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Abstract— This paper investigates the problem of robust
model predictive control (RMPC) of linear-time-invariant
(LTI) discrete-time systems subject to structured un-
certainty and bounded disturbances. Typically, the con-
strained RMPC problem with state-feedback parameteriza-
tions is nonlinear (and nonconvex) with a prohibitively
high computational burden for online implementation. To
remedy this, a novel approach is proposed to linearize the
state-feedback RMPC problem, with minimal conservatism,
through the use of semidefinite relaxation techniques. The
proposed algorithm computes the state-feedback gain and
perturbation online by solving a linear matrix inequality
(LMI) optimization that, in comparison to other schemes in
the literature is shown to have a substantially reduced com-
putational burden without adversely affecting the tracking
performance of the controller. Additionally, an offline strat-
egy that provides initial feasibility on the RMPC problem
is presented. The effectiveness of the proposed scheme is
demonstrated through numerical examples from the litera-
ture.

Index Terms— Elimination Lemma, Linear Matrix Inequal-
ities, Robust Model Predictive Control, Semidefinite Relax-
ation, State-feedback Control, Uncertain Systems.

I. INTRODUCTION

MODEL predictive control (MPC) is a class of receding
horizon algorithms in which the current control action

is computed by solving online, at each sampling instant, a
constrained optimization problem [1]–[3]. MPC is widely
used in industry [4] due to its ability to handle multivariable
processes and to explicitly consider physical constraints.

Several MPC schemes have been proposed for determin-
istic systems [5], [6]. However, uncertainty, in the form of
disturbances, state estimation error, plant-model mismatch, and
robust constraint satisfaction and stability remain active areas
of research [7]–[12].

The family of MPC algorithms which explicitly take account
of uncertainties/disturbances whilst guaranteeing constraint
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satisfaction and performance is referred to as robust MPC
(RMPC). An obvious approach to extend MPC for uncertain
systems is to solve an open-loop optimal control problem.
Whilst computationally attractive, this may lead to infeasibility
and suboptimality [5]. A more effective method is to consider
a state-feedback control law, as shown in [10], where state-
feedback parametrization have been used in RMPC for system
subject to additive disturbances. By considering future inputs as
linear/nonlinear functions of current and future predicted states,
feedback RMPC schemes mitigate the effect of uncertainties
whilst potentially avoiding the infeasibility issues. The three
main types of RMPC schemes include min-max, tube, and LMI
based MPC schemes. The min-max MPC method computes
the optimal control sequence that satisfies the constraints and
steers the system to a robust positively invariant set whilst
guarding against worst-case uncertainty [7], [8]. The second
approach, which has received significant attention, is tube-
MPC (TMPC) [3], [9], [13], [14]. Instead of considering worst-
case uncertainty, these methods first predict a nominal system
trajectory and then guarantee that all possible closed-loop state
trajectories lie inside a “tube” around the nominal trajectory,
where the tube is computed offline using the uncertainty bounds.

The third approach uses semidefinite programming to com-
pute, online, an optimal control sequence by solving an LMI
optimization problem [15]–[18]. The advantages of the LMI
based method are the explicit incorporation of uncertainty and
the polynomial time required for its solution, which, though
still high compared with min-max and TMPC methods, allows
online implementation [19] for certain problems. Further details
around the implementation issues and trade-offs were reviewed
and quantified in [20].

In the work described above, the focus was on systems involv-
ing only disturbances or scalar uncertainties. A generalization
to systems with structured uncertainties and disturbances was
proposed in tube-MPC format in [21]–[23] and in ongoing
research on System Level Synthesis [24], [25]. An LMI based
RMPC approach was proposed in [26] and used in an industrial
directional drilling application in [27]. In this scheme, the state-
feedback gain and control perturbation are computed online
whilst avoiding the nonconvexity issues. Although this approach
shows significant performance improvement, it introduces a
large online computational burden, which makes it unsuitable
for fast dynamical systems. To solve this problem, an extension
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to [26] is proposed here that has a substantially reduced online
computational burden without sacrificing performance.

The contributions of this work are summarized as follows.
Firstly, a new LMI-based RMPC scheme is proposed in Section
II for systems subject to structured uncertainty and disturbances.
The feedback gain and control perturbation are considered
as decision variables whilst nonlinearities are circumvented
using a novel linearization procedure (see Section III). This
substantially reduces the online computations, while it improves
performance due to its less restrictive nature (see Remark 2)
without reducing the feasibility region. Secondly, to reduce
the online computation time further, an extension is proposed
in Section IV which derives a single LMI sufficient condition
for all the constraints. This improves the scalability of the
algorithm. Finally, Section V proposes an offline initialization
strategy to guarantee initial feasibility for the control problem.

The paper is organised as follows. In Section II, the uncertain
system is described and the RMPC problem is formulated, while
nonlinearities and computational intractability are highlighted.
In Section III, an LMI solution based on the proposed
linearization procedure is provided, with the disturbance
recast as uncertainty. A computationally efficient approach
for handling constraints by solving a single LMI is presented
in Section IV. Section V presents a feasibility analysis and an
offline policy to guarantee initial feasibility. Simulation results
for case studies taken from the literature are presented in VI,
where the effectiveness of the proposed controller in terms of
tracking performance, robustness and computational burden is
highlighted and compared with current RMPC methods. Finally,
a summary is given in Section VII, along with potential future
research directions. The R denotes the set of real numbers, Rn

denotes the space of n-dimensional real (column) vectors, Rn×m

denotes the space of n×m real matrices, and Dn denotes the
space of diagonal matrices in Rn×n. For A∈Rn×m, AT denotes
the transpose of A. For A∈Rn×n, H (A) := A+AT . For A=AT

