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Sensor Fault-Tolerant State Estimation by
Networks of Distributed Observers

Guitao Yang, Hamed Rezaee, Member, IEEE , Andrea Serrani, Member, IEEE ,
and Thomas Parisini, Fellow, IEEE

Abstract— We propose a state estimation methodology
using a network of distributed observers. We consider a
scenario in which the local measurement at each node may
not guarantee the system’s observability. In contrast, the
ensemble of all the measurements does ensure that the ob-
servability property holds. As a result, we design a network
of observers such that the estimated state vector computed
by each observer converges to the system’s state vector
by using the local measurement and the communicated
estimates of a subset of observers in its neighborhood. The
proposed estimation scheme exploits sensor redundancy
to provide robustness against faults in the sensors. Under
suitable conditions on the redundant sensors, we show that
it is possible to mitigate the effects of a class of sensor
faults on the state estimation. Simulation trials demonstrate
the effectiveness of the proposed distributed estimation
scheme.

Index Terms— Distributed state estimation, fault toler-
ance, joint observability, sensor faults, sensor redundancy.

I. INTRODUCTION

THE state estmation problem with distributed measure-
ments for a class of Lipschitz nonlinear systems is ad-

dressed in this paper. Consider a scenario where measurements
of a plant output are distributed in N nodes as shown in Fig. 1.
The objective is to design a distributed group of N observers
located in the N nodes such that each observer provides an
estimate of the whole state vector of a dynamical system.
Each observer has only access to local measurements and
information received from a specific subset of other nodes.
A communication network with a given specific topology
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Fig. 1. Example of a network of distributed observers.

enables the information flow among the nodes (this is a generic
distributed estimation problem as formulated in [1].)

The considered state estimation problem pertains to a class
of dynamical system described as

ẋ = Ax+ f(x) +Bu (1)

where x ∈ Rn is the state vector, u ∈ Rm is the control input,
A ∈ Rn×n is the state matrix, B ∈ Rn×m is the input matrix,
and f(x) ∈ Rn is a nonlinear vector field. The measurement
at Node i, i ∈ N, is generated according to the output equation

yi = Cix (2)

where yi ∈ Rpi (see, for instance [2].)
Our objective is to develop a distributed state estimation

scheme that exploits sensor redundancy to tolerate possible
sensor faults. We consider local sensor/output redundancy
within each node, obtained by multiple measurements yi by
using a group of identical sensors at Node i. Local observers
located at the nodes make up the distributed estimation
scheme. Specifically, the local observer at Node i yields an
estimated state vector x̂i (as the estimated value of the state
vector x) by using the local measurement of yi and the
estimated state vectors obtained by neighboring nodes.

To guarantee distributed observability, it is assumed that
the system described by (1) and (2) is jointly observable [2],
which means that the pair (C,A) is observable with C =[
C>1 C>2 . . . C>N

]>
. It should be mentioned that the pair

(Ci, A) is not necessarily observable for a given Node i, and
thus there are no trivial solutions for the distributed estimation
problem.

A. Brief Literature Review
Distributed state estimation has been an active area of re-

search in the last decade as far as linear systems are concerned
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[1]–[13]. For instance, [3]–[5] propose distributed observer
designs via the extension of the classical Kalman filter to
a distributed observer network. In [6] and [7], the classical
Luenberger observer is extended to a distributed estimation
scheme. In [8], a distributed estimation algorithm based on
a moving horizon paradigm is introduced. A linear subop-
timal consensus-based distributed estimation methodology is
addressed in [9]. By introducing the notion of a multisen-
sor observable canonical decomposition, a Luenberger-based
distributed linear observer design is devised in [1]. In [10],
necessary and sufficient conditions for distributed estimation in
linear systems are derived by introducing augmented states sat-
isfying scalability conditions. A family of distributed observers
capable of estimating state vectors with a predetermined but
arbitrary rate is proposed in [2] and [11]. In [12] and [13],
the problem of resilient state estimation of linear systems by
increasing the robustness of communication graphs is studied.

While several works on distributed state observation have
already appeared in the context of nonlinear systems [14]–
[19], the methodology proposed in our paper differs from
the cited works as we do not assume that local observability
holds. Other works deal with distributed filtering over sen-
sor networks such that a desired stochastic performance is
achieved [14]–[19]. Very recently, [20] proposes a secure state
estimation algorithm for nonlinear systems in the presence of
sensor attacks, but the observer is not designed in a distributed
fashion. Finally, [21] and [22] analyze distributed state es-
timation schemes for classes of jointly observable nonlinear
networks. These works consider unknown nonlinearities in a
discrete-time model as states to be estimated, which is distinct
from our approach.

B. Objectives, Contribution, and Paper Organization
The main contribution of this paper is as follows:

1) We address the distributed state estimation in the presence
of Lipschitz nonlinearities in the system’s model. This is a
step ahead from the results in [1]–[13], which are limited
to linear systems.

2) We propose a robust estimation strategy against a range of
additive faults in the sensors under appropriate conditions
on the sensor redundancy.

More specifically, based on standard ideas in state estimation
of Lipschitz nonlinear systems (for instance, see [23] and
[24]), we propose a network of distributed observers for a
class of Lipschitz nonlinear systems with distributed output
measurements. We derive sufficient conditions on the proposed
observers to guarantee that the estimated state vector of each
observer converges toward the state vector of the system by
using a subset of the local measurements and the estimates
of the observers in its neighborhood. Moreover, in the case of
sensor redundancies in each observer, we modify the proposed
estimation scheme to locally reject the effects of a range of
measurement faults.

Our paper provides a significant generalization of the early
contribution [25] in that sensors faults and disturbances are
considered and sensor redundancy is exploited to mitigate the
effects of the above disturbances.

The paper is organized as follows: In Section II, we state the
notation and provide essential notions of graph theory used in
our work. We formulate the estimation problem in Section III,
and present our methodology in Sections IV and Section V.
Section VI reports simulation results showing the effectiveness
of the proposed distributed fault-tolerant estimation algorithm.
Finally, we offer concluding remarks in Section VII.

II. PRELIMINARIES

Here, we present notation, definitions, and basic concepts
concerning graph theory.

