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Stabilisation 1n Distribution of Hybrid Systems
by Intermittent Noise

Wei Mao, Junhao Hu, Xuerong Mao

Abstract— For many stochastic hybrid systems in the
real world, it is inappropriate to study if their solutions
will converge to an equilibrium state (say, 0 by default) but
more appropriate to discuss if the probability distributions
of the solutions will converge to a stationary distribu-
tion. The former is known as the asymptotic stability
of the equilibrium state while the latter the stability in
distribution. This paper aims to determine whether or
not a stochastic state feedback control can make a given
nonlinear hybrid differential equation, which is not stable
in distribution, to become stable in distribution. We will
refer to this problem as stabilisation in distribution by
noise or stochastic stabilisation in distribution. Although
the stabilisation by noise in the sense of almost surely
exponential stability of the equilibrium state has been
well studied, there is little known on the stabilisation in
distribution by noise. This paper initiates the study in this
direction.

Key Words: Nonlinear hybrid differential equation, inter-
mittent noise, Brownian motion, Markov chain, stationary
distribution, stabilisation.

1. INTRODUCTION

System described by stochastic differential equa-
tions (SDEs) have been playing a crucial role in the mod-
elling of many practical systems. These practical systems
include electric power systems, the control system of
a solar thermal central receiver, manufacturing systems,
financial systems etc. (see, e.g., [6], [20], [24]). Since
systems in the real world often need to run for a long
period of time, asymptotic stability and stabilisation are
two of most popular topics in the study of SDE systems.
There are various concepts of asymptotic stability, for
example, in moment, in probability, with probability
1 (i.e., almost surely), or in distribution. These are
precisely corresponding to the concepts of convergence
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of stochastic processes in moment, in probability, almost
surely, or in distribution (see, e.g., [8], [10], [14]).

There is an extensive literature on the asymptotic
stability and stabilisation (in moment, in probability or
almost surely) of an equilibrium state of SDE systems,
say 0 by default (see, e.g., [3], [4], [9], [15]). Most
of papers on the stabilisation use the feedback controls
in the drift term, called deterministic feedback controls
for convenience (see, e.g., [9], [19], [23]). Neverthe-
less, there are some papers where feedback controls
driven by Brownian motions, called stochastic feedback
controls for convenience, are used (i.e., controls are in
the diffusion term). The pioneering work was due to
Hasminskii [10, p.229], who stabilized a system by using
two white noise sources. The theory on stabilisation
by Brownian motion has since then been developed
by several authors (see, e.g., [2], [12], [13], [17]). It
is noted that all of the existing papers in this area
aim to make the stochastically controlled SDEs to be
almost surely asymptotically stable (i.e., the solutions
of stochastically controlled SDEs will tend to the equi-
librium state, namely O by default, with probability 1).
The reader may wonder why stochastic feedback controls
should be used given deterministic ones have been used
more widely. Although this was explained in the papers
mentioned above, several good points were made in [16]
including the volatility-stabilised markets (see, e.g., [5]).
We here add one more good point that in ecosystem,
the SDE models have revealed another important phe-
nomenon that the environmental noise might make a
population become extinct (see, e.g., [14, Chapter 11]).
The stochastic stabilisation here is done by nature. It is
even more interesting to observe in several countries that
the infected number of Covid-19 is currently suppressed
by large random interaction between people (no more
lockdown in the UK for example).

In contrast to the stability and stabilisation of an
equilibrium state, there are much fewer papers on the
stability and stabilisation in distribution of SDE systems.
The stability in distribution is to study if the proba-
bility distributions of the solutions of an SDE system
will converge to a probability distribution, known as
stationary distribution (see, e.g., [22], [25], [26]). The
reason why there are so far much fewer papers on the
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stability and stabilisation in distribution is because the
mathematics involved is much more complicated than
that used for the study of the asymptotic stability of an
equilibrium state but certainly not because the topics are
less important. As a matter of fact, there is an urgent
need to study them. For example, Covid-19 has been
with us for more than 2 years. There are essentially 2
control strategies: one is to suppress infected to 0 but the
other is to live with Covid-19. The former is to stabilise
the infected to O with probability 1 while the latter is
to stabilise the distribution of the infected to a station-
ary distribution (namely, stabilisation in distribution). It
should also be pointed out that it is inappropriate to study
the asymptotic stability of an equilibrium state for many
SDE systems in the real world but more appropriate to
study the stability in distribution. For example, for many
epidemic/ecological systems under random environment,
the stochastic permanence is a more desired control
objective than the extinction (see, e.g., [7], [21]).

The aim of this paper is to explore if a stochastic
feedback control could be used to make a given unstable
system to become stable in distribution. Assume that
the given unstable system is described by a hybrid
differential equation driven by a continuous-time Markov
chain and has the form

@(t) = f(x(t), r(t)), (1.1)

where z(t) is in general referred to as the state and r(¢) is
regarded as the mode and is modelled by a Markov chain
on a finite state space S = {1,2,--- , N}. (The notation
used in this section will be explained in more detail next
section). Assume that the given hybrid equation (1.1) is
not stable in distribution. The problem we are going to
investigate in this paper is:

e Problem: Is it possible to design an intermittent
stochastic feedback control to make the stochasti-
cally controlled SDE

dX (t) = fF(X(t), () dt+B)u(X (1), r(t)dB(t)
(1.2)
to become stable in distribution?