we write A�0 (A�0) if A is positive (negative) semidefinite and
A�0 (A≺0) if A is positive (negative) definite. For x,y∈Rn,
the inequality x< y (similarly: ≤, > and ≥) is interpreted
element-wise. Iq denotes the q× q identity matrix with the
subscript omitted when it can be inferred from the context. For
matrices A1, . . . ,Am, diag(A1, . . . ,Am) denotes a block diagonal
matrix whose i-th diagonal block is Ai. The symbol ei denotes
the i-th column of the identity matrix of appropriate dimension.
If UUU ⊆Rp×q is a subspace, then BUUU = {U ∈UUU : UUT � 1}
denotes the unit ball of UUU . The Schur complement argument

refers to the result that if C�0 then
[

A B
∗ C

]
�0 if and only

if A−BC−1BT � 0, where ∗ denotes a term inferred from
symmetry. To deal with uncertainty, we use the following
lemma based on [28] and the use of a Schur complement
argument.

Lemma 1: Let H11=HT
11,H12,H21, and H22 be real matrices.

Let ∆̂̂∆̂∆ be a linear subspace and define the linear subspace:

Ψ̂={(S,R,G) : S,R� 0, S∆=∆R, H (∆G)=0 ∀∆∈ ∆̂̂∆̂∆}. (1)

Then det(I−H22∆) 6=0 and H11+H
(
H12∆(I−H22∆)−1H21

)
�0

for every ∆∈B∆̂̂∆̂∆ if there exists (S,R,G)∈Ψ̂ such that:H11 HT
21 +H12GT H12S

∗ R+H
(
H22GT

)
H22S

∗ ∗ S

� 0. (2)

We refer to the S-Procedure. This is used to derive sufficient
LMI conditions for the sign definiteness of a quadratic function
on a set described by quadratic inequality constraints [29].

II. PROBLEM STATEMENT

In this section, the system description including control
dynamics, constraints and cost signal are first provided. Then
the RMPC control problem is presented through recasting
disturbance as uncertainty as shown in [26]. Lastly, the
difficulties to solve this optimization problem are highlighted.

A. System Description
The following linear discrete-time system, subject to bounded

disturbances and norm-bounded structured uncertainty, is
considered (see e.g. [15]):

xk+1
qk
fk
zk

=
n nu np nw

n

nq

n f

nz


A Bu Bp Bw

Cq Dqu 0 0
C f D f u D f p D f w
Cz Dzu Dzp Dzw




xk
uk
pk
wk

, pk =∆kqk,

qN
fN
zN

=
Ĉq 0

Ĉ f D̂ f p
Ĉz D̂zp

[xN
pN

]
, pN = ∆NqN ,

(3)

where xk ∈Rn,uk ∈Rnu ,wk ∈Rnw , fk ∈Rn f ,zk ∈Rnz , pk ∈Rnp

and qk∈Rnq are the state, input, disturbance, constraint, cost,
and input and output uncertainty vectors, respectively, with
k∈N :={0,1, . . . ,N−1}, where N is the horizon length. It
is assumed that the state xk is measurable. Note that the
description includes terminal cost and state constraints to ensure
closed-loop stability [1]. The symbols in capital letters denote
coefficient matrices with the dimensions indicated for ease
of reference. Furthermore, ∆k ∈B∆∆∆ where ∆∆∆⊆Rnp×nq is a
subspace that captures the uncertainty structure. Note that we
allow uncertainty in all the data including the constraints and
the cost signal. Finally, the disturbance wk is assumed to belong
to the set Wk={wk∈Rnw:−d̄k≤wk≤d̄k}, where d̄k>0 is given.

B. Algebraic Formulation
To simplify the presentation, we re-parameterize the distur-

bance as uncertainty by redefining Wk :={∆w
k d̄k: ∆w

k ∈B∆∆∆
w},

where ∆∆∆
w=Dnw and,

Bp :=
[
Bp Bw

]
,Cq :=

[
Cq
0

]
,Dqu :=

[
Dqu

0

]
, d̄k :=

[
0
d̄k

]
, pk :=

[
pk
wk

]
,

qk :=Cqxk +Dquuk + d̄k and np :=np+nw,nq :=nq+nw.
The vector z̄k is assumed to be given and defines the

reference trajectory. The constraint and terminal constraint
signals are defined by f̄k and f̄N , respectively, and are assumed
to be known. They are chosen to satisfy polytopic constraints
on the input and state signals, and terminal state signals,
respectively. The only assumption that is imposed here is that
the terminal constraints defined by f̄N are within a polytopic
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control invariant set [30], which can be used to derive condition
for recursive feasibility on the control scheme, see Remark 5.
By defining the stacked vectors,

u =

 u0
...

uN−1

∈ RNu , x =

 x1
...

xN

∈ RNn , ζζζ =

 ζ0
...

