fltH). We have:

D71 1,01, 0p) =T(711,01, Op) — Dy 1,01, 0y) (25)
+ T(Ft—7-1,0t, Ot) — T'(Fit—r—1,0t—7,Ot) (26)
+ D (771,017, 0p) = T(ft1—r—1,01—7,0y) (27)
+ D(ft—r—1,01—7,0y). (28)

We bound each of the terms above separately. Due to the Lipschitzness of I' with respect to it’s first and
second arguments, the terms (25) and (26) can be bounded as follows:

[(7g-1,0¢,Op) = D(7rp—7—1,0¢,0¢) <O (||7rp—1 — Tp—r—1]])

t—1
<0 ( 3 —fri1||> <O (rd+78).

i =t—T

F(ﬁ-t—T—la Qt, Ot) - F(ﬁ-t—T—17 0t—7'7 Ot) SO (Het - 9t—TH)

t
go( > H0i—9i_1||>SO(Tat—FTE;JrTBt).

i=t—7+1
In order to bound the remaining two terms (27) and (28), we first apply conditional expectation on both
sides. Bounding (27) is slightly technical and is presented in Lemma A.3. The main idea is as follows.
Since the policy 7r; does not change very fast over time, the conditional expectation of I'(7;—r_1, 60—+, O¢)
and D'(y—r—1, 60— T,Ot) are close. Denoting F;_, = {S; -, 71,0}, we have

E[F(ﬁ'tfﬂ-flaet*‘mot)_F(ﬁ'tffflaetf‘raét”]}t ;<0 (Z |75 — frp—r 1|> <(9<7‘——|—Tﬁt)

t=t—T

Finally, denoting O] = (S}, A}, 5] 1, A}, ), where S} ~ p===1, A} ~ &2 1(:S}), Sjq ~ P(:|S}, A)),
and A} | ~7t;r—1(-|S{, ), we have E [I‘(m r—1,0i—7,0}) ‘St N 1] = 0 due to the Bellman equa-
tion. According to Lemma 5.7, the distribution of the aux111ary chain Ot (St, At, St“, At+1) converges
geometrically fast to the distribution of O; = (S}, A}, S}, A} ). Hence, we have

E [F(ﬁ—t—ﬂ'—laet—ﬂ'aOt)‘st—Taﬁt—T—l} <O(p").
Putting all the above bounds together, we get the result. [

5.4. Explanation of the main lemmas. Lemma 5.2 which provides a bound on one step drift of the
@-function with respect to the sampling policy 7; can be derived from Lemmas 5.8 and 5.9 below.

LEMMA 5.8. For every pair of policies 71 and ma, we have:
Q™ — Q™ < La|jmy — ma,

where Ly =
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LEMMA 5.9. The policy 7y, satisfies the following:

R . €1
ltear = el < Lo+ Ly, Wi > 1,
where L1 = Qmax+/|A||S| and Lz = f\/’S\(\/ﬁ +1).

Lemma 5.8 characterizes the Lipschitzness of the Q™ function with respect to the policy 7, and Lemma
5.9 provides an upper bound on the drift of the sampling policy 7.
Finally, Lemma 5.10 below provides an intuition regarding the constant 1 in Lemma 5.4.

LEMMA 5.10. Suppose Assumption 3.1 holds. There exist a constant > 0 such that for all the policies
m, the stationary distribution u™ satisfies

p(s) > p,Vs € S.

Lemma 5.10 is a direct consequence of the ergodicity of the underlying MDP. In particular, the ergodicity
Assumption 3.1 ensures that for all the policies 7, under the stationary distribution p™, all the states are
being visited with rate at least y. As explained in Section 4 this is indeed essential for the convergence of
AC algorithm.