Here B(t) is a Brownian motion and w(z(t), r(t))dB(t)
will be referred to as the stochastic feedback control.
(These will be explained in Section 2.) Moreover, [ :
[0,00) — {0,1} is defined by

B(t) = Zl[kh,(lwrlfé)h)(t% t >0, (1.3)
k=0

where h > 0, 6 € [0,1) are both constants and
Ik, (k+1—5)n) (t) is the indicator function of [kh, (k41—
d)h), namely it takes 1 when ¢ € [kh, (k+1—0)h) and O
otherwise. In operation, the stochastic control is switched
on during time periods [0, (1 — d)h)), [h, (2 — )h),

[2h, (3 — 0)h), ---, while off during [(1 — &)h,h),
[(2 —0)h,2h), [(3—06)h,3h), ---. One of the practical
reasons for such an intermittent control is because a
controller needs a rest periodically (see, e.g., [11], [27]).
The parameter § is the proportion of rest in one period of
h or in long term. In the case when 6 =0, 3(¢) = 1 for
all £ > 0 so the stochastic control acts without any rest.
As mentioned in the second paragraph in this section,
stochastic feedback controls have been used to make the
solutions of a stochastically controlled SDE to tend to
the equilibrium state (e.g., 0) almost surely, but there is
so far no paper which has addressed the Problem stated
above. We close this section by highlighting the special
features of this paper:

o The key contribution of this paper is to initiate the
study of stabilisation in distribution by noise.

o The challenge of this paper lies in the fact that
it is much harder mathematically to study if the
probability distributions of the solutions will con-
verge to a stationary distribution than to study if the
solutions will tend to 0 as most existing papers did.

o The usefulness of this paper is because it is more
desired to have the property of stability in distri-
bution for many systems in the real world as we
observed in the control of Covid-19.

2. PRELIMINARIES

Throughout this paper, unless otherwise specified,
we let R™ be the n-dimensional Euclidean space and
B(R™) denote the family of all Borel measurable sets
in R™. If x € R", then |z| is its Euclidean norm. Let
RZ" = {(z,y) € R® x R" : = # y}. If A is a vector or
matrix, its transpose is denoted by AT If A is a matrix,
its trace norm is denoted by |A| = y/trace(AT A) while
its operator norm is denoted by || A|| = sup{|Az| : |z| =
1}. If A is a symmetric matrix, denote by Ayax(A4) and
Amin (A) its largest and smallest eigenvalue, respectively.
By A > 0 and A > 0, we mean A is positive and
non-negative definite, respectively. If both a,b are real
numbers, then a Ab = min{a, b} and aVb = max{a, b}.
Let N denote the set of non-negative integers. If G is a
set, I (+) denotes its indicator function, that is I (x) =
1 for x € G and 0 otherwise.

We let (0, F,{F;}+>0,P) be a complete probabil-
ity space with a filtration {F;};>¢ satisfying the usual
conditions (i.e. it is right continuous and JFy contains all
P-null sets). Let B(t) = (Bi(t), -, Bm(t))T be an m-
dimensional Brownian motion defined on the probability
space. Let r(t), t > 0, be a right-continuous irreducible
Markov chain on the probability space taking values in
a finite state space S = {1,2,---, N} with generator
I'= ('yl-j) NxN»> Where ;; > 0 is the transition rate from
ito jif i # j while y;; = =3, 7i;. We assume that
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the Markov chain 7(-) is independent of the Brownian
motion B(-).

Let us consider the stochastically controlled system
(1.2), where

F:R"xS > R" and u:R" xS — RY™,

while [(-) is defined by (1.3). For the SDE (1.2) to be
well defined, we impose the following assumption.

Assumption 2.1: There are constants a; > 0, b; >
0 and ¢; > 0 (i € S) such that

[f(@,i) = f(y,d)] < asle —yl,  Q2.1)
(@ —y)" (u(z, i) —u(y,i)| > clz -y’ @23)

for all (z,y,i7) € R™ x R™ x S.

Please note that there are plenty of SDEs in engi-
neering and finance satisfy this assumption, for exam-
ple, linear SDEs. More clearly, if f(z,i) = A;xz and
u(x,i) = D;xz (when m = 1) with A; € R™*" and
0< D; = DiT € R™*™ then Assumption 2.1 is satisfied
with a; = ||AZ||, bl = ||D,L|| and C; = Amin(Di)- It is
well known (see, e.g., [15], [18]) that under Assumption
2.1, for any given initial data X(0) = & € R"™ and
7(0) =7 € S at time 0, the SDE (1.2) has a unique global
solution on ¢ > 0, which will be denoted by X ;(t) in
this paper in order to highlight the role of the initial
data. We also denote by r;(t) the Markov chain starting
from ¢ at time 0. It is also known that any moment of
the solution X ; ;(¢) is finite for all ¢ > 0. The following
lemma will pla}} a fundamental role in this paper.