ζN

∈ RNζ ,

where ζζζ stands for f, f̄,p,q,z, z̄ or d̄ and Nn =Nn, Nu =Nnu
and Nζ =(N+1)nζ , we get


x
q
f
z

=
n Nu Np 1

Nn

Nq

N f

Nz


A Bu Bp 0
Cq Dqu Dqp d̄
C f D f u D f p 0
Cz Dzu Dzp 0




x0
u
p
1

, p = ∆̂q, (4)

with ∆̂ ∈B∆̂̂∆̂∆⊂ RNp×Nq where,

∆̂̂∆̂∆={diag(∆0,∆
w
0 , . . . ,∆N−1,∆

w
N−1,∆N):∆k∈∆∆∆,∆w

k ∈∆∆∆
w},

and where the stacked matrices in (4) (shown in bold) have the
indicated dimensions and are readily obtained from iterating
the dynamics in (3) and the re-definitions in this section. The
input signal ui is considered as a causal state feedback that
depends only on states x0, . . . ,xi (see e.g. [31]). Thus

u = K0x0 +Kx+υυυ , (5)

where υυυ∈RNu is the (stacked) control perturbation vector and
K0, K are the current and predicted future state feedback gains.
Causality is preserved by restricting [K0 K]∈K ⊂RNu×Nn ,
where K is the set of Nu×Nn lower block triangular matrices
with nu× n blocks. K0,K and υυυ are considered as decision
variables. Note that, while K0 is redundant for a given x0 as it
can be absorbed in υυυ , we keep it for when we tackle the case
of variable x0 in Section V. Substituting the expression of x
in (4) into (5) gives,

u= K̂0x0+K̂Bpp+υ̂ , (6)

where
[
K̂0 K̂ υ̂

]
=(I−KBu)

−1
[
K0+KA K υυυ

]
. Note that

(I−KBu) is invertible due to the lower-triangular structure and
that u is affine in K̂0, K̂ and υ̂ which have the same structure
as K0,K and υυυ . A standard feedback re-parameterization gives[

K0 K υυυ
]
= (I + K̂Bu)

−1 [K̂0−K̂A K̂ υ̂
]
, (7)

and so
[
K̂0 K̂ υ̂

]
will be used as the decision variables instead.

Using (6) to eliminate u from (4) and re-arranging x0 gives q
f

z− z̄

=


DK̂
qp DK̂0,υ̂

q

DK̂
f p DK̂0,υ̂

f

DK̂
zp DK̂0,υ̂

z

[p
1

]
,

:=

 Dqp+DquK̂Bp Dquυ̂+(Cq+DquK̂0)x0+d̄
D f p+D f uK̂Bp D f uυ̂+(C f+D f uK̂0)x0

Dzp+DzuK̂Bp Dzuυ̂+(Cz+DzuK̂0)x0−z̄

[p
1

]
·

(8)

Note that all the coefficient matrices in (8) are affine in K̂0, K̂
and υ̂ . Finally, eliminating p using p = ∆̂q we get[

f
z− z̄

]
=

[
DK̂0,υ̂

f +DK̂
f p∆̂(I−DK̂

qp∆̂)−1DK̂0,υ̂
q

DK̂0,υ̂
z +DK̂

zp∆̂(I−DK̂
qp∆̂)−1DK̂0,υ̂

q

]
· (9)

For convenience, we write f=F (K̂0, K̂, υ̂ , ∆̂) and (z−z̄)T(z−
z̄)=Z (K̂0, K̂, υ̂ , ∆̂) to emphasize dependence on the variables.

C. RMPC Problem
Given the initial state x0, the RMPC problem is then to find

a feedback law uk for all k ∈N such that the cost function,
is minimized, while the constraint signals satisfy fk ≤ f̄k and
fN ≤ f̄N for all wk ∈Wk and all ∆k ∈B∆∆∆ and for all k ∈N .
The RMPC problem can be posed as a min-max problem [7],
where the objective is to find a feasible (K̂0, K̂, υ̂) that solves

J = min
(K̂0,K̂,υ̂)∈U

max
∆̂∈B∆∆∆

Z (K̂0, K̂, υ̂ , ∆̂), (10)

where U is defined to be the set of all feasible control variables
(K̂0, K̂, υ̂) such that all the problem constraints are satisfied:

U :={([K̂0 K̂], υ̂)∈K ×RNu :F (K̂0, K̂, υ̂ , ∆̂)≤ f̄,∀∆̂∈B∆̂̂∆̂∆}.

K0, K and υυυ can be computed online and applied in the usual
receding horizon MPC manner, where the first input of the
control sequence u is applied to the plant, the time window is
shifted by 1, the current state is read and the process is repeated.
Since the optimization in (10) is nonconvex, a semidefinite
relaxation is used by introducing an upper bound γ2 on the cost
function. Using Lemma 1 and a Schur complement argument,
the next result derives nonlinear conditions for solving (10).

Theorem 1: [26] Let all the variables be defined as above.
Then Z (K̂0, K̂, υ̂ , ∆̂)≤ γ2 and F (K̂0, K̂, υ̂ , ∆̂)≤ f̄ for all ∆̂∈
B∆̂̂∆̂∆ if there exists a solution to the nonlinear matrix inequalities

T1 +H (T2K̂BpT3) � 0, (11)
T i

1 +H (T i
2K̂BpT i

3) � 0, i = 1, . . . ,N f , (12)

where
[

T i
1 T i

2
T i

3 0

]
=

1 Nq Np Nu

1

Nq

Np

Np


eT

i (f̄−DK̂0,υ̂
f ) (DK̂0,υ̂

q )T− eT
i
2 D f pGT

i −
eT

i
2 D f pSi −

eT
i
2 D f u

∗ Ri+H
(
DqpGT

i
)

DqpSi Dqu
∗ ∗ Si 0
0 GT

i Si 0

,

[
T1 T2
T3 0

]
=

Nz 1 Nq Np Nu

Nz

1

Nq

Np

Np


I DK̂0,υ̂

z DzpGT DzpS Dzu

∗ γ2 (DK̂0,υ̂
q )T 0 0

∗ ∗ R+H
(
DqpGT

)
DqpS Dqu

∗ ∗ ∗ S 0
0 0 GT S 0


,

where ([K̂0 K̂], υ̂)∈K ×RNu and (S,R,G), (Si,Ri,Gi)∈ Ψ̂,
i∈N f :={1, . . . ,N f } are slack variables with Ψ̂ defined in (1).
In the sequel, we will occasionally write T1(γ