6. Conclusion. In this paper we studied the convergence of two-time-scale natural actor-critic algo-
rithm. In order to promote exploration and ensure convergence, we employed e-greedy in the iterations of
the algorithm. We have shown that with a constant e parameter, the actor-critic algorithm converges to a
ball around the global optimum with radius € + & /€ using O(1/6*) number of samples, and using a small
enough exploration parameter e it requires @(1 /&%) number of samples to find a policy within §-ball around
the global optimum. Furthermore, with a carefully diminishing greedy parameter, we show (5(6 ~6) sample
complexity for the convergence to the global optimum. Due to the employment of the e-greedy, we char-
acterize this sample complexity with the minimum set of assumptions, i.e. the ergodicity of the underlying
MDP. We show that this assumption is indeed necessary for establishing the convergence of natural actor-
critic algorithm. Improving this sample complexity, and characterizing the same sample complexity in the
function approximation setting is among our future works.
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Appendices

The supplementary material is organized as follows: in Section A the details of the Proof of Theorem 3.1 is
presented, and in Section B details of the proof of Proposition 5.1 is provided.

APPENDIX A: DETAILS OF THE PROOF OF THEOREM 3.1
A.1l. Proof of Useful Lemmas. Proof of Lemma 5.3:

1641 — 0l = [|Qeg1 — Qe + Q7 — Q™|
<2[|Qt+1 — QtH2 + QHQﬁH —Qr ||2

(a)
< 207 AY + 2L9° || A1 — |

) 52 2 €t—2 2
< 20744 + 2L <L3t —1 7 L15t—1>

2
< 20} + AL L [ AL L6,
where (a) is due to Lemmas 5.8 and A.6, and (b) is due to Lemma 5.9. []

Proof of Lemma 5.4: We prove this lemma for a slightly more general case. Assume a finite state Markov
chain {X}}r—0,1,.. with state space X' = {x1,x2,... ,ajm} and stationary distribution v. Define M :=
diag(v) a diagonal matrix with diagonal entries equal to the elements of v. Clearly, M = M ". Further
denote P as the transition matrix of the Markov chain. Define V' = ~vP — I, where [ is the identity matrix.
Assuming X}, ~ v, for any function F'(-) : X — R, we have:

E [F (Xk:)ﬂ =E {F (Xk+1)2} :
By Cauchy—Schwarz inequality, we have:

E[F (Xk) F (X41)] < VE[F2(Xp)] VE[F2?(Xp11)]

=E [F?(Xy)]. (29)
Denoting F' = [F'(z1); F'(%2);...; F(7)x|)] as a |X| dimentional vector, we have:
E[F?(Xp)] =Y v(z)F*(x)=FTMF, (30)
reX
E[F(Xp)F(Xps1)] = Y v(@)Plyle)F()F(y)
T,YyeX
—F'"MPF=F"P"MF, (31)

where the last equality is due to E[F'(X})F(Xk+1)] being a scalar. Combining (29), (30), and (31), we
have:

F'MPF<F'MF, VF
— MP<M
= M(yP-I1)<—(1-7)M. (32)
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Next, in the case of MDP, for a fixed policy 7, we define M™ € RISIMIXISIIAl and P e RISIAIXISIIA]
matrices as follows:

M o {u”(s)ﬂ(als) (s,0) = (. a"),

(s,:0),(s" 0 0.w
Ploa)(sha) = P(s'|s,a)m(d|s).
It is easy to see that:
i _ Ju(s)m(als) (WP (s']s,a)w (d']s) =1) s=5"a=d,
(5:0)(s%a) ) 47 ($)7(als)P ('] s,a) 7 (a'|s) s#s ora#ad
= A"=M"(yP" - I) < —(1—~)MT,
where the last inequality follows from (32). As a result, we have:

9:/_17}"‘1915 —(1—~ Z,u a)mi—1(als )Htﬁ’a

V)2 01,2

where the last inequality follows from 7;_1 (a|s) > \;U and Lemma 5.10.0
Proof of Lemma 5.5:
1. By the assumption on the reward function R(s,a) > 0, we have V™ (s) = E [32%  v*R(Sk, Ak) | So = 5] >