A. Notation

Let R denote the set of real numbers, and R>0 and R≥0
denote the sets of positive and non-negative real numbers,
respectively. The set of natural numbers is denoted by N. In
denotes an n × n identity matrix, 0n×m is an n ×m matrix
of zeros, and 1n is an n× 1 vector of ones. ⊗ stands for the
Kronecker product. For a matrix A ∈ Rn×m, A−r ∈ Rm×n
is the right inverse of A such that AA−r = In. ‖ · ‖ denotes
the standard 2-norm. We let sup denote supremum, whereas
min and max denote minimum and maximum, respectively.
The function ceil(·) denotes the ceiling function, that is, for
x ∈ R, ceil(x) yields the smallest integer greater than or equal
to x. For a real symmetric matrix, λmin(·) and λmax(·) denote
the minimum and maximum eigenvalues, respectively, whereas
λ2(·) denotes the second smallest eigenvalue. For a square
matrix M , M � 0 and M � 0 denote positive definiteness
and positive semi-definiteness, respectively. By Im and Ker,
we denote respectively the image and the kernel of a matrix.
The matrix diag(M1,M2, . . . ,Mn) is a block diagonal matrix
composed of the matrices M1,M2, . . . ,Mn. Let N denote
the class of continuous and strictly increasing functions from
[0,∞) to [0,∞), and K denote the subset of class-N functions
that satisfy k(0) = 0 [26]. For a subspace V ⊆X of a finite-
dimensional inner-product vector space X , V ⊥ denotes the
annihilator of V . For R,S ⊆ X , we define the subspaces
R + S ⊆X and R ∩S ⊆X as

R + S = {r + s : r ∈ R and s ∈ S }
R ∩S = {x : x ∈ R and x ∈ S }.

Finally, ⊕ indicates direct sum, i.e., the sum of independent
subspaces, and ' represents isomorphic relation between two
vector spaces or subspaces.

B. Graph Theory

Communication among observers is described by an undi-
rected graph G = (N, E ,A) where N = {1, 2, . . . , N} is a
finite nonempty set of nodes of the graph (describing a set
of N observers with local sensors), E ⊆ N × N represents
the edges of the graph (describing communication links), and
A = [aij ] ∈ RN×N is the adjacency matrix, where aij = aji
is positive if there exists an edge between Node i and Node j,
and they are zero otherwise. We define an undirected graph to
be connected if there exists a path of edges containing all the
nodes. The Laplacian matrix associated with the undirected
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Fig. 2. Example of a network of distributed observers with measure-
ment redundancy.

graph G is a symmetric matrix defined as L = D −A where
D is a diagonal matrix whose i-th entry is di =

∑N
j=1 aij . If

a graph G is connected, the corresponding Laplacian matrix L
has a simple zero eigenvalue with corresponding eigenvector
1N , and all the other eigenvalues of L are positive real [27].

III. PROBLEM STATEMENT

Consider the dynamical system described in (1). We assume
that observers along with their local sensors are distributed
in N ∈ N nodes, and the sensor redundancy at Node i is
ri ∈ N. In other words, we assume that ri clusters of identical
sensors are available at Node i. By defining Ci ∈ Rpi×n as the
output matrix associated with the i-th node, and by defining
ri = {1, 2, . . . , ri}, the output measurement of the k-th cluster
of sensors is written as follows:

yi,k = Cix+$i,k(t) + δi,k(t), i ∈ N, k ∈ ri (3)

where vectors $i,k(t) : R≥0 → Rpi and δi,k(t) : R≥0 → Rpi
respectively represent unknown signals denoting additive noise
and faults in the k-th cluster of the sensors of Node i.
The matrix A is constructed such that the system is jointly
observable, i.e., the pair (C,A) is observable where C =[
C>1 C>2 · · · C>N

]>
. Accordingly,

• None of the pairs (Ci, A), i ∈ N, may be observable, or
just some of them may be observable.

• While the pair (C,A) is observable, some nodes may
even have no sensors/measurements at all.

Notice that the output redundancy is from the ri identical
local measurements defined in (3) for each Ci, whereas joint
observability is related to the collection of all Ci, i ∈ N. Fig. 2
shows a schematic representation of a network of distributed
observers with measurement redundancy.

Assumption 1: The communication graph associated with
the observers network is connected.

Assumption 2: The nonlinear vector field f(x) is assumed
to be globally Lipschitz, i.e., there exists γ ∈ R>0 such that

‖f(x1)− f(x2)‖ ≤ γ‖x1 − x2‖, ∀x1, x2 ∈ Rn.
Definition 1: Decompose yi,k, $i,k, and δi,k as

yi,k =
[
yi,k,1 yi,k,2 . . . yi,k,pi

]>
$i,k =

[
$i,k,1 $i,k,2 . . . $i,k,pi

]>
δi,k =

[
δi,k,1 δi,k,2 . . . δi,k,pi

]>
.

and let pi = {1, 2, . . . , pi}. For a given scalar constant βi,q ∈
R, i ∈ N, q ∈ pi, we define an output measurement yi,k,q, i ∈
N, k ∈ ri, q ∈ pi, to be healthy if for all t ≥ 0,

|$i,k,q(t) + δi,k,q(t)| ≤ βi,q. (4)

Otherwise, the measurement yi,k,q is called unhealthy. Accord-
ingly, the associated sensors are called healthy and unhealthy,
respectively. Indeed, the value of βi,q will be determined
according to the required accuracy for state estimation, and
this value will be considered when designing the proposed
distributed observer.

Assumption 3: In the set {yi,1,q, yi,2,q, . . . , yi,ri,q}, at least
ceil

(
ri+1
2

)
output measurements are healthy (no matter how

large the magnitudes of the faults of unhealthy sensors are).
Assumption 3 implies that the number of healthy mea-

surements at each node, i.e., those satisfying (4), exceeds
that of the unhealthy ones. For example, out of 5 output
measurements, at least 3 should be always healthy.

Note 1: In the rest of the paper, for any variable ϑi,k, ϑi,q ,
or ϑi,k,q , we let i ∈ N denote the index of the nodes, k ∈ ri
denote the index of the clusters of the sensors at Node i, and
q ∈ pi denote the index of the measurements at each cluster
of the sensors at Node i.