2, K̂0, υ̂ ,S,R,G)
etc. to emphasise dependence on the variables. It follows that
the relaxed RMPC problem can be summarized as:

min{γ2 :([K̂0 K̂], υ̂)∈K ×RNu ,(11),(12) are satisfied,

(S,R,G),(Si,Ri,Gi)∈Ψ̂, i∈N f }.
(13)

Definitions (8)-(9) verify that (13) is nonlinear due to terms of
the form K̂BpΦT where Φ stands for S,Si,G and Gi. Note that
(13) is linear for fixed K and RMPC schemes with fixed K have
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been proposed [32]. However, this introduces conservatism
depending on the choice of K. A linearization scheme is
proposed in [26], which uses an S-procedure to separate
K̂. However, this scheme has a high computational burden.
Furthermore, some of the introduced linearization variables
are restricted to a specific form. To overcome these two
limitations, a new linearization procedure for (13) is proposed,
which substantially reduces the computational complexity at
the expense of only minor conservatism in the formulation.

III. LINEARIZATION SCHEME FOR THE RELAXED RMPC
PROBLEM

LMI-based methods reduce conservatism by explicitly incor-
porating uncertainty within the online optimization. However,
they suffer from a heavy computational cost, which makes
them impractical for systems with a high number of states or
fast dynamics. In this section, a novel linearization procedure is
proposed to overcome the nonconvexity for the RMPC problem
in (13), while conservativeness and computation burden are
kept at low levels. We will use the following form of the
Elimination Lemma.

Lemma 2 (Elimination Lemma): Let Q = QT ∈ Rn×n,B ∈
Rn×m and C∈Rn×p be given matrices and let B⊥ and C⊥

denote orthogonal complements of B and C, respectively. Then
the following two statements are equivalent: (i) (B⊥)TQ(B⊥)�
0 & (C⊥)TQ(C⊥)� 0. (ii) ∃ Z ∈Rp×m : Q+H (CZBT )� 0.
The proof and some applications of the Elimination Lemma
can be found in [33], [34]. The next result uses the Elimination
Lemma to derive LMI sufficient conditions for the nonlinear
matrix inequality conditions of Theorem 1.

Theorem 2: Let all variables be as defined Section II.
Then, Z (K̂0, K̂, υ̂ , ∆̂) ≤ γ2 and F (K̂0, K̂, υ̂ , ∆̂) ≤ f̄ for all
∆̂ ∈B∆̂̂∆̂∆ if there exist solutions ([K̂0 K̂], υ̂) ∈ K × RNu ,
X ∈ RNn×Nn , with X lower block-diagonal with n×n blocks,
(S,R,G), (Si,Ri,Gi) ∈ Ψ̂, ∀i ∈N f to the following LMIs:[

T1 +H (T2K̄Y ∗) ∗(
BpT3− K̄T T T

2
)
−XY ∗ X +XT

]
� 0 (14)[

T i
1 +H

(
T i

2K̄Y ∗i
)

∗(
BpT i

3− K̄T (T i
2)

T
)
−XY ∗i X +XT

]
� 0, (15)

for some Y ∗ ∈ RNn×(Nz+1+Nq+Np),Y ∗i ∈ RNn×(1+Nq+Np) and
where K̄ := K̂X ∈K . Furthermore, suppose that (11) and (12)
have feasible solutions for (γ2, K̂0, K̂, υ̂ ,R,S,G,Ri,Si,Gi) =
(γ2∗, K̂∗0 , K̂

∗, υ̂∗,R∗,S∗,G∗,R∗i ,S
∗
i ,G

∗
i ) so that

T1(γ
2∗, K̂∗0 , υ̂

∗,S∗,R∗,G∗)+H
(
T2K̂∗BpT3(S∗,G∗)

)
�0, (16)

T i
1(K̂

∗
0 , υ̂

∗,R∗i ,S
∗
i ,G

∗
i )+H

(
T i

2K̂∗BpT i
3(S
∗
i ,G

∗
i )
)
�0,

and let Y ∗ = BpT3(S∗,G∗)+(T2K̂∗)T and Y ∗i = BpT i
3(S
∗
i ,G

∗
i )+

(T i
2K̂∗)T . Then (14) and (15) are feasible.

Proof: We prove the first part by proving that the LMIs in
(14) and (15) are sufficient for the nonlinear matrix inequalities
in (11) and (12), respectively. We first use the Elimination
Lemma to give an equivalent form to (11). In order to separate
K̂ from T3, the inequality in (11) can be rearranged as:

[
I T2K̂

] Q︷ ︸︸ ︷[
T1 T T

3 BT
p

BpT3 0

] C⊥︷ ︸︸ ︷[
I

K̂T T T
2

]
� 0. (17)

Then, applying the Elimination Lemma 2 on (17) (with B = I)
shows that (17), hence (11) is equivalent to

[
T1 T T

3 BT
p

BpT3 0

]
+

C︷ ︸︸ ︷[
−T2K̂

I

] Z︷ ︸︸ ︷[
Y X

]
+

[
Y T

XT

][
−K̂T T T

2 I
]
�0, (18)

where Y and X are free slack variables. Since H (X)�0, X
is nonsingular and we can define K̄ := K̂X as a new variable.
To preserve the structure of K̂ which ensures causality, we
restrict X to be block lower triangular (with n×n blocks). To
preserve linearity, we restrict Y to have the form Y =−XY ∗

with Y ∗ free (but not a variable). Substituting Y =−XY ∗ into
(18) proves that (14) is sufficient for (11) (but not necessary
due to the restrictions on Y and X). A similar procedure proves
that (15) are sufficient for (12). Next, we prove feasibility of
(14) and (15). To show that (14) has a feasible solution, set
(γ2, K̂0, K̂, υ̂ ,R,S,G,X) = (γ2∗, K̂∗0 , K̂