0. Furthermore, due to R(s,a) < 1, wehave V™(s) = E [3 72 V*R(Sk, Ak) | So = s] <E [>5 7% | So = 5] =
ﬁ forall s€ S.

2. Similarly, we have Q™ (s, a) €0,

3. 1Q7 = /X5, Q72(s, V‘S”*‘

4. In order to prove this, ﬁrst we show |Q¢ |00 < ﬁ for all £ > 0. We construct this bound by induction.
Due to the initialization, the inequality holds for ¢ = 0. Assuming the inequality holds for ¢, we prove it
holds for ¢ + 1. For all s, a, we have:

‘Qt+1(87a)’ = ‘(1 - O‘t(sv a))Qt(37 a) + at(87a)<R(370’) + ’YQt(St-i-laat-i-l))‘
<(1 = ai(s,a))|Qu(s, a)| + cu(s,a)[R(s,a) + ¥Qi(St11, Art1))|
S(l — Oét(S, a))Qmax + Oét(S, a)(l + ')/Qmax)

] for all s, a.

1 1 1
=(1- at(s,a))ﬁ + ay(s,a)(1 —|—’yﬁ) = T
The bound for ||Q;|| follows directly. []

Proof of Lemma 5.6: Given time indices ¢ and 7 < ¢, we consider the following auxiliary chain of state-
actions:

Ti_r_1 Tt—7—1 [T Tt—7—1

Ser P A B S T A B 5 T A B S T A,
Note that the original chain is as follows:

M1

T—r—1 T
S r i h A B, 1 — Ay syt LA b Stt1 N At
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Further, we define O; = (S}, A, §t+1, At.l,_]_). We have:

T(#y-1,0p, Op) =T (Fy-1,0¢, Op) — T (771,04, 0) (33)
+ D (7—7-1,60¢,0¢) = T'(7tp—r—1,01—1, Oy) (34)
+ D (771,017, 0p) = T(ft1—r—1,01—7,0y) (35)
+ (771,017, 0y). (36)

We bound each of the terms above separately. Firstly:

R R (@ R
[(7-1,0¢,0p) = D(7p—r—1,04,0¢) <Ky fty—1 — fp—r—1]|

<Kj Z |7t; — i1l

i1=t—T

() — €—2

<K zt: [Lsi — 1 + Llﬁi—l]
i=t—T

€ rr
<K)7 |L3——"—2_ +LiBi—r—1]|,
t—17—1

where (a) is due to Lemma A.1, () is by triangle inequality, and (c) is due to Lemma 5.9. Second, we
have:

(a)
D(T—r—1,0t,0¢) = T(fp—7-1,01—7,0;) <Kal|0y — 0|

(b) ¢
<K, Z 16; — 0i—1]|

i=t—7+1

(c) é €
<Ko Z Agai_1 + L2L3i 1_32 + L1LaBi—2

i=t—7+1

€fre
<KsT [AQOétT + L2L3t_t7_7_21 + Lngﬁtfl} ,

where (a) due to Lemma A.2, (b) is by triangle inequality, and (c) is due to Lemma A.6. Third, denoting
Fir :={St—7,T4—7—1,0¢—+ }, we have:
ft—T]
()

€4rr
<Cyu(r+1)? {Lst_t;jl +Ll,8t—7—1:| ,

t
D [k Ty

i=t—T

E|T(#t—r-1,0t—r,0¢) = T(f—r—1,04—r,Oy)

(a)
-Ft—ﬂ-:| SCU]E

where (a) is due to Lemma A.3 and (b) is due to Lemma A.5. Finally, by Lemma A.4 we have:
E [P(ﬁ't—T—h ot—’m Ot) ‘E—T] < CbmpT'

Combining the bounds above, and noticing 7 > 1, we get the result.[]

Proof of Lemma 5.7: Suppose 7 be an arbitrary stochastic policy. 7w can be written as a |S| by |A|
stochastic matrix, which has non-negative elements, and each row sums up to one. Hence, by [17, Theorem
1], m can be written as a convex combination of at most N = |S|(|.4] — 1) + 1 deterministic policies
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{m}ﬁ'fwfl)ﬂ. In other words, there exist coefficients {a;}Y , such that a; > 0 and >, ; = 1, and
™=y, oym;. By definition of P™, we have P™ =) . a; P™.

