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Abstract

The popularity of Conditional Value-at-Risk (CVaR), a risk functional from finance, has been growing
in the control systems community due to its intuitive interpretation and axiomatic foundation. We consider
a nonstandard optimal control problem in which the goal is to minimize the CVaR of a maximum random
cost subject to a Borel-space Markov decision process. The objective represents the maximum departure
from a desired operating region averaged over a given fraction of the worst cases. This problem provides a
safety criterion for a stochastic system that is informed by both the probability and severity of the potential
consequences of the system’s behavior. In contrast, existing safety analysis frameworks apply stage-wise
risk constraints or assess the probability of constraint violation without quantifying the potential severity
of the violation. To the best of our knowledge, the problem of interest has not been solved. To solve the
problem, we propose and study a family of stochastic dynamic programs on an augmented state space.
We prove that the optimal CVaR of a maximum random cost enjoys an equivalent representation in terms
of the solutions to these dynamic programs under appropriate assumptions. For each dynamic program,
we show the existence of an optimal policy that depends on the dynamics of an augmented state under the
assumptions. In a numerical example, we illustrate how our safety analysis framework is useful for assessing
the severity of combined sewer overflows under precipitation uncertainty.
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I. INTRODUCTION

Control system safety is often assessed through minimax optimal control problems [1]–[4], which assume bounded
nonstochastic adversarial disturbances that try to inhibit safe or efficient operation. In cases where disturbances are
not well-modeled as bounded inputs (e.g., Gaussian noise), then it is standard to define safety in terms of a
stochastic optimal control problem, whose optimal value is a probability of satisfactory operation. This framework,
called stochastic safety analysis, can accommodate either adversarial [5], [6] or nonadversarial [7], [8] stochastic
disturbances. However, a minimax approach may lead to controllers that are too cautious in practice. On the other
hand, a purely probabilistic risk assessment indicates the likelihood of a harmful event but has a limited capacity
to quantify the amount of harm the event would cause. These different limitations have motivated a growing body
of research that lies in the intersection of formal methods and risk analysis for control systems [9]–[13].

Here, we study a nonstandard safety analysis problem, which concerns the notion of a risk-averse safe set
Srα := {x ∈ S : J ∗α (x) ≤ r}. Srα represents the set of initial states from which the maximum distance between
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Fig. 1. A risk-averse safe set Srα is the set of initial states from which the Conditional Value-at-Risk (CVaR) at level α ∈ (0, 1]
of a trajectory-wise maximum random cost can be reduced to a threshold r ∈ R. (A random cost is a random variable in which
smaller realizations are preferred.) While we depict a state-dependent maximum random cost Y ′ in this figure, our theory permits
control-dependent random costs as well. Our framework applies to settings in which leaving a desired operating region K may be
inevitable, but the extent of a departure should be limited when possible. (K need not be a polytope. However, we require stage
and terminal cost functions to be continuous and bounded. In this figure, gK(x) is a signed distance between a state x and the
boundary ofK.) In this work, we prove that any collection of Srα is given by the solutions to a family of stochastic dynamic programs
under a measurable selection assumption. In a numerical example, we compare this characterization to our underapproximation
method from [12]. An underapproximation set Urα,γ ⊆ Srα depends on a soft-maximum parameter γ that requires tuning [12].

the trajectory and a desired operating region averaged over the α · 100% worst cases can be reduced to a threshold
r (Fig. 1). The system of interest is a Markov decision process (MDP) with Borel spaces of states, controls, and
disturbances, operating on a discrete-time horizon of length N , a natural number. J ∗α (x) is the optimal value of a
stochastic optimal control problem with a Conditional Value-at-Risk maximum cost objective:

J ∗α (x) := inf
π∈Π

CVaRπα,x(Y ), (1a)

Y := max
t∈{0,1,...,N−1}

{ct(Xt, Ut), cN (XN )}. (1b)

The random variable Y depends on stage and terminal cost functions ct, random states Xt, and random controls
Ut. The quantity CVaRπα,x(Y ) represents the average value of Y in the α · 100% worst cases when the initial
state is x and the system uses the control policy π. A control policy provides distributions for the realizations of
U0, U1, . . . , UN−1. (We will formalize CVaRπα,x(Y ) and π in Sec. III-B and Sec. IV-A, respectively.) The setting is
fairly general in theory. It permits nonlinear dynamics, nonconvex bounded cost functions, continuous spaces, and
non-Gaussian stochastic disturbances. First, we will explain why (1) is an important problem to solve, and then we
will explain the novelty of our contribution.

A. Relevance of the CVaR
The CVaR functional, which defines the objective of (1), provides an intuitive and quantitative interpretation

for risk because it represents the average value of a random variable in a fraction α of the worst cases [24, Th.
6.2]. Other common risk functionals do not have interpretations that are as consistent or clear. Expected utility
risk functionals encode risk preferences using utility functions and their parameters [14]–[19]. It is challenging to
provide a precise meaning for the parameter of the classical expected exponential utility functional, which limits its
applicability to control systems with specific safety or performance requirements [20]. It may be difficult to interpret
a recursive risk functional because it takes the form ρ1(C1 + ρ2(C2 + · · ·+ ρN−1(CN−1 + ρN (CN )) · · · )), where
Ci is a random variable and ρi is a map between spaces of random variables [21]–[23]. A weighted sum of the
mean and a moment-based dispersion functional, e.g., variance, standard deviation, and upper-semideviation [24],
provides an heuristic for the probability and severity of more rare and harmful outcomes. The CVaR is arguably
more intuitive than the broader class of spectral risk functionals, which are “mixtures” of the CVaRα over the
values of α [25, Prop. 2.5]. The Value-at-Risk (VaR) at level α, which is the left-side (1−α)-quantile, has a clear
quantitative interpretation. However, the VaR’s ability to summarize the severity of harmful outcomes is limited



because it is insensitive to the shape of the distribution beyond the (1 − α)-quantile. From a decision-theoretic
perspective, the VaR has the disadvantage of lacking a desirable property called subadditivity [26]. Both of these
shortcomings are overcome by the CVaR [24], [27].

B. Relevance of the Maximum Cost
We focus on a maximum cost (1b) generated by an MDP rather than a cumulative cost. While a cumulative

cost is typical for MDP problems [17], [21], [23], [25], [28]–[30], a maximum cost is typical for robust safety and
reachability analysis problems for nonstochastic systems, e.g., see [3], [4], and the references therein. Maximum
costs have natural roles in systems theory, beyond robust safety and reachability analysis. The theory of the long-
term behavior of normalized maxima of random variables, i.e., extreme value theory, has applications in finance,
the study of human longevity, and hydrology [31].

A maximum cost is appropriate for applications in which the extent of a constraint violation over a brief time
interval is more critical to assess than its accumulation.1 For example, in stormwater management, the maximum
water level can be a useful surrogate for the maximum flood extent (in more extreme cases) and the maximum
discharge rate (in general). These are instantaneous rather than cumulative properties. For gravity-drained stormwater
systems, the instantaneous discharge rate through an uncontrolled outlet into open atmosphere is a function of the
water level behind the outlet. Therefore, from water levels, we can estimate instantaneous demands on downstream
conveyance infrastructure (i.e., infrastructure to transport water rather than to store it). Designing this infrastructure
for the worst maximum discharge rate may be cost-prohibitive. However, assessing the average maximum water
level in the worst α ·100% of cases from historical data would allow designers to estimate downstream conveyance
capacity demands along a spectrum of worst cases.

C. Related Literature
The problem of computing risk-averse safe sets Srα is distinct from established problems in the stochastic and

risk-averse control theory literature and necessitates different techniques. Classical discrete-time stochastic control
theory, e.g., [32], studies the problem of optimizing the expectation of a cumulative cost. In contrast, our focus is
optimizing the CVaR of a maximum cost (1). The dynamic programming (DP) proofs from stochastic control theory
do not apply to our problem directly. Theoretical challenges arise because the CVaR satisfies only some of the
properties that are enjoyed by the expectation. Moreover, while sums and integrals of nonnegative Borel-measurable
functions can be interchanged, this is not the case for maxima and integrals in general. Such technical differences
between our problem and the scenarios that prevail in the literature make it necessary to build a pathway from
measure-theoretic first principles. Doing so enables us to solve for the sets Srα and the associated optimal control
policies under appropriate assumptions.

We take inspiration from a technique called state-space augmentation, which has been used to solve risk-averse
MDP problems with cumulative costs [17], [25], [28]–[30]. The problem of minimizing the expectation of a
cumulative cost subject to an upper bound on the CVaR of a cumulative cost has been studied in [29]. The authors
propose offline and online algorithms on augmented state spaces to update a Lagrange multiplier and a lower bound
on a cumulative cost [29]. Several risk-averse control problems with cumulative costs over an infinite time horizon
have been investigated using infinite-dimensional linear programming and state-space augmentation [30]. Bäuerle
and Ott provide a DP solution to the problem of minimizing the CVaR of a cumulative cost [28]. While we also use
DP, our approach requires different proof techniques to manage a maximum cost (1b) and to study our proposed
algorithm, which we define in terms of dynamics functions xt+1 = ft(xt, ut, wt), stage and terminal cost functions
ct, and disturbance distributions pt(dwt|xt, ut).

Most literature about risk-averse MDPs concerns exponential utility, taking inspiration from decision theory in
economics and extending from 1972 to present-day [14]–[16], [18], [19], [33]. Bäuerle and Rieder study the problem
of optimizing an expected utility for systems on Borel spaces with state-space augmentation, analyzing exponential
utility as a special case [17]. Another line of work considers the optimization of recursive risk functionals [21]–
[23], [33]; the basic approach is to replace a conditional expectation with a “conditional risk functional” to derive
a risk-based Bellman equation. The problem of minimizing an expected cumulative cost subject to a risk constraint
has been studied by, e.g., [9], [11], [29], [30], [35], [40]. Linear-quadratic settings have been studied in [11], [35],

1A constraint violation means that a state or control leaves a desired operating region, and its extent refers to the severity of the violation.



[40], and a safety analysis problem with CVaR has been proposed by [9]. Our problem (1) assesses the risk of the
entire trajectory, whereas the framework in [9] is concerned with the risk of each state in the trajectory separately,
i.e., CVaRα(ψ(Xt)) must be small for every t. An emerging research direction proposes risk-averse signal temporal
logic specifications for linear-quadratic model predictive control [11] and for a setting with continuous-time systems
of the form ẋ = f(x) + g(x)u [13]. We refer the reader to our survey about risk-averse autonomous systems [34]
and the references therein for additional literature.

Contributions. We show that any collection of risk-averse safe sets is characterized exactly using the solutions
to a family of stochastic dynamic programs on an augmented state space under a measurable selection assumption.
We derive this characterization by expressing the minimum CVaR (for a given initial state x and a given level α) as
a nested optimization problem with respect to a control policy and a dual parameter s. We propose a nonstandard
stochastic dynamic program that is parametrized by s to assess a maximum random cost. We show that the algorithm
returns an optimal s-dependent value function and policy under regularity conditions on the dynamics functions,
stage and terminal cost functions, and disturbance distributions. Subsequently, we perform an outer minimization
over s to obtain J ∗α (x) (1). The framework permits nonlinear dynamics, non-Gaussian noise, nonconvex bounded
cost functions, and continuous spaces. We solve the risk-averse safety analysis problem, whereas our prior works
[10], [12] provide approximations. For detailed derivations of our theory, we refer the interested reader to the
Appendix.

The numerical tractability of the method is limited due to its reliance on DP and an augmented state space. In this
work, we provide a nonlinear two-dimensional example motivated by a stormwater management application and
offer a comparison to our underapproximation method from [12]. Our on-going and future work involves developing
more scalable approaches using extreme value theory and value function approximations.

Notation. We define R∗ := R∪{+∞,−∞} and N := {1, 2, . . . }. Given N ∈ N, we define T := {0, 1, . . . , N−1}
and TN := T ∪ {N}. If M is a metrizable space, then BM is the Borel sigma algebra on M. If g : M → R∗,
then minx∈M g(x) means that there is a point x∗ ∈M such that g(x∗) = infx∈M g(x); i.e., g attains its infimum,
and x∗ is a minimizer. If g′ : M′ → M, where M′ is a metrizable space, then we define g ◦ g′ : M′ → R∗ by
(g ◦ g′)(y) := g(g′(y)). If M is a Borel space, then P(M) is the space of probability measures on (M,BM) with
the weak topology; if x ∈ M, then δx is the Dirac measure in P(M) that is concentrated at x. We distinguish
between random objects and their realizations (i.e., values) using capital letters and lower-case letters, respectively.
The abbreviation l.s.c. means lower semi-continuous.

II. CONTROL SYSTEM MODEL

We consider a fully observable MDP operating on a finite discrete-time horizon TN , where N ∈ N is given. The
state space S, control space C, and disturbance space D are nonempty Borel spaces. Xt, Ut, and Wt are random
objects, whose co-domains are S, C, and D, respectively.2 The disturbance process (W0,W1, . . . ,WN−1) satisfies
the following property: for every t ∈ T, given (Xt, Ut), Wt is conditionally independent of Wτ for every τ 6= t. The
realizations of X0 are concentrated at an arbitrary element x of S. For every t ∈ T, pt(·|·, ·) is a Borel-measurable
stochastic kernel on D given S×C, providing a conditional distribution for the realizations of Wt. For every t ∈ T,
if (x, u) ∈ S × C is the realization of (Xt, Ut), then the probability that Xt+1 is in S ∈ BS is defined by

qt(S|x, u) := pt
(
{w ∈ D : ft(x, u, w) ∈ S}

∣∣x, u), (2)

where ft : S×C×D → S is a Borel-measurable function for the dynamics. The stage cost function ct : S×C → R
for every t ∈ T and the terminal cost function cN : S → R are Borel-measurable.

Assumption 1 (Measurable selection): We assume:
1) There exist a ∈ R and b ∈ R such that a ≤ ct ≤ b for every t ∈ TN . (We define Z := [a, b].)
2) The control space C is compact.
3) For every t, ft and ct are continuous functions, and pt(·|·, ·) is a continuous stochastic kernel.
We will show that Assumption 1 guarantees the existence of an optimal policy that depends on the dynamics of

a running maximum (Sec. IV). It is standard to impose a measurable selection assumption for stochastic optimal
control problems on Borel spaces, e.g., see [32]. As risk-aware MDP problems can pose additional technical
challenges, it is common to assume bounded costs, e.g., [17], [28], [30], [33]. We assume continuous cost functions

2The realizations of Xt, Ut, and Wt include the possible states, controls, and disturbances at time t, respectively.



ct because our cost-update operation is a composition of two functions (rather than a sum). Hence, we replace the
typical l.s.c. assumption by a property that is preserved under compositions. In the theoretical sections of this work,
we assume that Assumption 1 holds, even without an explicit statement.

III. RISK-AVERSE SAFETY ANALYSIS

First, we will present an example for the maximum random cost Y (1b) in terms of a desired operating region K.
Then, we will provide measure-theoretic definitions for Y and CVaR to formalize our risk-averse safety specification
Srα.

A. Y as a Distance between the State Trajectory and K

Suppose that K ∈ BS is a desired operating region. While we would like the state trajectory to remain inside K
always, this may not be possible due to disturbances that may arise. We will explain how one may choose Y (1b)
to represent a distance between the state trajectory and K.

Let gK : S → R be bounded and continuous, where gK(x) quantifies a signed distance between a state x and the
boundary of K. For example, if S ∈ BR2 is bounded and K = [0, k1]× [0, k2] ⊂ S is the set of desired water levels
in two storage tanks, then max{x1− k1, x2− k2, 0} or max{x1− k1, x2− k2} are suitable choices for gK(x) with
x = [x1, x2]T ∈ S. More generally, if x is outside K and far from its boundary, then gK(x) has a large positive
value. Otherwise, if x is inside K, then there are two options: 1) gK(x) equals zero, or 2) gK(x) equals a more
negative value if x is located more deeply inside K. The former applies when there is no preference for certain
trajectories inside K. The latter applies when there is a preference for trajectories that are inside K and farther
from its boundary.

To quantify the extent of the state trajectory’s departure relative to K, we can choose the terminal and stage cost
functions to be gK . That is, we can choose cN = gK and ct(x, u) = gK(x) for every t ∈ T and (x, u) ∈ S×C. In
this case, if (x0, x1, . . . , xN ) ∈ SN+1 is the realization of (X0, X1, . . . , XN ), then y = max{gK(xt) : t ∈ TN} is
the realization of Y (1b). In this example, Y represents the extent of the state trajectory’s departure from K, and
we use the notation Y ′ = Y (Fig. 1).

B. A CVaR-based Trajectory-wise Safety Specification
To define risk-averse safe sets formally, we must describe Y (1b) in measure-theoretic terms. Let x ∈ S be

an initial state and π ∈ Π be a control policy. (We will specify the control policy class Π in Sec. IV.) Y is a
random variable defined on a probability space (Ω,BΩ, P

π
x ). The sample space Ω contains all possible trajectories;

a trajectory is a tuple of states, maximum stage costs, and controls over time. From Assumption 1, every ct is
bounded below by a ∈ R. Given (x, a), π, and the system dynamics, there exists a unique probability measure
P πx ∈ P(Ω) (Ionescu-Tulcea Theorem). We write P πx instead of P πx,a for brevity. Eπx(·) denotes the expectation
operator with respect to P πx . Since the stage and terminal cost functions are bounded (Assumption 1), Y is bounded
everywhere. This is one way to ensure that Eπx(|Y |) is finite, which will allow us to define CVaRπα,x(Y ).

As we have mentioned, CVaRπα,x(Y ) represents the average value of Y in the α · 100% worst cases when the
initial state is x and the system uses the control policy π. The meaning of the α ·100% worst cases is made precise
using a quantity called the Value-at-Risk of Y at level α, which we denote by VaRπα,x(Y ). Formally, CVaRπα,x(Y )
is the expectation of Y conditioned on the event that Y exceeds VaRπα,x(Y ), provided that α ∈ (0, 1) and the
distribution function of Y is continuous at VaRπα,x(Y ) [24, Th. 6.2]. The Value-at-Risk of Y at level α ∈ (0, 1) is
defined by

VaRπα,x(Y ) := inf{y ∈ R : P πx ({Y ≤ y}) ≥ 1− α}, (3)

where y 7→ P πx ({Y ≤ y}) is the distribution function of Y . Now, for every α ∈ (0, 1], we define CVaRπα,x(Y ) by

CVaRπα,x(Y ) := inf
s∈R

(
s+ 1

αE
π
x(max{Y − s, 0})

)
, (4)

following Shapiro et al. [24, Eq. (6.22)]. We call s ∈ R a dual parameter. Using the derivation from [24, p. 258],
one can show that if α ∈ (0, 1), then CVaRπα,x(Y ) equals

VaRπα,x(Y ) + 1
αE

π
x(max{Y − VaRπα,x(Y ), 0}). (5)



This relation implies that CVaRπα,x(Y ) assesses a probability-weighted average of the realizations of Y above
VaRπα,x(Y ).

CVaR is an attractive choice for defining safety specifications for two reasons. First, the parameter α has a
quantitative interpretation as a fraction of the worst cases. Second, CVaR assesses the part of a distribution above a
particular quantile and therefore is designed to assess more rare and harmful outcomes. We define risk-averse safe
sets Srα as the sublevel sets of the optimal CVaR of the maximum random cost Y .

Definition 1 (Srα): For every α ∈ (0, 1] and r ∈ R, we define the (α, r)-risk-averse safe set by Srα := {x ∈ S :
J ∗α (x) ≤ r} with J ∗α (x) := infπ∈Π CVaRπα,x(Y ) (1).

In the next section, we will show that risk-averse safe sets can be characterized exactly using stochastic dynamic
programs on an augmented state space.

IV. CHARACTERIZATION OF RISK-AVERSE SAFE SETS USING STOCHASTIC DYNAMIC PROGRAMS

Unlike the minimum expectation of a cumulative cost, J ∗α cannot be computed using a DP recursion on the state
space S alone. Such a recursion holds in special cases due to the structure inherent in certain problems, but it does
not hold universally. To alleviate the challenge of optimizing the CVaR of a maximum cost, we will construct an
augmented state space to record the running maximum. Recall that Z = [a, b].