∗, υ̂∗,R∗,S∗,G∗, I). Then
the LHS of (14) becomes

T ∗ :=
[

T ∗1 +H
(
T2K̂∗

(
BpT ∗3 +(K̂∗)T T T

2
))

∗
−2(K̂∗)T T T

2 2I

]
where T ∗1 := T1(γ

2∗, K̂∗0 , υ̂
∗,S∗,R∗,G∗) and T ∗3 := T3(S∗,G∗).

Applying a Schur complement on T ∗ shows that T ∗� 0 if
and only if (16) is satisfied. It follows that (14) is feasible if
(16) is. A similar procedure proves the feasibility of (15).

Remark 1: Theorem 2 provides sufficient LMI conditions
for the initial nonconvex RMPC problem. Therefore, K0, K and
υ can be computed online and applied in a receding horizon
manner as stated in Section II-C.

Remark 2: In comparison to [26], the novelty of the pro-
posed linearization procedure is that it does not restrict the
structure of the slack variables (R,S,G) and (Ri,Si,Gi) beyond
the requirements of Ψ̂, and therefore it is less conservative.

IV. SINGLE LMI APPROACH FOR HANDLING
CONSTRAINTS SIGNAL FOR RMPC PROBLEM

Instead of solving multiple matrix inequalities for the
constraints (one for each of the N f constraints (12) or (15)),
we propose a strategy to combine all within a single inequality.
This results in reduced computational complexity and improved
algorithm scalability. Our algorithm is based on the following
result which uses an S-procedure to derive one LMI condition
that is sufficient for a set of elementwise inequalities.

Theorem 3: Let f̃ ∈ RN f and let e ∈ RN f be the vector of
ones. Then f̃ ≥ 0 if there exist µ ∈ R and M ∈ DN f such that,

L :=
[

2µ
(

f̃ −Me− eµ
)T

∗ M+MT

]
� 0. (19)

Proof: Let ΩΩΩ :={diag(δ1, . . . ,δN f ) : δi∈{0,1},
N f

∑
i=1

δi=1}.
Then,

f̃ ≥ 0⇔ eT
∆ f̃ + f̃ T

∆
T e≥ 0 ∀∆ ∈ΩΩΩ. (20)

Let ∆∈ΩΩΩ. Since δi∈{0,1} and ∑
N f
i=1 δi=1, then

M∆ := ∆M+MT
∆

T−∆(M+MT )∆T =0 ∀M∈DN f ,

µ∆ := eT
∆eµ+µeT

∆
T e−2µ =0 ∀µ∈R,

(21)
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respectively. It is straightforward to verify the identity,

eT
∆ f̃+ f̃ T

∆
T e=eT M∆e+µ∆+

[
1 eT ∆

]
L

[
1

∆T e

]
·

The proof now follows from (20) and (21).
Theorem 3 enables us to give sufficient conditions for the

constraints in (12) in the form of a single matrix inequality.
Theorem 4: Let all variables be as defined Section II.

Then, Z (K̂0, K̂, υ̂ , ∆̂) ≤ γ2 and F (K̂0, K̂, υ̂ , ∆̂) ≤ f̄ for all
∆̂ ∈B∆̂̂∆̂∆ if there exist solutions ([K̂0 K̂], υ̂) ∈ K × RNu ,
(S,R,G),(S̃, R̃, G̃) ∈ Ψ̂, µ ∈ R and M ∈ DN f to (11) and,

T̃1 +H (T̃2K̂BpT̃3)� 0, (22)

where
[

T̃1 T̃2
T̃3 0

]
=

1 N f Nq Np Nu

1

N f

Nq

Np

Np


2µ (f̄−DK̂0,υ̂

f −Me−eµ)T (DK̂0,υ̂
q )T 0 0

∗ M+MT −D f pG̃T −D f pS̃ −D f u
∗ ∗ R̃+H (DqpG̃T ) DqpS̃ Dqu
∗ ∗ ∗ S̃ 0
0 0 G̃T S̃ 0


·

Proof: We only need to prove that (22) is sufficient
for f̃ := f̄−f≥ 0 for all ∆̂∈B∆̂̂∆̂∆, where f is defined in (9).
Using Theorem 3 and rearranging (19) verifies that a sufficient
condition for the constraints is

H11+H (H12∆̂(I−H22∆̂)−1H21)�0, ∀∆̂∈B∆̂̂∆̂∆, (23)

where we have used a strict inequality to avoid issues related
to ill-conditioning near optimality and where

[
H11 H12
H21 H22

]
:=

 2µ

(
f̄−DK̂0,υ̂

f −Me−µe
)T

0

∗ M+MT −DK̂
f p

DK̂0,υ̂
q̂ 0 DK̂

qp

·
Using Lemma 1 on (23) and the definition of (8) yields the
matrix inequality (22) as a sufficient condition.
Using the linearization procedure in Section III, we next derive
sufficient LMI conditions for the problem stated in (13).