Due to ergodicity Assumption 3.1, for every policy 7;, there exist a finite integer 7;, such that (P™)™ is
a positive matrix with minimum element e; > 0 for all 7; > r;. Since we have a finite number of r; and e;’s,
we have r = max; r; is a finite integer, and e = min; e; > 0. Furthermore, we have

(COUME KZ mP’“)

(@) T T3\ T 1 r

>Ne< Za) <$>T>0,

where (a) is due to non-negativity of matrices «; P™ and (b) is by Jensen’s inequality. Hence, by [37,
Theorem 4.9], we can show the existence of p € (0,1) and m > 0.
Furthermore, if the underlying Markov chain under a policy 7 is periodic with period d, then we have
limy_yo0 P(Sg = i|So =14) > 0 while lim;_,o, P(Sg+1 =7|So =) = 0, and hence (24) does not hold.[]
Proof of Lemma 5.8: By the policy gradient theorem [1], we know that for any distribution u, we have
gz(a("g L T5d7(s)Q7(s,a). As aresult:

(37

|25 < 5 ;Qﬂ(s,a)gm.

Furthermore, we have:

0Q" (s, L, avE(s
Lot = S Pl T

which implies

00" (5,0 e [V /BT

o] v peinn B2 <
S||A

— 107 (5:0) - Q(s.0)| 42 .

Using this, we have:

TT1 T 7 S
Q™ — Q™| < Z 1S " |H7r ml?

(”1‘5 ";‘)“ 1 — mal| = Lollmy — mall

where Ly := E’E‘,‘;)AJ O

Proof of Lemma 5.9: Policy ; can be parameterized by the vector 0 € RISl as 7, (a|s) = %.

It is straightforward to see that the multiplicative weight update of the policy in Algorithm 1 is equivalent
to [14, Lemma 3.1]

o =0 + BeQt41-
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We have
Iegr = el = [y (1) = me(-|s)]|?
S

(a)
< D 118eQusa(s )P < BEIAIIS | Qs (39)

where in (a) we use 1-Lipschitzness of the softmax function [4].
As a result, we have:

N R 1
Ireer = el = (e — er-1) (7 = 1) + (1 = €-1) (Te1 — )|

< ]et—et 1|\/|S 7+1)+||7Tt+1—71'tH

VIAl
+ 1 +BtQmax V |A||S|

)§€t 1\/@\/7

= L3T_ + L1,

where (a) is due to triangle inequality and (b) is due to the assumption on €; and (39). Here L3 =
EV/|SI( ——1—1 and L1 = Qmaxy/|Al|S| .0

Proof of Lemma 5.10: Ergodicity assumption 3.1 implies that the underlying Markov chain induced by
all the policies is irreducible. The proof follows from [37, Proposition 1.14]. [

A.2. Auxiliary Lemmas.

LEMMA A.l. Forany my,79,0, and O = (S, A, 5", A),
IT(71,0,0) —T'(m2,0,0)| < Ky|m — m2,
where K1 = QQmaX\/WLQ +8Q2 ..ISI?|A]? (ﬂogp m*q + ﬁ + 2).
LEMMA A.2. Forany 7,Q1,Q2, and O = (S, A,S', A"),
IT(7,601,0) — T'(,602,0)| < Ks||61 — 62|,
where K =1+ 91/2|S[|A|Qmax-

_LEMMA A3. Consider original tuples O = (St, A, St41, A1) and the auxiliary tuples Ot =
(St, At, St41, Ai1). Denote Fy_r :={Si—7,Ttt—r—1,0;_+}. For any time indices t > T > 1, we have

t
E | P(F1-r-1,00-7,01) = T(F1-r-1,00-7,00) | Fir | SCUE | 3 Nl = Frrall | Fir |
i=t—T

where Cy, = 4Qmax|S| | A (1 + 3Qmax|S||A]).