A. Construction of an Augmented State Space
We define the random augmented state by Xt := (Xt, Zt) for every t ∈ TN . Xt is the original S-valued random

state. Zt is a Z-valued random object that records the maximum stage cost up to time t (to be further described).
The realizations of X0 = (X0, Z0) are concentrated at (x, a), where we recall that x ∈ S is arbitrary. Zt+1 depends
on Xt, Ut, and Zt as follows: Zt+1 = max{ct(Xt, Ut), Zt} for every t ∈ T. We define S := S ×Z for brevity.
Xt and Ut are functions defined on Ω := (S× C)N × S. Every ω ∈ Ω takes the form

ω = (x0, z0, u0, . . . , xN−1, zN−1, uN−1, xN , zN ) (6)

with (xt, zt) ∈ S for every t ∈ TN and ut ∈ C for every t ∈ T. We define Xt(ω) := (Xt(ω), Zt(ω)) := (xt, zt)
and Ut(ω) := ut for every ω ∈ Ω whose coordinates are specified by (105). It follows that Xt and Ut are Borel-
measurable functions. While these definitions are general enough to capture arbitrary dependencies between the
coordinates of ω, we restrict ourselves to particular casual dependencies, which we have discussed and will continue
to present. Next, we will define the class Π of control policies using the augmented state space S.

Definition 2 (Π): Every control policy π ∈ Π takes the form π = (π0, π1, . . . , πN−1), where πt(·|·, ·) is a
Borel-measurable stochastic kernel on C given S for every t ∈ T.

Remark 1 (Π is history-dependent): Let π ∈ Π be given, and suppose that (xt, zt) ∈ S is the realization of
Xt = (Xt, Zt). The distribution πt(·|xt, zt) ∈ P(C) for the realizations of Ut depends on (xt, zt), which depends
on the previous states and controls.

Remark 2 (A deterministic control law δκ): Let κ : S → C be Borel-measurable. We use the notation δκ to
denote the following Borel-measurable stochastic kernel on C given S: for every (x, z) ∈ S, δκ(x,z) is the Dirac
measure in P(C) that is concentrated at the point κ(x, z) ∈ C.

The next remark presents a convenient notation for an element of S and a transition law for the realizations of
Xt+1.

Remark 3 (χt, q̃t): The notation χt = (xt, zt) denotes an element of S. For every t ∈ T and (χt, ut) ∈ S × C,
let q̃t(·|χt, ut) be the product measure of qt(·|xt, ut) (77) and δmax{ct(xt,ut),zt}. q̃t is a continuous stochastic kernel
on S given S× C by applying Assumption 1 (see Appendix).

Now, we are ready to formalize the expectation operator Eπx(·). Let x ∈ S and π ∈ Π be given. If G : Ω→ R∗
is Borel-measurable and Eπx(G) :=

∫
ΩG dP πx exists, then

Eπx(G) =
∫
S
∫
C · · ·

∫
SG(χ0, u0, . . . , χN ) q̃N−1(dχN |χN−1, uN−1) · · ·π0(du0|χ0) δx,a(dχ0), (7)

by applying [32, Prop. 7.28] and Assumption 1 (see Appendix). The kernels in (7) describe how an augmented
state χ0 = (x0, z0) may lead to a control u0, how (χ0, u0) may lead to a subsequent augmented state χ1 = (x1, z1),
and so on. The point (x, a) serves as the initial augmented state.



B. Characterization of Risk-Averse Safe Sets
Here, we show that risk-averse safe sets enjoy an equivalent representation in terms of a family of stochastic

dynamic programs on the augmented state space under Assumption 1. For convenience, for every s ∈ R, we define
hs : R→ R by

hs(y) := max{y − s, 0}. (8)

Let x ∈ S and α ∈ (0, 1] be given. The optimal value J ∗α (x) (1) can be expressed using the definitions of
CVaRπα,x(Y ) (4) and hs (8) as follows:

J ∗α (x) = inf
s∈R

(
s+ 1

α inf
π∈Π

Eπx(hs(Y ))
)
, (9)

where we exchange the order of the infima over R and Π. By the definition of Y (1b) and Assumption 1, we have
that Y (ω) ∈ Z for every ω ∈ Ω. Consequently, a minimizer in Z exists for the outer problem of (9) by the next
lemma.

Lemma 1 (Existence of a minimizer): Let Assumption 1 hold, x ∈ S, α ∈ (0, 1], G : Ω → R be Borel-
measurable, and G(ω) ∈ [a, b] for every ω ∈ Ω. Define Lαx(s) := s + 1

α infπ∈ΠE
π
x(hs(G)) for every s ∈ R.

Then, infs∈R L
α
x(s) = mins∈[a,b] L

α
x(s), i.e., a minimizer s∗x,α ∈ [a, b] exists.

Proof: Define ` := infs∈[a,b] L
α
x(s). Then, for every s ∈ [a, b], Lαx(s) ≥ `. Now, if s ≤ a, then hs(G) = G− s,

and hence, Lαx(s) ≥ Lαx(a) ≥ `. However, if s ≥ b, then hs(G) = 0, and thus, Lαx(s) ≥ Lαx(b) ≥ `. Since Lαx(s) ≥ `
for every s ∈ R, ` = infs∈R L

α
x(s) holds. Since Lαx(s) is continuous in s and [a, b] is compact, the infimum ` is

attained by a point s∗x,α ∈ [a, b] [42, Th. A6.3].
For every s ∈ R, we define V s : S → R∗ by

V s(x) := inf
π∈Π

Eπx(hs(Y )). (10)

By Lemma 1, there exists a point s∗x,α ∈ Z such that

J ∗α (x) = min
s∈Z

(
s+ 1

αV
s(x)

)
= s∗x,α + 1

αV
s∗x,α(x). (11)

We will develop a dynamic programming-based solution for V s to characterize J ∗α . Toward this aim, we define
extended random variables that represent costs-to-go. For every s ∈ R and t ∈ TN , we define Y s

t : Ω→ R∗ by

Y s
t :=

{
hs(max{cN (XN ), At, Zt}), if t ∈ T,
hs(max{cN (XN ), ZN}), if t = N,

(12)

with At : Ω → R, At := maxi∈{t,...,N−1} ci(Xi, Ui), t ∈ T. The next theorem specifies some properties of a
conditional expectation φπ,st (x, z) = Eπ(Y s

t |Xt = (x, z)) of Y s
t given Xt. The theorem is based on the definition

of conditional expectation [42, Th. 6.3.3] and a basic change-of-measure theorem [42, Th. 1.6.12]. For brevity, we
use the notation

∫
Ω ϕ ◦ Xt dP πx :=

∫
Ω ϕ(Xt(ω)) dP πx (ω), where ϕ : S→ R∗ is Borel-measurable.

Theorem 1 (Properties of φπ,st ): Let Assumption 1 hold, and let x ∈ S, π ∈ Π, and s ∈ R be given. Define the
function JsN : S→ R∗ by

JsN (x, z) := hs(max{cN (x), z}). (13)

Then, the following statements hold:

Eπx(hs(Y )) =
∫

Ω φ
π,s
0 ◦ X0 dP πx = φπ,s0 (x, a), (14)∫

Ω φ
π,s
N ◦ XN dP πx =

∫
Ω J

s
N ◦ XN dP πx , (15)∫

Ω φ
π,s
t ◦ Xt dP πx =

∫
Ω φ

π,s
t+1 ◦ Xt+1 dP πx , t ∈ T. (16)

Proof: For every t ∈ TN , Y s
t is an extended random variable on (Ω,BΩ, P

π
x ), Xt : Ω→ S is Borel-measurable,

and
∫

Ω Y
s
t dP πx exists (recall that Y s

t is nonnegative). The probability measure induced by Xt is defined by
P πx,Xt(S) := P πx (X−1

t (S)) for every S ∈ BS. By the definition of conditional expectation [42, Th. 6.3.3] and the
change-of-measure theorem [42, Th. 1.6.12], we have∫

Ω Y
s
t dP πx =

∫
Ω φ

π,s
t ◦ Xt dP πx , t ∈ TN , (17)



where the integrals exist. Now, ∫
Ω Y

s
t dP πx =

∫
Ω Y

s
t+1 dP πx , t ∈ T, (18)

as a consequence of Zt+1 = max{ct(Xt, Ut), Zt}. The relations (51)–(52) imply the relation (188). The relation
(186) is derived using (7) and (51) with t = 0; note that Eπx(Y s

0 ) = Eπx(hs(Y )) because a ≤ ct for every t ∈ TN
and the realizations of (X0, Z0) are concentrated at (x, a). The relation (187) holds by (51) with t = N and by
Y s
N = JsN ◦ XN .
Subsequently, we will use Theorem 1 to derive a DP-based solution for V s (10), and we will show the existence

of a control policy that is optimal for V s under Assumption 1.
Theorem 2 (DP on S): Let Assumption 1 hold, and let s ∈ R be given. Recall the definition of JsN (185). For

t = N − 1, . . . , 1, 0, we define Jst : S→ R∗ recursively by

Jst (x, z) := inf
u∈C

vst (x, z, u), (19a)

where we define vst : S× C → R∗ by vst (x, z, u) :=∫
D J

s
t+1

(
ft(x, u, w),max{ct(x, u), z}

)
pt(dw|x, u). (19b)

Then, for every t ∈ TN , Jst is l.s.c. and bounded below by zero. Moreover, for every t ∈ T, there is a Borel-
measurable function κst : S→ C such that

Jst (x, z) = vst (x, z, κ
s
t (x, z)), (x, z) ∈ S. (20)

We define πs := (δκs0 , δκs1 , . . . , δκsN−1
), which is an element of Π. Then, for every x ∈ S, we have

Js0(x, a) = V s(x) = Eπ
s

x (hs(Y )). (21)

Proof: Jst being l.s.c. and bounded below by zero for every t ∈ TN and the existence of a Borel-measurable
function κst : S→ C that satisfies (289) for every t ∈ T follow from standard induction arguments. These arguments
use Assumption 1, properties that are preserved under integration with respect to a continuous stochastic kernel
[32, Prop. 7.30], and a measurable selection result [32, Prop. 7.33].

Next, we prove (21). We work on the probability spaces {(Ω,BΩ, P
π
x ) : x ∈ S, π ∈ Π}. For (21), it suffices to

show that for every t ∈ TN and x ∈ S,

∀π ∈ Π,
∫

Ω φ
π,s
t ◦ Xt dP πx ≥

∫
Ω J

s
t ◦ Xt dP πx , (22a)∫

Ω φ
πs,s
t ◦ Xt dP π

s

x =
∫

Ω J
s
t ◦ Xt dP π

s

x . (22b)

Indeed, if t = 0, then the above statement implies that for every x ∈ S and π ∈ Π,

Eπx(hs(Y )) ≥ Js0(x, a) = Eπ
s

x (hs(Y )), (23)

using (186) from Theorem 1 and the realizations of X0 being concentrated at (x, a) (7). Then, we take the infimum
of the expression in (23) with respect to π ∈ Π to derive (21). The function φπ,st appears inside an integral in (22)
because a conditional expectation is not unique everywhere in general [42, Th. 6.3.3]. We proceed by induction to
prove (22). The base cases (t = N) for (22) hold by (187) from Theorem 1. Now, suppose that for some t ∈ T,
we have: for every x ∈ S,

∀π ∈ Π,
∫

Ω φ
π,s
t+1 ◦ Xt+1 dP πx ≥

∫
Ω J

s
t+1 ◦ Xt+1 dP πx . (24)

Let x ∈ S and π ∈ Π be given. To show the induction step for (22a), it suffices to show that∫
Ω J

s
t+1 ◦ Xt+1 dP πx ≥

∫
Ω J

s
t ◦ Xt dP πx , (25)

by applying (188) from Theorem 1 and the induction hypothesis (24). Noting that Jst+1 ◦ Xt+1 : Ω→ R∗ is Borel-
measurable and nonnegative, we use (7), the change-of-measure result [42, Th. 1.6.12], and the Fubini Theorem
[42, Th. 2.6.6] to derive ∫

Ω J
s
t+1 ◦ Xt+1 dP πx =

∫
Ω v

s,π
t ◦ Xt dP πx , (26)

where vs,πt : S→ R∗ is given by
vs,πt (x, z) :=

∫
C v

s
t (x, z, u) πt(du|x, z). (27)



Since vs,πt ◦ Xt : Ω → R∗ and Jst ◦ Xt : Ω → R∗ are Borel-measurable and satisfy vs,πt ◦ Xt ≥ Jst ◦ Xt ≥ 0 and
(288) holds, the relation (25) follows. An induction argument for (22b) is similar. A key step is using (289) to find
that vs,π

s

t = Jst .
In particular, by letting any s ∈ R be the dual parameter’s value and any x ∈ S be the initial state, we have

shown that (21) holds under Assumption 1. Therefore, under Assumption 1, we conclude that for every s ∈ R and
x ∈ S, Js0(x, a) = V s(x). This conclusion permits a useful characterization for risk-averse safe sets (Def. 1) in
terms of the family {Js0 : s ∈ Z} under Assumption 1:

Srα =
{
x ∈ S : min

s∈Z

(
s+ 1

αJ
s
0(x, a)

)
≤ r
}
. (28)

To derive (44), we use (11) as well. Since {Js0 : s ∈ Z} does not depend on α or r, the family {Js0 : s ∈ Z}
characterizes any collection of risk-averse safe sets {Srα : α ∈ Λ, r ∈ R}, where Λ is a subset of (0, 1] and R is a
subset of R.

The results in this section provide a nonunique optimal policy on the augmented state space πs
∗
x,α ∈ Π under

Assumption 1. Policies on augmented state spaces have also been developed by, e.g., [17], [25], [28], [30]. Nonunique
optimal policies are typical in stochastic optimal nonlinear control.

Remark 4 (Policy deployment): Let α ∈ (0, 1] and x ∈ S be given. Let πs
∗
x,α ∈ Π satisfy (21), where s∗x,α ∈ Z

satisfies (11). Let κ
s∗x,α
t be the control law for time t ∈ T associated with πs

∗
x,α . Let (x0, z0) = (x, a) and t = 0.

For t = 0, 1, . . . , N − 1, repeat the following four steps: 1) choose ut = κ
s∗x,α
t (xt, zt); 2) nature provides a

realization wt of Wt according to the distribution pt(·|xt, ut); 3) the realization (xt+1, zt+1) of (Xt+1, Zt+1) is
(ft(xt, ut, wt),max{ct(xt, ut), zt}); 4) t updates by 1.

V. NUMERICAL EXAMPLE

Risk-averse safety analysis, as presented here, suffers from the curse of dimensionality inherent to DP and
requires an augmented state space. Despite these computational challenges, risk-averse safety analysis may be a
useful tool for designing control systems. At the design stage, large-scale off-line simulations may be commonplace,
and designers may be required to assess multiple alternatives in light of uncertainty.

A. Description of the Application
We consider the problem of modifying the design of an urban stormwater system (i.e., a network of pipes, storage

tanks, natural streams, etc., near an urban area). Apart from being actively controlled, the stormwater system that we
consider is otherwise typical.3 The system consists of two tanks connected by a valve, and water flows by gravity
between the tanks based on the relative difference in water levels and the position of the valve (Fig. 2). Water
enters the system through a random process of surface runoff. Water exits the system through a storm sewer drain
that is connected to tank 2 or through outlets that lead to a combined sewer. The storm sewer directs stormwater
to a nearby water body; this is the desired outcome and occurs without penalty. Unfortunately, the storm sewer’s
capacity is limited, and when water levels become too high, excess flows are directed to a combined sewer. In drier
periods, a combined sewer carries a mixture of untreated wastewater and stormwater to a wastewater treatment plant.
However, when storm events cause the flow in a combined sewer to exceed its design capacity, a flow regulator
(downstream from our system) will divert some of the untreated mixture of stormwater and sewage into a nearby
water body. This event is known as a combined sewer overflow. Combined sewers are present in older cities, such as
Toronto and San Francisco, and overflows from these sewers can harm local ecosystems. We aim to use risk-averse
safety analysis to examine how design modifications to the system above may reduce the risk of combined sewer
overflows by managing the maximum water levels in the system.

B. System Model for the Baseline Design
The state Xt = [Xt1, Xt2]T is a vector of the random water levels in tank 1 and tank 2 at time t. The co-

domain of Xt is S = [0, k̄1] × [0, k̄2] ft2, where k̄i = ki + 2 ft and ki is the maximum water level that tank i
can hold without releasing water into the combined sewer. The control input is the valve position at time t, and

3Actively controlled stormwater systems are becoming more common but are relatively novel technologies, e.g., see [43].



Fig. 2. A schematic of the stormwater system and a probability mass function for the surface runoff disturbance (cubic feet per
second, cfs). The baseline design and three alternative designs are shown.

the co-domain of Ut is C = [0, 1] (closed to open, unitless). The tuple (W0,W1, . . . ,WN−1) represents surface
runoff that arises due to precipitation uncertainty. The disturbances are independent and identically distributed,
and their distribution does not depend on the current state or control. The realizations of Wt have units of cubic
feet per second (cfs). The disturbance space is a subset of the non-negative orthant in R containing finitely many
elements, D = {w(j) : j = 1, 2, . . . , NW } with NW ∈ N. In prior work [44], we simulated a design storm in
PCSWMM software (Computational Hydraulics International), which is an extension of the US Environmental
Protection Agency’s Stormwater Management Model [45]. A design storm is a synthetic precipitation time series
based on historical data that a local government uses to specify regulations for new or retrofitted stormwater systems.
The empirical distribution from our simulations had positive skew, and the mean was approximately 12.2 cfs. We
used these characteristics to inform the choice of the disturbance distribution shown in Fig. 2: mean (12.2 cfs),
variance (9.9 cfs2), and skew (0.74).

Let t ∈ T be given. If xt ∈ S, ut ∈ C, and wt ∈ D are the values of Xt, Ut, and Wt, respectively, then the
value of Xt+1 is given by

xt+1 = f(xt, ut, wt) = xt +4 · f̄(xt, ut, wt), (29a)

such that if xt+1,i ≥ k̄i, then we redefine xt+1,i = k̄i. The symbol 4 is the duration between time t and time
t+ 1, which is constant for all t ∈ T. In this model, f = ft for all t ∈ T. The function f̄ is chosen according to
simplified Newtonian physics:

f̄(x, u, w) :=
[
f̄1(x, u, w), f̄2(x, u, w)

]T
f̄1(x, u, w) :=

w − qcso,1(x)− qvalve(x, u)

a1

f̄2(x, u, w) :=
w − qcso,2(x) + qvalve(x, u)− qstorm,2(x)

a2

qvalve(x, u) := u · π̄r2
v · sign(h(x)) ·

√
2g|h(x)|

h(x) := max{x1 − z1, 0} −max{x2 − z1,in, 0}.

(29b)

Table I lists model parameters. The outlets to the combined sewer and to the storm sewer are equipped with outflow
regulation devices that produce a linear outflow rate. For example, qstorm,2(x) with x ∈ S is given by

qstorm,2(x) := qmax,2 −
qmax,2

k̄2 − z2
min{k̄2 − x2, k̄2 − z2}

qmax,2 := cdπ̄r
2
s

√
2g(k̄2 − z2),

(29c)

where qmax,2 is tank 2’s maximum outflow rate to the storm sewer, cd is a discharge coefficient, π̄ ≈ 3.14, g is
gravitational acceleration, rs is the storm sewer outlet radius, and z2 is the storm sewer outlet elevation. The outflow
rates to the combined sewer, qcso,1 and qcso,2, are defined similarly to (29c). The constraint set K = [0, k1]× [0, k2]
specifies the invert elevations of the combined sewer outlets (i.e., the maximum water levels that the tanks can hold



without releasing water into the combined sewer). The function gK quantifies the maximum water elevation above
the combined sewer invert elevations,

gK(x) = max{x1 − k1, x2 − k2, 0} ∀x ∈ S. (30)

TABLE I
STORMWATER SYSTEM PARAMETERS (BASELINE)

Symbol Description Value
a1 Surface area of tank 1 30000 ft2

a2 Surface area of tank 2 10000 ft2

cd Discharge coefficient 0.61 (no units)
g Acceleration due to gravity 32.2 ft

s2

a Minimum of ct = gK (30) 0 ft
b Maximum of ct = gK (30) 2 ft
k1 Combined sewer outlet elevation, tank 1 3 ft
k2 Combined sewer outlet elevation, tank 2 4 ft
k̄1 Maximum value of x1 5 ft
k̄2 Maximum value of x2 6 ft
N Length of discrete time horizon 20 (= 1 h)
π̄ Circle circumference-to-diameter ratio ≈ 3.14
rs Storm sewer outlet radius 1/3 ft
rv Valve radius 1/3 ft
4 Duration of [t, t+ 1) 3 min
z1 Pipe elevation with respect to base of tank 1 1 ft
z1,in Pipe elevation with respect to base of tank 2 2 ft
z2 Storm sewer outlet elevation 1 ft
N/A Number of combined sewer outlets, tank 1 3
N/A Number of combined sewer outlets, tank 2 1
N/A Combined sewer outlet radius, tank 1 1/4 ft
N/A Combined sewer outlet radius, tank 2 3/8 ft
ft = feet, s = seconds, min = minutes, h = hours.

