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Stochastic Event-triggered Variational Bayesian Filtering
Xiaoxu Lv, Peihu Duan, Zhisheng Duan, Guanrong Chen, and Ling Shi

Abstract—This paper proposes an event-triggered variational Bayesian
filter for remote state estimation with unknown and time-varying noise
covariances. After presetting multiple nominal process noise covariances
and an initial measurement noise covariance, a variational Bayesian
method and a fixed-point iteration method are utilized to jointly estimate
the posterior state vector and the unknown noise covariances under a
stochastic event-triggered mechanism. The proposed algorithm ensures
low communication loads and excellent estimation performances for a
wide range of unknown noise covariances. Finally, the performance of
the proposed algorithm is demonstrated by tracking simulations of a
vehicle.

Index Terms—Event-based scheduling; Variational Bayesian; Kalman
filter; Remote state estimation.

I. INTRODUCTION

The last few decades have seen a great development of state
estimation techniques with their wide applications in navigation,
tracking, and sensor networks. Various types of state estimation
algorithms have been proposed such as linear filters [1], nonlinear
filters [2] [3], particle filers [4], filters with state constraints [5]–[7],
filters with intermittent observations [8], [9], distributed filters [10],
[11], etc.

In practice, considering small batteries equipped by sensors with
limited channel bandwidths, an efficient remote estimation system
is desirable. In such a system, the sensor decides whether it sends
measurement to a remote estimator. Usually, a tradeoff between the
communication rate and the estimation performance is necessary.
Various event-based communication schemes provide a solution to
such problems, which are typically subject to limited transmission
resources as depicted in Fig.1. An event-based sensor data scheduler
and a state estimation algorithm were proposed in [12]. However, to
drive the minimum mean-squared error (MMSE) estimator, Gaussian
approximation was adopted for prior estimates, and an exact MMSE
estimation algorithm was designed by exploiting the generalized
closed skew normal distribution in [13]. Then, two new types of
event-triggered schedules were designed to eliminate an associated
approximation problem [14]. Lately, a robust event-triggered remote
state estimation algorithm was derived by minimizing a risk-sensitive
criterion in [15]. In the presence of packet drops between the sensor
and the estimator, the remote state estimation problem was studied,
and a suboptimal estimator was proposed in [16]. For general non-
Gaussian systems, an event-based transmission scheme was derived
for particle filter based on remote state estimation in [17].

However, in practical applications, the measurement and the pro-
cess noise covariances cannot be precisely calculated, which may
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Fig. 1. Event-triggered sensor scheduling framework.

even be time-varying. To jointly estimate the state and the time-
varying noise covariances, the variational Bayesian method is effec-
tive. In [18], a recursive adaptive Kalman filter was proposed by
forming a separable variational approximation based on the inverse-
Gamma distribution. Later, by combining variational Bayesian and
Gaussian filtering methods, a variational Bayesian adaptive algorithm
was designed in [19]. However, the above two filters cannot handle
the case with unknown process noise covariances. Recently, by using
inverse Wishart priors for the predicted error covariance matrix,
a variational Bayesian adaptive Kalman filter was presented in
[20]. Moreover, a new variational adaptive Kalman filter with the
Gaussian-inverse-Wishart mixture distribution was developed in [21].
By modelling the probability density functions of state transition and
measurement as Gaussian-Gamma mixture distributions, an adap-
tive Kalman filter was derived in [22]. Although these variational
Bayesian algorithms have good filtering performances, they are costly
in performing information transmission from a sensor to a remote
estimator. It is therefore desirable to solve the above Bayesian
filtering problem with lower transmission costs, which is the objective
of the present paper.

Specifically, this paper addresses the event-triggered variational
Bayesian estimation problem with unknown and time-varying noise
covariances. Our main contributions are briefly summarized as fol-
lows:

1) For remote state estimation with unknown and time-varying
noise covariances, this paper proposes an event-triggered varia-
tional Bayesian filter to jointly estimate the state and the noise
covariances. Multiple inverse Wishart priors are utilized for esti-
mating the predicted error covariance with weight combinations
being adaptively inferred by the variational Bayesian method.

2) With an event-triggered mechanism, the algorithm ensures ex-
cellent and robust performances for a wide range of unknown
noise covariances with low communication overhead.

The remainder of this paper is organized as follows. Section
II presents preliminaries and the problem formulation. Section III
describes the designed variational Bayesian filter. Section IV provides
simulations to verify the effectiveness of the proposed algorithm.
Section V concludes the investigation.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries

Let P be a symmetric positive definite matrix of random variables,
and define the inverse Wishart distribution as

IW(P |g,G) =
|G|

g
2 |P |

−(g+n+1)
2 e−

1
2
tr(GP−1)

2
gn
2 Γn( g

2
)

, (1)
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where n, g, and G denote the dimensions of P , the degree of freedom
(dof), a positive definite scale matrix, respectively, and Γn is the n-th
order gamma function.

Let λ be the M -dimensional binary variable with λj ∈ {0, 1} such
that

∑M
j=1 λj = 1. The categorical distribution is defined as

Cat(λ|µ,M) =

M∏
j=1

[µj ]
λj , (2)

where µ = (µ1, ..., µM ) is subject to constraints 0 ≤ µj ≤ 1 and∑M
j=1 µj = 1. Moreover, the Dirichlet distribution is defined as

Dir(µ, α,M) = C(α)

M∏
j=1

[µj ]
αj−1, (3)

where α = (α1, ..., αM ), α̂ =
∑M
j=1 αj , C(α) = Γ(α̂)

Γ(α1)···Γ(αM )
,

E{µj} =
αj
α̂

, and Γ(·) is the gamma function. The above distribu-
tions will be used for the estimation of covariances later.

Variational inference is a method based on optimization to estimate
unknown probability densities. Denote the set of all latent unknown
variables by Λ = {θ1, ..., θN} and the set of all observed variables by
Z = {Z1, ..., ZM}. According to the mean field theory [23], the true
distribution p(Λ|Z) can be approximated by p(Λ|Z) ≈

∏N
k=1 q(θk),

where every θk has its own independent distribution q(θk). Moreover,
q(θk) can be designed by minimizing the Kullback-Leibler (KL)
divergence between the true distribution and the approximation as
follows [24]:

KL

[
N∏
k=1

q(θk)||p(Λ|Z)

]
=

∫ N∏
k=1

q(θk)log

(∏N
k=1 q(θk)

p(Λ|Z)

)
dΛ

= −L

(
N∏
k=1

q(θk)

)
+ log p(Z),

(4)
where L

(∏N
k=1 q(θk)

)
is the evidence lower bound, formulated as

L

(
N∏
k=1

q(θk)

)
=

∫
log p(Λ, Z)

N∏
k=1

q(θk)dθk

−
N∑
k=1

∫
q(θk)log q(θk)dθk.