For the nonlinear system (1) under the assumptions listed
above, the objective is to design a distributed sensor fault-
tolerant observer such that

1) The estimated state vectors of the observers will be the
only information exchanged among the local observers
at each node.

2) The estimation error is uniformly ultimately bounded.
It should be noted that the aforementioned objective also is

achieved by several studies in the literature [1]–[13]. However,
those studies are limited to linear systems and when available
sensors are fully precise.

To achieve the objectives above, in the next section we
first devise a nonlinear distributed observer scheme without
considering measurement noise and faults.

IV. DISTRIBUTED OBSERVER SCHEME OF JOINTLY
OBSERVABLE NONLINEAR SYSTEMS

The basic idea in distributed state estimation is that the
i-th observer updates its estimated state vector x̂i not just
on the basis of local measurements, but also using relative
information from estimated states from neighboring observers.
This is typically accomplished by the introduction of an
injection term of the form

∑N
j=1 aij(x̂j − x̂i) (see [1], [10],

[11], [13]). Using this paradigm, the proposed distributed
estimation strategy for the system described in (1) and (3)
will be presented by first assuming that $i,k(t) = δi,k(t) =
0pi×1, ∀i ∈ N,∀k ∈ ri,∀t ≥ 0. Since sensor redundancy is
unnecessary in this initial case, the output measurements of
the system will be modeled as in (2).

To begin, define a similarity transformation matrix Ti ∈
Rn×n, i ∈ N, as Ti =

[
Tio Tiu

]
, where Tiu ∈ Rn×vi is an

orthonormal basis of the unobservable subspace of (Ci, A),
vi ∈ N being the dimension of the unobservable subspace
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of the pair (Ci, A), and Tio ∈ Rn×(n−vi) is an orthonormal
basis such that Im Tio is orthogonal to Im Tiu. According to
the structure of Ti, we perform the coordinate transformation
adapted to X = Im Tio ⊕ Im Tiu as follows [28] (X ' Rn
is the state space of the system)

T>i ATi =

[
Aio 0(n−vi)×vi
Air Aiu

]
CiTi =

[
Cio 0pi×vi

] (5)

where the pair (Cio, Aio) is observable. By using the similarity
transformation matrix Ti, the local observer at Node i is
designed as

˙̂xi = Ax̂i + Li(Cix̂i − yi) + f(x̂i) +Bu

+ χP−1i

N∑
j=1

aij(x̂j − x̂i), i ∈ N
(6)

where Li ∈ Rn×pi and Pi ∈ Rn×n are the observer gains
computed as

Li = Ti

[
P−1io C

>
ioH

>
i

0vi×pi

]
Pi = Ti

[
Pio 0(n−vi)×vi

0vi×(n−vi) Ivi

]
T>i ,

(7)

and Pio ∈ R(n−vi)×(n−vi), Pio � 0, and Hi ∈ Rpi×pi are
matrices to be determined. Note that the gain χ determines
the weight of the interaction term

∑N
j=1 aij(x̂j − x̂i) in (6),

and the term P−1i simplifies the mathematical analysis of the
proposed distributed observer, as it will be clear in the sequel.

Lemma 1: Consider the jointly observable system given in
(1) and (3). By letting

To =
[
T1o T2o . . . TNo

]
, (8)

one obtains
Im To = X .

Proof: Since the columns of Tiu is an orthonormal basis
of the unobservable subspace of (Ci, A), the image of Tiu is
the kernel of the observability matrix of (Ci, A):

Im Tiu =

n⋂
k=1

Ker CiA
k−1. (9)

Moreover, since Tio is such that Ti has full rank, one obtains

Im Tiu = (Im Tio)
⊥
. (10)

According to the definition of To, it follows that [29, Sec.
0.12]

Im To =

( N∑
i=1

Im Tio

)⊥⊥

implying that

Im To =

(
N⋂
i=1

(Im Tio)
⊥

)⊥
. (11)

From (9), (10), and (11), one obtains

Im To =

(
N⋂
i=1

(
n⋂
k=1

Ker CiA
k−1

))⊥
. (12)

Since
N⋂
i=1

(
n⋂
k=1

Ker CiA
k−1

)
=

n⋂
k=1

(
N⋂
i=1

Ker CiA
k−1

)
,

from (12) it follows that

Im To =

(
n⋂
k=1

Ker (CAk−1)

)⊥
. (13)

As the pair (C,A) is observable, from (13) one obtains
Im To = 0⊥n×1 = X [29, Sec. 0.12], which completes the
proof.

The analysis of the proposed distributed observer (6) is
given in Theorem 1.

Theorem 1: Consider the noise-free and fault-free dynam-
ical system described in (1) and (2) with the distributed
observer given in (6) and (7), under Assumptions 1 and 2.
The estimation error ei(t) = x̂i(t) − x(t) converges to zero
for all i ∈ N if the matrices Pio and Hi, i ∈ N, are obtained
from the solution of the following LMI:[

INn
√
γP̃>√

γP̃ To (K −M)T>o − γNIn

]
� 0

Pio � 0

(14)

where
P̃ =

[
P1 P2 . . . PN

]
K = diag(K1o,K2o, . . . ,KNo)

Kio = − (A>ioPio + PioAio + C>io(Hi +H>i )Cio)

M = T−ro

N∑
i=1

(
TiuAirT

>
io + TioA

>
irT
>
iu

+ Tiu(Aiu +A>iu)T>iu

) (
T−ro

)>
.

(15)

Moreover, the gain χ must be chosen such that

χ >

∥∥Λ+ γP̄ + Λ>PQ
−1ΛP

∥∥
2λ2(L)

(16)

where
Λ = diag (Λ1, Λ2, . . . , ΛN )

Λi = (A+ LiCi)
>Pi + Pi(A+ LiCi)

P̄ = diag
(
P 2
1 + In, P

2
2 + In, . . . , P

2
N + In

)
Q = −

N∑
i=1

(
Λi + γ(P 2

i + In)
)

ΛP =
[
Λ1 + γ(P 2

1 + In) . . . ΛN + γ(P 2
N + In)

]
.