Theorem 5: Let all variables be as defined Theorem 4. Then,
Z (K̂0, K̂, υ̂ , ∆̂)≤ γ2 and F (K̂0, K̂, υ̂ , ∆̂)≤ f̄ for all ∆̂∈B∆̂̂∆̂∆ if
there exist ([K̂0 K̂], υ̂)∈K ×RNu , (S,R,G),(S̃, R̃, G̃)∈Ψ̂, µ∈R,
M∈DN f and X ∈RNn×Nn , with X lower block-triangular with
n×n blocks, to (14) and the following LMI:[

T̃1 +H
(
T̃2K̄Ỹ ∗

)
∗(

BpT̃3− K̄T T̃ T
2
)
−XỸ ∗ X +XT

]
�0, (24)

for any Y ∗ ∈ RNn×(Nz+1+Nq+Np), Ỹ ∗ ∈ RNn×(1+N f+Nq+Np) and
where K̄ := K̂X ∈ K . Furthermore, suppose that (11) and
(22) have feasible solutions for (γ2, K̂0, K̂, υ̂ ,R,S,G, R̃, S̃, G̃) =
(γ2∗, K̂∗0 , K̂

∗, υ̂∗,R∗,S∗,G∗, R̃∗, S̃∗, G̃∗) so that (16) and

T̃1(K̂∗0 , K̂
∗, υ̂∗, R̃∗, S̃∗, G̃∗)+H

(
T̃2K̂∗BpT̃3(S̃∗, G̃∗)

)
� 0. (25)

are satisfied and let Y ∗ = BpT3(S∗,G∗)+ (T2K̂∗)T and Ỹ ∗ =
BpT̃3(S̃∗, G̃∗)+(T̃2K̂∗)T . Then (14) and (24) are feasible.

Proof: The result can be proved by applying the
Elimination Lemma 2 on (22) in a similar procedure to that
used in the proof of Theorem 2 and is omitted.

Remark 3: Note that (19) gives only sufficient conditions for
f̃ ≥0 and can be conservative. To reduce the conservativeness,
we can add redundant constraints, e.g. ∑

N f
i=1 δ 2

i =1. However,
this is not pursued here. Our numerical experimentation,
including the examples below, indicates that the single LMI
sufficient condition provided by Theorem 5 performs as well
as the multiple LMI conditions provided by Theorem 2.

V. FEASIBILITY ANALYSIS

A major problem in MPC is to ensure that the constraints
are feasible. Infeasibility may arise if the constraints are too
tight or it may be due to the approximations used to obtain
a practical solution. In the context of this work, to guarantee
feasibility, Theorems 2 and 5 require initial feasible solutions
to (11), and (12) (to compute Y ∗ and Y ∗i ) or (11) and (22) (to
compute Y ∗ and Ỹ ∗). On the other hand, (11) and (12) are
nonlinear and difficult to solve and these computations need
to be carried out online. In this section we develop algorithms
that address these issues that involve extensive computations,
which, however, are convex and can be carried out offline.
We will concentrate on Theorem 5 since the procedure for
Theorem 2 is similar.

Our approach is to find solutions to (11) and (22) offline that
are feasible for every x0 in a constrained set. Note that both
(11) and (22) can be written as M(x0) :=M1+H (M2x0M3)� 0
in which M3 is constant and M1 and M2 are independent of x0,
see (8). The next result uses an S-Procedure to derive sufficient
conditions for M(x0)�0 for all x0 in a polytopic set and forms
the basis for our Algorithm 1.

Theorem 6: Let M1 = MT
1 ∈ Rm×m, M2 ∈ Rm×n, M3 ∈

R1×m, C0 ∈ Rp×n, c0 ≤ c̄0 ∈ Rp be given. Then M1 +
H (M2x0M3)� 0 for all x0 ∈X0 := {x0 ∈Rn : c0 ≤C0x0 ≤ c̄0}
if there exists 0� D0 ∈ Dp such that

L :=
[

M1 +
1
2H (MT

3 (c
T
0 D0c̄0)M3) ∗

MT
2 −

1
2CT

0 D0(c0 + c̄0)M3 CT
0 D0C0

]
� 0.

Proof: A manipulation verifies the following identity

M1 +H (M2x0M3) = M0 +
[
Im MT

3 xT
0
]

L
[

Im
x0M3

]
,

where M0 :=MT
3 (C0x0−c0)

TD0(c̄0−C0x0)M3. The result then
follows from the constraints on x0 and the structure and sign-
definiteness of D0 (which ensure that M0�0 for all x0 ∈X0)
and since L � 0 (which ensures that the second term on the
RHS of the identity is positive definite for all x0 ∈ Rn).

Theorem 6 gives an LMI procedure for solving (11) and
(22) for all x0∈X0 when K̂ is given and for solving (14) and
(24) for all x0∈X0 when an initial feasible solution for (11)
and (22) is given. Algorithm 1 outlines the suggested offline
policy for computing initial feasible solutions for Theorem 5.

Remark 4: If β =1 at the end of Step 2, we have feasible
solutions to (11) and (22) for all x0 ∈X0 and we can use
Theorem 5 online. If fewer online computations are needed,
Theorem 4 can be used online with K̂ = K̂∗ and K̂0, υ̂ can
be used to minimize γ . If β >1 at the end of Step 2, then,
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Algorithm 1: Initial feasible solutions for Theorem 5

Result: Y ∗(S∗,G∗, K̂∗) and Ỹ ∗(S̃∗, G̃∗, K̂∗)
Step 1:
In Theorem 4, fix K̂ (e.g. K̂=0), replace f̄ by β f̄ and
use Theorem 6 to minimize β such that (22) is
satisfied for all x0∈X0. Record β , S̃ and G̃ and let
K̂∗=0, S̃∗= S̃, G̃∗= G̃, i=1,βi=β . Select a maximum
number of iterations imax and tolerance tolβ <1;