C. Verification of Assumption 1
It holds that gK(x) ∈ Z = [a, b] = [0, 2] for all x ∈ S, where gK is defined by (30). We choose ct = gK

for all t ∈ TN . Thus, ct is Z-valued and continuous. The control space C = [0, 1] is compact. In our example,
the stochastic kernel for the disturbance process does not depend on (x, u), which implies that it is constant and
therefore continuous in (x, u). The dynamics function f (29) is continuous because it is a composition of continuous
functions. Recall that the function λ(x) := sign(x)

√
|x| is continuous since limx↑0 λ(x) = limx↓0 λ(x) = 0.

D. Designs
We investigate the effect of different designs on the system’s safety, as quantified in terms of risk-averse safe

sets. The designs are listed below:
a) Baseline;
b) Replace the valve with a controllable bidirectional pump, whose maximum pumping rate is q̄pump;
c) Retrofit tank 1 with an outlet that drains to a storm sewer without penalty; or
d) Increase the surface area of tank 2 by 20%.

We modify the baseline system model to obtain a model representing design b, c, or d. For design d, we set
a2 = 12000 ft2. For design c, the equation for the flow through tank 1 changes to the following:

f̄1(x, u, w) :=
w − qcso,1(x)− qvalve(x, u)− qstorm,1(x)

a1
, (31)



where qstorm,1(x) takes the same form as qstorm,2(x) in (29c).
For design b, the control space becomes C = [−1, 1], and the term qvalve(x, u) is replaced by qpump(x, u), which

models the flow rate generated by a pump. Prior to presenting the form of qpump(x, u), we introduce its dependencies,
Ii(x, u) and `(xi, u). Ii(x, u) is a Boolean variable that determines whether the water level is too low to permit
pumping, and the function `(xi, u) represents a start-up phase. I1(x, u) is true if and only if the pump attempts
to push water from tank 1 to tank 2 (u < 0), but the water level in tank 1 is too low. I2(x, u) has an analogous
interpretation. Formally, we define I1(x, u) and I2(x, u) as follows:

I1(x, u) := x1 < zp − ε and u < 0

I2(x, u) := x2 < zp − ε and u ≥ 0,
(32a)

where zp is a threshold elevation and ε is a small positive number. We define the function `(xi, u) as follows:

`(xi, u) :=
q̄pump · u

2ε
(xi + ε− zp). (32b)

We define qpump(x, u) as follows:

qpump(x, u) :=


0 if I1(x, u) or I2(x, u)

−`(x1, u) if x1 ∈ [zp − ε, zp + ε] and u < 0

−`(x2, u) if x2 ∈ [zp − ε, zp + ε] and u ≥ 0

−u · q̄pump otherwise.

(32c)

One can show that qpump is a composition of continuous functions by replacing the case statements in (32c) with
minimum and maximum operators:

qpump(x, u) =
−q̄pump

2ε

(
min{0, u}ν(y1) + max{0, u}ν(y2)

)
ν(y) := max{0,min{y, 2ε}}
yi := xi + ε− zp.

Table II lists model parameters for the pump design (b).

TABLE II
STORMWATER SYSTEM PARAMETERS (PUMP DESIGN)

Symbol Description Value
q̄pump Maximum pumping rate 10 cfs
ε Slack variable 1

12 ft
zp Threshold pumping elevation 1 ft
ft = feet, cfs = cubic feet per second.

E. Current Method vs. Under-approximation Method
Computations of Srα for the four designs are shown in Fig. 3. For comparison, we provide computations of the

under-approximation set Urα,γ (γ = 20) using the method from our prior work [12]. The under-approximation method
uses a γ-dependent soft-maximum and an α-dependent upper bound for the CVaR to derive a (γ, α)-dependent
upper bound for the optimal value J ∗α (x) (1) with ct = gK . For a fixed γ, solving one MDP problem is required
to compute Urα,γ for all α and r of interest. The DP iterates for this MDP problem are defined on the original state
space S, and the objective is an expected cumulative γ-dependent cost. We have explored values of γ between 10
and 120 in increments of roughly 10. We have chosen γ = 20 because this value provides relatively large estimates
of Urα,γ for more risk-averse values of α. The selection of an appropriate γ depends on one’s preferences, and
additional guidance is provided in [12].

While no parameter tuning is required for the current method, which provides Srα exactly in principle, greater
computational resources are required. First, due to time inconsistency and a non-additive cost function, the dynamic
program that determines the minimum CVaR is defined on an augmented state space, which is the Cartesian product



of the original state space S and the interval Z . Moreover, due to the definition for the CVaR (4), a second outer
optimization with respect to the dual parameter is required. Consequently, the inner dynamic program is implemented
repeatedly for different values of the dual parameter. While this increases the computational complexity significantly,
problems with different dual parameters can be solved in parallel to reduce computation time.

One can run the under-approximation method on a standard laptop (2–4 CPU cores) in approximately 10 minutes
for a fixed γ and a fixed design. However, this approach is not suitable for the current method. In particular, we
used a high-performance computing cluster. The complete job (four designs) required about 54 hours and 30
CPU cores.4 These run-time and CPU values should be considered a rough comparison of the resources that naive
implementations of the two methods require; we have made no attempt to optimize computational efficiency beyond
parallelizing the operations in a given DP recursion. Table III summarizes the main trade-offs between the current
method and under-approximation method.

TABLE III
TRADE-OFFS BETWEEN METHODS

Current Method Under-Approximation Method [12]
Provides Srα exactly in principle Provides an under-approximation for Srα in principle
Does not require parameter tuning The soft-maximum parameter γ requires tuning.
Requires significantly more computational resources Requires significantly less computational resources
Useful for in-depth analysis of a small number of promising designs Useful as a screening tool to identify more promising designs from

a collection of candidate designs

F. Discussion of the Numerical Results
We use the notation Ŝrα (Ûrα,γ) to indicate a computation of Srα (Urα,γ). This notation emphasizes the distinction

between an exact mathematical quantity and a computation of this quantity returned by a computer program. The
under-approximation method preserves interesting and potentially useful qualitative features that are provided by
the current method. For example, the Ŝrα-contours for the pump design (b) are more rectangular in comparison to
those for the baseline design (a) (Fig. 4). These features are apparent from the Ûrα,γ-contours as well (Fig. 3, first
two rows, pink dotted lines). The Ŝrα-contours for the outlet design (c) are stretched along the x1-axis in comparison
to the baseline design (a) (Fig. 5, top, black vs. pink). This effect is also seen by observing the associated contours
of Ûrα,γ (Fig. 5, bottom, black vs. pink). Increasing the surface area of tank 2 (design d) stretches the contours of
Ŝrα and Ûrα,γ along the x2-axis in comparison to the baseline design (Fig. 5, top and bottom, orange dotted vs.
pink). As the risk-aversion level α becomes smaller (more pessimistic), the contours of Ŝrα and Ûrα,γ contract, as
we expect, while the qualitative features are preserved (Fig. 3).

While the under-approximation method recovers qualitative features and requires reduced computational resources,
it tends to over-estimate the effect of making a design change (Table IV). Consequently, we see the under-
approximation method as a preliminary screening tool to identify more promising designs from a collection of
candidate designs. On the other hand, we see the current method as a tool for in-depth analysis of a small number
of promising designs that have been selected a priori by preliminary screening.

The risk-aversion level α allows one to specify a degree of pessimism in terms of a fraction of worst cases, which
has benefits for designing systems in practice. Stormwater systems are often required to satisfy precise regulatory
criteria. For example, an outflow rate must be no more than a given threshold when simulating the outcome from
a (non-stochastic) design storm via hydrology and hydraulic modeling software, e.g., [45]. Our framework could
be used in parallel with standard practices to quantify the effect of stochastic surface runoff on low-dimensional
models of proposed designs, as the degree of risk aversion α varies. The value of α provides a systematic and
interpretable way to assess a design with respect to varying degrees of pessimism about the future. While the typical
minimax approach to control systems leads to robust designs by adopting a worst-case perspective, designing for
the worst case may not be financially feasible, especially given the limited budgets afforded to “ordinary” rather

4In the main paper, we state that about 13.5 hours is required for each design because (54 hours)/(4 designs) = 13.5 hours per design.
We used the Tufts Linux Research Cluster (Medford, MA) running MATLAB (The Mathworks, Inc.), and our code is available from
https://github.com/risk-sensitive-reachability/RSSAVSA-2021.



than “safety-critical” infrastructure. Therefore, the flexibility afforded by α may be useful for assessing trade-offs
between system performance and financial considerations in practice.

Fig. 3. Contours of computations of risk-averse safe sets for α ∈ {0.99, 0.05, 0.005, 0.0005, 5 · 10−5} and r ∈ {0.2, 1, 1.8}.
Each row pertains to a particular design. Solid blue lines show the numerical results for Srα. Pink dotted lines show the numerical
results for Urα,γ (γ = 20) using the under-approximation method from [12].



Fig. 4. Contours of computations of risk-averse safe sets for α ∈ {0.99, 0.05, 0.005, 0.0005, 5 · 10−5} and r ∈
{0.1, 0.2, . . . , 1.9} when using the current method for two designs: a) baseline and b) replace valve with pump. This figure
shows the contour shapes for these two designs in more detail by presenting more values of r compared to Fig. 3.

VI. CONCLUSIONS

By overcoming theoretical challenges attributed to optimizing the CVaR of a trajectory-wise maximum cost, we
have shown that risk-averse safe sets enjoy an equivalent representation in terms of the solutions to a family of
stochastic dynamic programs. We are investigating extensions to higher-dimensional systems in the finite-time case
using extreme value theory [31] and in the infinite-time case using value function approximations. In the future, we
hope to study new problems that combine performance and risk-averse safety criteria, such as optimizing a utility
functional subject to a constraint on the CVaR of a maximum cost.

VII. APPENDIX

Here, we provide step-by-step technical details underlying the theoretical results of the main paper. Throughout
the Appendix, we assume that Assumption 1 holds, even if this is not explicitly stated. This assumption is useful
for ensuring that integrals are well-defined, optimal policies exist, etc. In particular, while a milder assumption may
be sufficient, we construct P πx using Assumption 1 (Sec. VII-C).

A. An Extended Proof for Lemma 1
Lemma 1 (Existence of a minimizer in [a, b]): Let Assumption 1 hold. Let x ∈ S and α ∈ (0, 1] be given. Suppose

that G : Ω → R is measurable relative to BΩ and BR, and suppose that G(ω) ∈ [a, b] for every ω ∈ Ω. Define
Lαx(s) := s+ 1

α inf
π∈Π

Eπx(hs(G)) with hs(y) := max{y − s, 0} (8). Then,

inf
s∈R

Lαx(s) = min
s∈[a,b]

Lαx(s), (33)

where min means that a minimizer s∗x,α ∈ [a, b] exists.
Proof: Note that Lαx : R→ R is given by

Lαx(s) = s+ 1
αv
∗
s(x) (34)

v∗s(x) := inf
π∈Π

Eπx(max{G− s, 0}). (35)



Fig. 5. This figure presents numerical results from Fig. 3 from a different perspective to depict how a different design may produce
a differently shaped or sized contour, r ∈ {0.2, 1, 1.8}. We placed the results for all designs in a single sub-plot pertaining to a
particular α. We used the current method to obtain the results in the top row, and the under-approximation method (γ = 20) to
obtain the results in the bottom row. Note that the contours for design a (baseline, magenta solid lines) and design c (add outlet,
black solid lines) overlap in regions where x2 has larger values.

Lαx is R-valued in particular because

∀s ∈ R ∀π ∈ Π, max{b− s, 0} ≥ Eπx(max{G− s, 0}) ≥ 0. (36)

Define
` := inf

s∈[a,b]
Lαx(s). (37)

` is finite because
Lαx(a) ≥ inf

s∈[a,b]
Lαx(s) ≥ a. (38)

To derive the second inequality, note that

∀s ∈ [a, b], Lαx(s) = s+ 1
α inf
π∈Π

Eπx(max{G− s, 0}) ≥ s+ 1
α0 = s ≥ a. (39)

We will show that for any s ∈ R, Lαx(s) ≥ `, from which we will conclude that

inf
s∈R

Lαx(s) ≥ ` := inf
s∈[a,b]

Lαx(s) ≥ inf
s∈R

Lαx(s). (40)

First, for any s ∈ [a, b], Lαx(s) ≥ ` holds by the definition of `. Second, consider s ≤ a, equivalently, −s ≥ −a. In
this case, for every ω ∈ Ω,

G(ω)− s ≥ G(ω)− a ≥ 0 =⇒ max{G(ω)− s, 0} = G(ω)− s, (41)

and therefore,
Lαx(s)

∣∣∣
s≤a

= s+ 1
α inf
π∈Π

Eπx(max{G− s, 0})
∣∣∣
s≤a

= s+ 1
α inf
π∈Π

Eπx(G− s). (42)

We continue the algebra to find that

Lαx(s)
∣∣∣
s≤a

= s+ 1
α inf
π∈Π

Eπx(G)− 1
αs = s(1− 1

α) + 1
α inf
π∈Π

Eπx(G). (43)

If s = a in (43), then we have
Lαx(a) = a(1− 1

α) + 1
α inf
π∈Π

Eπx(G). (44)



TABLE IV
QUANTITATIVE COMPARISON OF DESIGNS (r = 1)

α = 0.99 b vs. a c vs. a d vs. a
Current Method 0.93 0.079 0.34
Under-approximation Method 2.6 0.069 0.93
α = 0.05 b vs. a c vs. a d vs. a
Current Method 2.1 0.068 0.71
Under-approximation Method 3.6 0.059 1.3
α = 0.005 b vs. a c vs. a d vs. a
Current Method 3.1 0.059 1.1
Under-approximation Method 5.1 0.072 1.9
α = 0.0005 b vs. a c vs. a d vs. a
Current Method 4.9 0.055 1.8
Under-approximation Method 7.6 0.03 2.8
α = 0.00005 b vs. a c vs. a d vs. a
Current Method 9.0 0.054 3.3
Under-approximation Method 14 0.031 5.3
We list the increase in the size of a risk-averse safe set for design b, c, or d
compared to the baseline (design a). This is a quantitative depiction of the some
of the results in Fig. 5. Let Ny,α denote the number of states in the computation
of Srα for design y ∈ {a, b, c, d} and r = 1. Let N̂y,α denote the number of
states in the computation of Urα,γ for design y, r = 1, and γ = 20. Each
quantity in a row labeled Current Method takes the form (Ny,α−Na,α)/Na,α.
Each quantity in a row labeled Under-approximation Method takes the form
(N̂y,α − N̂a,α)/N̂a,α.

Now, since −s ≥ −a and 1
α − 1 ≥ 0, it holds that

s(1− 1
α) = −s( 1

α − 1) ≥ −a( 1
α − 1) = a(1− 1

α). (45)

Therefore,

Lαx(s)
∣∣∣
s≤a

(43)
= s(1− 1

α) + 1
α inf
π∈Π

Eπx(G)
(45)
≥ a(1− 1

α) + 1
α inf
π∈Π

Eπx(G)
(44)
= Lαx(a) ≥ `. (46)

The third and last case is to consider s ≥ b, equivalently, −s ≤ −b, from which we deduce that for every ω ∈ Ω,

G(ω)− s ≤ G(ω)− b ≤ 0 =⇒ max{G(ω)− s, 0} = 0. (47)

It follows that

Lαx(s)
∣∣∣
s≥b

= s+ 1
α inf
π∈Π

Eπx(max{G− s, 0})
∣∣∣
s≥b

= s+ 1
α0 = s ≥ b = Lαx(b) ≥ `. (48)

We have shown that for every s ∈ R, Lαx(s) ≥ ` holds, and therefore, we conclude that (40) holds, equivalently,

inf
s∈R

Lαx(s) = inf
s∈[a,b]

Lαx(s). (49)

To show that inf
s∈[a,b]

Lαx(s) = min
s∈[a,b]

Lαx(s), we prove that Lαx is continuous in s.5 Since Lαx(s) = s + 1
αv
∗
s(x), it

suffices to show that
v∗s(x) = inf

π∈Π
Eπx(max{G− s, 0}) (50)

is continuous in s. We will show that for any s ∈ R and s′ ∈ R,

|v∗s(x)− v∗s′(x)| ≤ |s− s′|, (51)

that is, v∗s(x) is Lipschitz continuous in s with Lipschitz constant equal to one. First, note that for any c ∈ R and
d ∈ R, we have

max{c + d, 0} ≤ max{c, 0}+ max{d, 0} (52)

5The infimum of a lower semi-continuous function on a compact topological space is attained [42, Th. A6.3, p. 389].



because
c + d ≤ max{c, 0}+ max{d, 0}, (53)

y 7→ max{y, 0} is non-decreasing, and thus,

max{c + d, 0} ≤ max{max{c, 0}+ max{d, 0}, 0} = max{c, 0}+ max{d, 0}, (54)

where the equality holds because max{c, 0}+ max{d, 0} ≥ 0. In addition, max{c, 0} ≤ |c| holds because

max{c, 0} =

{
c if c ≥ 0

0 if c < 0
. (55)

By using (52) and max{c, 0} ≤ |c|, we have that for any ω ∈ Ω,

max{G(ω)− s, 0} = max{(G(ω)− s′) + (s′ − s), 0} (56)

≤ max{G(ω)− s′, 0}+ max{s′ − s, 0} (57)

≤ max{G(ω)− s′, 0}+ |s′ − s|. (58)

From (58), we conclude that for any π ∈ Π,

Eπx(max{G− s, 0}) ≤ Eπx(max{G− s′, 0}) + |s′ − s|. (59)

By taking the infimum over Π, we have

inf
π∈Π

Eπx(max{G− s, 0}) ≤ inf
π∈Π

Eπx(max{G− s′, 0}) + |s′ − s|, (60)

and by using the definition (50), it holds that

v∗s(x) ≤ v∗s′(x) + |s′ − s|. (61)

By exchanging the roles of s and s′ in (56)–(61), we find that

v∗s′(x) ≤ v∗s(x) + |s− s′|. (62)

From (61) and (62), we have
− |s− s′| ≤ v∗s(x)− v∗s′(x) ≤ |s− s′|, (63)

which proves the desired statement (51).

B. About the Dirac measure
This subsection derives a fact about the Dirac measure. While the content is elementary, we could not find a full

explanation in any classical measure theory or real analysis textbook. So, we provide an explanation here.
Let us study a Dirac measure on a Borel space. Suppose that Y is a Borel space and y ∈ Y is given. Let δy

be the Dirac measure in P(Y) concentrated at y. δy is also called the unit mass concentrated at y [39, p. 17]. If
φ : Y → R∗ is Borel-measurable, then∫

Y
φ dδy :=

∫
Y
φ(y0) δy(dy0) = φ(y). (64)

Why does the equation (64) hold? Recall that δy : BY → {0, 1} is defined by [39, Examples 1.20 (b), p. 17], [32,
p. 130 top],

δy(B) :=

{
1, if y ∈ B,
0, if y ∈ Y \B,

(65)

and therefore,
δy(B) = IB(y) (66)

for every B ∈ BY . First, suppose that φ := IB , where B ∈ BY . In this case, we have∫
Y
φ dδy =

∫
Y
IB dδy

(∗)
= δy(B)

(66)
= IB(y) = φ(y), (67)



where (∗) holds by the definition of the integral [42, 1.5.3, p. 36]. Second, suppose that φ :=
∑n

i=1 biIBi , where
n ∈ N, {B1, B2, . . . , Bn} is a disjoint collection of sets in BY , and bi ∈ (0,+∞) for every i ∈ {1, 2, . . . , n}. In
this second case, φ is called a nonnegative finite-valued simple function, and we have∫

Y
φ dδy =

∫
Y

(
n∑
i=1

biIBi

)
dδy

(∗)
=

n∑
i=1

biδy(Bi)
(66)
=

n∑
i=1

biIBi(y) = φ(y). (68)

Third, suppose that φ is a nonnegative Borel-measurable function. Then, φ is the (pointwise) limit of a nondecreasing
sequence of nonnegative, finite-valued, simple functions φi [42, Th. 1.5.5 (a), p. 38]. That is, φi is nonnegative,
finite-valued, and simple for every i ∈ N, φi ≤ φi+1 for every i ∈ N, and

φ(y0) = lim
i→+∞

φi(y0), y0 ∈ Y. (69)

Then, by the Monotone Convergence Theorem [42, 1.6.2, p. 44], we have

lim
i→+∞

∫
Y
φi dδy =

∫
Y
φ dδy. (70)

Moreover, since φi is nonnegative, finite-valued, and simple, we have∫
Y
φi dδy

(68)
= φi(y), i ∈ N. (71)

All together, we have ∫
Y
φ dδy

(70)
= lim

i→+∞

∫
Y
φi dδy

(71)
= lim

i→+∞
φi(y)

(69)
= φ(y). (72)

Finally, suppose that φ is an arbitrary Borel-measurable function. Then, we can write φ in terms of its positive and
negative parts as follows [42, p. 37]:

φ(y0) = max{φ(y0), 0}︸ ︷︷ ︸
φ+(y0)

−max{−φ(y0), 0}︸ ︷︷ ︸
φ−(y0)

, y0 ∈ Y. (73)

The right side of (73) can never have the form +∞−∞ because
• φ(y0) ∈ R =⇒ φ+(y0) ∈ R and φ−(y0) ∈ R;
• φ(y0) = +∞ =⇒ φ+(y0) = +∞ and φ−(y0) = 0;
• φ(y0) = −∞ =⇒ φ+(y0) = 0 and φ−(y0) = +∞.