LEMMA A.4. Consider the auxiliary tuple Oy = (gt, Ay, Siia, At+1). Denote Fi—r = {St—r,Tit—r—1,01—7}.
For any time indices t > T > 1, we have:

E [F(ﬁtqfl,at*n Ot)‘]:th] <Cymp’,
where Cp = 4Qmax|S||A|(1 + 3|S]||A|Qmax)-
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LEMMA A.5. For any time indices t > 7 > 1, the policies generated by Algorithm 1 satisfy the follow-
ing:

t

7TQ+L15t r—1
-

t
D = el (7 +1)% | Ly
=t

t=t—T

LEMMA A.6. We have the following bounds:

[AO) < V1+72<V2,
(O <L,
147 < V2,

|E[r (O1) —r(O2)]]l; < 2|S[|Aldrv(01,02),
[E[A(O1) — A(O2)]ll; <2[S]|Aldrv (01, 02),
|Qi+1 — Q]| < wAg = % (2Qmax + 1),

0 — 0s—1]] < Agoy—1 + LaL3$=5 + L1 Ly o,

Nk W =

where Quax = 1% and the constants L1, Lo, L3 are defined in Lemmas 5.8 and 5.9.

~

LEMMA A.7. Consider Oy = (Sy, At, Si41, A1) and O, = (gt,At,§t+1,A~t+1). Denote Fi_; :=
{St—ryTtt—r—1,01_7}. We have:

t
dry (P(Oy € | Fr )P0y € | Fir)) < VIAISIE | Y |Ifis = fura|l | Fior
i =t—

2 T

LEMMA A.8 (Lemma A.1 in [62]). Denote M = {logp m_l] + ﬁ. For any m and 7 policies, we
have the following inequality:

dry (P @m @ P @7, u™ @ T ®@ P @) < JA[ (M +2) |11 — 72|
A.3. Proofs of the auxiliary Lemmas. Proof of Lemma A.1:
F(Trl: 970) - F(T(2797 O)
=0T A0)(Q™ - Q™) =0T (A™ — A™)f

(a) _ _

<[6]-1AO)[L|Q™ — Q™[ + |6]|>.| A™ — A™||

Qs HSTANQ™ — Q| + 402, S| AL AT — A7

<2Qmax 2|SHA L2”ﬂ—1 - 7T2” + 8Qmax’8‘2‘A‘2dTV (,Uﬂl Qm P ®7T1,,u7r2 RM QP 7r2>

_ 1
SQQmax V 2|SHA‘L2”7‘—1 - 7T2” + 8@12113)(’8‘2‘.«4‘3 ([1ngm 1} + T,O + 2) H7T1 - 7TQH

=K|[m — mo|

where (a) is due to Cauchy—Schwarz inequality, (b) is due to Lemmas 5.5 and A.6, (c¢) is due to Lemmas
5.8 and A.6, (d) is due to Lemma A.8.[]
Proof of Lemma A.2:

(a) -
D, 01,0) = L(mr, 02, 0)| <([|lr(O)[ + [[AO)[-1QTINI0r — O2f| + [ AO) — AT[[|01 — 2| ([161]] + [[62]])
b)

g (14 9/2[S|A|Qmax)||61 — 62]]

—~
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where (a) follows from Cauchy—Schwarz and triangle inequality, and (b) is due to Lemmas 5.5 and A.6. [J
Proof of Lemma A.3: We have:

E[L(f1—r-1,0t—7,01) = T(Ft—r 1,017, 01) | Fi—r]

=0 [r (Or) = 7(Op) + (A (Or) - A(Ot)) QT \ft_T} +6,E [A(og - A(Ogm_T} 0.

Dl & [r 00 ~r017-]

‘1 + 10—+l o HE [(A(Ot) — A(Ot)) |}—th] Q-

1

160l [E [4(00) = A©O)IFir] 615,

<10l |[E [r (00~ r(O01Fe]

10l B[ (4 00) - 400)) 17

o

1

100l -||E [4(00) — A(00)|Fir |

1-||9t—'r||1

(¢) ~ -
<2Qumax % 28| Aldry (01,01l Fi-r ) + 2Quax x 21| Aldrv (Or, OnlFir ) X Quua SIIA]
+ 2Qmax % 2/l Aldry (01 01l Fier ) % 2QmanlSIIA|

