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A deterministic least squares approach for
simultaneous input and state estimation

Grigorios Gakis and Malcolm C. Smith

Abstract—This paper considers a deterministic estimation
problem to find the input and state of a linear dynamical system
which minimise a weighted integral squared error between the re-
sulting output and the measured output. A completion of squares
approach is used to find the unique optimum in terms of the
solution of a Riccati differential equation. The optimal estimate
is obtained from a two-stage procedure that is reminiscent of
the Kalman filter. The first stage is an end-of-interval estimator
for the finite horizon which may be solved in real time as the
horizon length increases. The second stage computes the unique
optimum over a fixed horizon by a backwards integration over
the horizon. A related tracking problem is solved in an analogous
manner. Making use of the solution to both the estimation and
tracking problems a constrained estimation problem is solved
which shows that the Riccati equation solution has a least squares
interpretation that is analogous to the meaning of the covariance
matrix in stochastic filtering. The paper shows that the estimation
and tracking problems considered here include the Kalman
filter and the linear quadratic regulator as special cases. The
infinite horizon case is also considered for both the estimation
and tracking problems. Stability and convergence conditions are
provided and the optimal solutions are shown to take the form
of left inverses of the original system.

Index Terms—Continuous time systems, Kalman filter, deter-
ministic optimisation, least squares, input and state estimation,
trajectory tracking, Riccati differential equation.

I. INTRODUCTION

OUR goal in this paper is to pose and solve a filter-
ing/estimation problem for the simultaneous estimation

of inputs and states in a continuous time linear finite dimen-
sional dynamical system. A model of the physical system is
assumed to be available. The output of the dynamical system
is the vector of all variables that are measured (e.g. by means
of sensors). The filter should make use only of these measured
outputs for the estimation. The filter should produce the best
estimate of the system variables treating the exogenous inputs
and states on an equal footing. The meaning of “best” is to
minimise a weighted integral squared error between output and
measured output. The problem set-up is illustrated in Fig. 1.
The filtered signals w1(t), x1(t) provide best estimates of w
and x at a given time instant t based on measurements up
to that time, while the estimates ŵ(t), x̂(t) provide the best
estimates over a time interval [0, T ].

The estimation problem of Fig. 1 has a strong motivation
in engineering applications. For example, the motion of an
automobile is determined by the external forces acting on
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Fig. 1. Estimation problem for a dynamical system with state x, exogenous
input w and output z which is measured.

it (principally tyre and aerodynamic forces). These are very
difficult to measure directly but may be estimated together with
the system state from an appropriate set of sensors. Similar
considerations apply to other types of vehicles, e.g. aerial or
nautical vehicles or vessels. In the field of structural dynamics
an example would be the estimation of forces applied to a
structure together with the resulting vibrational displacements
in the structure. In power systems an example would be the
estimation of the external excitation to an electrical machine
together with the machine states. The standard Kalman filter
is often used in such examples, however such an approach
imposes a Gaussian assumption on the exogenous input which
may be unjustified.

Our solution to the problem of Fig. 1 is based on the method
of completion of squares and builds on the work of Willems [1]
which gave a deterministic derivation of the standard Kalman
filter. A key step is the construction of a dynamical system
derived from the system model together with a matrix P1(t)
which is the solution of a Riccati differential equation. This
allows the cost functional to be written in a form that allows
the unique optimal solution to be determined. The dynamical
system used in the construction turns out to be an “end-of-
interval estimator” which generates signals w1(t), x1(t) by
integration forwards in time on the interval [0, T ] (Lemma 3).
The completion of squares points to the construction of
a further dynamical system which is solved backwards in
time on the interval [0, T ] to generate the unique optimum
(Theorem 1). The structure of the solution is reminiscent of
the standard (causal) Kalman filter and the non-causal process
of smoothing, which involves backwards integration and is not
computable in real time, though the solution to the present
problem has a more general structure through placing the
estimation of state and exogenous input on an equal footing,
and without prior assumption on the nature of the exogenous
input.