Lemma 2.2: Under Assumption 2.1,
P(X, (1) -

I ngg(t) #0forallt>0)=1 2.4)
for any &, € R™ with & # ¢ and ¢ € S.

To concentrate on the overall flow as well as
significance of the results, we will defer all the proofs

in this and next section to the Appendix.

To discuss the stability in distribution, we need the
Markov property, in particular, the time-homogeneous
Markov property (see, e.g., [1]). It is well known that
the joint process (X, ;(t),7;(t)) is a Markov process
ont > 0 (see, e.g., [18]). But due to the intermittent
term G(t), it is not time-homogeneous. In general, it
is not appropriate to study the stability in distribution
for a time-inhomogeneous SDE. Fortunately, 5(t) is a
periodic function with its period h. Please note that it
is this periodicity that does not only make it possible
to study the stability in distribution but also distinguish
the results established in this paper significantly from
the existing ones, e.g., in [26] (please see Remark 3.5
below). Making use of the periodicity, we observe that

{(X; ;(kh),r;(kh))}een, forms a discrete-time R™ x S-
valued time-homogeneous Markov process. Its k-step
transition probability measure P(k,#,i;dy x {j}) is
defined by

P(k,2,1; D x §) = P((X, ;(kh), r;(kh)) € D x S)

for any D € B(R™) and S C S. This Markov process
will play its important role in this paper. Nevertheless, it
only involves the solution at the discrete times kh. We
still need to form a time-homogeneous Markov process
which involves the solution for all ¢ > 0. For this
purpose, we need a few new notations. Denote Cj, the
family of continuous functions ¢ from [0, k] to R™ with
norm |[€][n = supsepo,n) [€(s)|- Denote by P(Cp) the
family of probability measures on Cp. For P, P» €
P(Ch), define the Kantorovich metric dg by

do(P Po) = sup | | 9(€)Pi(d€) = | 9(&)Palde)

pe®

where

& ={¢ : C — R satistying [6(€) — 6(O)] < [I€ — Clln
and [6(€)] < 1 for &, € Cr).

(Please see, e.g., [8], for the details on the Kantorovich
metric dg. Of course our results can also be proved by
the Wasserstein metric W), equivalently.) Moreover, for
k € Ny, define X, ;(kh) = {X, ;(kh+s):0<s <h}
which is Cp-valued. Denote by E()z“(kh)) the prob-
ability measure on C, generated by X +:(kh). (Please
see again, e.g., [8], for more details about probability
measures generated by stochastic processes and Defini-
tiori 2.3 below.) With these new notations, we see that
{(X; ;(kh),7;(kh))}ken, forms a discrete-time Cj, x S-
valued time-homogeneous Markov process. In fact, the
time-homogeneous property follows from the periodic
property of (3(-). Moreover, once (X, ;(kih),7;(kih))
for some k; € N is given, (Xﬁ(lélh),r;(klh)) is
known and then (X ;(t),r;(¢)) for all ¢ > kyh, namely
()?:z ;(kh),r;(kh)) for all k& > ki, can be uniquely
determined by solving the SDE (1.2) with initial data
(X, ;(k1h),7;(k1h)) at time k1R, but the information on
how the process reaches ()A(}’g(klh)m;(klh)) starting
from (i,7) at time O is of no further use. These do
not only explain the Markov property but also show the
following property that

E¢(X; ;((k +q)h))
=Y [ oRsa Pk iy < (D) @)
jes /R”
for ¢ € ® and k,q € N,. It should be emphasised

that the formula above uses the transition probability
measure of {(X, ;(kh),r;(kh))}ken, but not that of
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{(X;;(kh),r;(kh))}een, . We can now give the defi-
nition of the stability in distribution.

Definition 2.3: The controlled SDE (1.2) is said to
be asymptotically stable in distribution if there exists a
probability measure pj, € P(Cy) such that

lim da(L(X; ;(kh)), pun) = 0
k—o0 ’

for all (2,i) € R" x S.

It should be pointed out that in the literature (see,
e.g., [26]), the asymptotic stability in distribution is in
general defined on the joint process (Xz ui(kh), r;(kh)).
On the other hand, given that the law of the Markov
chain 7;(t) is already known to converge to its unique
stationary distribution (see, e.g., [1]), our definition here
only on X :(kh) is consistent with that in the literature.

3. STABILISATION

Let us begin to discuss the stochastic stabilisation
in distribution by imposing a technical assumption.

Assumption 3.1: There is a constant p € (0,1)
such that

A = diag(¢; — pay, - ,(ny —pan) —T (3.1)
is a nonsingular M-matrix, where
(i =0.5p[(2—p)c; — b, i €S (3.2)

and a;, b;, ¢; are the same as in Assumption 2.1.