Since φ+ and φ− are Borel-measurable and nonnegative, we have∫
Y
φ+ dδy

(72)
= φ+(y),∫

Y
φ− dδy

(72)
= φ−(y).

(74)

Then,
φ(y)

(73)
= φ+(y)− φ−(y)

(74)
=

∫
Y
φ+ dδy −

∫
Y
φ− dδy (75)

does not have the form +∞−∞, as explained above. Lastly, we apply the definition of the integral [42, p. 37] to
conclude that

φ(y)
(75)
=

∫
Y
φ+ dδy −

∫
Y
φ− dδy =

∫
Y
φ dδy, (76)

which shows the desired statement (64). In the next subsection, we derive P πx and the associated expectation.



C. A Derivation for Pπx and the Associated Expectation
It is well-established that the system model of interest permits the construction of a unique probability measure

on a space containing all possible trajectories.6 This measure is used to evaluate expectations of random variables,
which can represent costs that may be incurred as the system evolves over time. Recall Assumption 1:

1) There exist a ∈ R and b ∈ R such that a ≤ ct ≤ b for every t ∈ TN . (We define Z := [a, b].)
2) The control space C is compact.
3) For every t, ft and ct are continuous functions, and pt(·|·, ·) is a continuous stochastic kernel.

Note that we are working with Borel spaces:
• S, C, and D are Borel spaces by the assumed system model. Z = [a, b] is a closed subset of R, which

implies that Z ∈ BR. Since R is a Borel space and Z ∈ BR, Z is also a Borel space [32, Prop. 7.12, p.
119]. S := S ×Z with the product topology is a Borel space because it is a finite Cartesian product of Borel
spaces [32, Prop. 7.13, p. 119]. Similarly, S×C with the product topology is a Borel space. Borel spaces are
separable and metrizable [32, p. 118].

Often, we use the notation S = S ×Z , and χt = (xt, zt) or χ = (x, z) denotes an arbitrary element of S. If M is
a metrizable space, we equip the set of probability measures on (M,BM) with the weak topology, and we denote
this topological space by P(M) [32, p. 122, p. 127]. Next, we will define a stochastic kernel on S given S × C
that provides the conditional distribution for the realizations of the augmented state.

1) Construction and Analysis of q̃t: Recall the definition

qt(S|x, u) := pt({w ∈ D : ft(x, u, w) ∈ S}|x, u), S ∈ BS , (x, u) ∈ S × C, (77)

and the notation
qt(Z|x, z, u) := δmax{ct(x,u),z}(Z), Z ∈ BZ , (x, z, u) ∈ S× C. (78)

For every (x, z, u) ∈ S × C, let q̃t(·|x, z, u) be the product measure of qt(·|x, u) and qt(·|x, z, u). The product
measure q̃t(·|x, z, u) is the unique measure on (S,BS) such that

q̃t(S ×Z|x, z, u) = qt(S|x, u) · qt(Z|x, z, u), S ∈ BS , Z ∈ BZ , (79)

by [42, Cor. 2.6.3, p. 100] and [32, Prop. 7.13, p. 119]. When we apply [42, Cor. 2.6.3], we are working with the
probability spaces (S,BS , qt(·|x, u)) and (Z,BZ , qt(·|x, z, u)), where the measures are sigma finite because they
are finite (as they are probability measures). The domain of the product measure q̃t(·|x, z, u) is the product sigma
algebra of BS and BZ [42, Cor. 2.6.3], which is the smallest sigma algebra that contains all sets of the form S×Z
with S ∈ BS and Z ∈ BZ [42, p. 97]. Since S and Z are Borel spaces, the product sigma algebra of BS and BZ
is equivalent to BS×Z [32, Prop. 7.13, p. 119].

Lemma 2 (Analysis of q̃t): Under Assumption 1, q̃t is a continuous stochastic kernel on S given S× C.
Proof: For every (x, z, u) ∈ S × C, we have that q̃t(·|x, z, u) ∈ P(S) because q̃t(·|x, z, u) is a probability

measure on (S,BS) and we have equipped the set of probability measures on (S,BS) with the weak topology. q̃t
is a stochastic kernel on S given S× C because it provides a family of elements of P(S), where each element of
P(S) depends on an element of S × C [32, Def. 7.12, p. 134]. Now, consider the function γt : S × C → P(S)
defined by

γt(x, z, u) := q̃t(·|x, z, u), (x, z, u) ∈ S× C. (80)

To show that q̃t is a continuous stochastic kernel, we need to show that γt is continuous [32, Def. 7.12]. Recall
the following properties:
• The map γ1,t : S × C → P(S) defined by

γ1,t(x, u) := qt(·|x, u) (81)

is continuous because ft is continuous, S, C, and D are Borel spaces, and pt is a continuous stochastic kernel
on D given S × C [32, top of p. 209].

• The map γ2,t : S ×Z × C → P(Z) defined by

γ2,t(x, z, u) := qt(·|x, z, u) := δmax{ct(x,u),z} (82)

6For example, see [32, Prop. 7.28, pp. 140–141], which is a special case of the Ionescu-Tulcea Theorem.



is continuous. The reason is three-fold: the map ν : Z → P(Z) defined by ν(z) := δz is continuous [32, Cor.
7.21.1, p. 130],7 the map (x, z, u) 7→ max{ct(x, u), z} is continuous due to max and ct being continuous, and
a composition of two continuous maps on topological spaces is continuous [36, p. 119].

• The map γ3,t : S ×Z × C → P(S)× P(Z) defined by

γ3,t(x, z, u) := (γ1,t(x, u), γ2,t(x, z, u)) = (qt(·|x, u), qt(·|x, z, u)) (83)

is continuous because γ1,t and γ2,t are continuous (we equip P(S) × P(Z) with the product topology [42,
Th. A3.2, p. 377], [32, p. 120]).

• We paraphrase the following result [32, Lemma 7.12, p. 144]: If X and Y are separable metrizable spaces,
then the map σ : P(X)× P(Y)→ P(X× Y) defined by

σ(p, q) := pq, (84)

where pq is the product of the measures p and q, is continuous.
Since S and Z are Borel spaces, they are separable and metrizable [32, p. 118]. For every (x, z, u) ∈ S ×Z ×C,
the product of qt(·|x, u) and qt(·|x, z, u) is q̃t(·|x, z, u), and thus,

σ(qt(·|x, u), qt(·|x, z, u))
(84)
= q̃t(·|x, z, u). (85)

All together, we have

σ(γ3,t(x, z, u))
(83)
= σ(qt(·|x, u), qt(·|x, z, u))

(85)
= q̃t(·|x, z, u)

(80)
= γt(x, z, u). (86)

Since γt = σ ◦ γ3,t is a composition of continuous maps, γt is continuous. We conclude that q̃t is a continuous
stochastic kernel under Assumption 1.

Next, we will use Lemma 2 and [32, Prop. 7.28] to derive a useful probability measure.
2) Construction of Pπx and Definition of Eπx(·): Let Assumption 1 hold, and let x ∈ S and π ∈ Π be given. Please note

the following items:
• δx,a is the Dirac measure on (S,BS) concentrated at the point (x, a), i.e., for every S ∈ BS,

δx,a(S) :=

{
1, if (x, a) ∈ S,
0, if (x, a) ∈ S \ S.

(87)

• For every t ∈ T = {0, 1, . . . , N − 1} q̃t is a continuous stochastic kernel on S given S×C under Assumption
1 (Lemma 2). (We only need q̃t to be Borel-measurable to apply [32, Prop. 7.28].)

• For every t ∈ T, πt is a Borel-measurable stochastic kernel on C given S by the definition of Π.
Next, we use [32, Prop. 7.28] to construct a unique probability measure P πx ∈ P(Ω), where we define Ω :=

(S×C)N × S. We translate the notation from [32, Prop. 7.28] to our setting in Tables V and VI. The text in blue
denotes the symbols from [32, Prop. 7.28], and the text in black denotes our symbols.

TABLE V
NOTATION FOR BOREL SPACES AND SAMPLES

Borel space X1 X2 X3 X4 · · · Xn−2 Xn−1 Xn

Borel space S C S C · · · S C S
Sample x1 x2 x3 x4 · · · xn−2 xn−1 xn

Sample χ0 u0 χ1 u1 · · · χN−1 uN−1 χN

The result [32, Prop. 7.28], which is a special case of the Ionescu-Tulcea Theorem, states that for n = 2, 3, . . . ,
there is a unique probability measure rn ∈ P(X1 × · · · ×Xn) such that

rn(X1 ×X2 × · · · ×Xn−1 ×Xn)

=
∫
X1

∫
X2
· · ·
∫
Xn−1

qn−1(Xn|x1, x2, . . . , xn−1) qn−2(dxn−1|x1, x2, . . . , xn−2) · · · q1(dx2|x1) p(dx1)
(88)

7In our work, δz denotes the Dirac measure on (Z,BZ) concentrated at z. The reference [32] uses the notation pz instead. When reading
[32, Cor. 7.21.1, p. 130], note that a homeomorphism is continuous.



TABLE VI
NOTATION FOR BOREL-MEASURABLE STOCHASTIC KERNELS

Stochastic kernel or proba-
bility measure

Samples permitted in conditional statement, yi = (x1, . . . , xi) Stochastic kernel or probabil-
ity measure

p(dx1) N/A δx,a(dχ0)

q1(dx2|y1) y1 = x1 = χ0 π0(du0|χ0)

q2(dx3|y2) y2 = (x1, x2) = (χ0, u0) q̃0(dχ1|χ0, u0)

q3(dx4|y3) y3 = (x1, x2, x3) = (χ0, u0, χ1) π1(du1|χ1)

q4(dx5|y4) y4 = (x1, x2, x3, x4) = (χ0, u0, χ1, u1) q̃1(dχ2|χ1, u1)

· · · · · · · · ·
qn−2(dxn−1|yn−2) yn−2 = (x1, x2, . . . , xn−2) = (χ0, u0, . . . , χN−1) πN−1(duN−1|χN−1)

qn−1(dxn|yn−1) yn−1 = (x1, x2, . . . , xn−2, xn−1) = (χ0, u0, . . . , χN−1, uN−1) q̃N−1(dχN |χN−1, uN−1)

for every X1 ∈ BX1
, . . . , Xn ∈ BXn . Using n = 2N +1 and the notation from Tables V and VI,8 there is a unique

probability measure P πx ∈ P(Ω) such that

P πx (S0 × C0 × S1 × C1 × S2 × · · · × CN−1 × SN )

=
∫
S0

∫
C0

∫
S1

∫
C1

∫
S2
· · ·
∫
CN−1

q̃N−1(SN |χN−1, uN−1) πN−1(duN−1|χN−1) · · ·

q̃1(dχ2|χ1, u1) π1(du1|χ1) q̃0(dχ1|χ0, u0) π0(du0|χ0) δx,a(dχ0)
(89)

for every S0 ∈ BS, . . . ,SN ∈ BS and for every C0 ∈ BC , . . . , CN−1 ∈ BC . While P πx depends on a, we do not
include a when writing the symbol P πx for brevity.

Let G : Ω→ R∗ be measurable relative to BΩ and BR∗ , i.e., G : (Ω,BΩ)→ (R∗,BR∗). Our presentation of the
definition of the expectation of G with respect to P πx follows [42] and [32]. The positive and negative parts of G
are defined by

G+(ω) := max{G(ω), 0}, (90)

G−(ω) := max{−G(ω), 0}, (91)

respectively, where G+ : Ω → R∗ and G− : Ω → R∗ are measurable relative to BΩ and BR∗ [42, p. 37], [32, p.
103]. The expectation of G with respect to P πx is defined by

Eπx(G) :=

∫
Ω
G dP πx :=

∫
Ω
G+ dP πx −

∫
Ω
G− dP πx , (92a)

if the right side of (92a) does not take the form +∞−∞; if the right side of (92a) takes the form +∞−∞, then
we say that Eπx(G) does not exist [42, p. 37]. While Eπx(·) depends on a through P πx , we do not include a when
writing the symbol Eπx(·) for brevity. If

∫
ΩG

+ dP πx < +∞ or
∫

ΩG
− dP πx < +∞, that is, if Eπx(G) exists,9 then

we have∫
Ω
G dP πx =

∫
S

∫
C
· · ·
∫
S
G(χ0, u0, . . . , χN ) q̃N−1(dχN |χN−1, uN−1) · · ·π0(du0|χ0) δx,a(dχ0), (92b)

by [32, Prop. 7.28, see Eq. (47)], where we only write some of the stochastic kernels from (89) for brevity. Many
of the subsequent sections will use the definition of the expectation with respect to P πx .

3) Further Discussion about Integration: Suppose that g : Ω → R∗ is Borel-measurable (i.e., measurable relative to
BΩ and BR∗) and bounded below. Let π ∈ Π be given. Consider the function ψπ : S→ R∗ defined by ψπ(χ0) :=∫
C

∫
S
· · ·
∫
C

∫
S
g(χ0, . . . , uN−1, χN ) q̃N−1(dχN |χN−1, uN−1)︸ ︷︷ ︸

gn(χ0,u0,...,χN−1,uN−1)

πN−1(duN−1|χN−1) · · · q̃0(dχ1|χ0, u0) π0(du0|χ0),

(93)

8The tuple (χ0, u0, . . . , χN−1, uN−1, χN ) has 2N + 1 entries.
9If G : Ω → R∗ is Borel-measurable and nonnegative, then G−(ω) := max{−G(ω), 0} = 0 for every ω ∈ Ω, which implies that∫

ΩG
−(ω) dPπx (ω) = 0 < +∞.



where we only write some of the integrals for brevity. Why is ψπ (93) Borel-measurable and bounded below? To
address this question, the following fact is useful.

Remark 5 (Extending stochastic kernels): Suppose that X, Y, and Z are Borel spaces, and let q(dy|x) be a
Borel-measurable stochastic kernel on Y given X. Then, the stochastic kernel q′ on Y given X× Z defined by

q′(dy|x, z) := q(dy|x), (x, z) ∈ X× Z, (94)

is Borel-measurable. To prove this fact, we need to show that the function σ′ : X× Z→ P(Y) defined by

σ′(x, z) := q′(dy|x, z) (95)

is Borel-measurable, i.e., for every B ∈ BP(Y), it holds that

{(x, z) ∈ X× Z : σ′(x, z) ∈ B} ∈ BX×Z. (96)

Let B ∈ BP(Y) be given. Since q is a Borel-measurable stochastic kernel on Y given X, the function σ : X→ P(Y)
defined by

σ(x) := q(dy|x) (97)

is Borel-measurable, implying that
{x ∈ X : σ(x) ∈ B} ∈ BX. (98)

Since BX×Z contains all sets of the form X×Z with X ∈ BX and Z ∈ BZ (for instance, see the proof of [32, Prop.
7.13, p. 119]), we have

{x ∈ X : σ(x) ∈ B} × Z ∈ BX×Z. (99)

By (94), (95), and (97), we have
σ′(x, z) = σ(x), (x, z) ∈ X× Z. (100)

Therefore,

{(x, z) ∈ X× Z : σ′(x, z) ∈ B} (100)
= {(x, z) ∈ X× Z : σ(x) ∈ B} = {x ∈ X : σ(x) ∈ B} × Z, (101)

which is a member of BX×Z by (99).
The desired properties of ψπ (93) (Borel-measurable, bounded below) follow from Remark 5 and by successive

applications of [32, Prop. 7.29, p. 144], which we paraphrase: Let X and Y be Borel spaces, q(dy|x) be a Borel-
measurable stochastic kernel on Y given X, and f : X× Y→ R∗ be Borel-measurable and bounded below. Then,
the function γ : X → R∗ defined by γ(x) :=

∫
Y f(x, y) q(dy|x) is Borel-measurable and bounded below.10 To

show that ψπ (93) is Borel-measurable and bounded below, one applies this proposition to the inner-most integral
in (93) and then proceeds to the outer-most integral. We outline the first two steps below:

1) Consider X = (S× C)N and Y = S. Define a stochastic kernel q̃′N−1 on Y given X by

q̃′N−1(dχN |χ0, u0, . . . , χN−1, uN−1) := q̃N−1(dχN |χN−1, uN−1) (102)

for every (χ0, u0, . . . , χN−1, uN−1) ∈ X. q̃′N−1 is Borel-measurable due to the Borel-measurability of q̃N−1

(Remark 5). The function g : X × Y → R∗ in (93) is Borel-measurable and bounded below by assumption.
Thus, the function gn : X→ R∗ defined by

gn(χ0, u0, . . . , χN−1, uN−1) :=

∫
S
g(χ0, u0, . . . , χN−1, uN−1, χN ) q̃N−1(dχN |χN−1, uN−1)

=

∫
S
g(χ0, u0, . . . , χN−1, uN−1, χN ) q̃′N−1(dχN |χ0, u0, . . . , χN−1, uN−1)

(103)
is Borel-measurable and bounded below by applying [32, Prop. 7.29, p. 144]. We also use the fact that a finite
Cartesian product of Borel spaces with the product topology is a Borel space [32, Prop. 7.13, p. 119].

10The bounded-below property is not included in the statement of [32, Prop. 7.29, p. 144].



2) By substituting gn (103) into the definition of ψπ (93), we have

ψπ(χ0) =

∫
C

∫
S
· · ·
∫
C
gn(χ0, u0, . . . , χN−1, uN−1) πN−1(duN−1|χN−1)︸ ︷︷ ︸

gn−1(χ0,u0,...,χN−1)

· · · q̃0(dχ1|χ0, u0) π0(du0|χ0).

(104)
By an analogous argument, gn−1 is Borel-measurable and bounded below.

D. More Measure-theoretic Fundamentals
First, we recall some preliminaries. Every ω ∈ Ω := (S× C)N × S takes the form

ω = (x0, z0, u0, . . . , xN−1, zN−1, uN−1, xN , zN ), (105)

and we recall the notation χt = (xt, zt) ∈ S × Z = S. We define Xt, Zt, and Ut to be projections from Ω to S,
Z , and C, respectively, such that for every ω ∈ Ω of the form in (105),

Xt(ω) := xt, t ∈ TN , (106a)

Zt(ω) := zt, t ∈ TN , (106b)

Ut(ω) := ut, t ∈ T. (106c)

Zt+1 depends on Xt, Zt, and Ut as follows:

Zt+1(ω) = max{ct(Xt(ω), Ut(ω)), Zt(ω)}, ω ∈ Ω, t ∈ T. (107)

The realizations of (X0, Z0) are concentrated at (x, a), where x can be any element of S. For every s ∈ R and
ω ∈ Ω, we define

Y (ω) := max
{
cN (XN (ω)),max

i∈T
ci(Xi(ω), Ui(ω))

}
, (108)

Y s
t (ω) := hs

(
max

{
cN (XN (ω)), max

i∈{t,...,N−1}
ci(Xi(ω), Ui(ω)), Zt(ω)

})
, t ∈ T, (109)

Y s
N (ω) := hs (max{cN (XN (ω)), ZN (ω)}) , (110)

where hs : R→ R is defined by
hs(y) := max{y − s, 0}, (111)

which is nonnegative and continuous.
Remark 6 (Equivalent expressions for Y and Y s

t ): For every s ∈ R and ω ∈ Ω of the form in (105), we have

Y (ω) = max
{
cN (xN ),max

i∈T
ci(xi, ui)

}
, (112)

Y s
t (ω) = max

{
max

{
cN (xN ), max

i∈{t,...,N−1}
ci(xi, ui), zt

}
− s, 0

}
, t ∈ T, (113)

Y s
N (ω) = max{max{cN (xN ), zN} − s, 0}, (114)

by applying the definitions of Xt, Zt, and Ut (106) and the definition of hs (111).
1) Analysis of (Xt,Zt): Here, we explain why (Xt, Zt) is a random object. First, we introduce some terminology. If

(Ω1,F1) and (Ω2,F2) are measurable spaces and ḡ : Ω1 → Ω2 is measurable relative to F1 and F2, then ḡ is called
a random object [42, p. 214]. If (Ω2,F2) = (R,BR), then ḡ is called a random variable. If (Ω2,F2) = (R∗,BR∗),
then ḡ is called an extended random variable.