Step 2:
while (β > 1) & (i < imax) do

In Theorem 5, replace f̄ by β f̄ and use Theorem 6
to find the smallest β ≥ 1 such that (24) is
satisfied for all x0 ∈X0. Set βi+1 = β and update
K̂∗ := K̂, S̃∗ := S̃ and G̃∗ := G̃;

if ( |βi+1−βi|
βi+1

< tolβ ) then
break; (convergence to a β > 1)

end
Set i := i+1.

end
Step 3:
if β > 1 then

Sub-divide X0 into smaller sets;
Go back to Step 2;

else
In Theorem 4 fix K̂= K̂∗ and use Theorem 6 to
minimize γ2 such that (11) is satisfied for all
x0 ∈X0. Record γ2 and let S∗ = S and G∗ = G;

end
Step 4:
Set j = 1, γ2

j = γ2 and select jmax to be the maximum
number of iterations and tolγ < 1 to be a tolerance.

while ( ( j < jmax) do
In Theorem 5, use Theorem 6 to minimize γ2 such

that (14) and (24) are satisfied for all x0 ∈X0. Set
γ2

j+1 = γ2 and update K̂∗ := K̂, S∗ = S, G∗ = G,
S̃∗ := S̃ and G̃∗ := G̃;

if (
|γ2

j+1−γ2
j |

γ2
j+1

< tolγ ) then
break;

end
Set j := j+1.

end

with minor modifications to Algorithm 1, Theorem 5 can still
be used, although without a guaranteed feasible solution, but
possibly a good initial solution if β ∼1 since the conditions
are not necessary. Alternatively, we may sub-divide X0 into
subsets, find a feasible solution for each and use a look-up
table to choose the initial solution given x0 in the online
implementation. A systematic procedure for sub-dividing X0
is under investigation, however, see Example 1 for more details.

Remark 5: Although this work concentrates on solving
effectively the robust MPC control problem at the first iteration,
some comments regarding recursive feasibility are given here.
By selecting the terminal costs and constraints to lay inside
a robust control invariant set, using a dual-mode controller

similarly to [26], recursive feasibility and stability of the overall
control scheme can be achieved. An alternative approach for
recursive feasibility of the robust optimal control problem can
be potentially proven by an adaptive horizon method similar to
the work in [25]. However, further investigation into recursive
feasibility and stability have been left for future work.

VI. NUMERICAL EXAMPLES AND SIMULATIONS

The effectiveness of our algorithms is illustrated by two
examples. We use the CVX package [35], in MATLAB R2019b
on a computer with 2.40 GHz Intel Xeon(R) CPU and 64.0
GB memory.

A. Example 1
The system is a variation on that proposed in [17], [18], [26].

It is a second order unstable process subject to uncertainty and
bounded disturbances. The dynamics have the form of (3) with

A=Cq=

[
1 0.8

0.5 1

]
,Bu=Dqu=

[
1
1

]
,Bw=

[
0.1
0.1

]
,Bp=0.1I2,Ĉq=0.

The time-invariant uncertainty has the form ∆∆∆ :={δ I2 : δ ∈R}
and the disturbances set is W :={w∈Rnw :−1≤w≤1}. The
constraints are −ū≤uk≤ ū=8,k=0, . . . ,N−1 and −x̄≤xk≤
x̄= [7 7]T ,k=0, . . . ,N, respectively and the initial state is set
at the state constraints boundary x0= x̄. The control objective
is to regulate the unstable system subject to uncertainties and
disturbances into the origin whilst satisfying the input and
state constraints. The states and inputs are equally weighted in
the cost function. Two RMPC algorithms are used. The first,
CE-RMPC#1(K̂0, K̂, υ̂), is described by Theorem 5, where
the initial feasible solutions (Y ∗,Ỹ ∗) are computed offline by
Algorithm 1. The second algorithm, CE-RMPC#2(K̂0, υ̂), is
described by Theorem 4, where K̂= K̂∗ (computed offline by
Algorithm 1). For this example, β is greater than 1 if we take
X0 to be the entire constrained state-space (X0 :={x0 :−x̄≤
x0≤ x̄}). Thus X0 is divided into 25 smaller sets X i, j

0 , with
β =1 for each of these sets, and a look-up table has been used
to store (Y ∗,Ỹ ∗) for each subset. The subsets used are

X i, j
0 ={

[
x01
x02

]
: xi

01≤x01≤ x̄i
01, x j

02≤x02≤ x̄ j
02}, i, j=1, . . . ,5,

where for k = 1,2,

[x1
0k, x̄

1
0k]=7[.75,1], [x2

0k, x̄
2
0k]=7[.4, .75], [x3

0k, x̄
3
0k]=7[−.4, .4],

[x4
0k, x̄

4
0k]=−7[.75, .4], [x5

0k, x̄
5
0k]=−7[1, .75].

The time to compute the initial solutions (Y ∗,Ỹ ∗) for all subsets
is 94.5 seconds. Note that offline computation time depends on
the number of subsets and terminal iteration values imax and
jmax. The controller from [26] is also presented for comparison.
All algorithms are simulated with prediction horizon N=5.