In next section we will not only explain how to
design the control function w(z,7) which meets this
assumption but also give a couple of easy-to-check
sufficient criteria for it to hold. Meanwhile we just
suppose it holds. We need a number of new notations.
Define

(01, ,00)T = A1, DT (3.3)
By the theory of M-matrices (see, e.g., [18, Theorem

2.10 on page 68]), #; > 0 for all 7 € S. Set

0= min 6;, 6 = max 0;, c = max (;. (3.4)
1<i<N 1<i<N 1<i<N
Moreover, define
1
~(t) = 7" o(1—p(t)) fort > 0. (3.5)

It should be pointed out that we must have o > 0. If
not, (; < 0 for all ¢ € S and hence, by the theory of
M-matrices (see, e.g., [18, Theorem 2.10 on page 68]),
A + diag(—(y,- -+, —Cn) should be a nonsingular M-
matrix. But

Atdiag(—Cy, - -+, —Cn) = diag(—pay, - - -, —pan) =T,

which cannot be a nonsingular M-matrix by the theory
of M-matrices. In other words, we would have a contra-
diction if o < 0. With these new notations, we can now
form a critical parameter

5 =11 (1/(00)). (3.6)

In what follows we will require § < ¢* to show the
stability in distribution of the controlled system (1.2).
Recalling that parameter § represents the proportion of
the rest time of the stochastic control, we see why §*
is a critical value. The following two lemmas play their
key role in the proof of our main theorem.

Lemma 3.2: Let Assumptions 2.1 and 3.1 hold. Let
§ < &§*. Then for any (Z,9,1) € R3" x S,

E| X, ;(kh) — X, ;(kh)|[7 < C1]2 — glPe " (3.7)

for all k € N, where v; = 1/0 — 06 > 0 and Cy is
positive constant independent of the initial data (&, §,1).

Lemma 3.3: Let Assumptions 2.1 and 3.1 hold. Let
d < 6*. Then for any (#,i) € R, x S,

E[X; (07 < a1+ |2[7) (3.8)

for all t > 0, where Cg is a positive number independent
of the initial data (Z,1).

The following theorem is the main result in this
paper.

Theorem 3.4: Let Assumptions 2.1 and 3.1 hold.
Let § < 0*. Then there exists a unique probability
measure pp € P(Cp) such that

Jim do(L(X, ;(kh)), un) =0 (3.9)
—00 ’

for all (,4) € R™ x S. In other words, the SDE (1.2) is
asymptotically stable in distribution.

Remark 3.5: We first compare our results with
those in [26]. There are several significant differences:
(a) The SDE in [26] is time-homogeneous so that the
Markov process can be formed in the state space R™ x S.
But our SDE (1.2) is not time-homogeneous and, in
general, a time-inhomogeneous SDE does not possess
a stationary distribution. Fortunately, our SDE (1.2) is
periodic with period h. Making use of this periodic
property, we form a time-homogeneous Markov process
in the state space C, X S. (b) As Cp, x S is an infinite
dimensional space, which is much larger than the finite-
dimensional space R™ x S, our proofs here are much
more complicated than those in [26]. (¢) Conditions
imposed in [26] are also much different from those in
this paper. For instance, the conditions in [26, Theorem
5.1] imply that the given equation (1.1) is already
stable in distribution, which is completely different from
the fundamental setting in this paper. More precisely,
[26, Theorem 5.1] deals with how much stochastic
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perturbation (g(z(t),r(t))dB(t) there) the given stable
equation (1.1) can tolerate without loss of its stability.
However, our results address the problem when the
given equation (1.1) is not stable in distribution, how
a stochastic feedback control can be designed to make
the controlled SDE (1.2) to be stable in distribution. We
next compare our results with those in [22], [25]. A
common feature in [22], [25] is that the second moment
of the solution of the underlying system is required to
be uniformly bounded in time ¢ > 0 for any given initial
data (see [22, Theorem 3.2] and [25, Lemma III.2]).
However, the mean, and hence the second moment of
our SDE (1.2) may tend to oo as ¢t — oo for some
given initial data. For example, one of the simplest
SDEs in the form of (1.2) is the scalar linear SDE
dX(t) = (1+ X (¢))dt + 28(t)X (t)dB(t) whose mean
EX(t) — oo when X(0) # —1. In other words, the
results in [22], [25] are not applicable to our SDE (1.2).

4. DESIGN OF CONTROL FUNCTION

The use of Theorem 3.4 depends on whether
the control function u(z,i) can be designed to meet
Assumptions 2.1 and 3.1. In order to design wu(x,?)
more easily, we first present an easy-to-check sufficient
criterion for Assumption 3.1 to hold. We recall that
r(t) is an irreducible Markov chain in the finite state
space S. Hence, it has a unique stationary distribution
7 = (7, T2, , ) € RV which can be determined
by solving the linear equation wI' = 0 subject to
Y ies™i = Land m; > 0 for all i €S (see, e.g., [1]). Th
following Proposition was proved in [17].