(5)

Based on the variational inference theory, minimizing the KL
divergence (4) is equivalent to maximizing the evidence lower bound
(5), which yields the optimal solution

q∗(θk) = arg maxq(θk)L

(
N∏
k=1

q(θk)

)
. (6)

This optimal solution is calculated as [24]

log q∗(θk) = E∗
Λ−θk {log p(Λ, Z)}+ cθk , (7)

where Λ−θk denotes the set of all unknown variables Λ except θk,
and cθk is a constant independent of θk. When these variational
parameters are coupled, the fixed-point iteration method [25] can be
adopted to obtain an approximate optimal solution for (4) as

log qi+1(θk) = Ei
Λ−θk {log p(Λ, Z)}+ cθk , (8)

where i denotes the n-th iteration.

Lemma 1: For matrices A, B, C, and D with appropriate dimen-

sions, if A and E = D − CA−1B are nonsingular, then[
A B
C D

]−1

=

[
A−1 +A−1BE−1CA−1 −A−1BE−1

−E−1CA−1 E−1

]
.

(9)

B. Problem Statement

Consider a discrete-time system as follows:

xk = Fkxk−1 + ωk, (10)

zk = Hkxk + νk, (11)

where xk ∈ Rn is the system state, Fk ∈ Rn×n is the state
transition matrix, zk ∈ Rm is the measurement, Hk ∈ Rm×n is
the measurement matrix, and ωk ∈ Rn and νk ∈ Rm are mutually
uncorrelated zero-mean Gaussian noise with covariances Qk > 0 and
Rk > 0, respectively. The initial state x0 and its estimates x̂0|0 obey
Gaussian distributions.

In practice, the process and the measurement noise covariances
may be unknown and time-varying, which are usually empirically
estimated. In this paper, it is assumed that the initial nominal mea-
surement noise covariance and M nominal process noise covariances
are described by R̄0 and

Q̄k =

M∏
j=1

[Q̄j,k]λj,k , (12)

respectively, where Q̄j,k represents the j-th nominal process noise
covariance at time k, and λk = (λ1,k, ..., λM,k) is subject to the
categorical distribution like (2). Practically, λk is not exactly known.

Remark 1: Under the event-triggered mechanism, the unknown
process noise covariances cannot be jointly estimated in a recursive
form like the measurement noise covariances by the variational
Bayesian method. To solve this problem, the unknown process
noise covariances are expected to be estimated by adaptive weight
combinations of multiple nominal process noise covariances. From
(12), E{Q̄k} =

∑M
j=1 E{λj,k}Q̄j,k, where E{λj,k} is utilized as

the adaptive weight parameter. Hence, the unknown process noise
covariance estimation problem is reformulated as the adaptive weight
combination problem of multiple nominal process noise covariances.

In the present framework, when the sensor obtains the measure-
ment zk, to reduce the transmission cost, it first makes the decision
whether to send the measurement zk to a remote estimator. To do so,
a binary decision variable γk = 1 or 0 is introduced. Specifically,
if the sensor decides to send the measurement, γk = 1; otherwise
γk = 0. Here, the information set at time k for the estimator is
defined as Ik , {γ0z0, ..., γkzk}∪{γ0, ..., γk} with I−1 = ∅. Here,
a closed-loop stochastic event-triggered schedule is adopted to design
the decision variable γk as [15]

γk =

{
0, ζ ≤ ϕ(ek)
1, ζ > ϕ(ek),

(13)

where ζ is a uniformly distributed random variable over [0, 1] at every
step; ek = zk− ẑk|k−1 is the innovation with the feedback predicted
measurement ẑk|k−1 = Hkx̂k|k−1; Yk is a positive definite matrix;
and ϕ(ek) is designed as

ϕ(ek) = exp
(
−1

2
eTk Ykek

)
. (14)

The objective of this paper is to design an event-triggered varia-
tional Bayesian filter for the sensor system with unknown process
and measurement noise covariances. The following tasks will be
accomplished:
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1) design a variational Bayesian filter in the presence of unknown
noise covariances with multiple nominal covariances.

2) design the above filter with a low transmission cost using the
event-triggered schedule (13).

III. VARIATIONAL BAYESIAN FILTER

In this section, a novel filtering algorithm is proposed by using
the variational Bayesian method, estimating the unknown states xk
under the event-triggered mechanism.

A. Unknown Noise Distributions

First, it follows from (12) that the prior state x̂k|k−1 and the
nominal predicted error covariance Pk|k−1 are given by

x̂k|k−1 = Fk−1x̂k−1|k−1, (15)

and

Pk|k−1 =
M∏
j=1

[Fk−1Pk−1|k−1F
T
k−1 + Q̄j,k]λj,k

=

M∏
j=1

[Pj,k|k−1]λj,k ,

(16)

respectively, where Pj,k|k−1 = Fk−1Pk−1|k−1F
T
k−1+Q̄j,k, and λj,k

is given in (12). However, since the noise covariances are unknown,
it is not feasible to directly perform (15) and (16) for state estimation.
To address this issue, the noise covariances are estimated as follows.

Following [24], the inverse Wishart distribution is utilized as
the conjugate prior distribution for the Gaussian distribution with
an unknown covariance matrix. In so doing, the distributions of
p(Pk|k−1|Ik−1) and p(Rk|Ik) are chosen as

p(Pk|k−1|λk, Ik−1) =

M∏
j=1

[
IW(Pk|k−1|ĝj,k|k−1, Ĝj,k|k−1)

]λj,k
(17)

and

p(Rk−1|Ik−1) = IW(Rk−1|ŝk−1|k−1, Ŝk−1|k−1), (18)

respectively, where ĝj,k|k−1 is a preselected tuning parameter,
Ĝj,k|k−1 = ĝj,k|k−1Pj,k|k−1, ŝ0|0 is another preselected tuning
parameter, and Ŝ0|0 = ŝ0|0R0|0. It should be noted that λk in (17)
are unknown.