~1Qumax SIAI(L + 3Qumaxl S| A dry (O, Ol Fe-r )

where (a) is due to the Holder’s inequality, (b) is due to definition of matrix induced norm, (c) is due to
Lemma A.6. Using Lemma A.7, we get the result. [J A

Proof of Lemma A.4: Consider the tuple O" = (5], A}, 5] 1, A}, ), where S| ~ p™—-1 A} ~
71 (:[S7), Siq ~ P[5}, Ap), and Ay ~ F—r—1(-|St). We have

E[D(i-r-1,00-r, 0")| Fis] =0LE [r(O}) + AONQ™ " |Fi-s

+ 0, E[AO)|Fi=r] Op—r — 0,_ AT ~6,_, =0,
where the last equality is due to the Bellman equation and the definition of A™:-=-1. As a result, we have:
E [F(ﬁ-t—T—l) et—‘ry O~t) ‘Ft—T]

=E [F(ﬁ't—T—h 0t—7'7 Ot) - F(ﬁ't—T—h 0t—7'7 O,t) ‘ft—T:|

1l [E [0 — 7 (0}) 7]

‘1 + 101l H]E [A(Ot) — A(Og)‘}‘tﬂ_} 1 HQW

1

110l oo - HE {A(Ot) - A<Omﬂ_7}

| 16—l

(®) ~ -
<2Quax x 2SI Aldry (01, 011 Fi-r ) + 2Quax 21| Aldry (O, Ol Fi-r) x 3/ AIQuma

9¢, S 1P(Si = sl Fi-r) s (als)P(s |3, )1 (d]$)
— P(S} = 8| Fi—r)frt—r—1(als)P(s|s,a)ftt—r—1(d|s")]
=Cp Z Ft_r_1(als)P(s'|s,a)ti_r_1(d'|s")|P(S; = s|Fi_r) — P(S} = 5| Fi_.)|

/7 ’
s,a,s’,a

=Cy Y |P(S; = | Fir) — P(S] = 5| Fisr)|
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(4)
< CmeTa

where (a) follows from Holder’s inequality and the definition of the matrix norm, (b) follows from Lemma
5.5, in (c) we defined Cj = 4Qmax|S||A|(1 + 3|S||A|@max), and (d) is due to the Lemma 5.7. [
Proof of Lemma A.5:

t

t A
DRI p) b yE
i=t—T

t=t—7 ||j=t—T

(a) t 7
<D D0 A=Al

i=t—T7 j=t—7

(b) t—1—2

Uy v [ ]g(r+1)2[Lt_Tl+L15t”
i=t—T7 j=t—7

where (a) is by triangle inequality, and (b) follows from Lemma 5.9. []
Proof of Lemma A.6:

The proof follows directly by Frobenius norm upper bound on the two norm of a matrix.
Follows directly from assumption R(s,a) <1Vs,a.
IAT]| = [IE- A(O)|| < Ex[[A(O)] < V2.

[ (01) = r(Oa)]ll, = 2, 0 [E(r(O1) = 1(02)),.,
due to [r(O)sq| < 1.

IE[A (O1) — A0, & maxy o 3, o [E(AO1) = A03)), 0y

(®)
< maxy o 2|S||A|drv (01, 02) = 2|S||Aldry (01, 02),
where (a) is due to the definition of matrix norm, and (b) is due to |A(O) 4.5 o’

HQt+1 - Qt” S \/Zs@ Oét2(8, a)(QQmax + 1)2 - at(QQmax + 1)

6= Ol <NQr = Q|| + [|Q7 — Q2| < Agav—1 + Lo (L =5
where the last inequality follows from the previous part, and Lemmas 5.8 and 5.9.7

Proof of Lemma A.7:
dry (PO € - | Fir) | P(Or € - | Fisr))

e

< 2|S||Aldry (01,02), where the inequality is

b

N o

He
f_/ﬁ - - - -
= E P(S;=s,Ai=0a,541=5, A1 =0d|Fi7) = P(Si=s,Ar = 0,51 =5, A1 = d'| Fyr_7)