Proposition 4.1: Assumption 3.1 holds if

> miai +0.5b7 — ¢f) < 0. (4.1)
i€S
and, moreover, there is some j € S for which
;> 0 forall i € S but i # j. (4.2)

In the remaining part of this section we will show
how the control function w(x,i) can be designed to
satisfy Assumptions 2.1 and 3.1 in various situations. It
should be emphasised that §* can be computed by (3.6)
once Assumptions 2.1 and 3.1 are satisfied by u(z, ) to
be designed.

We always assume that the coefficient f(x,i) of
the given equation (1.1) satisfies condition (2.1). Due to
the page limit, we only explain how to design a linear
control function, namely

u(z, 1) =

(x,i) € R™ x S, where Ay; € R™™™ is symmetric and
non-negative definite for ¢ € S and &k = 1,2,--- ,m.

(Avix, Agix, -+, Apmi) 4.3)

It is straightforward to see that that u(x,i) satisfies
Assumption 2.1 with

b? = Z || Agi]|? and ¢ = mem Api).

In other words, What we need to do is to refine the
choices of Ay, for Assumption 3.1 to hold. We discuss
a number of useful cases.

Case 1. For i € Sand 1 < k£ < m, choose
symmetric matrices Ag; such that

V2 min (Agi) > || Aril-

Obviously, there are lots of such matrices. Choose a
positive number « sufficiently large so that

0.502 ( mem i) — kz_:l H%HQ) >a (4.6)

for all ¢ € S. This guarantees that there is a p € (0,1)
sufficiently small for which

(4.4)

4.5)

0.50%((2- Z)\mm A) =D Akll?) > a; @47
k=1

for all i € S. Let us now set A; = aAy;. Noting that
(; defined by (3.2) has the form

G = 0.5cx p( (2-p Z)‘mm Ai) =Y ||Aki||2)a
k=1 k=1

we see (; > pa; for all i € S. By the theory of M-

matrices (see, e.g., [18, Theorem 2.10 on page 68]), we

see that A defined by (3.1) is a nonsingular M-matrix. In

other words, Assumption 3.1 holds if Ag;’s are designed

as above.

Case 2. Observe that the arguments above still hold
as long as 230 A2, (Aki) > Y0, || Ak for all
7 € S but it is unnecessary for (4.5) to hold for every
i€ Sand 1 <k < m. This gives us an opportunity to
design the control function to fit into various situations in
the real world. For example, we ma<y let Ay; = 0 for all

k= 2? (2_p)Am1n(A11)

||A11H2) > a; for all ¢ € S. This is equivalent to the
situation when m = 1. In other words, we may only use
a scalar Brownian motion as the noise source to achieve
the stochastic stabilisation in distribution.

,m but only need 0.5a2

Case 3. The observation in Case 2 also reveals
another useful situation, where a different and inde-
pendent scalar Brownian motion is used in different
mode ¢ € S. In terms of mathematics, we have that
m = N and Ay, = 0 in (4.3) for all £ # i. In
this situation, we may choose A;;’s and o for which

0.5a2(( PIA2 i (Ai) — HA’L’LHQ)

min

A“‘ = CYA“' for all 7 € S.

> a; and then set
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Case 4. We now consider a situation where the state
X (t) cannot be observed in some modes, whence the
stochastic control cannot be used in these modes. With-
out loss of any generality, we let S; = {1,2,--- , Ny}
contain these modes (1 < N; < N). Mathematically
speaking, we are forced to set Ag; =0 fori €Sy, 1 <
k < m, whence b; = ¢; = 0 for i € S;. What we need
to do is to design matrices Ay; for N1 +1 <7 < N and
1 < k < m. To establish a simple criterion, we impose
an additional condition: there is some j € S for which
(4.2) holds. Recall that 7 = (71, o, -+ ,my) € RN
is the unique stationary distribution of the Markov chain
with all m; > 0 (please see Proposition 4.1). Choose
symmetric positive definite matrices Ay; for N; + 1 <
i < Nand 1 <k < m so that Y ;- A2, (Ay;) >
0.5> 7%, ||Ak||?>. Then choose a positive number
a so large that Zl N1 T Y (05 Agi? —
A (Aki)) + lelmal < 0. Now set Ay = aAy,.
Recalhng (4.4), we see b? = a?> L, ||Al* and
= a*y 0, mln(A]W) for Ny +1 < i < N.
Consequently, SN mat YN Nit1 m;(0.5b7 —c?) < 0.
That is Zl L mia; + 0507 — ¢2) < 0 if we recall that
b; = ¢ = 0 for i € S;. By Proposmon 4.1, we see
Assumption 3.1 is satisfied as long as Ay;’s are designed
as above.

Remark 4.2: In particular, the discussions above
show that any unstable n-dimensional system of the form
#(t) = grt) + Gr@)x(t) can be stabilised by any of
the stochastic feedback controls described above, where
G; € R"™™ and g; € R" for i € S. There are lots of
such hybrid linear systems in applications (see, e.g., [3],
[14]). But we could not discuss an example here due to
the page limit.