To obtain the value for λk in (17), following [21], it is modelled
by the categorical distribution, like (2), as

p(λk|µk) = Cat(λk|µk,M) =

M∏
j=1

[µj,k]λj,k .

Then, since the conjugate prior distribution of the categorical distribu-
tion is the Dirichlet distribution [24], µk is modelled by the Dirichlet
distribution, like (3), as

p(µk) = Dir(µk, αk|k−1,M)

= C(αk|k−1)

M∏
j=1

[µj,k]αj,k|k−1−1.

To this end, the distributions of the unknown noise covariances
have been constructed. Based on these distributions, the posterior
estimates will be inferred by the variational Bayesian method, as
further discussed in the following.

B. Variational Approximation: γk = 0

This subsection studies the case where zk is not transmitted by
the sensor at step k under the event-triggered law (13), which
results in the unavailability of zk. Under this circumstance, xk and
zk are regarded as jointly Gaussian [14]. Hence, they are strongly
coupled and have to be jointly estimated. It is worth mentioning
that the coupling poses a great challenge to obtain the solutions of
xk, Pk|k−1, and Rk by using the traditional variational Bayesian
technique, since Pk|k−1, and Rk are coupled in the logarithm of the
joint probability density function. To address this difficulty, a novel
decoupling approach is proposed as follows.

For convenience, denote the set of the unknown variables as

Λ0 , {(xk, zk), Pk|k−1, Rk, λk, µk}. (19)

In the following, the approximate posterior probability density
function (PDF) for every element in Λ0 is calculated.

1) The logarithm of joint PDF p(Λ0, γk): First, the joint PDF
p(Λ0, γk) is factorized as

p(Λ0, γk|Ik−1) =p(γk|zk, Yk, Ik−1)p(xk, zk|Pk|k−1, Rk, Ik−1)

× p(Pk|k−1|λk)p(λk|µk)p(µk)p(Rk).
(20)

Based on the event-triggered scheme (13), one has

p(γk = 0|zk, Yk, Ik−1)

= Pr(exp(−1

2
eTk Ykek) ≥ ζk|zk, Yk, Ik−1)

= exp(−1

2
(zk −Hkx̂k|k−1)TYk(zk −Hkx̂k|k−1)).

Define φk , [xTk , z
T
k ]T , [x̂Tk|k−1, ẑ

T
k|k−1]T , E{φ̂k|k−1|Ik−1},

and Φk|k−1 , E{(φ̂k − φk)(φ̂k − φk)T |Ik−1}. Then, Φk|k−1 is
obtained as

Φk|k−1 =

[
Pk|k−1 Pk|k−1H

T
k

HkPk|k−1 HkPk|k−1H
T
k +Rk

]
.

Hence, the probability density function of φk in (20) is given by

p(xk, zk|Pk|k−1, Rk, Ik−1) = N (φk|φ̂k|k−1,Φk|k−1)

=

exp

(
− 1

2

[
xk − x̂k|k−1

zk − ẑk|k−1

]T
Φ−1
k|k−1

[
xk − x̂k|k−1

zk − ẑk|k−1

])
(2π)(n+m)/2|Φk|k−1|1/2

.

(21)

Using the above distributions, p(Λ0, γk) in (20) is reformulated as

p(Λ0, γk|Ik−1) =p(γk|zk, Yk, Ik−1)N (φk|k−1|φ̂k|k−1,Φk|k−1)

×
M∏
j=1

[
IW(Pk|k−1|ĝj,k|k−1, Ĝj,k|k−1)

]λj,k
× Cat(λk|µk,M)Dir(µk, αk|k−1,M)

× IW(Rk|ŝk|k−1, Ŝk|k−1).
(22)
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Then, using (8), log p(Λ0, γk|Ik−1) in (22) is calculated as

log p(Λ0, γk|Ik−1)

=− 1

2
(zk −Hkx̂k|k−1)TYk(zk −Hkx̂k|k−1)− 0.5log |Φk|k−1|

+

M∑
j=1

λj,klogµj,k −
1

2
(φk − φ̂k|k−1)TΦ−1

k|k−1(φk − φ̂k|k−1)

+

M∑
j=1

λj,k

[
0.5ĝj,k|k−1log(|Ĝj,k|k−1|)− 0.5tr(Ĝj,k|k−1P

−1
k|k−1)

− 0.5(ĝj,k|k−1 + n+ 1)log(|Pk|k−1|)− 0.5(nĝj,k|k−1)log2

− logΓn(ĝj,k|k−1/2)

]
+

M∑
j=1

(αj,k|k−1)logµj,k

− 0.5(ŝk|k−1 +m+ 1)log |Rk| − 0.5tr(Ŝk|k−1R
−1
k ) + cΛ0 ,

(23)
where cΛ0 is a constant independent of Λ0.

2) Decoupling of Φk|k−1: Each element of Λ0 in (22) will be
calculated alternatively, and the corresponding posterior distribution
should have the same functional form as the prior distribution ac-
cording to the variational inference theory [24]. However, Pk|k−1 and
Rk are coupled in Φk|k−1, which poses a challenge in deriving the
posterior xk, Pk|k−1, and Rk by using (8). In (23), −0.5log |Φk|k−1|
and − 1

2
(φk − φ̂k|k−1)TΦ−1

k|k−1(φk − φ̂k|k−1) will be decoupled for
Pk|k−1 and Rk. In addition, the expectation of Φ−1

k|k−1 is calculated,
as follows.

First, Φk|k−1 is factorized as

Φk|k−1 =

[
I 0
H I

] [
Pk|k−1 0

0 Rk

] [
I HT

0 I

]
. (24)

Then, the inverse of Φk|k−1 is computed by

Φ−1
k|k−1 =

[
I −HT

0 I

] [
P−1
k|k−1 0

0 R−1
k

] [
I 0
−H I

]
. (25)

It follows from (24) that the determinant of Φk|k−1 is obtained as

|Φk|k−1| = |Pk|k−1||Rk|. (26)

Hence,
log|Φk|k−1| = log|Pk|k−1|+ log|Rk|. (27)

Now, based on (25) and (21), define a new variable as

ρk|k−1 =

[
I 0
−H I

] [
xk − x̂k|k−1

zk − ẑk|k−1

]
.