Now, let t ∈ TN be given, and recall that Xt : Ω→ S and Zt : Ω→ Z are defined by

Xt(ω) := xt, (115)

Zt(ω) := zt, (116)



for every ω ∈ Ω of the form in (105). Xt is measurable relative to BΩ and BS ; i.e., Xt is Borel-measurable. This
is because for every S ∈ BS , we have

X−1
t (S) := {ω ∈ Ω : Xt(ω) ∈ S} (117)

= {(x0, z0, u0, . . . , xt, zt, ut, . . . , xN , zN ) ∈ Ω : xt ∈ S} (118)

= S× C × · · · × S ×Z × C × · · · × S. (119)

The set X−1
t (S) is an element of BΩ because X−1

t (S) is a measurable rectangle by (119); e.g., see the proof of [32,
Prop. 7.13, p. 119]. Analogous steps show that Zt is measurable relative to BΩ and BZ ; i.e., Zt is Borel-measurable.

To show that (Xt, Zt) is Borel-measurable, we can use [32, Prop. 7.14, p. 120], which we paraphrase: Let X̄ ,
Ȳ1, and Ȳ2 be Borel spaces, and for i = 1, 2, let f̄i : X̄ → Ȳi be a function. If f̄1 and f̄2 are Borel-measurable,
then the function F̄2 : X̄ → Ȳ1 × Ȳ2 defined by

F̄2(x) := (f̄1(x), f̄2(x)) (120)

is Borel-measurable.
In our problem, Ω, S, and Z are Borel spaces, and Xt : Ω→ S and Zt : Ω→ Z are functions. For brevity, we

define Xt := (Xt, Zt). Since Xt and Zt are Borel-measurable, the function Xt : Ω→ S defined by

Xt(ω) := (Xt, Zt)(ω) := (Xt(ω), Zt(ω)) (121)

is Borel-measurable, i.e., measurable relative to BΩ and BS, by [32, Prop. 7.14]. The function (Xt, Zt) : Ω → S
being Borel-measurable means that (Xt, Zt) is a random object.

2) Studying Ys
0 and max{Y − s, 0}: The next lemma provides a relationship between Y s

0 and max{Y − s, 0}.
Lemma 3: Let Assumption 1 hold, and let x ∈ S, π ∈ Π, and s ∈ R be given. Then, we have

Eπx(Y s
0 ) = Eπx(max{Y − s, 0}). (122)

Proof: Y s
0 is a random variable on (Ω,BΩ, P

π
x ) because Y s

0 : Ω→ R is measurable relative to BΩ and BR, and
P πx is a probability measure on (Ω,BΩ). For convenience, we restate Y s

0 (109) using T = {0, 1, . . . , N − 1}

Y s
0 = hs

(
max

{
cN (XN ),max

i∈T
ci(Xi, Ui), Z0

})
, (123)

and max{Y − s, 0} using the definition of hs (111) and the definition of Y (108):

max{Y − s, 0} (111)
= hs(Y )

(108)
= hs

(
max

{
cN (XN ),max

i∈T
ci(Xi, Ui)

})
. (124)

By comparing (123) and (124), to show that Eπx(Y s
0 ) = Eπx(max{Y − s, 0}), it suffices to show that

max

{
cN (XN ),max

i∈T
ci(Xi, Ui), Z0

}
= Y a.e. w.r.t. P πx . (125)

Indeed, if (125) holds, then

hs
(

max

{
cN (XN ),max

i∈T
ci(Xi, Ui), Z0

})
= hs(Y ) a.e. w.r.t. P πx , (126)

equivalently, using (123),
Y s

0 = hs(Y ) a.e. w.r.t. P πx , (127)

equivalently, using (124),
Y s

0 = max{Y − s, 0} a.e. w.r.t. P πx . (128)

The statement (128) implies that ∫
Ω
Y s

0 dP πx =

∫
Ω

max{Y − s, 0} dP πx , (129)

which is equivalent to the desired statement (122). The integrals in (129) exist because Y s
0 : Ω→ R and max{Y −

s, 0} : Ω→ R are Borel-measurable and nonnegative. Thus, it suffices to show (125) to complete the proof.



We need to explain two items before proceeding. The first item concerns the probability measure induced by X0.
This measure is defined by

P πx,X0
(S) := P πx (X−1

0 (S)), S ∈ BS. (130)

It holds that P πx,X0
= δx,a. Indeed, for every S ∈ BS, we have

P πx,X0
(S)

(130)
= P πx ({ω ∈ Ω : X0(ω) ∈ S})
= P πx (S× C︸ ︷︷ ︸

stage 0

× · · · × S× C︸ ︷︷ ︸
stage N − 1

× S︸︷︷︸
stage N

)

(89)
=
∫
S
∫
C · · ·

∫
C q̃N−1(S|χN−1, uN−1) πN−1(duN−1|χN−1) · · ·π0(du0|χ0) δx,a(dχ0)

= δx,a(S)

(131)

because the innermost integrals evaluate to one. Secondly, since the stage and terminal cost functions are bounded
below by a ∈ R, we have

max

{
cN (xN ),max

i∈T
ci(xi, ui), a

}
= max

{
cN (xN ),max

i∈T
ci(xi, ui)

}
(132)

for every x0 ∈ S, . . . , xN ∈ S and for every u0 ∈ C, . . . , uN−1 ∈ C. That is, the a is redundant for evaluating the
maximum. To see this explicitly, denote m0 := maxi∈T ci(xi, ui) for brevity. If

max {cN (xN ),m0} ≥ a, (133)

then
max {max {cN (xN ),m0}, a} = max {cN (xN ),m0}, (134)

which is equivalent to (132) because

max {max {cN (xN ),m0}, a} = max {cN (xN ),m0, a} . (135)

The inequality (133) holds because cN (xN ) ≥ a and m0 ≥ a.
Now, suppose that ω = (x0, z0, u0, . . . , xN , zN ) ∈ Ω = S × Z × C × · · · × S × Z satisfies (x0, z0) ∈ S × {a}.

Then,

max

{
cN (XN (ω)),max

i∈T
ci(Xi(ω), Ui(ω)), Z0(ω)

}
(106)
= max

{
cN (xN ),max

i∈T
ci(xi, ui), z0

}
(136)

z0∈{a}
= max

{
cN (xN ),max

i∈T
ci(xi, ui), a

}
(137)

(132)
= max

{
cN (xN ),max

i∈T
ci(xi, ui)

}
(138)

(106)
= max

{
cN (XN (ω)),max

i∈T
ci(Xi(ω), Ui(ω))

}
(139)

(108)
= Y (ω). (140)

Therefore,
B1 := {ω = (x0, z0, u0, . . . , xN , zN ) ∈ Ω : (x0, z0) ∈ S × {a}} (141)

is a subset of

B2 :=

{
ω ∈ Ω : max

{
cN (XN (ω)),max

i∈T
ci(Xi(ω), Ui(ω)), Z0(ω)

}
= Y (ω)

}
, (142)

and hence,
P πx (B1) ≤ P πx (B2). (143)

The statement that we desire is (125), which is the same as P πx (B2) = 1. It suffices to show that P πx (B1) = 1,
since then we would have

1 = P πx (B1) ≤ P πx (B2) ≤ 1. (144)



Finally, we have

P πx (B1)
(141)
= P πx ({ω = (x0, z0, u0, . . . , xN , zN ) ∈ Ω : (x0, z0) ∈ S × {a}}) (145)

(106),(121)
= P πx ({ω ∈ Ω : X0(ω) ∈ S × {a}}) (146)

(130)
= P πx,X0

(S × {a}) (147)
(131)
= δx,a(S × {a}) (148)

= 1, (149)

where the last line holds because (x, a) ∈ S × {a} (87).
3) Analysis of Ys

t : We recall from (109)–(110) that for every s ∈ R and ω ∈ Ω,

Y s
t (ω) = hs

(
max

{
cN (XN (ω)), max

i∈{t,...,N−1}
ci(Xi(ω), Ui(ω)), Zt(ω)

})
, t ∈ T,

Y s
N (ω) = hs (max{cN (XN (ω)), ZN (ω)}) ,

where hs : R → R is a nonnegative continuous function defined by hs(y) = max{y − s, 0}. Each cj is real-
valued and Borel-measurable, and Xj : Ω → S, Zj : Ω → Z , and Uj : Ω → C are Borel-measurable functions
(106). As Borel-measurability is preserved under compositions and maximums, Y s

t : Ω → R for every t ∈ TN is
Borel-measurable, i.e., measurable relative to BΩ and BR. The following lemma verifies additional useful properties.

Lemma 4: Let Assumption 1 hold. For every s ∈ R, t ∈ TN , x ∈ S, and π ∈ Π, Y s
t is an extended random

variable on (Ω,BΩ, P
π
x ). In addition, for every t ∈ T, it holds that Y s

t = Y s
t+1.

Proof: Let s ∈ R and t ∈ TN be given. For every x ∈ S and π ∈ Π, (Ω,BΩ, P
π
x ) is a probability space because

BΩ is a sigma algebra of subsets of Ω and P πx is a probability measure on (Ω,BΩ). To verify that Y s
t is an extended

random variable on (Ω,BΩ, P
π
x ), we must show that Y s

t : Ω→ R∗ is measurable relative to BΩ and BR∗ .
For every ω ∈ Ω, it holds that Y s

t (ω) ∈ R ⊆ R∗, so we can view Y s
t as a function from Ω to R∗. Next, we

explain why Y s
t is measurable relative to BΩ and BR∗ .

1) Note that BR∗ is generated by, for example, the family E := {(r,+∞] : r ∈ R} [36, p. 45].
2) Since BR∗ is generated by E , Y s

t : Ω→ R∗ is measurable relative to BΩ and BR∗ if and only if

∀E ∈ E , {ω ∈ Ω : Y s
t (ω) ∈ E} ∈ BΩ (150)

by [36, Prop. 2.1, p. 43].
3) Let E ∈ E be given. So, E = (r,+∞] for some r ∈ R. Then,

{ω ∈ Ω : Y s
t (ω) ∈ E} = {ω ∈ Ω : Y s

t (ω) ∈ (r,+∞]} = {ω ∈ Ω : Y s
t (ω) ∈ (r,+∞)}, (151)

where the last step holds because Y s
t (ω) ∈ R for every ω ∈ Ω.

4) Since (r,+∞) is an open set in R, it is an element of BR. Since (r,+∞) ∈ BR and Y s
t is measurable relative

to BΩ and BR, we have that

{ω ∈ Ω : Y s
t (ω) ∈ E} (151)

= {ω ∈ Ω : Y s
t (ω) ∈ (r,+∞)} ∈ BΩ, (152)

proving (150). We conclude that Y s
t is measurable relative to BΩ and BR∗ .

The last part of the proof is to show that Y s
t = Y s

t+1. We will use the following: for any ri ∈ R with i ∈ {1, 2, 3, 4},

max{r1,max{r2, r3}, r4} = max{r1, r2, r3, r4} (153)

= max{r1, r2,max{r3, r4}} (154)

and

max{r1, r2, r3} = max{r1,max{r2, r3}}. (155)



To show that Y s
t = Y s

t+1 for every t ∈ T = {0, 1, . . . , N − 1}, first let t ∈ {0, 1, . . . , N − 2} be given. For every
ω ∈ Ω, we have

Y s
t (ω)

(109)
= hs

(
max

{
cN (XN (ω)), max

i∈{t,...,N−1}
ci(Xi(ω), Ui(ω)), Zt(ω)

})
(156)

(153)
= hs

(
max

{
cN (XN (ω)), max

i∈{t+1,...,N−1}
ci(Xi(ω), Ui(ω)), ct(Xt(ω), Ut(ω)), Zt(ω)

})
(157)

(154)
= hs

(
max

{
cN (XN (ω)), max

i∈{t+1,...,N−1}
ci(Xi(ω), Ui(ω)), max{ct(Xt(ω), Ut(ω)), Zt(ω)}

})
(158)

(107)
= hs

(
max

{
cN (XN (ω)), max

i∈{t+1,...,N−1}
ci(Xi(ω), Ui(ω)), Zt+1(ω)

})
(159)

(109)
= Y s

t+1(ω). (160)

Now, let t = N − 1. For every ω ∈ Ω, we have

Y s
N−1(ω)

(109)
= hs

(
max

{
cN (XN (ω)), cN−1(XN−1(ω), UN−1(ω)), ZN−1(ω)

})
(161)

(155)
= hs

(
max

{
cN (XN (ω)), max{cN−1(XN−1(ω), UN−1(ω)), ZN−1(ω)}

})
(162)

(107)
= hs

(
max

{
cN (XN (ω)), ZN (ω)

})
(163)

(110)
= Y s

N (ω). (164)

Therefore, we conclude that Y s
t = Y s

t+1 for every t ∈ T = {0, 1, . . . , N − 1}.
In summary, for every x ∈ S, π ∈ Π, t ∈ TN , and s ∈ R, we can view Y s

t (109)–(110) as an extended random
variable on (Ω,BΩ, P

π
x ) because Y s

t : Ω → R∗ is measurable relative to BΩ and BR∗ , where (Ω,BΩ, P
π
x ) is a

probability space. The property Y s
t = Y s

t+1 for every t ∈ T will facilitate the derivation of a dynamic programming
algorithm.

4) Change-of-Variable Image Measure Theorem: We paraphrase a change-of-variable image measure theorem from
[42, Th. 1.6.12, p. 50]: Let (Ω̄,F) and (Ω̄0,F0) be measurable spaces, and let T : Ω̄→ Ω̄0 be measurable relative
to F and F0. Suppose that µ is a measure on F . Define a measure µ0 on F0 by

µ0(A) := µ(T−1(A)), A ∈ F0. (165)

If f̄ : Ω̄0 → R∗ is measurable relative to F0 and BR∗ and A ∈ F0, then∫
T−1(A)

f̄(T (ω)) dµ(ω) =

∫
A
f̄(ω0) dµ0(ω0) (166)

in the sense that if one of the integrals exists, then the other integral exists also, and the two integrals are equal.
Some textbooks, e.g., [37, p. 92], call µ0 = µ ◦ T−1 (165) the image measure of µ by T .

5) Relating Integrals with respect to Pπx and Pπx,Xt : Let x ∈ S and π ∈ Π be given. Recall the notation S := S × Z ,
where χt = (xt, zt) is an arbitrary element of S. For every t ∈ TN , the probability measure on (S,BS) induced
by Xt := (Xt, Zt) encodes the process starting from time zero and ending where Xt may be realized. The symbol
P πx,Xt denotes this induced measure. While P πx,Xt depends on π, t, x, and a, we omit the symbol a from the notation
for brevity. Recall that Xt (121) is defined by

Xt(ω) := (Xt, Zt)(ω) := (Xt(ω), Zt(ω)), t ∈ TN , ω ∈ Ω.

For any S ∈ BS, it holds that

X−1
t (S) := {Xt ∈ S} := {ω ∈ Ω : Xt(ω) ∈ S} ∈ BΩ (167)



because Xt : Ω→ S is measurable relative to BΩ and BS (Sec. VII-D.1). Thus, we can use the probability measure
P πx ∈ P(Ω) (89) to evaluate the event X−1

t (S). This evaluation defines the induced probability measure P πx,Xt :
11

P πx,Xt(S) := P πx (X−1
t (S)), S ∈ BS. (169)

We recall from (131) that P πx,X0
= δx,a. Note that

X−1
t (S) = {Xt ∈ S} = {ω ∈ Ω : (Xt, Zt)(ω) ∈ S} = Ω, t ∈ TN . (170)

Let t ∈ TN be given, and suppose that f̄ : S→ R∗ is measurable relative to BS and BR∗ . We note the following
properties:
• (Ω,BΩ) and (S,BS) are measurable spaces;
• Xt : Ω→ S is measurable relative to BΩ and BS (Sec. VII-D.1);
• P πx (89) is a probability measure on (Ω,BΩ);
• P πx,Xt = P πx ◦ X−1

t (169) is a probability measure on (S,BS).
Therefore, by the change-of-variable image measure theorem (Sec. VII-D.4), we have∫

Ω
f̄ ◦ Xt dP πx :=

∫
Ω
f̄(Xt(ω)) dP πx (ω)

(170)
=

∫
X−1
t (S)

f̄(Xt(ω)) dP πx (ω)
(166)
=

∫
S
f̄ dP πx,Xt , (171)

in the sense that if one of the integrals exists, then the other integral exists as well, and the two integrals are equal.
We would like to provide an explicit form for (171).

We consider the case for t = 0 and the case for t ∈ {1, 2, . . . , N} separately. First, if t = 0, then

f̄(x, a)
(64)
=

∫
S
f̄ dδx,a

(131)
=

∫
S
f̄ dP πx,X0

(171)
=

∫
Ω
f̄ ◦ X0 dP πx . (172a)

We are permitted to apply (64) because f̄ : S → R∗ is Borel-measurable and S (with the product topology) is a
Borel space. In the second step, we use δx,a = P πx,X0

(131).
Now, let t ∈ {1, 2, . . . , N} be given, and suppose that

∫
S f̄ dP πx,Xt or

∫
Ω f̄ ◦ Xt dP πx exists.12 Then, we have∫

Ω
f̄ ◦ Xt dP πx

(171)
=

∫
S
f̄ dP πx,Xt

=

∫
(S×C)t×S

f̄(χt) q̃t−1(dχt|χt−1, ut−1) · · ·π0(du0|χ0) δx,a(dχ0). (172b)

Next, we explain why the last line of (172b) holds. The key idea is to use the change-of-variable image measure
theorem (Sec. VII-D.4) again but for a different reference measure (to be denoted by rπx,t). For convenience, we
define

Ωt := (S× C)t × S, t ∈ {1, 2, . . . , N}. (173)

S, C, . . . ,S, C,S is a finite sequence of Borel spaces, Ωt (173) is a Cartesian product of these spaces, δx,a ∈ P(S) is
given, q̃j is a continuous stochastic kernel under Assumption 1 (Lemma 2), and πj is a Borel-measurable stochastic
kernel. Hence, we apply [32, Prop. 7.28, pp. 140–141] to guarantee the existence of a unique probability measure
rπx,t ∈ P(Ωt) (which depends on a as well) such that

rπx,t(S0 × C0 × · · · × St) =

∫
S0

∫
C0

· · ·
∫
St
q̃t−1(dχt|χt−1, ut−1) · · ·π0(du0|χ0) δx,a(dχ0) (174)

for every S0 ∈ BS, C0 ∈ BC , . . . ,St ∈ BS, and if ḡ : Ωt → R∗ is Borel-measurable and
∫

Ωt
ḡ drπx,t exists, then∫

Ωt

ḡ drπx,t =

∫
S

∫
C
· · ·
∫
S
ḡ(χ0, u0, . . . , χt) q̃t−1(dχt|χt−1, ut−1) · · ·π0(du0|χ0) δx,a(dχ0). (175)

11Since we only know the form of Pπx on measurable rectangles in BΩ, we only know the form of Pπx,Xt on measurable rectangles in
BS×Z . We note that

S ∈ BS , Z ∈ BZ =⇒ S × Z ∈ BS×Z . (168)

A set of form S×Z is called a measurable rectangle in BS×Z . BS×Z contains measurable rectangles and other forms of subsets of S×Z .
12If

∫
S f̄ dPπx,Xt exists, then

∫
Ω f̄ ◦ Xt dPπx exists and

∫
S f̄ dPπx,Xt =

∫
Ω f̄ ◦ Xt dPπx by the statement below (171). Similarly, if∫

Ω f̄ ◦ Xt dPπx exists, then
∫
S f̄ dPπx,Xt exists and

∫
S f̄ dPπx,Xt =

∫
Ω f̄ ◦ Xt dPπx by the statement below (171).