5. CONCLUSION

In this paper we have discussed if the probability
distributions of the solutions to the stochastically con-
trolled system will converge to a stationary distribution.
We refer the problem as to the stabilisation in distribution
by noise. Although this is an important and useful
problem, there is so far little known on it due to the
mathematical difficulty. But we have successfully tackled
the problem in this paper.

6. APPENDIX

Due to the page limit, we will only be able to
outline the proofs.

Proof of Lemma 2.2. 1f (2.4) were false, there would
exist some (Z,9,1) € R™ x R™ x S with & # § such
that P(1 < o0) > 0, where 7 = inf{t > 0 : X, ;(¢) —

X yl(t) = 0}, in which and throughout this paper we set

inf ) = co. We can then find a pair of positive numbers
R and T such that P(2;) > 0, where
={w e Q:7(w) <T and

sup (in(tvw)‘ Vv |Xg{(ta
0<t<7(w) ’ 7

W) < R—1}.

By Assumption 2.1, |f(z,i) — f(y,4)| V |u(z,i) —
u(y,i)| < hile —y| for (z,y,i) € R"™ x R™ x §,
where hy = maxieg(ai V b,) Set ho = 2hy + 4]7% and
define the Lyapunov function Vi (z,t) = e~"2¢|2|=2 for
(2,t) € (R®"—{0}) xR. For any ¢ € (0, |Z—g|), define
a stopping time

e =inf{t > 0: [ X, ;(t) - X, ;(t)] <e
or [ X, ;(0)| A Xy ;)] = R}

Set Z(t) = X;;(t) — X;;(). By Ito formula
(see, e.g., [14]), it is not very difficult to show that
E[eh2(m"D)|Z (1. AT)|72] < |& — §|~2. Noting that
7. < T and |Z(7.)| = € whenever w € 1, we see from
the inequality above that E [e™"2Te ™21 | < |2 — |72
This implies P(;) < 2|2 — | 2eh2T. Letting ¢ — 0
yields that P(£2;) = 0, which contradicts P(2;) > 0.
We therefore must have the required assertion (2.4). O

Proof of Lemma 3.2. Fix &7, arbitrarily and let
Z(t) = X;;(t) — X, ;(t). By Lemma 2.2, Z(t) # 0 for
all t > 0 with probability 1. Define a Lyapunov function
Va(z,i,t) = 6; |z|p\I'( ) for (z,4,t) € R" x S x Ry,
where \I!( ) = exp fo ~(s)ds). By the generalised Ito
formula (see, e.g., [18, Theorem 1.45 on page 48]) and
Assumption 2.1 and definition (3.3) of 6, s, it is not very
difficult to show that

EVa(Z(t), (1), 1) — | ZO)F <0.  (6.1)
for ¢t > 0. This implies
OE|Z(1)[P < 0]Z(0)[Pw (1) (6.2)

for all t > 0. Let k be the integer part of ¢/h, whence
kh <t < (k+ 1)h. By the definitions of ~(¢) and (),
we can derive

t
\Il_l(t) < exp ((_5 + 05h(k + ]_)) < e—’Ylt-l-Uh.
Substituting this into (6.2) yields

E|Z(t)|P < C1|Z(0)|Pe™ ", Wt >0, (6.3)

where C; = (6/8)e°". 1t is then very standard to
show the assertion (3.7) by the Burkholder-Davis-Gundy
inequality etc. O

Proof of Lemma 3.3. Tt follows from Assumption

2.1 that there is a constant K7 > 0 such that
227 f(x,4) < 2a;|x|? + K1|z|,

u(z,)[* < bF|z[* + K1 (|| + 1),

o u(@, i)* > ¢flaf* = Ky(|af® +|a]?)

(6.4)
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for all (z,i) € R™ x S. Define a Lyapunov function
Va(x,i,t) = 0;(1 + |o|*)05PW(t) for (z,i,t) € R™ x
S x R4, where ¥(¢) has bee defined in the proof of
Lemma 3.2. Once again, by the generalised It6 formula
as well as (3.5), (6.4) and p € (0, 1), it is easy to show

OV (t)E|X;

SO <0 +2) +K2/0 U(s)ds,

where K is a positive number. But, we can also show
that e71=7" < W(t) < e+ for t > 0, where v; was
defined in the statement of Lemma 3.2. Hence

QE|Xi7;(t)\p exp(y1t — oh)
< O(1+ [&[7) + (K2 /1) exp(mit + oh).

This implies the assertion (3.8). O

Proof of Theorem 3.4. Step 1. We first claim that
for any compact subset G of R",

i do (£(X, (kD). £(X;(k0) =0 (65)
uniformly in Z,§ € G and i,j € S. Note that
{r(kh)}ren, is a discrete-time ergodic Markov chain
with its one-step transition probability matrix e"’'. De-
fine the stopping time

ky; = inf{kh : r;(kh) = r;(kh), k € N4 }.