Then, ρk|k−1ρ
T
k|k−1 is computed by

ρk|k−1ρ
T
k|k−1

=

[
I 0
−H I

]
(φk − φ̂k|k−1)(φk − φ̂k|k−1)T

[
I 0
−H I

]T
=

[
(ρk|k−1ρ

T
k|k−1)xx (ρk|k−1ρ

T
k|k−1)xz

(ρk|k−1ρ
T
k|k−1)zx (ρk|k−1ρ

T
k|k−1)zz

]
,

(28)
where (ρk|k−1ρ

T
k|k−1)xx and (ρk|k−1ρ

T
k|k−1)zz are calculated as

(ρk|k−1ρ
T
k|k−1)xx = (xk − x̂k|k−1)(xk − x̂k|k−1)T (29)

and

(ρk|k−1ρ
T
k|k−1)zz =Hk(xk − x̂k|k−1)(xk − x̂k|k−1)THT

k

− (zk − ẑk|k−1)(xk − x̂k|k−1)THT

−Hk(xk − x̂k|k−1)(zk − ẑk|k−1)

+ (zk − ẑk|k−1)(zk − ẑk|k−1)T ,

(30)

respectively.

Combined (25)-(30), one has
1

2
(φk − φ̂k|k−1)TΦ−1

k|k−1(φk − φ̂k|k−1)

=
1

2

[
xk − x̂k|k−1

zk − ẑk|k−1

]T
Φ−1
k|k−1

[
xk − x̂k|k−1

zk − ẑk|k−1

]
= 0.5ρTk|k−1

[
P−1
k|k−1 0

0 R−1
k

]
ρk|k−1

= 0.5tr
(
ρk|k−1ρ

T
k|k−1

[
P−1
k|k−1 0

0 R−1
k

])
= 0.5tr((ρk|k−1ρ

T
k|k−1)xxP

−1
k|k−1) + 0.5tr((ρk|k−1ρ

T
k|k−1)zzR

−1
k ).
(31)

Hence, according to (27) and (31), Pk|k−1 and Rk are decoupled.
Then, the approximate optimal solutions q(Pk|k−1) and q(Rk) can
be calculated by (8), respectively. Furthermore, the posterior distribu-
tions are derived in the same form as the prior distribution to provide
a recursive filter.

3) The update of φk: Now, every component in Λ0 is computed.
Let θ = φk, so that

log qi+1(φk)

= −1

2
(zk −Hkx̂k|k−1)TYk(zk −Hkx̂k|k−1)

− 1

2
(φk − φ̂k|k−1)TEi{Φ−1

k|k−1}(φk − φ̂k|k−1) + cxk,zk

= −1

2
(φk − φ̂k|k−1)T (Θi+1

k )−1(φk − φ̂k|k−1) + cxk,zk ,

(32)

where cxk,zk is a constant independent of xk, zk, and Θi+1
k is given

by

Θi+1
k =

[
P i+1
k|k P i+1

xz,k|k
P i+1
zx,k|k P i+1

zz,k|k

]

=

(
Ei{Φ−1

k|k−1}+

[
0 0
0 Yk

])−1

.

(33)

It follows from (25) that Ei{Φ−1
k|k−1} in (33) can be computed by

Ei{Φ−1
k|k−1} =

[
I −HT

0 I

] [
Ei{P−1

k|k−1} 0

0 Ei{R−1
k }

]
×
[

I 0
−H I

]
.

(34)
Note that Pk|k−1 and Rk follow inverse Wishart distributions, and
P−1
k|k−1 and R−1

k obey Wishart distributions. Define (P̃ ik|k−1)−1 =

Ei{P−1
k|k−1} and (R̃ik)−1 = Ei{R−1

k }. Further, Ei{Φ−1
k|k−1} in (34)

can be derived as

Ei{Φ−1
k|k−1}

=

[
I −HT

0 I

] [
(P̃ ik|k−1)−1 0

0 (R̃ik)−1

] [
I 0
−H I

]
=

[
(P̃ ik|k−1)−1 +HT

k (R̃ik)−1Hk −HT
k (R̃ik)−1

−(R̃ik)−1Hk (R̃ik)−1

]
= (Φ̃ik|k−1)−1.

To this end, Θi+1
k can be computed by using Lemma 1. Denote

AΘ = (P̃ ik|k−1)−1 + HT
k (R̃ik)−1Hk, BΘ = −HT

k (R̃ik)−1, CΘ =

−(R̃ik)−1Hk, and DΘ = (R̃ik)−1 + Yk. Then, P i+1
k|k and P i+1

zz,k|k in
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(32) can be calculated as

P i+1
k|k = (AΘ +BΘD

−1
Θ CΘ)−1

= ((P̃ ik|k−1)−1 +HT
k ((R̃ik)−1 − (R̃ik)−1((R̃ik)−1

+ Yk)−1(R̃ik)−1)Hk)−1

= ((P̃ ik|k−1)−1 +HT
k (R̃ik + Y −1

k )−1Hk)−1

= P̃ ik|k−1 − P̃ ik|k−1H
T
k (HkP̃

i
k|k−1H

T
k

+ R̃ik + Y −1
k )−1HkP̃

i
k|k−1,

(35)

and

P i+1
zz,k|k = ((R̃ik)−1 − (R̃ik)−1Hk((P̃ ik|k−1)−1

+HT
k (R̃ik)−1Hk)−1HT

k (R̃ik)−1 + Yk)−1

= ((HkP̃
i
k|k−1H

T
k + R̃ik)−1 + Yk)−1,

(36)

respectively.

Further, additional mathematical operations are performed to derive
a concise form of P i+1

xz,k|k as follows:

P i+1
xz,k|k = ((P̃ ik|k−1)−1 +HT

k (R̃ik)−1Hk)−1HT
k (R̃ik)−1

× ((HkP̃
i
k|k−1H

T
k + R̃ik)−1 + Yk)−1

= (P̃ ik|k−1 − P̃ ik|k−1H
T
k (R̃ik +HkP̃

i
k|k−1H

T
k )−1Hk

× P̃ ik|k−1)HT
k (R̃ik)−1(R̃ik +HkP̃

i
k|k−1H

T
k )

× (I + Yk(R̃ik +HkP̃
i
k|k−1H

T
k ))−1

= P̃ ik|k−1H
T
k (I − (R̃ik +HkP̃

i
k|k−1H

T
k )−1Hk

× P̃ ik|k−1H
T
k )(R̃ik)−1(R̃ik +HkP̃

i
k|k−1H

T
k )

× (I + Yk(R̃ik +HkP̃
i
k|k−1H

T
k ))−1

= P̃ ik|k−1H
T
k (I + Yk(R̃ik +HkP̃

i
k|k−1H

T
k ))−1.