We define Ht : Ωt → S by
Ht(χ0, u0, . . . , χt) := χt, (176)

and therefore, for every S ∈ BS, it holds that

H−1
t (S) := {ωt ∈ Ωt : Ht(ωt) ∈ S} = {(χ0, u0, . . . , χt) ∈ Ωt : Ht(χ0, u0, . . . , χt) ∈ S}

= {(χ0, u0, . . . , χt) ∈ Ωt : χt ∈ S}
= {(χ0, u0, . . . , χt) ∈ (S× C)t × S : χt ∈ S}
= (S× C)t × S ∈ BΩt .

(177)

We know that the set (S× C)t × S ∈ BΩt because this set is a measurable rectangle. We claim that

P πx,Xt(S) = rπx,t(H
−1
t (S)), S ∈ BS. (178)

Indeed, for every S ∈ BS, we have13

P πx,Xt(S) = P πx ({ω ∈ Ω : Xt(ω) ∈ S})
= P πx (S× C︸ ︷︷ ︸

stage 0

× · · · × S× C︸ ︷︷ ︸
stage t− 1

×S× C︸ ︷︷ ︸
stage t

× · · · × S︸︷︷︸
stage N

)

=
∫
S
∫
C · · ·

∫
S
∫
C

∫
S q̃t−1(dχt|χt−1, ut−1) πt−1(dut−1|χt−1) q̃t−2(dχt−1|χt−2, ut−2) · · ·π0(du0|χ0) δx,a(dχ0)

(174)
= rπx,t((S× C)t × S)

(177)
= rπx,t(H

−1
t (S)).

(179)
The third step of (179) holds because we use (89) and the innermost integrals evaluate to one. Now, we apply the
change-of-variable image measure theorem [42, Th. 1.6.12, p. 50]. Ht : Ωt → S is defined by (176). It is Borel-
measurable, and hence, we write Ht : (Ωt,BΩt)→ (S,BS). By our previous discussion, we have rπx,t ∈ P(Ωt) and
P πx,Xt(S) = rπx,t(H

−1
t (S)) for every S ∈ BS. By [42, Th. 1.6.12, p. 50], if ϕ : (S,BS) → (R∗,BR∗) and S ∈ BS,

then ∫
H−1
t (S)

ϕ(Ht(ωt)) drπx,t(ωt) =

∫
S
ϕ(χt) dP πx,Xt(χt) (180)

in the sense that if one of the integrals exist, then the other does as well, and the two integrals are equal. Now,
consider S = S and ϕ = f̄ , and recall our assumption that

∫
S f̄ dP πx,Xt or

∫
Ω f̄ ◦ Xt dP πx exists.

•
∫

Ω f̄ ◦ Xt dP πx exists =⇒
∫
S f̄ dP πx,Xt exists and the two integrals are equal (Footnote 12).

• S = S and ϕ = f̄ =⇒
∫
S ϕ dP πx,Xt =

∫
S f̄ dP πx,Xt .

•
∫
S ϕ dP πx,Xt =

∫
S f̄ dP πx,Xt and

∫
S f̄ dP πx,Xt exists =⇒

∫
S ϕ dP πx,Xt exists.

Therefore, we have∫
S
f̄ dP πx,Xt

(180)
=

∫
H−1
t (S)

f̄(Ht(ωt)) drπx,t(ωt) =

∫
Ωt

f̄(Ht(ωt)) drπx,t(ωt) =

∫
Ωt

f̄ ◦Ht drπx,t, (181)

and the integrals exist. Since f̄ ◦Ht : Ωt → R∗ is Borel-measurable and
∫

Ωt
f̄ ◦Ht drπx,t (181) exists, we have∫

Ωt

f̄ ◦Ht drπx,t
(175)
=

∫
S

∫
C
· · ·
∫
S
f̄(Ht(χ0, u0, . . . , χt)) q̃t−1(dχt|χt−1, ut−1) · · ·π0(du0|χ0) δx,a(dχ0)

(176)
=

∫
S

∫
C
· · ·
∫
S
f̄(χt) q̃t−1(dχt|χt−1, ut−1) · · ·π0(du0|χ0) δx,a(dχ0).

(182)

Finally, we have∫
S
f̄ dP πx,Xt

(181)
=

∫
Ωt

f̄ ◦Ht drπx,t

(182)
=

∫
S

∫
C
· · ·
∫
S
f̄(χt) q̃t−1(dχt|χt−1, ut−1) · · ·π0(du0|χ0) δx,a(dχ0),

(183)

13We use the product measure q̃j(·|xj , zj , uj) instead of the two measures qj(·|xj , uj) and qj(·|xj , zj , uj) separately. If we did not use
the product measure, then the expression

∫
S qt−1(dzt|xt−1, zt−1, ut−1) qt−1(dxt|xt−1, ut−1) would arise in (179). This expression does

not quite make sense because S ∈ BS×Z need not take the form S ×Z with S ∈ BS and Z ∈ BZ .



completing the proof of the last line of (172b) under the assumption that
∫
S f̄ dP πx,Xt or

∫
Ω f̄ ◦ Xt dP πx exists.

E. An Extended Proof for Theorem 1
For every t ∈ TN , we denote a conditional expectation of Y s

t given Xt by φπ,st : S→ R∗ such that

φπ,st (x, z) = Eπ(Y s
t |Xt = (x, z)), (184)

which is unique almost everywhere with respect to P πx,Xt . Next, we study φπ,st in Theorem 1.
Theorem 1 (Properties of φπ,st ): Let x ∈ S, π ∈ Π, and s ∈ R be given, and let Assumption 1 hold. Define the

function JsN : S→ R∗ by14

JsN (x, z) := hs(max{cN (x), z}). (185)

Then, the following relations hold:

Eπx(max{Y − s, 0}) =

∫
Ω
φπ,s0 ◦ X0 dP πx = φπ,s0 (x, a), (186)∫

Ω
φπ,sN ◦ XN dP πx =

∫
Ω
JsN ◦ XN dP πx , (187)∫

Ω
φπ,st ◦ Xt dP πx =

∫
Ω
φπ,st+1 ◦ Xt+1 dP πx , t ∈ T. (188)

Proof: We note the following facts. For every t ∈ TN ,
• Y s

t is an extended random variable on (Ω,BΩ, P
π
x ) (Sec. VII-D.3);

• Xt : Ω→ S is a random object, as it is measurable relative to BΩ and BS (Sec. VII-D.1);15

• Eπx(Y s
t ) =

∫
Ω Y

s
t dP πx exists (it does not take the form +∞−∞) because Y s

t (ω) ≥ 0 for every ω ∈ Ω.
Therefore, by [42, Th. 6.3.3, p. 245], there is a function φπ,st : S → R∗, measurable relative to BS and BR∗ , such
that for every S ∈ BS, ∫

{Xt∈S}
Y s
t dP πx =

∫
S
φπ,st dP πx,Xt . (189a)

We define
Eπ(Y s

t |Xt = (x, z)) := φπ,st (x, z), (189b)

which is unique almost everywhere with respect to P πx,Xt [42, Th. 6.3.3]. This result holds as a consequence of the
Radon-Nikodym Theorem.

First, we write (189) in a particularly useful form. Let t ∈ TN be given. Consider S = S in (189) to find that∫
S
φπ,st dP πx,Xt

(189)
=

∫
{Xt∈S}

Y s
t dP πx

(170)
=

∫
Ω
Y s
t dP πx . (190)

Since
∫

Ω Y
s
t dP πx exists, it follows that

∫
S φ

π,s
t dP πx,Xt (190) exists. Since φπ,st : S→ R∗ is measurable relative to

BS and BR∗ and
∫
S φ

π,s
t dP πx,Xt exists, we apply the change-of-variable image measure theorem to find that∫

Ω
φπ,st ◦ Xt dP πx

(171)
=

∫
S
φπ,st dP πx,Xt , (191)

where the integrals exist. By combining the previous two expressions (190)–(191), we have∫
Ω
φπ,st ◦ Xt dP πx =

∫
Ω
Y s
t dP πx . (192)

We note that (192) holds for every t ∈ TN because it has been derived for an arbitrary time index t ∈ TN .

14hs : R→ R and JsN is defined by (185) =⇒ for every (x, z) ∈ S, JsN (x, z) ∈ R =⇒ for every (x, z) ∈ S, JsN (x, z) ∈ R∗. Hence,
we can view JsN as a function from S to R∗.

15The following statements are equivalent: Xt : Ω → S is measurable relative to BΩ and BS; Xt : Ω → S is Borel-measurable; and
Xt : (Ω,BΩ)→ (S,BS).



Next, we show (188), i.e., ∫
Ω
φπ,st ◦ Xt dP πx =

∫
Ω
φπ,st+1 ◦ Xt+1 dP πx , t ∈ T.

Let t ∈ T be given. From Lemma 4, we have Y s
t = Y s

t+1, and therefore,∫
Ω
Y s
t dP πx =

∫
Ω
Y s
t+1 dP πx , (193)

where the integrals exist because Y s
j is nonnegative and Borel-measurable for every j. Since t ∈ T = {0, 1, . . . , N−

1}, it holds that t+ 1 ∈ TN = {0, 1, . . . , N}. Since (192) applies to any time index in TN , we have∫
Ω
φπ,st+1 ◦ Xt+1 dP πx

(192)
=

∫
Ω
Y s
t+1 dP πx . (194)

We show (188) by combining prior steps:∫
Ω
φπ,st ◦ Xt dP πx

(192)
=

∫
Ω
Y s
t dP πx

(193)
=

∫
Ω
Y s
t+1 dP πx

(194)
=

∫
Ω
φπ,st+1 ◦ Xt+1 dP πx , (195)

noting that t ∈ T is arbitrary.
To show (187), note that the function JsN ◦ XN : Ω→ R∗ is given by

JsN (XN (ω)) = JsN (XN (ω), ZN (ω)) = hs(max{cN (XN (ω)), ZN (ω)}) = Y s
N (ω), (196)

by applying the definitions for XN (121), JsN (185), and Y s
N (110). Also, by considering t = N in (192), we have∫

Ω
φπ,sN ◦ XN dP πx

(192)
=

∫
Ω
Y s
N dP πx

(196)
=

∫
Ω
JsN ◦ XN dP πx , (197)

which shows (187).
To show that Eπx(max{Y − s, 0}) =

∫
Ω φ

π,s
0 ◦ X0 dP πx = φπ,s0 (x, a) (186) holds, first we recall from Lemma 3

that
Eπx(max{Y − s, 0}) = Eπx(Y s

0 ). (198)

By considering t = 0 in (192), we have∫
Ω
φπ,s0 ◦ X0 dP πx

(192)
=

∫
Ω
Y s

0 dP πx = Eπx(Y s
0 ). (199)

Note that φπ,s0 : S→ R∗ is measurable relative to BS and BR∗ , and the following equalities hold:

Eπx(Y s
0 )

(199)
=

∫
Ω
φπ,s0 ◦ X0 dP πx

(191)
=

∫
S
φπ,s0 dP πx,X0

. (200)

We apply (172a) to find that ∫
S
φπ,s0 dP πx,X0

(172a)
= φπ,s0 (x, a). (201)

By (198) and (200)–(201), we conclude that

Eπx(max{Y − s, 0}) (198)
= Eπx(Y s

0 ) =

∫
Ω
φπ,s0 ◦ X0 dP πx = φπ,s0 (x, a), (202)

which shows (186).
The next result is useful for Theorem 2.



F. Analysis of Lower Semi-continuous Bounded Below Functions
Variations of the lemma in this section can be found in the literature, e.g., see [32, Lemma 7.14 (a), p. 147] and

[42, Th. A6.6, pp. 390–391].16 Our proof combines techniques from these textbooks. We present the technical details
of the proof in one place for convenience. The notation C(M) denotes the Banach space of bounded, real-valued,
and continuous functions on M, where M is a metrizable space.

Lemma 5: Let M be a metrizable space. Suppose that J : M → R∗ is lower semi-continuous (l.s.c.) and
bounded below by zero. Then, there is a sequence {Jm : m ∈ N} in C(M) such that 0 ≤ Jm ↑ J , i.e.,

1) 0 ≤ Jm(x) ≤ Jm+1(x) ≤ J(x) for every x ∈M and m ∈ N, and
2) lim

m→+∞
Jm(x) = J(x) for every x ∈M.

Remark 7 (Generalization of Lemma 5): Before proving the lemma, we note a generalization. Let v :M→ R∗
be l.s.c. and bounded below by b ∈ R. We would like to show that there is a sequence {vm : m ∈ N} in C(M)
such that b ≤ vm ↑ v. Define J := v− b, which is l.s.c. and bounded below by 0. By Lemma 5, there is a sequence
{Jm : m ∈ N} in C(M) such that 0 ≤ Jm ↑ J . Now, define vm := Jm + b. Then, {vm : m ∈ N} is a sequence in
C(M) such that b ≤ (Jm + b) ↑ (J + b), which is equivalent to b ≤ vm ↑ v.

A proof for Lemma 5 follows.
Proof: Let ρ be a metric on M. We recall that J :M→ R∗ is l.s.c. ⇐⇒ for any sequence {xn : n ∈ N} in
M converging to x ∈M,17 it holds that lim inf

n→+∞
J(xn) ≥ J(x).

There are two cases to consider. The first case is that J(x) = +∞ for every x ∈ M.18 In this case, we define
Jm :M→ R by

Jm(x) = m, x ∈M, m ∈ N, (203)

which implies that
0 ≤ Jm(x) ≤ Jm+1(x) ≤ J(x), x ∈M, m ∈ N, (204)

because 0 ≤ m ≤ m+ 1 < +∞ for every m ∈ N. For every m ∈ N, Jm is constant and finite, and therefore Jm
is continuous and bounded, i.e., Jm ∈ C(M). Finally,

lim
m→+∞

Jm(x) = lim
m→+∞

m = +∞ = J(x), x ∈M, (205)

which completes the proof in the first case.
Now, in the second case, there exists an x0 ∈M such that J(x0) < +∞. Define

gm(x) := inf
y∈M

(J(y) +mρ(x, y)) , x ∈M, m ∈ N. (206)

Since mρ(x, y) ≥ 0 for every (x, y) ∈M×M and m ∈ N, and since J(y) ≥ 0 for every y ∈M, we have

0 ≤ J(y) ≤ J(y) +mρ(x, y), y ∈M, x ∈M, m ∈ N. (207)

Thus, zero is a lower bound for the set {J(y) +mρ(x, y) : y ∈M} for every x ∈M and m ∈ N, which implies

0 ≤ inf{J(y) +mρ(x, y) : y ∈M}︸ ︷︷ ︸
gm(x)

, x ∈M, m ∈ N. (208)

Since x0 ∈M, J(x0) < +∞, and metrics are real-valued, we have

0
(208)
≤ inf{J(y) +mρ(x, y) : y ∈M}︸ ︷︷ ︸

gm(x)

≤ J(x0) +mρ(x, x0) < +∞, x ∈M, m ∈ N. (209)

Thus, gm(x) ∈ R for every x ∈ M and m ∈ N. (In (209), for example, we have written “x ∈ M,m ∈ N,” which
means for every x ∈M and for every m ∈ N. In the rest of the proof, we use the symbol ∀.)

16Another example is [41, Prop. D.5, pp. 182–183].
17ρ(xn, x)→ 0 as n→ +∞.
18We know that J(x) > −∞ for every x ∈M because J is bounded below.



To show that gm ≤ gm+1 for every m ∈ N, note that since ρ(x, y) ≥ 0 for every (x, y) ∈ M ×M and
0 ≤ m ≤ m+ 1 for every m ∈ N, we have

J(y) +mρ(x, y) ≤ J(y) + (m+ 1)ρ(x, y) ∀y ∈M ∀x ∈M ∀m ∈ N. (210)

By taking infima over y ∈M, we obtain

inf
y∈M

(J(y) +mρ(x, y))︸ ︷︷ ︸
gm(x)

≤ inf
y∈M

(J(y) + (m+ 1)ρ(x, y))︸ ︷︷ ︸
gm+1(x)

∀x ∈M ∀m ∈ N. (211)

To show that gm ≤ J , note that

inf
y∈M

(J(y) +mρ(x, y))︸ ︷︷ ︸
gm(x)

≤ J(x) +mρ(x, x) = J(x) ∀x ∈M ∀m ∈ N, (212)

which we obtained by setting y = x in the objective of gm(x).
In summary, by (208), (211), and (212), it holds that

0 ≤ gm(x) ≤ gm+1(x) ≤ J(x) ∀x ∈M ∀m ∈ N, (213)

where gm is finite for every m ∈ N by (209).
For any x ∈ M, {gm(x)}∞m=1 ⊆ R is an increasing sequence that is bounded above by J(x) ∈ R∗. Thus, the

limit of {gm(x)}∞m=1 exists in R∗ (it may be +∞), and the limit is less than or equal to J(x). Therefore,

lim
m→+∞

gm(x) ≤ J(x) ∀x ∈M. (214)

For any m ∈ N, to show that gm is (uniformly) continuous (with respect to ρ), we will show that

∀ε > 0 ∃δ > 0 s.t. ∀(x, z) ∈M×M, ρ(x, z) ≤ δ =⇒ |gm(x)− gm(z)| ≤ ε.

Using the procedure on p. 126 of [32] (a symmetry argument using the definition of gm), we have that

|gm(x)− gm(z)| ≤ mρ(x, z) ∀(x, z) ∈M×M. (215)

Let ε > 0 be given, and set δ := ε
m . Suppose that (x, z) ∈M×M satisfies ρ(x, z) ≤ δ. Then, we have

|gm(x)− gm(z)|
(215)
≤ mρ(x, z) ≤ mδ = m

ε

m
= ε. (216)

Thus, for every m ∈ N, gm is (uniformly) continuous (with respect to ρ).
We will show that (214) holds with equality by considering two cases. In the first case, we assume that J is

finite-valued. Let x ∈ M be given. For every m ∈ N, gm(x) ∈ R, which implies (by using the definition of the
infimum) that

∀ε > 0 ∃ym ∈M s.t. J(ym) +mρ(x, ym) ≤ gm(x) + ε. (217)

Note that ym depends on ε and x, which we do not write explicitly for brevity. We will construct a sequence using
(217). Let ε > 0 be given. Since g1(x) ∈ R, we have

∃y1 ∈M s.t. J(y1) + 1ρ(x, y1) ≤ g1(x) + ε. (218)

Since g2(x) ∈ R, we have
∃y2 ∈M s.t. J(y2) + 2ρ(x, y2) ≤ g2(x) + ε. (219)

By repeating this process, we obtain a sequence {ym : m ∈ N} in M such that

J(ym) +mρ(x, ym) ≤ gm(x) + ε ∀m ∈ N. (220)

Moreover, since 0 ≤ J(ym) and gm(x) ≤ J(x) for every m ∈ N, we have

mρ(x, ym) ≤ J(ym) +mρ(x, ym) ≤ gm(x) + ε ≤ J(x) + ε ∀m ∈ N. (221)



Therefore,
0 ≤ mρ(x, ym) ≤ J(x) + ε ∀m ∈ N, (222)

where we also use the fact that mρ(x, ym) ≥ 0 for every m ∈ N. Since m ∈ N is positive and finite,

0 ≤ ρ(x, ym) ≤ J(x) + ε

m
∀m ∈ N. (223)

Since J(x) is finite, it follows that

lim
m→+∞

J(x) + ε

m
= 0. (224)

The statements (223) and (224) imply that the limit of {ρ(x, ym)}∞m=1 exists and equals zero. This is because

0 ≤ lim inf
m→+∞

ρ(x, ym) ≤ lim inf
m→+∞

J(x) + ε

m
= 0 (225)

and
0 ≤ lim sup

m→+∞
ρ(x, ym) ≤ lim sup

m→+∞

J(x) + ε

m
= 0, (226)

and therefore,
lim inf
m→+∞

ρ(x, ym) = lim sup
m→+∞

ρ(x, ym) = 0, (227)

which allows us to conclude that
lim

m→+∞
ρ(x, ym) = 0. (228)

Moreover, since J is lower semi-continuous and by (228), we have

J(x) ≤ lim inf
m→+∞

J(ym). (229)

By using (220), 0 ≤ mρ(x, ym), and gm(x) ≤ J(x), we have

J(ym) ≤ J(ym) +mρ(x, ym) ≤ gm(x) + ε ≤ J(x) + ε ∀m ∈ N, (230)

which implies that
J(ym) ≤ gm(x) + ε ≤ J(x) + ε ∀m ∈ N. (231)

By (229), (231), and the existence of the limit of {gm(x)}∞m=1, we have

J(x) ≤ lim inf
m→+∞

J(ym) ≤ lim
m→+∞

gm(x) + ε ≤ J(x) + ε. (232)

Since J(x) ∈ R, it follows that
| − J(x) + lim

m→+∞
gm(x)| ≤ ε. (233)

Since the above analysis holds for any ε > 0, we conclude that

lim
m→+∞

gm(x) = J(x). (234)

Since the above analysis holds for any x ∈ M, we have that lim
m→+∞

gm(x) = J(x) for every x ∈ M, under the
assumption that J is finite-valued.