Then K5 < 00 as. (see, e.g., [1]). Hence, for any € €
(0,1), there is a positive number T} > 0 such that

P(r;; <T1) >1—-¢/6, Vi,jeS.  (6.6)

Recalling a known result ([18, p. 99, Theorem 3.24])
that sup; ;coxs E( sWo<i<r, |X“(t)|2
see there is a sufficiently large p > 0 such that

P(Q, ;) > i) € G xS,

< 00, we

1—¢/12, V(& (6.7)

where Q“ = {w € Q@ supg<i<ry \Xi’;(t,wﬂ < p}.

We now fix @, € G and i, € S arbitrarily. For any
¢ € ® and k € N, with kh > T3, we have

[EG(X, 5 (kh)) —Eo(
where
T(kh) = E (T, <1,y 0(K, 5 (6R)) = (X, 5 (k)] ).

Set O = QN Q5N {k; < Ti}. By the time-
homogeneous Markov property, it is not very difficult
to show that

~ £ —
ij(khm < §+J(kh)» (6.8)

J(kh) < 5/3+2E(1521E||)~(w_l(kh — Ki3)

- Xeakh=rp)lR), (69
where w = X, ;(k;3), 2 = Xy]( 5) and | = r;(k;5) =
75(#;;). Observing that for any g1ven w € Q, \w| |z| <

p, we can apply Lemma 3.2 to see that there is another
positive constant 75 such that

E||Xw7l(kh - ’{23) - )?z,l(kh — H;;)

|ﬁ§g

for all kh > Ty + T5. Substituting this into (6.9) yields
that J(kh) < 2¢/3 for all kh > T} + T». This, together
with (6.8), implies that

[EG(X, 5 (kh) — E¢(X, ;(kh)| < ¢
for all kh > Ty +T5. Since ¢ is arbitrary, we must have
do (C(X, 3(kh), L(X; ;(kh))) < e, ¥kh > Ty + T

for all #,9 € G and 7, € S. This proves (6.5).

Step 2. We next claim that for any (Z, i) € R™ x
S, {£(X; ;(kh))}ren, is a Cauchy sequence in P(Cp)
with metric dg. In other words, we need to show that
for any € > 0, there is an integer ky > 0 such that

da(L(X;5((0 +q))), £(X;5(ah) <& (6.11)
for all integers ¢ > ko and v > 1. Let ¢ € (0,1) be
arbitrarily. By Lemma 3.3, there is a p > 0 such that

Plw e Q:]X, ;(vh,w)| <pt>1—-¢/4  (6.12)

(6.10)

for any integer v > 1. For any ¢ € ®, we can then
derive, using (2.5) and (6.12), that

(X, 5((0+ a)h)) — Bo(X, 5(ah))]
~IB(EIOR, (0 + )1 Fn]) ~ EOLE, (k)
—‘Z/ E¢(Xy,;(qh))P(v, &, i dy x {j})

JES

~ E§(X, ;(qh)
<Y [ 1BO(E, (ah) ~ Eo(F, (ah)

jes
x P(v, &,1; dy x {j})

_2+Z/ do (L

JES
x P(v,&,1;dy x {j}),
where B; = {x € R" : |z| < p}. But, by (6.5), there is
a positive integer kg such that
> = €
da (L(X;5(qh)), L(X;5(ah)) < 5,
whenever (y, j) € B; x S. We therefore obtain

[Ea(X; ;((v+q)h)) —Ep(X; ;(qh))| < e
for ¢ > ky and v > 1. As this holds for any ¢ € ®, we
must have (6.11) as claimed.

Step 3. Recalling the well-known fact that the
weak convergence of probability measures is a metric

Xy.4(qh)), £(X; ;(qh)))

Vg > ko
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concept (see, e.g., [8, Proposition 2.5]), we observe from
Step 2 that there is a unique j, € P(Cp) such that
limy, oo do (L£(Xo,1(kh)), pur,) = 0. This, together with
(6.5), implies the assertion (3.9) immediately. The proof
is complete. O

ACKNOWLEDGEMENTS

The authors would like to thank the associate editor
and referees for their helpful suggestions. The authors
would also like to thank the National Natural Science
Foundation of China (11401261,61876192), “333 High-
level Project” of Jiangsu Province, the Qing Lan Project
of Jiangsu Province, the Fundamental Research Funds
for the Central Universities (CZT20020), the Academic
Team in Universities (KTZ20051), the Royal Society
(WM160014, Royal Society Wolfson Research Merit
Award), the Royal Society of Edinburgh (RSE1832) for
their financial support.

REFERENCES

[11 W.J. Anderson, Continuous-Time Markov Chains. Springer, New
York, 1991.

[2] L. Arnold, H. Crauel, V. Wihstutz, ”Stabilisation of linear systems
by noise,” SIAM J. Control Optim., vol.21, pp.451-461, 1983.

[3] G. K. Basak, A. Bisi, M. K. Ghosh, ”Stability of a random
diffusion with linear drift,” J. Math. Anal. Appl., vol.202, pp.604-
622, 1996.