(37)

Now, all elements in Θi+1
k have been obtained. Here, it can be

observed that Θi+1
k has a similar form with that in [14]. Hence,

from (32), φk follows the Gaussian distribution with mean vector
x̂i+1
k|k = x̂k|k−1, ẑ

i+1
k|k = Hkx̂k|k−1 and covariance Θi+1

k .

4) The update of Pk|k−1: Let θ = Pk|k−1, so that

log qi+1(Pk|k−1)

= −0.5log(|Pk|k−1|)− 0.5Ei+1{tr((ρk|k−1ρ
T
k|k−1)xxP

−1
k|k−1)}

+

M∑
j=1

Ei{λj,k}
[
− 0.5tr(Ĝj,k|k−1P

−1
k|k−1)

− 0.5(ĝj,k|k−1 + n+ 1)log(|Pk|k−1|)
]

+ cP

= −0.5

[ M∑
j=1

Ei{λj,k}ĝj,k|k−1 + n+ 2

]
log(|Pk|k−1|)

− 0.5tr
[(
Ai+1
k +

M∑
j=1

Ei{λj,k}Ĝk|k−1

)
P−1
k|k−1

]
+ cP ,

(38)
where cP is a constant independent of Pk|k−1, and

Ai+1
k = Ei+1{(ρk|k−1ρ

T
k|k−1)xx}

= P i+1
k|k + (x̂i+1

k|k − x̂k|k−1)(x̂i+1
k|k − x̂k|k−1)T .

Based on (38), it can be seen that Pk|k−1 is the inverse Wishart
distribution IW(Pk|k−1|ĝi+1

k|k , Ĝ
i+1
k|k ), where

ĝi+1
k|k =

M∑
j=1

Ei{λj,k}ĝj,k|k−1 + 1

and

Ĝi+1
k|k =

M∑
j=1

Ei{λj,k}Ĝj,k|k−1 +Ai+1
k ,

respectively. Now, according to the property of the inverse
Wishart distribution [26], P−1

k|k−1 is the Wishart distribution with
Ei+1{P−1

k|k−1} = ĝi+1
k|k (Ĝi+1

k|k )−1, and Ei{λj,k} = χ̂ik will be given
later. For further iteration, define

P̃ i+1
k|k−1 = (Ei+1{P−1

k|k−1})
−1 = Ĝi+1

k|k /ĝ
i+1
k|k .

5) The update of Rk: Let θ = Rk, so that

log qi+1(Rk) = −0.5Ei+1{tr((ρk|k−1ρ
T
k|k−1)zzR

−1
k )}

− 0.5(ŝk|k−1 +m+ 2)log |Rk|
− 0.5tr(Ŝk|k−1R

−1
k ) + cR

= −0.5(ŝk|k−1 +m+ 2)log |Rk|
− 0.5tr((Ŝk|k−1 +Bi+1

k )R−1
k ) + cR,

where cR is a constant independent of Rk, and

Bi+1
k = Ei+1{(ρk|k−1ρ

T
k|k−1)zz}

= Ei+1{Hk(xk − x̂k|k−1)(xk − x̂k|k−1)THT
k

− (zk − ẑk|k−1)(xk − x̂k|k−1)T

×HT −Hk(xk − x̂k|k−1)(zk − ẑk|k−1)

+ (zk − ẑk|k−1)(zk − ẑk|k−1)T }
= HkP

i+1
k|k H

T
k − (HkP

i+1
xz,k|k)T −HkP i+1

xz,k|k + P i+1
zz,k|k.

Hence, ŝi+1
k|k and Ŝi+1

k|k are updated as

ŝi+1
k|k = ŝk|k−1 + 1

Ŝi+1
k|k = Ŝk|k−1 +Bi+1

k .

For further iteration, define

(R̃i+1
k )−1 = Ei+1{R−1

k } = ŝi+1
k|k (Ŝi+1

k|k )−1.

6) The update of λk and µk: Let θ = λk, and it follows from
(23) that

log qi+1(λk) =

M∑
j=1

λj,kτ
i+1
j,k +

M∑
j=1

λj,kE
i{logµj,k}+ cλ,

(39)
where cλ is a constant independent of λk, and

τ i+1
j,k =0.5ĝj,k|k−1log(|Ĝj,k|k−1|)− 0.5tr(Ĝj,k|k−1E

i+1{P−1
k|k−1}

− 0.5(ĝj,k|k−1 + n+ 1)Ei+1{log(|Pk|k−1|)}
− 0.5(nĝj,k|k−1)log2− logΓn(ĝj,k|k−1/2),

Ei+1{log(|Pk|k−1|)} = log(Ĝi+1
k|k )− nlog2− ψn(0.5ĝi+1

k|k ),

and

Ei{logµj,k} = ψ(αij,k|k)− ψ
( M∑
j=1

αij,k|k

)
,

in which ψ(·) is the digamma function.

Define a new variable

χi+1
j,k =exp(τ i+1

j,k + Ei{logµj,k}). (40)

Based on the categorical distribution, χ̂i+1
k is updated by

χ̂i+1
k = χi+1

k /

M∑
j=1

χi+1
j,k .
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Similarly, according to the Dirichlet distribution, αi+1
k|k is updated by

αi+1
k|k = αk|k−1 + Ei+1{λk},

where Ei+1{λk} = χ̂i+1
k .

C. Variational Approximation: γk = 1

This subsection studies the case where zk is transmitted by the
sensor at step k, i.e., γk = 1. The following unknown parameters
will be jointly estimated:

Λ1 , {xk, Pk|k−1, Rk, λk, µk}. (41)

The joint pdf p(Λ1, zk, γk) is factorized as

p(Λ1, zk, γk|Ik) =p(γk|zk, xk, Yk, Ik−1)p(xk|Pk|k−1, Ik−1)

× p(zk|xk, Rk, Ik−1)p(Pk|k−1|λk)

× p(λk|µk)p(µk)p(Rk),

where p(γk = 1|zk, xk, Yk, Ik−1) = 1− exp(− 1
2
eTk Ykek).