’ ’
s,a,s’,a

- Z ‘E[ﬁ—t(a/‘sl)‘ft—TuHt]P(sl‘Sva)P(St = S,At = a"ft—T>

’ ’
s,a,s’,a

- ﬁ-tinl(awsl)'P(s,’s’ a)P(gt =S, At = a|‘7:t77')’

Z P(s'|s,a)P(Sy = s, Ay = a| Fy_r) [Elte(a'|8') | Fimr, He) — ft1—r—1(d’|8)] (I)
+ Z |P(Si=s,Ay=a|Fi—r) — P(S;=sAr= a|Fi—r)|- (I2)

s,a
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We bound I; and I, separately:
L< Y P(Ss,a)P(Se=s,Ar = a| Fy_)E[Jiwy(d|s) — fr—r1(a'|8)|| For, Ha]

s,a,s’,a’

< Y P(Si=s,A=a|F 1 )E[|F(d|s") = Fir1(d|8)]| Fior, Hi]
s,a,s’,a’

= Ellfi(d|s') — Fr—r1(a']s")]| Fos]
s’,a’

< VIAIISIE[||F — Frp—r—1 || F—r],
I = Z

s,a

Z P(St =S, Ay = a,Si—1 = S/I,At—l = a//|Ft—T)

" "
s'.a

- P(gt = Svfit =a, St—l = Sﬂﬂzlt—l = a//‘ft—T)

<y

1" 1
s,a,s".,a

P(St =s5A=a,5 1= 5”7At—1 = a”‘ft—f)

~P(S;=s,A4=0,8_1=5" A1 =d"|F_,)

= dry (P(O1-1 € | For)|P(Or-1 € | Fiy)).
Combining the above bounds, we get:

drv (P(O; € | Fi—+)||P(Or € | Fi 7))
<VASE [rfrt—frt_f_lu

Following this induction, and noting that P(S;_, = s,A;_» = a|F;—;) = P(Si—r = s, Ai_r = a|Fi_y)
(due to the definition of S and A), we get the result.[]
Proof of Lemma A.8: The proof follows directly from Lemma A.1 in [62]. ]

E—T] +dry (P(Op-1 € | Fi—r)||P(Op-1 € | Fi—r)).

APPENDIX B: DETAILS OF THE PROOF OF PROPOSITION 5.1
B.1. Useful lemmas. Proof of Lemma 5.1: We have:

log Z;(s) = log Z me(als) exp(BiQi+1(s,a))

> " mi(als)BiQuia(s, a), (40)

where the inequality is due to the concavity of log(-) function and Jensen’s inequality. Furthermore, we
have:

@ 1

VI (p) = VT () = T—5 Zdzt“(s)ﬂtﬂ(a‘s) [Q+1(s,a) + Q™ (s,a) — Quy1(s,a) = V™ (s)]

m 1

1
14 ; dy (s)meqa(als) | =

B

met1(als)

lo
& Tri(als)
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108 Z1(5) + Q7 (5.0) — Quea (5:0) - vw]

©
Zli Zdﬁ‘“ sy (als )[Bltloth(sHQ“(s,a) — Qus1(s,0) —Vm(s)}

=1 i7 [;dzt“ (s)me(als) {ﬂlt log Z:(s) — Qt+1(57a):|
+ de“ (me1(als) — me(als)) [Q™ (s, a) — Qt+1(s7a)]]

>Z,u s)mi(als) {IOth() Qt+1(5,a)]

o 2QmaxL1 \V/ |A|5
1—7 ¢

=00 | om0~ V)
ICCLR [Q7(5,0) = Qi (s5,0)]
# 2 () lals) = ol Qe ()

B 2QmaxL1\/W
I—vy

where (a) is due to Performance Difference Lemma [27], (b) is by the update rule in Algorithm 1, (¢) is by
positivity of the KL-divergence [16], and (d) is by the definition of d™*+* and (40). Taking = d*, we have:

Bta

39 [ 10806 V)] £ V@) <V ) 107~ Gl + S

which gets the result.]
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