(17)

Proof: To begin, from (1), (3), and (6), it follows that
the dynamics of ei = x̂i − x, i ∈ N, are given by

ėi = (A+ LiCi)ei + f(x̂i)− f(x)

+ χP−1i

N∑
j=1

aij(x̂j − x̂i), i ∈ N
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which, since x̂j − x̂i = ej − ei, can be restated as follows:

ėi = (A+ LiCi)ei + f(x̂i)− f(x)

+ χP−1i

N∑
j=1

aij(ej − ei), i ∈ N.
(18)

We shall show that the solutions of (18) converge to zero. To
this end, consider the following Lyapunov candidate

V =

N∑
i=1

e>i Piei (19)

which is a positive definite function of the estimation error,
since Pio � 0, i ∈ N. The derivative of V along (18) reads as

V̇ =

N∑
i=1

e>i
(
(A+ LiCi)

>Pi + Pi(A+ CiLi)
)
ei

+ 2χ

N∑
i=1

N∑
j=1

aij (ej − ei)> ei

+ 2

N∑
i=1

(f(x̂i)− f(x))
>
Piei.

(20)

According to Assumption 2, one obtains
N∑
i=1

(f(x̂i)− f(x))
>
Piei ≤

N∑
i=1

γ‖x̂i − x‖‖Piei‖,

and since ei := x̂i − x, it follows that

2

N∑
i=1

(f(x̂i)− f(x))
>
Piei ≤ 2γ

N∑
i=1

‖ei‖‖Piei‖. (21)

As 2‖ei‖‖Piei‖ ≤ e>i ei + e>i P
2
i ei, using the definition of P̄

in (17), one obtains

2

N∑
i=1

(f(x̂i)− f(x))
>
Piei ≤ γe>P̄ e (22)

where e =
[
e>1 e>2 . . . e>N

]>
. Moreover,

2χ

N∑
i=1

N∑
j=1

aij (ej − ei)> ei = −2χe> (L ⊗ In) e. (23)

From (20), (22), and (23), and according to the definition of
Λ in (17), it follows that

V̇ ≤ e>(Λ+ γP̄ )e− 2χe> (L ⊗ In) e. (24)

Since the pair (Ci, A) may not be observable, Λ may not
be negative definite. Thus, to show that the right-hand side
of (24) is negative definite, we decompose the error space
into two complementary subspaces such that e>(Λ+ γP̄ )e is
negative definite when projected onto one of the subspace, and
−2χe> (L ⊗ In) e is negative definite when projected onto the
other one. According to Assumption 1 and the properties of
the Laplacian matrix of a connected undirected graph, L has
a zero eigenvalue and N −1 positive real eigenvalues, and the
right eigenvector associated with the zero eigenvalue is 1N .
Thus, we decompose the error e as

e = ec + er (25)

where ec ∈ RNn is the consensus vector in the form ec =
1N ⊗ ω, ω ∈ Rn, and er ∈ RNn is the disagreement
vector satisfying e>r ec = 0 [30]. The intuition behind the
aforementioned decomposition is to exploit the properties of
the Laplacian matrix associated with a connected graph. Since
ec = 1N ⊗ω, the vector ec lies in the kernel of L⊗In, which
simplifies the mathematical analysis of (24). Moreover, we
will show that e>c (Λ+ γP̄ )ec is negative definite with respect
to ec. Since er is orthogonal to the kernel of L ⊗ In and the
second least eigenvalues of the Laplacian matrix is positive
real, −2χe>r (L ⊗ In) er is negative definite with respect to
er. Hence, using (25), the inequality (24) yields

V̇ ≤ e>c (Λ+ γP̄ )ec + 2e>r (Λ+ γP̄ )ec

+ e>r (Λ+ γP̄ )er − 2χe>r (L ⊗ In)er.
(26)

To guarantee negative definiteness of V̇ , one must show that
e>c (Λ + γP̄ )ec is negative definite. Since ec = 1N ⊗ ω,
according to the definition of Λ and P̄ in (17), one obtains

e>c (Λ+ γP̄ )ec = ω>

(
N∑
i=1

(
Λi + γ(P 2

i + In)
))

ω. (27)

Next, we show that the right-hand side of (27) is negative
definite. From (5), it follows that

A = Ti

[
Aio 0(n−vi)×vi
Air Aiu

]
T>i

Ci =
[
Cio 0pi×vi

]
T>i .

(28)

Therefore, using the definition of Li and Pi in (7),
Λi := (A+ LiCi)

>Pi + Pi(A+ LiCi) can be expressed as

Λi = Ti

[
−Kio A>ir
Air Aiu +A>iu

]
T>i . (29)

Using Ti =
[
Tio Tiu

]
, (29) can be rewritten as

Λi = − TioKioT
>
io + TiuAirT

>
io + TioA

>
irT
>
iu

+ Tiu(Aiu +A>iu)T>iu.

Therefore,
N∑
i=1

Λi =− ToKT>o +

N∑
i=1

(
TiuAirT

>
io + TioA

>
irT
>
iu

)
+

N∑
i=1

Tiu(Aiu +A>iu)T>iu

(30)

where K ∈ R(Nn−
∑N

i=1 vi)×(Nn−
∑N

i=1 vi) is the block di-
agonal matrix given in (15) and To is defined in (8). By
invoking Lemma 1, To is full rank and hence its rows are
linearly independent. Therefore, there exists T−ro such that
ToT

−r
o = In. Accordingly, (30) can be written in the following

form:
N∑
i=1

Λi = −To (K −M)T>o

where M is defined in (15). Therefore,

−
N∑
i=1

(
Λi + γ(P 2

i + In)
)

= To (K −M)T>o − γNIn − γP̃ P̃>
(31)
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where P̃ is as defined in (15). According to (14) and the Schur
Complement Decomposition [31], one obtains

To (K −M)T>o − γNIn − γP̃ P̃> � 0. (32)

From (31) and (32), it follows that the right-hand side of (27)
is negative definite, and as a result,

e>c (Λ+ γP̄ )ec

= ω>

(
N∑
i=1

(
Λi + γ(P 2

i + In)
))

ω < 0,∀ω 6= 0n×1.
(33)

Next, we investigate the other terms in the right-hand side of
the inequality (26). As ec = 1N ⊗ ω, one has

e>r (Λ+ γP̄ )ec = e>r Λ
>
Pω = ω>ΛP er (34)

where ΛP is defined in (17). Moreover, since e>r ec = 0, it
follows that

e>r (1N ⊗ ω) = 0, ∀ω ∈ Rn.