[4] O. L. V. Costa, E. O. Assumpcao, E. K. Boukas, et al.,
“Constrained quadratic state feedback control of discrete-time
Markovian jump linear systems,” Automatica., vol.35, no.4, pp.
617-626, 1999.

[5] E. R. Fernholz, 1. Karatzas, “Relative arbitrage in volatility-
stailized markets,” Ann. Finance., vol.1, pp.149-177, 2005.

[6] M. K. Ghosh, A. Arapostathis, S. I. Marcus, ”Optimal control of
switching diffusions with application to flexible manufacturing
systems,” SIAM J. Control Optim., vol.35, pp. 1183-1204, 1993.

[71 A. Hening, D. H. Nguyen, Coexistence and extinction for
stochastic Kolmogorov systems, Ann. Appl. Probability., vol.28,
no.3, pp.1893-1942, 2018.

[8] N. Ikeda, S. Watanabe, Stochastic Differential Equations and
Diffusion Processes. Sijthoff and Noordhoff, Alphen, 1981.

[91 Y. Ji, H. J. Chizeck,

continuous-time Markovian jump linear quadratic control,” IEEE

Trans. Automat. Control., vol.35, pp.777-788, 1990.

R. Z. Khasminskii,Stochastic Stability of Differential Equations.

Sijthoff and Noordhoff, 1981.

X. Li, W. Liu, X. Mao, J. Zhao, "Stabilization and destabilisation

“Controllability, stabilizability and

[10]

[11]
of hybrid systems by periodic stochastic controls,” Systems
Control Lett., vol.152, 2021, Art.no.104929.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

S. Luo, F. Deng, B. Zhang, S. Hu, ”Almost sure stability of hybrid
stochastic systems under asynchronous Markovian switching,”
Systems Control Lett., vol.133, 2019, Art.no.104556.

X. Mao, ”Stochastic stabilisation and destabilisation,” Systems
Control Lett., vol.23, pp.279-290, 1994.

X. Mao, Stochastic Differential Equations and Their Applica-
tions. 2nd Edition, Elsevie, 2007.

X. Mao, “Stability of stochastic differential equations with
Markovian switching,” Stochastic Process. Appl., vol.79, pp.45-
67, 1999.

X. Mao, ”Almost sure exponential stabilisation by discrete-time
stochastic feedback control,” IEEE Trans. Automat. Control.,
vol.61, no.6, pp.1619-1624, 2016.

X. Mao, G. Yin, C. Yuan, ”Stabilization and destabilisation of
hybrid systems of stochastic differential equations,” Automat-
ica.,vol.43, pp.264-273, 2007.

X. Mao, C.Yuan,Stochastic Differential Equations with Marko-
vian Switching. Imperial College Press, 2006.

M. Sun, J. Lam, S. Xu, Y. Zou, "Robust exponential stabilisation
for Markovian jump systems with mode-dependent input delay,”
Automatica., vol.43, pp.1799-1807, 2007.

D. D. Sworder, R. O. Rogers, ”"An LQ-solution to a control
problem associated with solar thermal central receiver,” IEEE
Trans. Automat. Control., vol.28, pp.971-978, 1983.

Y. Takeuchi, N. H. Du, N. T. Hieu, K. Sato, “Evolution of
predator-prey systems described by a Lotka-Volterra equation un-
der random environment,” J. Math. Anal. Appl., vol.323, pp.938-
957, 2006.

F. Wu, G. Yin, H. Mei, "Stochastic functional differential equa-
tions with infinite delay: Existence and uniqueness of solutions,
solution maps, markov properties, and ergodicity,” J.Differ. Equ.,
vol.262, pp.1226-1252, 2017.

L. Wu, X. Su, P. Shi, ”Sliding mode control with bounded
Lo gain performance of Markovian jump singular time-delay
systems,” Automatica., vol.48, no.8, pp.1929-1933, 2012.
G.Yin, Q.Zhang, Continuous-Time Markov Chains and Applica-
tions: A Singular Perturbation Approach. Springer-Verlag, New
York, 1998.

S. You, L. Hu, J. Lu, X. Mao, ”Stabilisation in distribution by de-
lay feedback control for hybrid stochastic differential equations,”
IEEE Trans. Automat. Control., vol.67, no.2, pp.971-977, 2022.
C. Yuan, X. Mao, ”Asymptotic stability in distribution of stochas-
tic differential equations with Markovian switching,” Stochastic
Process. Appl., vol.103, pp.277-291, 2003.

B. Zhang, F. Deng, S. Peng, S. Xie, "Stabilization and destabili-
sation of nonlinear systems via intermittent stochastic noise with
application to memristor-based system,” J. Franklin Institute.,
vol.355, pp.3829-3852, 2018.



	Abstract
	Key Words:
	1. INTRODUCTION
	2. PRELIMINARIES
	3. STABILISATION
	4. DESIGN OF CONTROL FUNCTION
	5. CONCLUSION
	6. APPENDIX
	ACKNOWLEDGEMENTS
	REFERENCES