As shown in Fig. 1, using the algorithms from Theorem 5 or
Theorem 4 with fixed K̂, robust performance has been achieved,
while both states (x1,x2) converge faster to the origin compared
to the results from [26]. Fig. 1 also shows the control input
computed by our algorithms, where it can be seen that the input
reaches the constraint boundaries, in contrast with the algorithm
in [26]. Therefore, our algorithms are less conservative, even
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Fig. 1. States trajectories and control input for Example 1.

for fixed K̂, due to the novel linearization procedure (see
Remark 2). The most notable outcome using our algorithms
is that they required significantly lower computation burden
compared to the methods from the literature. In particular, as
shown in Table I, using the CE_RMPC#1 (K̂0, K̂, υ̂) procedure
results in the average and maximum computation cost per
iteration being reduced by 94% and 92%, respectively, as
compared to the algorithm proposed in [26]. Implementing
CE_RMPC#2 (K̂0, υ̂) results in the average and maximum
computation cost per iteration being reduced by 96% and
94%, respectively, in comparison to the time required by the
algorithm in [26]. The numerical values in Table I were realized
using the same computer to solve the above regulation problem
and repeated 10 times for each method.

TABLE I
COMPUTATION TIME PER ITERATION FOR EXAMPLE 1

Method Mean ± Std Deviation Maximum time
Tahir et.al (2013) [26] 23.4573 ± 2.2287 s 29.3438 s
CE RMPC #1 (K̂0, K̂, υ̂) 1.4187 ± 0.4482 s 2.5313 s
CE RMPC #2 (K̂0, υ̂) 0.9187 ± 0.2686 s 1.7656 s

B. Example 2

The benchmark problem of control tracking of a coupled
two-mass-spring system is considered [15], [26]. Discretizing
the system using Euler’s first order approximation for the
derivative with sample time 0.1s gives a fourth order linear
discrete-time state space model x(k+1)=Ax(k)+Buu(k). Here
A depends on the masses m1,m2 and the spring constant K. The
states x1,x2 are the mass displacements whereas x3,x4 are the

respective velocities. The nominal values are m1=m2=K=1
in normalised units and the control force u acts on m1.

The objective is for the output (x2) to track a unit step
whilst satisfying the constraints −1≤u(k)≤1, − x̄≤x(k)≤
x̄ :=[1.5 1.5 1 1]T . In this setup, the state is measurable, while
K is uncertain within the range 0.5=Kmin≤K≤ Kmax = 10,
in appropriate units. The cost function weights are Cz =
[5I 0]T ,Dzu=[0 I]T and the prediction horizon is set as N = 6.
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Fig. 2. Output and control input signals for the proposed RMPC
controllers compared with algorithms from the literature for Example 2.

The output response in Fig. 2 shows that both proposed
algorithms robustly steer the system to the reference signal.
Fig. 2 also shows the responses of the infinite horizon methods
in [15], [16] and the finite horizon method in [26], as well as
NL-RMPC(K̂0, K̂, υ̂) which is described by Theorem 2 (New
Linearization RMPC with multiple LMIs) . It can be seen
that our approaches converge much faster than the two infinite
horizon methods. Comparing with [26], it can be seen that even
though all algorithms have excellent tracking properties, the
proposed controllers have slightly faster responses due to the
less restrictive nature in the formulation (see Remark 2). Fig. 2
also shows that the control input calculated by the proposed
algorithms is much faster and is closer to the upper bound.
Our method also gives a much smaller cost function compared
with the infinite horizon methods and similar cost compared
with the finite horizon method in [26].

To quantify the effect of Theorem 5 compared with Theo-
rem 2 with respect to feasibility domain, Kmax was increased
until infeasibility is observed. CE_RMPC#1 and CE_RMPC#2
can obtain a solution for values up to Kmax = 20.5, while NL-
RMPC for values up to Kmax = 21. Therefore we can conclude
that the large computation time reduction using the suggested
algorithms (CE_RMPC#1 and CE_RMPC#2) comes with only
a small reduction in the feasibility domain.

Comparing the computational times in Table II, it can be
seen that CE_RMPC#1 has a similar computational burden as
[15], [16], and is much faster than [26] and the algorithm
NL-RMPC. A significant computation time reduction can
also be observed for CE_RMPC#2. Therefore our approach
combines the fast online computational performance of the
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infinite horizon methods and the good performance of the finite
horizon approaches. Note that in general, a larger prediction
horizon increases the computation time, while stability is
improved. Restricting the computational time to be similar
to infinite horizon methods from the literature (on average 1
sec), the prediction horizon was set to N=6 to allow a fair
comparison with respect to performance. Horizon length N = 7
gives an average computational time t = 2.1845 sec, however,
the control performance was not noticeably improved.

TABLE II
COMPUTATION TIME PER ITERATION FOR EXAMPLE 2

Method Mean ± Std Deviation Max. time
Inf. horizon RMPC from [15] 1.0788 ± 0.3321 s 2.2813 s
Inf. horizon RMPC from [16] 1.0679 ± 0.3002 s 2.5625 s
RMPC from [26] 3.0672 ± 0.5137 s 5.3750 s
CE RMPC #1 1.0734 ± 0.2695 s 2.0156 s
CE RMPC #2 0.3502 ± 0.1044 s 0.7117 s
NL-RMPC 2.3547 ± 0.9762 s 3.7656 s

VII. CONCLUSION

In this work, two algorithms are proposed to reduce the
computational complexity of state-feedback RMPC for linear-
time-invariant discrete-time systems, subject to structured
uncertainty and bounded disturbances.

The effectiveness of the proposed techniques is demonstrated
through numerical examples taken from the literature. In
particular, it has been shown that the proposed RMPC scheme
can successfully calculate an optimal control signal up to 96%
faster than other finite horizon RMPC, while being able to steer
the system quicker to a predefined reference with minimum
conservativeness compared with other RMPC approaches.

Although our proposed RMPC approach is LMI-based,
nevertheless, a detailed comparison with tube-based RMPC
methods is currently under active research.
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