The techniques are similar to that in the above subsection, and
the results about Pk|k−1, λk, µk are the same as that for the case of
γk = 0 situation. Here, the results about xk and Rk are given.

1) The update of xk: Let θ = xk, and x̂i+1
k|k is updated by

x̂i+1
k|k = x̂k|k−1 +Ki+1

k (zk −Hkx̂k|k−1)

Ki+1
k = P̃ ik|k−1H

T
k (HkP̃

i
k|kHk + R̃ik)−1

P i+1
k|k = P̃ ik|k−1 − P̃ ik|k−1H

T
k (HkP̃

i
k|k−1H

T
k + R̃ik)−1HkP̃

i
k|k−1.

(42)

2) The update of Rk: Let θ = Rk, and ŝi+1
k|k and Ŝi+1

k|k are updated
by

ŝi+1
k|k = ŝk|k−1 + 1

Ŝi+1
k|k = Ŝk|k−1 +Bi+1

k ,

where

Bi+1
k = (zk −Hkx̂i+1

k|k )(zk −Hkx̂i+1
k|k )T +HkP

i+1
k|k H

T
k .

D. Prior Parameters

This subsection provides a designing method for the prior pa-
rameters αk|k−1, ŝk|k−1, and Ŝk|k−1. Similarly to [20], the prior
parameters αk|k−1, ŝk|k−1, and Ŝk|k−1 are chosen as

αk|k−1 = ραk−1|k−1, ŝk|k−1 = ρŝk−1|k−1,

Ŝk|k−1 = ρŜk−1|k−1,
(43)

where ρ is the forgetting factor over (0, 1].

Before the iteration steps, some parameters are initialized as

x̂0
k|k = x̂k|k−1, χ̂0

k = αk|k−1/α̂k|k−1,

ĝ0
k|k−1 =

M∑
j=1

χ̂0
j,kĝj,k|k−1, Ĝ0

k|k−1 =

M∑
j=1

χ̂0
j,kĜj,k|k−1,

P̃ 0
k|k−1 = Ĝ0

k|k−1/ĝ
0
k|k−1, R̃0

k = Ŝ0
k|k−1/ŝ

0
k|k−1.

(44)

Now, based on the above results, the event-triggered variational
Bayesian filter (ETVBF) is summarized as Algorithm 1. It is
observed that only xk and Rk are directly affected, when the
measurement information is not received by the estimator. Then, other
parameters are influenced by xk and Rk.

E. Discussions

In the algorithm, there exist several parameters that need to be
selected and designed, i.e., ĝj,k|k−1, Q̄j,k, α0|0, ρ, R0, ŝ0|0, N , and

Algorithm 1 Event-triggered Variational Bayesian Filter (ETVBF)

Input: x̂k−1|k−1, Pk−1|k−1, ŝk−1|k−1, Ŝk−1|k−1, αk−1|k−1,
ĝj,k|k−1, Q̄j,k, ρ, δ, N .
Predicted state:
x̂k|k−1 = Fk−1x̂k−1|k−1,
Pj,k|k−1 = Fk−1Pk−1|k−1F

T
k−1 + Q̄j,k,

Ĝj,k|k−1 = ĝj,k|k−1Pj,k|k−1.
Updated state:

Initialization:
Initialized as (43) and (44).

For i = 0 : N − 1
Update x, z:
If γk = 0,
x̂i+1
k|k = x̂k|k−1, ẑi+1

k|k = Hkx̂k|k−1,
P i+1
k|k , P i+1

zz,k|k, and P i+1
xz,k|k are calculated as (35), (36), and(37),

respectively.
Else if γk = 1,
Ki+1
k , x̂i+1

k|k , and P i+1
k|k are updated as (42).

End
Update IW(Pk|k−1|ĝi+1

k|k , Ĝ
i+1
k|k ):

ĝi+1
k|k =

∑M
j=1 χ̂

i
j,kĝj,k|k−1 + 1,

Ĝi+1
k|k =

∑M
j=1 χ̂

i
j,kĜj,k|k−1 +Ai+1

k ,
Ai+1
k = P i+1

k|k + (x̂i+1
k|k − x̂k|k−1)(x̂i+1

k|k − x̂k|k−1)T .
Update IW(Rk|ŝk|k−1, Ŝk|k−1):
ŝi+1
k|k−1 = ŝk|k−1 + 1, Ŝi+1

k|k−1 = Ŝk|k−1 +Bi+1
k ,

If γk = 0,
Bi+1
k = HkP

i+1
k|k H

T
k − (HkP

i+1
xz,k|k)T −HkP i+1

xz,k|k + P i+1
zz,k|k,

Else if γk = 1,
Bi+1
k = (zk −Hkx̂i+1

k|k )(zk −Hkx̂i+1
k|k )T +HkP

i+1
k|k H

T
k .

End
Update λk:
Ei+1{logµj,k} = ψ(αij,k|k)− ψ(

∑M
j=1 α

i
j,k|k),

Ei+1{log(|Pk|k−1|)} = log(Ĝi+1
k|k )− nlog2− ψ(0.5ĝi+1

k|k ),
χi+1
j,k is computed as (40),
χ̂i+1
k = χi+1

k /
∑M
j=1 χ

i+1
j,k .

Update µk:
αi+1
k|k = αk|k−1 + χ̂i+1

k .
If ||x̂i+1

k|k − x̂
i
k|k||/||x̂ik|k|| ≤ δ, terminate iteration.

end
Output: x̂k|k = x̂i+1

k|k , Pk|k = P i+1
k|k , ŝk|k = ŝi+1

k|k , Ŝk|k = Ŝi+1
k|k ,

αk|k = αi+1
k|k .

δ. In the following, the influence of these parameters, the selections
of these parameters, and the performances are discussed.