Since 1N is the eigenvector associated with the zero eigen-
value of L, one obtains [30]

−e>r (L ⊗ In)er ≤ −λ2(L)e>r er. (35)

According to (33), (34), and (35), (26) is satisfied if

V̇ ≤

−
[
ω
er

]> [
Q −ΛP
−Λ>P 2χλ2(L)INn −

(
Λ+ γP̄

)] [ω
er

] (36)

where Q ∈ Rn×n � 0 is defined in (17). From (16), it follows
that

2χλ2(L)INn − Λ− γP̄ − Λ>PQ−1ΛP � 0,

thus, by using Schur complements, one obtains[
Q −ΛP
−Λ>P 2χλ2(L)INn −

(
Λ+ γP̄

)] � 0. (37)

Consequently, letting

k := λmin

([
Q −ΛP
−Λ>P 2χλ2(L)INn −

(
Λ+ γP̄

)]) > 0

(38)
one obtains

V̇ ≤ −k
∥∥∥∥[ωer

]∥∥∥∥2 (39)

Since e = er + ec and ec = 1N ⊗ ω, it follows that

‖ei‖ ≤
∥∥∥∥[ωer

]∥∥∥∥ ,
hence

‖e‖ ≤
√
N

∥∥∥∥[ωer
]∥∥∥∥ . (40)

Inequalities (39) and (40) yield

V̇ ≤ − k√
N
‖e‖2. (41)

Moreover, from (19), it follows that

V ≤ max
i∈N

(λmax(Pi))‖e‖2. (42)

According to (41) and (42), one obtains

V̇ ≤ − k√
N max

i∈N
(λmax(Pi))

V.

Thus, V (t) asymptotically converges to zero along solutions
of (18), implying that the estimation errors ei(t) converge to
zero for all i ∈ N

It is worth noting that, from a complexity perspective, the
observer proposed in (6) has the same dimension as those
introduced in [1], [3], [11], [28], [32]. Moreover, compared to
the introduced distributed estimation schemes in [10] and [2],
the proposed observer does not require any augmented states.

Remark 1: It is worth mentioning that if γ = 0 (this
happens when f(x) = 0n×1,) the LMI condition (14) will
be as follows:[

INn 0Nn×n
0n×Nn To (K −M)T>o

]
� 0. (43)

Since (Cio, Aio) is observable for all i ∈ N, for any symmetric
positive definite matrix Kio, there exists Hi such that the
Riccati-like equation Kio = −(A>ioPio + PioAio + C>io(Hi +
H>i )Cio) has a symmetric positive definite solution Pio. If
this is the case, (43) is solvable if the following inequality is
satisfied

λmin(K) = min
i∈N

λmin (Kio) > ‖M‖ . (44)

Thus, by designing K based on (44), the distributed estimation
problem is always feasible when γ = 0. It should be noted
that the solvability of the LMI (14) is a sufficient condition
in Theorem 1 to guarantee state estimation by the network of
observers. However, since the distributed estimation problem
of Theorem 1 is always feasible when γ = 0, there exists a set
of values for γ such that the LMI (14) has solutions for Pio
and Hi, i ∈ N. Indeed, since (Cio, Aio) is observable for all
i ∈ N, there exist Pio and Hi, i ∈ N, such that the following
matrix has positive real eigenvalues:

M1 =

[
INn 0Nn×n

0n×Nn To (K −M)T>o

]
.

If γ is sufficiently small, by continuity, the eigenvalues of the
matrix

M2 =

[
INn

√
γP̃>√

γP̃ To (K −M)T>o − γNIn

]
remain positive real, implying that the LMI (14) is solvable.

The basis of Theorem 1 is the availability of precise
measurements at all nodes. In the next section, the proposed
strategy will be generalized to the more realistic case of
measurement noise and sensor faults.

V. SENSOR FAULT-TOLERANT DISTRIBUTED STATE
ESTIMATION SCHEME

In this section, we present the fault-tolerant and noise-
resilient version of the distributed state observer developed
previously. To tolerate the effect of sensor faults in the state
estimation, we use redundant sensors and an appropriate
selection of the measurements. The main idea of using sensor
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redundancy for state estimation has been the detection of the
faulty sensors and the reconfiguration of the observer after the
occurrence and detection of the faults [33]–[38]. There exists
an inevitable latency time required to perform fault detection
and the subsequent observer reconfiguration, which may not
be efficient in some practical applications, especially for fast
varying state systems. In this section, by considering all the
sensor measurements at once, we show that it is possible to
design an observer that can reject the effect of sensor faults.

Owing to Definition 1, an output measurement yi,k,q(t)
i ∈ N, k ∈ ri, q ∈ pi is deemed healthy if the norm of the
corresponding measurement error is smaller than a given level,
βi,q > 0. Decomposing Cix(t) as

Cix(t) =
[
ζi,1(t) ζi,2(t) . . . ζi,pi(t)

]>
,

an output measurement yi,k,q is healthy if

|yi,k,q(t)− ζi,q(t)| ≤ βi,q, ∀t ≥ 0. (45)

By exploiting Assumption 3 for each q ∈ pi, Algorithm 1
detailed below makes it possible for Node i to ignore faulty
output measurements and employ output measurements for
which (45) is satisfied. In practice, the algorithm causes a
delay which is accounted for by assuming that the observers
use the information of the output measurement and the control
input with an unknown constant time delay τ ∈ R>0. It
is worth mentioning that increasing ri may lead to higher
computational demands, hence to an increment in such delay.

Algorithm 1 Selection of measurements
1: For each q ∈ pi and Node i, obtain and hold u(t) and
yi,k,q(t), k ∈ ri.

2: Sort yi,k,q(t), k ∈ ri, from the largest to the smallest one,
and select yi,m,q(t) where m = ceil

(
ri
2

)
.

3: Return yi,m,q(t), q ∈ pi, and u(t).