Now, suppose that J is not necessarily finite-valued. The function h : [0,+∞] → [0, π2 ] defined by h(x) =
arctan(x) is increasing and continuous (Fig. 6). The inverse of h exists and is increasing and continuous; the inverse
is h−1 : [0, π2 ] → [0,+∞] such that h−1(y) = tan(y) (Fig. 6). Since the range of h is [0, π2 ], the composition
h ◦ J :M→ [0, π2 ] is finite-valued and bounded below by 0. As a consequence of h being increasing, continuous,
and finite-valued, and J : M → R∗ being l.s.c., the composition h ◦ J is also l.s.c. To show this explicitly, let
{xn}∞n=1 ⊆M converge to x ∈M, i.e., ρ(xn, x)→ 0, and we will show that

lim inf
n→+∞

h(J(xn)) ≥ h(J(x)). (235)



Fig. 6. Illustrations of the tangent and arctangent functions, where the domain of the tangent function is restricted to [−π2 ,
π
2 ]. In

our proof, we use the part of these functions in the nonnegative quadrant, i.e., h : [0,+∞]→ [0, π2 ] such that h(x) = arctan(x),
and h−1 : [0, π2 ]→ [0,+∞] such that h−1(y) = tan(y).

Since {xn}∞n=1 converges to x and J is l.s.c., it holds that

+∞ ≥ lim inf
n→+∞

J(xn) ≥ J(x) ≥ 0. (236)

Since h is increasing and its domain is [0,+∞], we have

h
(

lim inf
n→+∞

J(xn)
)
≥ h(J(x)). (237)

Now,
lim inf
n→+∞

J(xn) := sup
n∈N

inf
k≥n

J(xk) = lim
n→+∞

inf
k≥n

J(xk). (238)

The second inequality holds because

inf
k≥1

J(xk) ≤ inf
k≥2

J(xk) ≤ inf
k≥3

J(xk) ≤ · · · (239)

By (238) and since h is continuous,

h
(

lim inf
n→+∞

J(xn)
)

= h
(

lim
n→+∞

inf
k≥n

J(xk)
)

= lim
n→+∞

h
(

inf
k≥n

J(xk)
)
. (240)

Let n ∈ N be given. Note that

+∞ ≥ J(xk) ≥ inf
k≥n

J(xk) ≥ 0 ∀k ≥ n, (241)

and since h : [0,+∞]→ [0, π2 ] is increasing, it holds that

h(J(xk)) ≥ h
(

inf
k≥n

J(xk)
)

∀k ≥ n. (242)

Now, h(infk≥n J(xk)) ∈ R is a lower bound for {h(J(xk)) : k ≥ n}, and so it is less than the greatest lower
bound,

inf
k≥n

h(J(xk))︸ ︷︷ ︸
greatest lower bound

≥ h
(

inf
k≥n

J(xk)
)

︸ ︷︷ ︸
a lower bound

. (243)

Since we have derived (243) for any n ∈ N, it holds for every n ∈ N,

inf
k≥n

h(J(xk)) ≥ h
(

inf
k≥n

J(xk)
)

∀n ∈ N. (244)



The limit of the left side is the limit inferior, and the limit of the right side exists by (240), and thus,

lim inf
n→+∞

h(J(xn)) = lim
n→+∞

inf
k≥n

h(J(xk))
(244)
≥ lim

n→+∞
h
(

inf
k≥n

J(xk)
)

(240)
= h

(
lim inf
n→+∞

J(xn)
)
. (245)

Finally, we derive

lim inf
n→+∞

h(J(xn))
(245)
≥ h

(
lim inf
n→+∞

J(xn)
) (237)
≥ h(J(x)), (246)

which shows that h ◦ J is lower semi-continuous.
Since h ◦ J is finite-valued, l.s.c., and bounded below by 0, there is a sequence of continuous functions fm :

M→ R such that
1) 0 ≤ fm(x) ≤ fm+1(x) ≤ h(J(x)) ≤ π

2 for every m ∈ N and x ∈M,19 and
2) lim

m→+∞
fm(x) = h(J(x)) for every x ∈M.

Recall that h−1 : [0, π2 ]→ [0,+∞] such that h−1(y) = tan(y) is continuous and increasing (Fig. 6). It follows that
1) 0 = h−1(0) ≤ h−1(fm(x)) ≤ h−1(fm+1(x)) ≤ J(x) for every m ∈ N and x ∈M, and

2) lim
m→+∞

h−1(fm(x)) = h−1

(
lim

m→+∞
fm(x)

)
= h−1

(
h(J(x))

)
= J(x) for every x ∈M.

In summary, h−1 ◦ fm :M→ R∗ is continuous and 0 ≤ (h−1 ◦ fm) ↑ J .
For any m ∈ N, we define Jm :M→ R by

Jm(x) := min{m,h−1(fm(x))}, (247)

which is a composition of continuous functions, and therefore is continuous. Each Jm is bounded because

0 ≤ Jm(x) ≤ m ∀x ∈M ∀m ∈ N. (248)

It holds that
0 ≤ Jm(x) ≤ Jm+1(x) ≤ J(x) ∀x ∈M ∀m ∈ N. (249)

Jm ≤ Jm+1 holds because

Jm(x)
(247)
≤ m ≤ m+ 1 (250)

Jm(x)
(247)
≤ h−1(fm(x)) ≤ h−1(fm+1(x)) (251)

and therefore,
Jm(x) ≤ min{m+ 1, h−1(fm+1(x))} = Jm+1(x). (252)

Jm+1 ≤ J holds because
Jm+1(x) ≤ h−1(fm+1(x)) ≤ J(x). (253)

Finally, since min is continuous, we have for every x ∈M,

lim
m→+∞

Jm(x) = lim
m→+∞

min{m,h−1(fm(x))} = min
{

lim
m→+∞

m, lim
m→+∞

h−1(fm(x))
}

= min{+∞, J(x)} = J(x).

(254)
The last equality holds because

min{+∞, J(x)} =

{
J(x) if J(x) < +∞
+∞ if J(x) = +∞

. (255)

In summary, each Jm :M→ R is continuous and bounded and 0 ≤ Jm ↑ J , where J need not be finite-valued.
This concludes the proof of Lemma 5.

We will use Lemma 5 to show that key properties are preserved under integration, which is needed for Theorem
2.

19Recall that h : [0,+∞]→ [0, π2 ] is bounded above by π
2 .



G. Analysis of Properties under Integration
Recall the notation S = S ×Z and Z = [a, b] ⊂ R. We consider the following conditions:

1) For every t, ft and ct are continuous functions, and pt(·|·, ·) is a continuous stochastic kernel on D given
S × C;

2) For every t, a ≤ ct ≤ b, where a ∈ R and b ∈ R.
Lemma 6: Let Conditions (i)–(ii) hold. If v : S → R∗ is lower semi-continuous (l.s.c.) and bounded below by

zero, then the function gv,t : S× C → R∗ defined by

gv,t(x, z, u) :=

∫
D
v
(
ft(x, u, w),max{z, ct(x, u)}

)
pt(dw|x, u) (256)

is l.s.c. and bounded below by zero.
Lemma 6 is different from [32, Prop. 7.31, p. 148] because the functions ft, max, and ct appear in the integral

in (256). Therefore, we cannot say that Lemma 6 holds by this proposition immediately. To prove Lemma 6, we
use Lemma 5 from the previous subsection and two other results, which are stated below.

Lemma 7: Let Conditions (i)–(ii) hold. If v ∈ C(S), then the function gv,t : S × C → R defined by (256) is
continuous.

Lemma 8: Let Conditions (i)–(ii) hold. Let vm : S → R∗ be Borel-measurable for every m ∈ N, v : S → R∗
be Borel-measurable, and b ∈ R. Suppose that b ≤ vm ↑ v holds, i.e., b ≤ vm ≤ vm+1 ≤ v for every m ∈ N and

lim
m→+∞

vm(x̃, z̃) = v(x̃, z̃) for every (x̃, z̃) ∈ S. Then, for every (x, z, u) ∈ S× C, we have

lim
m→+∞

∫
D
vm
(
ft(x, u, w),max{z, ct(x, u)}

)
pt(dw|x, u) =

∫
D
v
(
ft(x, u, w),max{z, ct(x, u)}

)
pt(dw|x, u).

(257)
In short, Lemma 8 holds by an application of the Monotone Convergence Theorem [42, Th. 1.6.7, p. 47].

First, we prove Lemma 6, and then we prove the supporting results.
Proof: Since v(x′, s′) ≥ 0 for every (x′, s′) ∈ S, we have

v
(
ft(x, u, w),max{z, ct(x, u)}

)
≥ 0 ∀(x, z, u, w) ∈ S× C ×D. (258)

For every (x, z, u) ∈ S× C, it holds that
1) v(ft(x, u, ·),max{z, ct(x, u)}) : D → R∗ is Borel-measurable,
2) v(ft(x, u, ·),max{z, ct(x, u)}) : D → R∗ is nonnegative, and
3) (D,BD, pt(·|x, u)) is a probability space.

By the above three items, the integral

gv,t(x, z, u) :=

∫
D
v
(
ft(x, u, w),max{z, ct(x, u)}

)
pt(dw|x, u) (259)

exists and is nonnegative for every (x, z, u) ∈ S× C. Therefore, gv,t is bounded below by zero.
To prove that gv,t is l.s.c., it suffices to show that if {(xn, zn, un) : n ∈ N} is a sequence in S× C converging

to (x, z, u) ∈ S× C, then
lim inf
n→+∞

gv,t(xn, zn, un) ≥ gv,t(x, z, u). (260)

S is a metrizable space,20 and v : S→ R∗ is l.s.c. and bounded below by zero by assumption. Therefore, by Lemma
5, there is a sequence {vm : m ∈ N} in C(S) such that 0 ≤ vm ↑ v, i.e.,

1) 0 ≤ vm ≤ vm+1 ≤ v for every m ∈ N, and
2) lim

m→+∞
vm(x̃, z̃) = v(x̃, z̃) for every (x̃, z̃) ∈ S.

Let m ∈ N and n ∈ N be given, and consider a probability space (D,BD, pt(·|xn, un)). Since v ≥ vm ≥ 0, we
have

v
(
ft(xn, un, w),max{zn, ct(xn, un)}

)
≥ vm

(
ft(xn, un, w),max{zn, ct(xn, un)}

)
≥ 0 ∀w ∈ D. (261)

20S = S ×Z is a metrizable space because S and Z are Borel spaces, a Cartesian product of Borel spaces with the product topology is
a Borel space, and a Borel space is metrizable [32, pp. 118–119, Prop. 7.13].



Since v, ft, max, and ct are Borel-measurable functions, the functions

v
(
ft(xn, un, ·),max{zn, ct(xn, un)}

)
: D → R∗

vm
(
ft(xn, un, ·),max{zn, ct(xn, un)}

)
: D → R∗

(262)

are also Borel-measurable. It follows that

gv,t(xn, zn, un) :=

∫
D
v
(
ft(xn, un, w),max{zn, ct(xn, un)}

)
pt(dw|xn, un)

≥
∫
D
vm
(
ft(xn, un, w),max{zn, ct(xn, un)}

)
pt(dw|xn, un)︸ ︷︷ ︸

gvm,t(xn,zn,un)

, (263)

where all the integrals exist. Since the inequality (263) was derived for arbitrary n ∈ N and m ∈ N, we have

gv,t(xn, zn, un) ≥ gvm,t(xn, zn, un) ∀m ∈ N ∀n ∈ N. (264)

For any m ∈ N, we have vm ∈ C(S), which implies that gvm,t : S×C → R is continuous (Lemma 7). Therefore,
we have

∀m ∈ N, lim inf
n→+∞

gv,t(xn, zn, un)
(264)
≥ lim inf

n→+∞
gvm,t(xn, zn, un) = lim

n→+∞
gvm,t(xn, zn, un) = gvm,t(x, z, u),

(265)
where we use (xn, zn, un)→ (x, z, u).

Since vm : S→ R∗ is Borel-measurable for every m ∈ N, v : S→ R∗ is Borel-measurable, and 0 ≤ vm ↑ v, we
use Lemma 8 to conclude that

lim
m→+∞

∫
D
vm
(
ft(x, u, w),max{z, ct(x, u)}

)
pt(dw|x, u)︸ ︷︷ ︸

gvm,t(x,z,u)

=

∫
D
v
(
ft(x, u, w),max{z, ct(x, u)}

)
pt(dw|x, u)︸ ︷︷ ︸

gv,t(x,z,u)

.

(266)
Finally, by (265) and (266), it holds that

lim inf
n→+∞

gv,t(xn, zn, un) ≥ lim
m→+∞

gvm,t(x, z, u) = gv,t(x, z, u), (267)

which shows that gv,t is lower semi-continuous.
1) Proof of Lemma 7: Recall that ft and ct are continuous functions, and pt(·|·, ·) is a continuous stochastic kernel.

We will show that if v ∈ C(S), then the function gv,t : S× C → R defined by (256) and provided below:

gv,t(x, z, u) =

∫
D
v
(
ft(x, u, w),max{z, ct(x, u)}

)
pt(dw|x, u)

is continuous by applying [32, Prop. 7.30, p. 145] to our problem setting.
Proof: The spaces S × C, S × C, and D are separable and metrizable.21 pt(·|·, ·) is a continuous stochastic

kernel on D given S ×C by assumption. Recall that P(D) is the space of probability measures on (D,BD) with
the weak topology. The following statements are equivalent:

1) pt(·|·, ·) is a continuous stochastic kernel on D given S × C.
2) The function γt : S × C → P(D) defined by γt(x, u) := pt(·|x, u) is continuous [32, Def. 7.12, p. 134].
3) For any {(xn, un)}n∈N ⊆ S × C converging to (x, u) ∈ S × C, it holds that {γt(xn, un)}n∈N ⊆ P(D)

converges to γt(x, u) ∈ P(D) in the weak topology.
4) For any (xn, un) → (x, u), it holds that

∫
D φ(w) pt(dw|xn, un) →

∫
D φ(w) pt(dw|x, u) for any continuous

bounded function φ : D → R, i.e., φ ∈ C(D) [32, Prop. 7.21, p. 128].
The stochastic kernel p̄t(·|·, ·, ·) on D given S× C defined by

p̄t(dw|x, z, u) := pt(dw|x, u) ∀(x, z, u) ∈ S× C (268)

21S × C, S × C, and D are Borel spaces, and therefore, they are separable and metrizable [32, p. 118]. Z is a closed set in R =⇒
Z ∈ BR =⇒ Z is a Borel space. S, C, and D are Borel spaces by the assumed system model. A countable Cartesian product of Borel
spaces with the product topology is a Borel space [32, Prop. 7.13, p. 119].



is continuous. To see this, let (xn, zn, un) → (x, z, u) and a continuous bounded function φ : D → R be given.
Then,∫

D
φ(w) p̄t(dw|xn, zn, un) =

∫
D
φ(w) pt(dw|xn, un)→

∫
D
φ(w) pt(dw|x, u) =

∫
D
φ(w) p̄t(dw|x, z, u), (269)

where the equalities hold by (268); the limit holds because pt(·|·, ·) is a continuous stochastic kernel on D given
S × C, (xn, un)→ (x, u), and φ : D → R is continuous and bounded.

If ht ∈ C(S× C ×D), then the function νt : S× C → R defined by

νt(x, z, u) :=

∫
D
ht(x, z, u, w) p̄t(dw|x, z, u) =

∫
D
ht(x, z, u, w) pt(dw|x, u) (270)

is continuous by [32, Prop. 7.30]. Hence, it suffices to show that

ht(x, z, u, w) := v
(
ft(x, u, w),max{z, ct(x, u)}

)
(271)

satisfies ht ∈ C(S× C ×D). Consider the function

h1,t : S× C ×D → S (272)

(x, z, u, w) 7→
(
ft(x, u, w),max{z, ct(x, u)}

)
. (273)

Since ft, ct, and max are continuous, it holds that

lim
n→∞

h1,t(xn, zn, un, wn) = lim
n→∞

(
ft(xn, un, wn),max{zn, ct(xn, un)}

)
(274)

=
(

lim
n→∞

ft(xn, un, wn), lim
n→∞

max{zn, ct(xn, un)}
)

(275)

=
(
ft(x, u, w),max{z, ct(x, u)}

)
(276)

for any sequence {(xn, zn, un, wn)}n∈N in S× C ×D converging to a point (x, z, u, w) ∈ S× C ×D. Therefore,
h1,t is continuous. The function ht can be written as v ◦h1,t : S×C ×D → S→ R, where ◦ denotes composition.
Since the composition of continuous functions is again a continuous function [?, Prop. 3.1.8], ht is continuous.
Moreover, it holds that

sup
S×C×D

ht = sup
S×C×D

v ◦ h1,t ≤ sup
S
v < +∞, (277)

where the last inequality holds because v is bounded. Hence, ht is bounded. Since ht : S×C×D → R is continuous
and bounded, we have that ht ∈ C(S× C ×D), which concludes the proof of Lemma 7.

2) Proof of Lemma 8: Recall that ft and ct are continuous functions, and pt(·|·, ·) is a continuous stochastic kernel.
Let vm : S → R∗ be Borel-measurable for every m ∈ N, v : S → R∗ be Borel-measurable, and b ∈ R. Suppose
that b ≤ vm ↑ v holds, i.e., b ≤ vm ≤ vm+1 ≤ v ∀m ∈ N and lim

m→+∞
vm(x̃, z̃) = v(x̃, z̃) for every (x̃, z̃) ∈ S.

Under these conditions, we will show that for every (x, z, u) ∈ S× C

lim
m→+∞

∫
D
vm
(
ft(x, u, w),max{z, ct(x, u)}

)
pt(dw|x, u) =

∫
D
v
(
ft(x, u, w),max{z, ct(x, u)}

)
pt(dw|x, u).

(278)
Proof: We use the Extended Monotone Convergence Theorem [42, Th. 1.6.7, p. 47]: Let (Ω̄,F , µ) be a measure

space. Let g1, g2, . . . , g, h be functions from Ω̄ to R∗, which are measurable relative to F and BR∗ . If gn(ω) ≥ h(ω)
for every ω ∈ Ω̄ and n ∈ N,

∫
Ω̄ h(ω)µ(dω) > −∞, and gn ↑ g,22 then

∫
Ω̄ gn(ω)µ(dω) ↑

∫
Ω̄ g(ω)µ(dω).

Let (x, z, u) ∈ S × C be given. We use the probability space (D,BD, pt(·|x, u)). Define the functions gx,u,zm,t :
D → R∗ for every m ∈ N, gx,u,zt : D → R∗, and h : D → R∗ as follows:

gx,u,zm,t (w) := vm
(
ft(x, u, w),max{z, ct(x, u)}

)
(279)

gx,u,zt (w) := v
(
ft(x, u, w),max{z, ct(x, u)}

)
(280)

h(w) := b̄. (281)

22gn ↑ g means gn(ω) ≤ gn+1(ω) ≤ g(ω) for every ω ∈ Ω̄ and n ∈ N, and lim
n→+∞

gn(ω) = g(ω) for every ω ∈ Ω̄.



The functions (279)–(281) are measurable relative to BD and BR∗ . ft, max, ct, and h are continuous, which implies
that they are Borel-measurable. vm and v are Borel-measurable, and the composition of Borel-measurable functions
is Borel-measurable.

Recall that b ≤ vm(x̃, z̃) ≤ vm+1(x̃, z̃) ≤ v(x̃, z̃) for every (x̃, z̃) ∈ S and m ∈ N. Therefore, for every w ∈ D
and m ∈ N, we have

b̄︸︷︷︸
h(w)

≤ vm
(
ft(x, u, w),max{z, ct(x, u)}

)︸ ︷︷ ︸
gx,u,zm,t (w)

≤ vm+1

(
ft(x, u, w),max{z, ct(x, u)}

)︸ ︷︷ ︸
gx,u,zm+1,t(w)

≤ v
(
ft(x, u, w),max{z, ct(x, u)}

)︸ ︷︷ ︸
gx,u,zt (w)

.