1) The influence of parameters:
For parameters ĝj,k|k−1 and Q̄j.k, based on Algorithm 1, P̃ i+1

k|k−1

can be formulated as

P̃ i+1
k|k−1 =

∑M
j=1 χ̂

i
j,kĝj,k|k−1Pj,k|k−1 +Ai+1

k∑M
j=1 χ̂

i
j,kĝj,k|k−1 + 1

, (45)

where Pj,k|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Q̄j,k.

a) ĝj,k|k−1: It can be observed that P̃ i+1
k|k−1 is a weighted sum of

Pj,k|k−1, j ∈ M and Ai+1
k by χ̂ij,kĝj,k|k−1 and 1. The bigger the

ĝj,k|k−1 is, the more the prior information Pj,k|k−1 is introduced
into P̃ i+1

k|k−1.
b) Q̄j,k: When ĝj,k|k−1, j ∈ M , are set as the same value

g̃k|k−1,
∑M
j=1 χ̂

i
j,kĝj,k|k−1Pj,k|k−1 = g̃k|k−1Fk−1Pk−1|k−1F

T
k−1+

g̃k|k−1

∑M
j=1 χ̂

i
j,kQ̄j,k. The adaptive parameter χ̂ij,k is subject to
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∑M
j=1 χ̂

i
j,k = 1, 0 ≤ χ̂ij,k ≤ 1, which means that a convex combina-

tion of multiple nominal process noise covariances Q̄j,k, j ∈ M , is
adaptively achieved. Multiple nominal process noise covariances are
characterized by a range of the true covariance, and their accuracy
requirements are reduced compared to the single covariance case.
This condition is easier to satisfy and verify.

For parameters ρ, R0, and ŝ0|0, similar to [20], it can be obtained
that

R̃i+1
k =

η(ρ, k)R̂k−1|k−1 +Bi+1
k

η(ρ, k) + 1
, (46)

R̂k−1 =

( k−1∏
i=1

qi

)
R̂0 +

k−1∑
i=1

( k−1∏
j=i+1

qj

)
B̃i, (47)

where η(ρ, k) = ρkŝ0|0 + ρk−ρ
ρ−1

, ρ ∈ (0 1], qk = η(ρ,k)
η(ρ,k)+1

, B̃k =
B
stop
k

η(ρ,k)+1
, and Bstopk represents Bik at the loop termination step.

c) ρ: For ETVBF, Bi+1
k in (46) is different under different

event-triggered situations, and η(ρ, k) plays a role in balancing
a weighted sum of R̂k−1|k−1 and Bi+1

k . Moreover, η(ρ, k) is a
monotone increasing function of ρ as k approaches infinity, and
lim
k→∞

η(ρ, k) = −ρ
ρ−1

[20]. Hence, the smaller the ρ is, the more

information the Bi+1
k is introduced into R̃i+1

k .
d) R̂0: Based on (47), it can be concluded that the effect of the

past information about R̂0 and B̃k exponentially decays as the time
increases.

e) N and δ: Based on the variational inference theory (6) and the
fixed-point iteration (8) [25], a more accurate approximate optimal
solution can be obtained by increasing the iteration number N . By
setting a reasonable loop termination condition δ, the iteration can
be terminated early with guaranteed accuracy.

2) The selections of parameters: For parameters ĝj,k|k−1 and ŝ0|0,
they can be selected within a wide range, and it is suggested that
they are tuned based on the specific system. For Q̄j,k, to obtain
better performances, it is suggested that multiple nominal process
noise covariances Q̄j,k are selected such that the true process noise
covariance Qk satisfies min(Q̄j,k, j ∈ M) ≤ Qk ≤ max(Q̄j,k, j ∈
M). For α0|0, it can be set as 11×M , since it will be adaptively
adjusted. For ρ, the forgetting factor is suggested to be selected as ρ ∈
[0.94, 1] to obtain a good performance, as shown in the simulation
part. For N and δ, they are selected as a big number and a sufficiently
small number, respectively, to guarantee the iteration performance.
It is worth mentioning that the effectiveness of such selections is
verified in the simulation part.

3) Performance Analysis: The estimation performance has a
strong correlation with the deviation between the nominal value and
the true value, such as R̄0 and R0. When the deviation is smaller,
the proposed algorithm has a better performance, as shown in Fig. 6
in Simulations. The parameters N and δ have a main influence on
the estimation performance, and they have been discussed above. A
concept “numerical stability” from [20] [25] is introduced to guar-
antee the feasibility of the proposed algorithm, i.e., the covariance
matrices must be positive definite when the algorithm is in the
numerical iteration process. Since Q̄j,k > 0, R̂0 > 0, Ai+1

k > 0,
and Bi+1

k > 0, it follows that P̃ i+1
k|k−1 > 0 and R̃i+1

k > 0. Thus,
ETVBF is numerically stable.

Proposition 1: For systems (10)-(11) under Algorithm 1, the
estimation error ek|k = x̂k|k − xk is Gaussian.
PROOF. In Algorithm 1, denote the measurement update error and
the predicted error as ek|k = x̂k|k − xk and ek|k−1 = x̂k|k−1 − xk,
respectively. When γk = 0, one has ek|k = x̂k|k−1 − xk = ek|k−1.
When γk = 1, one has ek|k = (I − Ki+1

k Hk)(x̂k|k−1 −

xk) + Ki+1
k νk = (I − Ki+1

k Hk)ek|k−1 + Ki+1
k νk. Additionally,

ek|k−1 = Fkx̂k−1|k−1 − Fkxk−1 − ωk−1 = Fkek−1|k−1 − ωk−1.
Due to the Gaussianity of e0|0 = x̂0|0 − x0, ωk−1, and νk, the error
ek|k is Gaussian as can be verified inductively. �

IV. SIMULATIONS

This section shows some simulations and comparison with existing
algorithms to verify the effectiveness of the proposed ETVBF.

A tracking problem for a vehicle is considered as in [20]. The
dynamical system is described by (10) and (11) with system matrices

Fk =

[
I2 TI2
0 I2

]
(48)

and
Hk =

[
1 0 0 0
0 1 0 0

]
, (49)

respectively, where T = 1s. The state dimension and the measure-
ment dimension are n = 4 and m = 2, respectively. The true process
and the true measurement noise covariances are set as

Qk = (6 + 0.5cos((πk)/Tf ))


T 3/3 0 T 2/2 0

0 T 3/3 0 T 2/2
T 2/2 0 T 0

0 T 2/2 0 T


and

Rk = (100 + 50cos((πk)/Tf ))

[
1 0.5

0.5 1

]
,

respectively, where Tf = 500.