To explain the algorithm with an example, consider a case
where ri = 5. Based on Assumption 3, at each time instant,
at most two output measurements can fall outside the bound
described in (45). Hence, in terms of the values of output
measurements of unhealthy sensors, at each time instant four
cases need to be considered as shown in Fig. 3. In the first case
in Fig. 3-(a), the output measurements of unhealthy sensors
are in the domain described by the bound in (45). In the
second case shown in Fig. 3-(b), one of them is outside
the domain. In the remaining cases, shown in Fig. 3-(c) and
Fig. 3-(d), respectively, two measurements are outside the
healthy range. In all cases, only one output measurement
within the range (45) will be selected by Algorithm 1. Note
that according to the first two cases, in some time instants, the
chosen output measurement can be the output measurement of
an unhealthy sensor whose measurement is in the domain (45).
Due to the above-mentioned issues, Assumption 3 is needed to
guarantee that Algorithm 1 can always choose measurements
satisfying (4). This assumption is reasonable and practical in
real-world applications when fusion of redundant sensors is
needed (for instance, see [12], [13].)

By employing the output measurement chosen by Algo-
rithm 1 and by considering the delay due to the computation
of the algorithm, we will provide a design of the distributed
observer such that

lim
t→∞

sup

N∑
i=1

‖x̂i(t)− x(t− τ)‖≤ ρ

∑
i,q

β2
i,q


where ρ(·) ∈ [0,∞) is a class-K function of the bounds
βi,q ∈ R, i ∈ N, q ∈ pi. Robustification against sensor dis-
turbance is achieved via the nonlinear function depicted in
Fig. 4, which is denoted by msgn(·). By tuning the dead
zone domain of the function msgn(·), it is possible to tune the
sensitivity of the function to a range of output measurement
errors. Moreover, tuning the function’s gain affects robustness
against a range of measurement faults and noises when the
output measurement error lies outside the dead zone domain.
We will study these features in more details in the sequel.

Remark 2: According to Assumption 3, for the measure-
ment set {yi,1,q, yi,2,q, . . . , yi,ri,q}, at least ceil

(
ri+1
2

)
output

measurements are expected to be healthy, that is, the number
of healthy output measurements should be larger than the
number of unhealthy ones. Therefore, in the presence of faults,
ri should be at least equal to 3 for Assumption 3 to be
satisfied. Consequently, increasing ri increases the possibility
for Algorithm 1 to choose measurements satisfying (4). How-
ever, increasing ri requires more sensors, leading to higher
implementation cost.

For the system described in (1) and (3), the proposed fault-
tolerant distributed observer reads as

˙̂xi(t) = Ax̂i(t) + Li (Cix̂i(t)− yi,m(t− τ)− νi(t))

+ f(x̂i(t)) + χP−1i

N∑
j=1

aij(x̂j(t)− x̂i(t))

+Bu(t− τ), i ∈ Ni

(46)

where Li and Pi are the same as (7) and χ is the same as (16).
In addition, νi(t) is a robustifying term designed as follows:

νi(t)=ηimsgn
(
βi
−1sgn(Hi)(Cix̂i(t)−yi,m(t− τ))

)
(47)

where βi ∈ Rpi×pi , ηi ∈ Rpi×pi , and Hi ∈ Rpi×pi are diag-
onal matrices defined as

βi = diag(βi,1, βi,2, . . . , βi,pi)

ηi = diag(ηi,1, ηi,2, . . . , ηi,pi)

Hi = diag(Hi,1, Hi,2, · · · , Hi,pi).

The entries of ηi and Hi will be determined in the upcoming
analysis. Note that since Algorithm 1 is used for obtaining
yi,m, in (46) and (47), the time delay τ is considered in yi,m.
Hence, instead of pursuing estimates of the real-time state
vector x(t), we intend to estimate the delayed state x(t− τ).
Consequently, in the observer design, the input u in (46) is
delayed by τ via the algorithm.

Remark 3: It should be noted that (46) has a discontinuous
right-hand side due to the msgn(·) function and Algorithm 1.
However, since msgn(·) is locally bounded and measurable,
a solution in the sense of Filippov exists for (46) [39]–[41]
(specifically, see Section 2 of [40].)
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Fig. 3. Various configurations of the measured outputs of healthy and
unhealthy sensors when ri = 5.

Theorem 2: Consider the dynamical system described in (1)
and (3) under the distributed observer given in (46) and (47),
when Assumptions 1, 2, and 3 are satisfied, Li and Pi are
the same as (7), the symmetric positive definite matrices Pio
and the diagonal matrices Hi, i ∈ N, are obtained from the
solution of the LMI (14), χ is chosen as (16), and ηi,q ≥
βi,q, i ∈ N, q ∈ pi, where P̃ , K, M , Λ, P̄ , Q, and ΛP are the
same as (15) and (17). Under these conditions, the estimation
errors ei(t) = x̂i(t) − x(t − τ), i ∈ N, t ≥ τ , are uniformly
ultimately bounded and satisfy

lim
t→∞

sup ‖e(t)‖ ≤ 2

√√√√∑N
i=1

∑pi
q=1 |Hi,q|β2

i,q

µmin
i∈N

(λmin(Pi))
(48)

where

e(t) =
[
e1(t)> e2(t)> · · · eN (t)>

]>
µ =

k√
N max

i∈N
(λmax(Pi))

and k is defined in (38).
Proof: From (1), it follows that

ẋ(t− τ) = Ax(t− τ) + f(x(t− τ)) +Bu(t− τ). (49)

Since x̂j(t)− x̂i(t) = ej(t)− ei(t), from (3), (46), (47), and
(49), owing to Algorithm 1, the differential equation describing

Fig. 4. msgn(·) function.

ei(t) = x̂i(t)− x(t− τ), i ∈ N, is given by

ėi(t) = (A+ LiCi)ei(t) + f(x̂i(t))− f(x(t− τ))

+ χP−1i

N∑
j=1

aij(ej(t)− ei(t))

− Li ($i,m(t− τ) + δi,m(t− τ))

− Liηimsgn
(
βi
−1sgn(Hi)(Ciei(t)

−$i,m(t− τ)− δi,m(t− τ))
)
.

(50)

To analyze the evolution of ei(t) along (50), we consider the
same Lyapunov candidate as (19). Thus, following a procedure
similar to that in the proof of Theorem 1, the derivative of V
along (50) reads as

V̇ (t) ≤ e>(t)(Λ+ γP̄ )e(t)− 2χe>(t)(L ⊗ In)e(t)

−
N∑
i=1

2e>i PiLi

(
$i,m(t− τ) + δi,m(t− τ)

+ ηimsgn
(
βi
−1sgn(Hi)(Ciei(t)

−$i,m(t− τ)− δi,m(t− τ))
))
.