(282)
Recall that for every (x̃, z̃) ∈ S, we have lim

m→+∞
vm(x̃, z̃) = v(x̃, z̃). Let w ∈ D be given. Then, ft(x, u, w) ∈ S

and max{z, ct(x, u)} ∈ Z . Therefore,

lim
m→+∞

vm
(
ft(x, u, w),max{z, ct(x, u)}

)
= v
(
ft(x, u, w),max{z, ct(x, u)}

)
. (283)

Since w ∈ D in (283) is arbitrary and by using the definitions (279)–(280), we conclude that

lim
m→+∞

gx,u,zm,t (w) = gx,u,zt (w) ∀w ∈ D. (284)

By using the definition (281), we have
∫
D h(w) pt(dw|x, u) =

∫
D b̄ pt(dw|x, u) = b̄ > −∞.

To summarize, we are working on the probability space (D,BD, pt(·|x, u)), and the following properties hold:
• gx,u,z1,t , gx,u,z2,t , . . . , gx,u,zt , and h are functions from D to R∗, which are measurable relative to BD and BR∗ .
• gx,u,zm,t ≥ h for every m ∈ N,

∫
D h(w) pt(dw|x, u) > −∞, and gx,u,zm,t ↑ g

x,u,z
t .

Thus, by the Extended Monotone Convergence Theorem, it holds that

lim
m→+∞

∫
D
gx,u,zm,t (w) pt(dw|x, u) =

∫
D
gx,u,zt (w) pt(dw|x, u). (285)

Since we have derived the equality (285) for an arbitrary (x, z, u) ∈ S × C, it holds for every (x, z, u) ∈ S × C,
which completes the proof of Lemma 8.

H. Background about Measurable Selection
We use a measurable selection result [32, Prop. 7.33, p. 153] to prove Theorem 2 in the main paper. Variations

of [32, Prop. 7.33] can be found in other texts, e.g., [41] and [38]. To understand how [32, Prop. 7.33] applies to
our setting, we state a special case below.

Remark 8 (Special case of Prop. 7.33, Bertsekas and Shreve, 1996): Let X and Y be metrizable spaces, where
Y is compact. Assume that g : X × Y → R∗ is lower semi-continuous (l.s.c.). Let g∗ : X → R∗ be defined by

g∗(x) := inf
y∈Y

g(x, y). (286)

Then, g∗ is l.s.c., and there is a Borel-measurable function φ : X → Y such that

g(x, φ(x)) = g∗(x) ∀x ∈ X. (287)

Remark 9: If g is bounded below by b ∈ R, then g∗ is also bounded below by b.

I. An Extended Proof for Theorem 2
We use the previous results to prove Theorem 2.
Theorem 2 (DP on S): Let Assumption 1 hold, and let s ∈ R be given. Recall that JsN : S → R∗ is given by

JsN (x, z) = hs(max{cN (x), z}) (185). For t = N − 1, . . . , 1, 0, we define Jst : S→ R∗ recursively by

Jst (x, z) := inf
u∈C

vst (x, z, u), (288a)

where vst : S× C → R∗ depends on Jst+1 as follows:

vst (x, z, u) :=

∫
D
Jst+1

(
ft(x, u, w),max{ct(x, u), z}

)
pt(dw|x, u). (288b)



Then, for every t ∈ TN , Jst is lower semi-continuous (l.s.c.) and bounded below by zero. For every t ∈ T, there is
a Borel-measurable function κst : S→ C such that

Jst (x, z) = vst (x, z, κ
s
t (x, z)) ∀(x, z) ∈ S. (289)

For every (x, z) ∈ S, let δκst (x,z) denote the Dirac measure on (C,BC) concentrated at the point κst (x, z) ∈ C.23

We define πs := (δκs0 , δκs1 , . . . , δκsN−1
), which is an element of Π. Then, for every x ∈ S, we have

Js0(x, a) = V s(x) = Eπ
s

x (max{Y − s, 0}). (290)

Proof: The proof has two parts.
1) Properties of the dynamic programming iterates: We proceed by induction. JsN is continuous because cN is con-

tinuous, max is continuous, and a composition of continuous functions is continuous. Since JsN is continuous, it
is also l.s.c. JsN is bounded below by zero because max{y, 0} ≥ 0 for every y ∈ R. Now, assume (the induction
hypothesis) that for some t ∈ {N − 1, . . . , 1, 0}, Jst+1 : S → R∗ is l.s.c. and bounded below by zero. Then, by
Lemma 6 and Assumption 1, the function vst : S× C → R∗ defined by

vst (x, z, u)
(288b)
=

∫
D
Jst+1

(
ft(x, u, w),max{ct(x, u), z}

)
pt(dw|x, u)

is l.s.c. and bounded below by zero. Moreover, the function Jst : S→ R∗ defined by

Jst (x, z)
(288a)
= inf

u∈C
vst (x, z, u)

is l.s.c. and bounded below by zero, where we use the compactness of C in particular and apply [32, Prop. 7.33];
the reader may refer to Sec. VII-H for details. Since we have shown the induction step, we conclude that Jst is
l.s.c. and bounded below by zero for every t ∈ {N, . . . , 1, 0}.

Let t ∈ {0, 1, . . . , N − 1} be given. Since vst : S × C → R∗ is l.s.c., S and C are metrizable spaces, and C is
compact, there is a Borel-measurable function κst : S→ C such that (289) holds, which we repeat below:

Jst (x, z)
(288a)
= inf

u∈C
vst (x, z, u) = vst (x, z, κ

s
t (x, z)) ∀(x, z) ∈ S

by an application of [32, Prop. 7.33] (Sec. VII-H).
We define πs := (δκs0 , δκs1 , . . . , δκsN−1

). For every (x, z) ∈ S, δκst (x,z) ∈ P(C) is the Dirac measure on (C,BC)
that is concentrated at the point κst (x, z) ∈ C. δκst is a Borel-measurable stochastic kernel on C given S (Footnote
23). Since πs is a tuple of N Borel-measurable stochastic kernels on C given S, πs is an element of Π.

2) Optimality: Our goal is to prove that (290) holds:

∀x ∈ S, Js0(x, a) = V s(x) = Eπ
s

x (max{Y − s, 0}).

We recall the results from Theorem 1. For every x ∈ S and π ∈ Π, the following statements hold:

Eπx(max{Y − s, 0}) (186)
=

∫
Ω
φπ,s0 ◦ X0 dP πx

(186)
= φπ,s0 (x, a),∫

Ω
φπ,sN ◦ XN dP πx

(187)
=

∫
Ω
JsN ◦ XN dP πx ,

∀t ∈ T,
∫

Ω
φπ,st ◦ Xt dP πx

(188)
=

∫
Ω
φπ,st+1 ◦ Xt+1 dP πx ,

where for every t ∈ TN , φπ,st : S→ R∗ is a Borel-measurable function that characterizes the conditional expectation
of Y s

t given Xt = (Xt, Zt). We will explain why it suffices to show that

∀t ∈ TN ∀x ∈ S ∀π ∈ Π,

∫
Ω
φπ,st ◦ Xt dP πx ≥

∫
Ω
Jst ◦ Xt dP πx , (291a)

∀t ∈ TN ∀x ∈ S,
∫

Ω
φπ

s,s
t ◦ Xt dP π

s

x =

∫
Ω
Jst ◦ Xt dP π

s

x . (291b)

23Recall that P(C) is the space of probability measures on (C,BC) with the weak topology. δκst is a Borel-measurable stochastic kernel
on C given S because the function γt : S → P(C) defined by γt(x, z) := δκst (x,z) is Borel-measurable. γt is a composition of Borel-
measurable functions. The function ν : C → P(C), where ν(u) := δu is the Dirac measure on (C,BC) concentrated at the point u ∈ C,
is continuous by [32, Corollary 7.21.1, p. 130]. The function κst : S→ C is Borel-measurable by Theorem 2.



(Since Jsi ◦Xi : (Ω,BΩ)→ (R∗,BR∗) is nonnegative for every i ∈ TN and P πx is a probability measure on (Ω,BΩ)
for every x ∈ S and π ∈ Π, the integral

∫
Ω J

s
i ◦ Xi dP πx exists and is nonnegative for every i ∈ TN , x ∈ S, and

π ∈ Π.) If (291) holds, then by considering t = 0, we find that

∀x ∈ S ∀π ∈ Π, Eπx(max{Y − s, 0}) (186)
=

∫
Ω
φπ,s0 ◦ X0 dP πx

(291a)
≥
∫

Ω
Js0 ◦ X0 dP πx

(172a)
= Js0(x, a) (292a)

∀x ∈ S, Eπ
s

x (max{Y − s, 0}) (186)
=

∫
Ω
φπ

s,s
0 ◦ X0 dP π

s

x
(291b)
=

∫
Ω
Js0 ◦ X0 dP π

s

x
(172a)
= Js0(x, a). (292b)

(Js0 : S → R∗ is measurable relative to BS and BR∗ because it is l.s.c.) We can write (292) more concisely as
follows:

∀x ∈ S ∀π ∈ Π, Eπx(max{Y − s, 0}) ≥ Js0(x, a) = Eπ
s

x (max{Y − s, 0}), (293)

where the last quantity is bounded below by 0. We take the infimum over π ∈ Π in (293) to find that

∀x ∈ S, V s(x) = inf
π∈Π

Eπx(max{Y − s, 0}) ≥ Js0(x, a) = Eπ
s

x (max{Y − s, 0}) ≥ inf
π∈Π

Eπx(max{Y − s, 0}) = V s(x),

(294)
which shows the desired statement: for every x ∈ S, Js0(x, a) = V s(x) = Eπ

s

x (max{Y − s, 0}) (290). In summary,
if (291) holds, then the desired statement (290) holds, and the proof is complete.

To show (291), we proceed by induction. For the base case (t = N ), we recall from Theorem 1 that

∀x ∈ S ∀π ∈ Π,

∫
Ω
φπ,sN ◦ XN dP πx

(187)
=

∫
Ω
JsN ◦ XN dP πx ,

which implies

∀x ∈ S ∀π ∈ Π,

∫
Ω
φπ,sN ◦ XN dP πx ≥

∫
Ω
JsN ◦ XN dP πx , (295)

∀x ∈ S,
∫

Ω
φπ

s,s
N ◦ XN dP π

s

x =

∫
Ω
JsN ◦ XN dP π

s

x . (296)

Now, assume (the induction hypothesis for (291a)) that for some t ∈ {N − 1, . . . , 1, 0}, it holds that

∀x ∈ S ∀π ∈ Π,

∫
Ω
φπ,st+1 ◦ Xt+1 dP πx ≥

∫
Ω
Jst+1 ◦ Xt+1 dP πx . (297)

We will show that
∀x ∈ S ∀π ∈ Π,

∫
Ω
φπ,st ◦ Xt dP πx ≥

∫
Ω
Jst ◦ Xt dP πx (298)

to prove (291a) by induction. Let x ∈ S and π = (π0, π1, . . . , πN−1) ∈ Π be given. By Theorem 1 (188) and the
induction hypothesis (297), we have∫

Ω
φπ,st ◦ Xt dP πx

(188)
=

∫
Ω
φπ,st+1 ◦ Xt+1 dP πx

(297)
≥
∫

Ω
Jst+1 ◦ Xt+1 dP πx . (299)

To show that (298) holds, it suffices to show that∫
Ω
Jst+1 ◦ Xt+1 dP πx ≥

∫
Ω
Jst ◦ Xt dP πx . (300)

Since t+ 1 ∈ {1, 2, . . . , N}, Jst+1 : (S,BS)→ (R∗,BR∗), and the integral
∫

Ω J
s
t+1 ◦ Xt+1 dP πx exists, we have∫

Ω
Jst+1 ◦ Xt+1 dP πx

(172b)
=

∫
(S×C)t+1×S

Jst+1(χ′) q̃t(dχ
′|χt, ut) πt(dut|χt) q̃t−1(dχt|χt−1, ut−1) · · · δx,a(dχ0)

=

∫
(S×C)t×S

∫
C

∫
S
Jst+1(χ′) q̃t(dχ

′|χt, ut) πt(dut|χt) q̃t−1(dχt|χt−1, ut−1) · · · δx,a(dχ0).

(301)

In the last line, we use
(S× C)t+1 × S = (S× C)t × S× C × S. (302)



For convenience, we define vs,πt : S→ R∗ by

vs,πt (χ) :=

∫
C
vst (χ, u) πt(du|χ) =

∫
C

∫
S
Jst+1(χ′) q̃t(dχ

′|χ, u) πt(du|χ). (303)

vs,πt is Borel-measurable by an application of [32, Prop. 7.29, p. 144] and nonnegative.24 Next, we show the second
equality in (303). Let (x, z, u) = (χ, u) ∈ S × C be given. Since Jst+1 : (S,BS) → (R∗,BR∗) is nonnegative, the
integral

∫
S J

s
t+1 dq̃t(·|χ, u) exists. We apply the Classical Fubini Theorem [42, Th. 2.6.6, p. 103] using the product

measure q̃t(·|x, z, u) ∈ P(S) of qt(·|x, u) ∈ P(S) and qt(·|x, z, u) ∈ P(Z) to find∫
S
Jst+1 dq̃t(·|x, z, u) =

∫
S

∫
Z
Jst+1(x′, z′) qt(dz

′|x, z, u) qt(dx
′|x, u). (304)

Since qt(·|x, z, u) = δmax{ct(x,u),z}, we have∫
S
Jst+1 dq̃t(·|x, z, u) =

∫
S

∫
Z
Jst+1(x′, z′) δmax{ct(x,u),z}(dz

′) qt(dx
′|x, u). (305)

For every x′ ∈ S, Jst+1(x′, ·) : Z → R∗ is Borel-measurable, and thus,∫
Z
Jst+1(x′, z′) δmax{ct(x,u),z}(dz

′)
(64)
= Jst+1(x′,max{ct(x, u), z}). (306)

By (305) and (306), we have∫
S
Jst+1 dq̃t(·|x, z, u) =

∫
S
Jst+1(x′,max{ct(x, u), z}) qt(dx′|x, u). (307)

Finally, we use the definition

qt(S|x, u) = pt({w ∈ D : ft(x, u, w) ∈ S}|x, u), S ∈ BS , (308)

and the change-of-variable image measure theorem [42, Th. 1.6.12, p. 50] to find that∫
S
Jst+1 dq̃t(·|x, z, u) =

∫
D
Jst+1(ft(x, u, w),max{ct(x, u), z}) pt(dw|x, u)

(288b)
= vst (x, z, u).

(309)

Recalling the notation χ = (x, z), we have

vst (χ, u)
(309)
=

∫
S
Jst+1 dq̃t(·|χ, u), (310)

which implies the second equality in (303).
By substituting vs,πt (303) into (301), we have∫

Ω
Jst+1 ◦ Xt+1 dP πx (311)

=

{∫
(S×C)t×S v

s,π
t (χt) q̃t−1(dχt|χt−1, ut−1) · · ·π0(du0|χ0) δx,a(dχ0), if t ∈ {1, 2, . . . , N − 1},∫

S v
s,π
0 (χ0) δx,a(dχ0), if t = 0.

Now, for t = 0, we have ∫
Ω
Js1 ◦ X1 dP πx

(311)
=

∫
S
vs,π0 dδx,a

(172a)
=

∫
Ω
vs,π0 ◦ X0 dP πx . (312)

We are permitted to apply (172a) in particular because vs,π0 : S→ R∗ is Borel-measurable.

24S and C are Borel spaces. πt is a Borel-measurable stochastic kernel on C given S because π ∈ Π. vst : S×C → R∗ is Borel-measurable
because it is l.s.c. (Sec. VII-I.1). For every (χ, u) ∈ S× C, it holds that vst (χ, u) ≥ Jst (χ) ≥ 0.



Next, we consider t ∈ {1, 2, . . . , N − 1}. Since vs,πt : (S,BS) → (R∗,BR∗) is nonnegative and Xt : (Ω,BΩ) →
(S,BS), the map vs,πt ◦ Xt : (Ω,BΩ)→ (R∗,BR∗) is nonnegative. Hence, the integral

∫
Ω v

s,π
t ◦ Xt dP πx exists, and

we have ∫
Ω
vs,πt ◦ Xt dP πx

(172b)
=

∫
(S×C)t×S

vs,πt (χt) q̃t−1(dχt|χt−1, ut−1) · · ·π0(du0|χ0) δx,a(dχ0) (313)

(311)
=

∫
Ω
Jst+1 ◦ Xt+1 dP πx . (314)

By (312) and (314), we conclude that∫
Ω
Jst+1 ◦ Xt+1 dP πx =

∫
Ω
vs,πt ◦ Xt dP πx , t ∈ {0, 1, 2, . . . , N − 1}. (315)

Now, for every (χ, u) ∈ S × C, it holds that vst (χ, u) ≥ Jst (χ) ≥ 0, vst (χ, ·) : C → R∗ is Borel-measurable, and
πt(·|χ) is a probability measure on (C,BC). Therefore, we have25

∀χ ∈ S, vs,πt (χ)
(303)
=

∫
C
vst (χ, u) πt(du|χ) ≥

∫
C
Jst (χ) πt(du|χ) = Jst (χ) ≥ 0. (316)

Since vs,πt ≥ Jst ≥ 0, we also have

∀ω ∈ Ω, vs,πt (Xt(ω)) ≥ Jst (Xt(ω)) ≥ 0. (317)

Note that vs,πt ◦ Xt : Ω→ R∗ and Jst ◦ Xt : Ω→ R∗ are Borel-measurable because vs,πt and Jst are l.s.c. and Xt is
Borel-measurable. All together, we have∫

Ω
Jst+1 ◦ Xt+1 dP πx

(315)
=

∫
Ω
vs,πt ◦ Xt dP πx

(317)
≥
∫

Ω
Jst ◦ Xt dP πx ≥ 0, (318)

which shows (300), and therefore, the first induction step (298) is complete.
We provide a similar induction argument for (291b). The base case t = N holds by (296). Assume (the induction

hypothesis for (291b)) that for some t ∈ {N − 1, . . . , 1, 0}, it holds that

∀x ∈ S,
∫

Ω
φπ

s,s
t+1 ◦ Xt+1 dP π

s

x =

∫
Ω
Jst+1 ◦ Xt+1 dP π

s

x , (319)

and we will show that
∀x ∈ S,

∫
Ω
φπ

s,s
t ◦ Xt dP π

s

x =

∫
Ω
Jst ◦ Xt dP π

s

x (320)

to prove (291b) by induction. Let x ∈ S be given. Since πs ∈ Π and t ∈ T, we use the relation (188) from Theorem
1 and the induction hypothesis (319) to find that∫

Ω
φπ

s,s
t ◦ Xt dP π

s

x
(188)
=

∫
Ω
φπ

s,s
t+1 ◦ Xt+1 dP π

s

x
(319)
=

∫
Ω
Jst+1 ◦ Xt+1 dP π

s

x . (321)

Therefore, to prove the desired statement (320), it suffices to show that∫
Ω
Jst+1 ◦ Xt+1 dP π

s

x =

∫
Ω
Jst ◦ Xt dP π

s

x . (322)

Now, the function vs,π
s

t is equivalent to Jst because for every χ ∈ S,

vs,π
s

t (χ)
(303)
=

∫
C
vst (χ, u) δκst (χ)(du)

(64)
= vst (χ, κ

s
t (χ))

(289)
= Jst (χ), (323)

noting that δκst (χ) is a Dirac measure on (C,BC) and using the expression for Jst from (289). By applying the
expression for

∫
Ω J

s
t+1 ◦ Xt+1 dP πx from (315) to the particular policy π = πs, we find that∫

Ω
Jst+1 ◦ Xt+1 dP π

s

x
(315)
=

∫
Ω
vs,π

s

t ◦ Xt dP π
s

x
(323)
=

∫
Ω
Jst ◦ Xt dP π

s

x , (324)

which shows (322) and therefore shows (320), completing the proof of Theorem 2.

25We paraphrase Proposition 1.24(c) from [39, pp. 19–20]: Let (X,M, µ) be a measure space, f : X → [0,+∞] be measurable, and
E ∈M. If 0 ≤ c < +∞, then

∫
E cf dµ = c

∫
E f dµ. Next, we refer to [39, Exercise 13, p. 32]: Show that Proposition 1.24(c) is also true

when c = +∞. These two statements are useful for us because we would like to evaluate
∫
C J

s
t (χ) πt(du|χ), where 0 ≤ Jst (χ) ≤ +∞.

From the previous discussion, we have
∫
C J

s
t (χ) πt(du|χ) = Jst (χ)

∫
C πt(du|χ) = Jst (χ).
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