In this section, the performances of ETVBF in Algorithm 1, a
closed-loop stochastic event-triggered Kalman filter (CLSET-KF) in
[14], and a variational Bayesian filter (VBF, without the triggering
mechanism in Algorithm 1), a variational Bayesian based adaptive
Kalman filter (VBAKF) in [20], and a variational Bayesian adaptive
Kalman filter with Gaussian-Gamma mixture (VBAKF-GGM) in
[22] are compared.

The nominal initial measurement noise covariance is set as R̄0 =
rI2, and the event-triggered parameter is set as Yk = yI2, where r
and y are the noise scale factor and the event-triggered scale factor,
respectively. The step internal Nstep of k and the total iteration
number N are chosen as 150 and 50, respectively. The initial
state is x0 = [100, 100, 10, 10]T , and the initial estimation error
covariance is P̂0|0 = 100I4. Then, the initial estimate state is given by
x̂0|0 ∼ N(x0, P̂0|0). The dof parameters are set as ĝk|k = 10×11×M
and ŝ0|0 = 5. The forgetting factor and the initial concentration
parameter are selected as ρ = 0.997 and α̂0 = 11×5, respectively. For
every case, Monte Carlo simulation experiments with NMC = 500
are performed. The mixture term is selected as M = 5, and the
nominal process noise covariances are set as Q̄k,1 = I4, Q̄k,2 =
2I4, Q̄k,3 = 3I4, Q̄k,4 = 9I4, Q̄k,5 = 10I4. For VBAKF-GGW,
the shape parameters are set as a0 = e0 = [10, 10, 10, 10], and
the rate parameters are set as b0 = f0 = [10, 100, 1000, 10000].
For CLSET-KF, VBAKF, and VBAKF-GGW, the nominal process
noise covariance is set as Q̄k = 4I4.

The root-mean-square error (RMSE) is utilized to evaluate the
performance of the algorithm:

RMSE =

√√√√ 1

nNMCNstep

NMC∑
k=1

Nstep∑
j=1

n∑
l=1

(x̂k|k,j(l)− xk,j(l))2,

where n, NMC , Nstep denote the dimension of the state, the total
Monte Carlo experiment number, and the step internal, respectively,
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and x̂k|k,j(l) and xk,j(l) represent the l-th component of the vector
x̂k|k and the vector xk at the k step in the j-th trail experiment,
respectively. Similarly, the communication rate γtrail is defined as

γtrail =

√√√√ 1

NMCNstep

NMC∑
k=1

Nstep∑
j=1

γk,j ,

where γk,j denotes γk of the j-th trail experiment at step k.

First, under the different event-triggered communication rates, the
estimation performances are compared among five algorithms. The
event-triggered communication rates are dominated by Yk. Hence,
the event-triggered scale factor y is set as 0.0005 : 0.0005 : 0.1,
and the noise covariance scale factor is set as r = 150. Fig. 2 and
Fig. 3 show the RMSE of the five algorithms and the event-triggered
communication rates of ETVBF and CLSET-KF, respectively. To
show the event-triggered performance, denote tl as the l-th event-
triggered time instant, and tl+1 − tl as the interval between two
adjacent event-triggered time instants. Fig. 4 presents the scheduling
sequences of ETVBF and CLSET-KF under the event-triggered
mechanism with y = 0.0005 and r = 150. Fig. 5 shows the
average iteration numbers of ETVBF, VBF, and VBAKF-GGM with
y = 0.0005 and r = 150.
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Fig. 2. The RMSE of ETVBF, VBF, CLSET-KF, VBAKF, and VBAKF-GGM.
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Fig. 3. The communication rates of ETVBF and CLSET-KF.

1) ETVBF has a better performance than CLSET-KF all the
time, while CLSET-KF needs higher communication rates than
ETVBF. VBAKF-GGW has the worst performance, since it
may be specially designed in the presence of outliers.

2) As y increases, the communication rates of ETVBF and
CLSET-KF increase, and their performances become better.

VBF and VBAKF have the best performance at a high trans-
mission cost. As y increases, the performance of ETVBF
approaches that of VBF.

3) The proposed ETVBF needs the least average iteration number,
and VBF needs a little larger average iteration number than
ETVBF. As these filters converge, the average iteration numbers
decrease gradually.
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Fig. 4. Scheduling sequences of ETVBF and CLSET-KF under the event-
triggered mechanism.
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Fig. 5. The average iteration numbers of ETVBF, VBF and VBAKF-GGM.

Next, with different nominal measurement noise covariances R̄0,
the estimation performances are compared among the five algorithms.
Similarly, the noise scale r is set as 10 : 10 : 300, and the event-
triggered scale parameter is set as y = 0.015. Fig. 6 and Fig. 7
illustrate the RMSE of the five algorithms and communication rates
of ETVBF and CLSET-KF, respectively.

1) When the error between the nominal measurement noise covari-
ance rI2 and the true noise covariance is small, all algorithms
have good performances. As the error gets larger, the perfor-
mances are degraded. ETVBF and VBF have better and stabler
performances for different noise covariances.

2) As the nominal measurement noise covariance increases, the
communication rates of ETVBF and CLSET-KF increase.

Finally, under different forgetting factors ρ, the estimation perfor-
mances of ETVBF are compared. Fig. 8 shows the RMSE of ETVBF
under the forgetting factors ρ = 0.92, 0.94, 0.96, 0.98, 1.00. When
ρ < 0.94, the RMSE of ETVBF shows a significant decline. Hence,
it is suggested that the forgetting factor is selected as ρ ∈ [0.94, 1].

In summary, ETVBF possesses excellent and robust performances.
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Fig. 6. The RMSE of ETVBF, VBF, CLSET-KF, VBAKF, and VBAKF-GGM.
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Fig. 7. The communication rates of ETVBF and CLSET-KF.
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Fig. 8. The RMSE of ETVBF when ρ = 0.92, 0.94, 0.96, 0.98, 1.00.

V. CONCLUSION

In this paper, an event-triggered variational Bayesian filter is pro-
posed for systems with unknown and time-varying noise covariances.
The state vector, the predicted error covariance, and the unknown
measurement noise covariance are jointly estimated. Simulations
show excellent and robust performances of the proposed algorithm.
The event-triggered variational Bayesian filter in the nonlinear setting
will be considered in the future.
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