(51)

Due to the structure of Pi and Li given in (7) and since
T>i Ti = In, one obtains

PiLi = Ti

[
Pio 0(n−vi)×vi

0vi×(n−vi) Ivi

] [
P−1io C

>
ioHi

0vi×pi

]
which can be simplified as follows:

PiLi = Ti

[
C>io

0vi×pi

]
Hi. (52)

Since Ti
[
Cio 0pi×vi

]>
= C>i and Hi is diagonal, from (52),

one obtains

PiLi = C>i H
>
i . (53)

Following a procedure similar to that in the proof of Theorem
1 for (24) and by considering (53), from (51), one obtains

V̇ (t) ≤− µV (t)− 2

N∑
i=1

(HiCiei(t))
>
(
$i,m(t− τ)

+ δi,m(t− τ)

+ ηimsgn
(
βi
−1sgn(Hi)(Ciei(t)

−$i,m(t− τ)− δi,m(t− τ))
))
.

(54)
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Next, we analyze the other term in the right-hand side of (54)
that is,

msgn
(
βi
−1sgn(Hi)(Ciei(t)−$i,m(t− τ)− δi,m(t− τ))

)
.

According to Assumption 3 and Algorithm 1, for each i ∈ N
and q ∈ pi, (4) is satisfied for the selected output measure-
ments. By decomposing Ciei(t) as

Ciei(t) =
[
ξi,1(t) ξi,2(t) . . . ξi,pi(t)

]>
,

for each i ∈ N and q ∈ pi, two cases arise. One case is when
|ξi,q(t)| > 2βi,q and the other one is when |ξi,q(t)| ≤ 2βi,q .
If |ξi,q(t)| > 2βi,q , according to the definition of the msgn(·)
function, it can be concluded that

msgn
(
β−1i,q sgn(Hi,q)(ξi,q(t)−$i,m,q(t− τ)

− δi,m,q(t− τ))
)

= sgn(Hi,qξi,q(t)).

According to (4) and since ηi,q ≥ βi,q, i ∈ N, q ∈ pi, there is
a non-negative real scalar αi,q such that

−Hi,qξi,q(t)
(
$i,m,q(t− τ) + δi,m,q(t− τ)

+ ηi,q(t)msgn
(
β−1i,q sgn(Hi,q)(ξi,q(t)

−$i,m,q(t− τ)− δi,m,q(t− τ))
))

= −Hi,qξi,q(t)αi,qsgn(Hi,qξi,q(t)).

(55)

Conversely, if |ξi,q(t)| ≤ 2βi,q , according to the definition of
the msgn(·) function, the measurement errors satisfying (4)
cannot invert the sign of

msgn
(
β−1i,q sgn(Hi,q)(ξi,q(t)−$i,m(t− τ)− δi,m(t− τ))

)
.

Hence, (55) is still satisfied or

msgn
(
β−1i,q sgn(Hi,q)(ξi,q(t)−$i,m,q(t− τ)

− δi,m,q(t− τ))
)

= 0

which happens when

|ξi,q(t)−$i,m,q(t− τ)− δi,m,q(t− τ)| ≤ βi,q.

If this is the case, according to (4) and the fact that
|ξi,q(t)| ≤ 2βi,q , one obtains in place of (55)

−Hi,qξi,q(t)
(
$i,m,q(t− τ) + δi,m,q(t− τ)

+ ηi,qmsgn
(
β−1i,q sgn(Hi,q)(ξi,q(t)

−$i,m,q(t− τ)− δi,m,q(t− τ))
))

≤ −Hi,qξi,q(t)($i,m,q(t− τ) + δi,m,q(t− τ))

≤ 2|Hi,q|β2
i,q.

(56)

From (54), (55), and (56), it follows that

V̇ (t) ≤ −µV (t) + 4

N∑
i=1

pi∑
q=1

|Hi,q|β2
i,q (57)

and since
V (t) ≥ min

i∈N
(λmin(Pi))‖e(t)‖2,

one obtains

V̇ (t) ≤ −µmin
i∈N

(λmin(Pi))‖e(t)‖2 + 4

N∑
i=1

pi∑
q=1

|Hi,q|β2
i,q.

Therefore, e(t) is uniformly ultimately bounded with ultimate
bound

lim
t→∞

sup ‖e(t)‖ ≤ 2

√√√√∑N
i=1

∑pi
q=1 |Hi,q|β2

i,q

µmin
i∈N

(λmin(Pi))
.

Therefore, the proof is completed.
Remark 4: It should be noted that according to (46) and

(47), the time delay is not in the output injection loop of the
observer, because the delay just affects the output measure-
ment of the plant. As the delay is fixed, the delay value does
not have any effect on the stability and convergence analysis
of the observer. However, the delay leads to the convergence
of the estimated state vector to a delayed state vector.

Remark 5: The ultimate bound of the estimation errors
depends on the accuracy of the sensors. In this study, in
(4) we have considered the bounds βi,q, q ∈ pi, i ∈ N, for
faults and noise acceptable for practically healthy sensors. If
Assumption 3 is satisfied, the ultimate bound of the estimation
errors is a function of βi,q, q ∈ pi, i ∈ N. This implies that if
healthy measurements are noiseless, the estimation error vector
e asymptotically converges to zero even in the presence of fault
in unhealthy sensors if Assumption 3 is verified.

Remark 6: By using the robustifying term νi(t), any entries
of the second term in the right-hand side of (54) are non-
positive as (55) or are bounded as (56). Without using the
robustifying term, the boundedness of the second term in the
right-hand side of (54) should be guaranteed by the term
−µV (t), and hence in such case, the ultimate bound (48) may
not be obtained.

Remark 7: From (57) we have

V̇ (t) ≤ −µV (t) + d

where

d(t) = 4

N∑
i=1

pi∑
q=1

|Hi,q|β2
i,q.

From the comparison theorem for scalar ordinary differential
equations [42], one obtains V (t) ≤ v(t) for all t ≥ 0, where
v(t) is given by

v(t) = e−µtV (0) +
d

µ

(
1− e−µt

)
implying the convergence of v(t) to d/µ with time constant
1/µ.

VI. SIMULATION RESULTS

The effectiveness of the proposed distributed observer de-
sign is evaluated via numerical examples. We consider a jointly
observable Lipschitz nonlinear system in the form of (1) when

A =

5 0 0
0 0 3
0 −2 0

 , B =

2
1
3

 ,
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Fig. 5. Network communication graph.

and by defining x =
[
x1 x2 x3

]>
, the Lipschitz nonlinear

term is given by

f(x) =

 1.2 sin(x1)
0

0.8 sin(x2) cos(x3)

 .
The Lipschitz constant γ is selected as γ = 2. Define

C1 =
[
0 0 1

]
, C2 =

[
0 0 0

]
, C3 =

[
0 1 1

]
,

C4 =
[
1 0 0

]
, C5 =

[
0 0 0

]
, C6 =

[
0 1 0

]
,

and let three measurements at each node be considered,
i.e., ri = 3, i ∈ {1, 2, . . . , 6}. Note that none of the pairs
(Ci, A), i ∈ {1, 2, . . . , 6}, are observable. The nodes are
assumed to be connected by the unweighted undirected com-
munication graph depicted in Fig. 5 implying that λ2(L) = 1.

Following Assumption 3, we assume that to measure each
output yi, i ∈ {1, 2, . . . , 6}, two sensors are considered healthy
with level βi = 0.6, i ∈ {1, 2, . . . , 6}, whereas another sensor
suffers from an additive fault with a magnitude larger than 50.
Note that since pi = 1, i ∈ {1, 2, . . . , 6}, βi and ηi in (47) are
both scalars. A variety of sinusoidal waves, square waves, and
uniformly random signals are considered to model the noise
and faults. For the given matrices A and Ci, the similarity
transformation matrices Ti read as

T1 =

0 0 1
1 0 0
0 1 0

, T2 =

1 0 0
0 1 0
0 0 1

, T3 =

0 0 1
1 0 0
0 1 0

,
T4 =

1 0 0
0 1 0
0 0 1

, T5 =

1 0 0
0 1 0
0 0 1

, T6 =

0 0 1
1 0 0
0 1 0

.
It is worth mentioning that there are no Tio for Node 2 and
Node 5 since they have no measurements.

For the distributed observer in Theorem 2, the matrices Pi,
Hi and the injection gain Li are obtained from a numerical
solution of the LMI (14), which yields

P1 = P3 = P6 = diag(1, 2.84, 2.84),

P2 = P5 = I3, P4 = diag(2.85, 1, 1),

H1 = −57.34, H2 = H5 = 0,

H3 = −5.76, H4 = −82.04, H6 = −57.34,

L1 =
[
0 0 −20.17

]>
,

L2 = L5 = 03×1,

L3 =
[
0 −2.03 −2.03

]>
,

L4 =
[
−28.82 0 0

]>
,

L6 =
[
0 −20.17 0

]>
.

(58)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time

-2

0

2

4

6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time

-15

-10

-5

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time

-4

-2

0

2

4

Fig. 6. Estimated state and plant state vectors for the noise-free and
fault-free scenario (no sensor redundancy employed.)

Moreover, we set ηi = 0.6, i ∈ {1, 2, . . . , 6}, and following
(16), χ is set as χ =

∥∥Λ+ γP̄ + Λ>PQ
−1ΛP

∥∥ /(2λ2(L)) + 1.
Before investigating the effectiveness of the estimation

strategy of Theorem 2 in tolerating sensor faults, we show
that it is possible to estimate the plant state by employing the
estimation strategy of Theorem 1. For this preliminary noise-
free and fault-free scenario, the simulation results reported in
Figure 6 show the effectiveness of the proposed distributed
observer when just one cluster of sensors is used.

Next, we investigate the estimation strategy of Theorem 2.
In the simulation, the fixed time delay for Algorithm 1 has
been set as τ = 5 × 10−2 and ˙̂xi(t) = 0 when t < τ for
all i ∈ N. According to the simulation results illustrated in
Fig. 7-(a), all the local observers are capable of estimating
the state vector. Moreover, we notice from the simulation
results that the effects of the severe faults with large magnitude
are rejected without any abnormal behavior in the observers.
However, when Assumption 3 is not satisfied, state estimation
may be sensitive to sensor faults. To show this issue, we repeat
the first scenario when just one cluster of sensors (selected
randomly) are employed in the observers. The simulation
results for this scenario are depicted in Fig. 7-(b), implying that
the performance of the distributed observer in state estimation
has significantly deteriorated. Note that, according to (46)
and (47), the discontinuous function msgn(.) just affects the
derivative of x̂i(t); therefore, the integrator between ˙̂xi(t) and
x̂i(t) removes the discontinuity.

VII. CONCLUSIONS

This paper proposed a robust estimation strategy for a class
of nonlinear systems with distributed sensors. We designed a
network of distributed observers using local sensors, under
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(a) (b)

Fig. 7. a) Estimated state and plant state vectors in the presence of noise and sensor faults using sensor redundancy. b) Estimated state and plant
state vectors in the presence of noise and sensor faults in the presence of noise and faults in the sensors without sensor redundancy.

the assumption that local measurements for each observer
might not be sufficient for observability. We have shown that
when the observers exchange their estimated state vectors
under a connected communication topology, the estimated
state vector of each observer converge to the state vector
of the system if the ensemble of all measurements in the
network guarantees observability. In addition, when redundant
sensors for each observer are available, and under suitable
assumptions, the proposed estimation strategy can be modified
to provide robustness against the effect of faulty sensors,
without the need to employ fault detection mechanisms.

This study is regarded as a preliminary step towards the
design of distributed state estimation for nonlinear systems.
Many issues remain open for future research, starting from the
inclusion of more general classes of nonlinear vector fields
not satisfying a global Lipschitz condition. Other areas of
investigation include distributed state estimation of nonlinear
systems when communication among the observers is directed,
distributed state estimation when the control input is unknown,
and distributed state estimation in the presence of communica-
tion links failure, which are challenging problems in this area
to be addressed in future work.
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