An important further contribution of the paper is to provide
a deterministic interpretation of the matrix P1(t) (Section VI).
To do this we pose and solve a constrained optimisation
problem which requires the state to pass through a prescribed
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point at a given time. The optimal cost for the new problem is
increased by a term which is the norm squared error between
the state and the optimal state at the given time weighted by
the inverse of a matrix Lyapunov differential equation solution
P2(t) (Theorem 4). The latter coincides with P1(t) if the
prescribed time for the state constraint is at the end of the
interval, i.e. t = T . This allows the interpretation that if P1(t)
is small, the measurements suggest strongly that x1(t) is an
accurate estimate of the state at time t given measurements
up to that time, while conversely if its inverse P1(t)−1 is near
singular then there exist trajectories with x(t) far from x1(t)
that fit the measurements z̃ up to time t almost as well. There
is a similar interpretation for P2(t) valid for any time t within
the fixed horizon length. We note that the simpler version
of the question of providing a deterministic interpretation of
P1(t) and P2(t) for the standard Kalman filter has not been
addressed in the literature so far. Our result achieves this
as a special case, namely, the result provides a deterministic
interpretation of the filtered and smoothed state covariances in
the stochastic formulation which is analogous to the meaning
of covariance in that context (see Section VII-A).

In order to solve the constrained optimisation problem
(Section VI), a tracking problem is introduced that has a
close relation to the estimation problem and has independent
interest (Section V). In one respect the estimation and tracking
problems are identical, namely it is desired to minimise the
weighted integral squared error between the output of the
dynamical system and another signal that is given, i.e. a
set of sensor measurements or a desired trajectory. In the
estimation problem we seek the input and state that is the best
explanation of the observed trajectory given the measurements
made, while in the tracking problem we seek the input (and
state) that gives the closest output trajectory of the system to
the desired one. In another respect the two problems differ
in that there is a quadratic penalty in the cost criterion on the
initial state (estimation problem) or on the final state (tracking
problem). This results in the two problems having solutions
which are dual to each other: in the tracking problem the
first stage of the solution solves a Riccati differential equation
backwards in time after which the optimal control and state
trajectory are found by integrating forwards in time, which
is the opposite way round to the estimation problem. This
duality is a generalisation of the well-known duality between
the solutions of the Kalman filter and the linear quadratic
regulator.

In Section VII we show how the results of the paper
specialise to some standard problems. Section VII-A con-
siders the standard finite horizon Kalman filter and shows
how Theorems 1 and 2 reduce to the well-known results
for that case. In particular the end-of-interval estimator of
Lemma 3 coincides with the minimum variance estimator
with P1(t) equal to the covariance. Theorem 2 reduces to
the smoothed estimate in Kalman filtering with P2(t) equal
to the smoothed covariance. Section VII-B shows how the
corresponding results are deduced for the Kalman filter with
direct feedthrough of input to measured output. Section VII-C
shows that Theorem 3 reduces to the linear quadratic (LQ)
tracking problem as a special case, which further specialises

to the linear quadratic regulator.
The paper considers the infinite horizon case for the estima-

tion problem in Section VIII. It is shown under mild conditions
that the limiting form of the end-of-interval estimator can be
written as a linear system solved forwards in time with the
system matrices determined via the solution of an algebraic
Riccati equation (Theorem 8). We show that the end-of-
interval estimator of the input is a stable left inverse of the
original system (Theorem 9). We also show that the unique
solution of the estimation problem has a limiting form which
includes a second stage of processing via an anti-stable system,
equivalently a system that is stable in the backwards time
direction. We show that the series connection of the end-of-
interval estimator (with judiciously chosen output) and this
anti-causal “smoother” is also a left inverse of the original
system (Theorem 10).

Section IX considers the infinite horizon case for the
tracking problem. On a finite horizon the tracking problem
solution has a natural two-stage form where the first stage
involves a backwards-in-time integration and the second stage
has an integration forwards in time. This form is maintained in
the infinite horizon limit with, under mild conditions, the first
stage being an anti-stable system (equivalently a stable anti-
causal system) and the second stage being a stable system. The
analysis takes care to show that the optimal control converges
for any fixed time t to the finite-horizon solutions in the
limit as the horizon length tends to infinity (Theorem 11 and
Theorem 13). Moreover, we show that the first stage system is
an anti-stable left inverse of the original system (Theorem 12),
and that the series connection of the first stage’s computation
of a modified output and the second stage system is also a left
inverse of the original system (Theorem 14).

II. LITERATURE REVIEW

The close connection between the deterministic concept of
estimation by least squares and the minimisation of a mean
square error in a statistical sense has long been appreciated
(see [2], [3], [4], [5]). Kalman followed earlier work of
Wiener and Kolmogorov in taking a statistical view of signal
estimation, though his approach specified a linear state-space
model for the system and estimation of the state rather
than estimation of a signal from a noisy measurement with
assumptions on the spectral characteristics. The resulting filter
was initially introduced for discrete time systems [6] and then
for continuous time systems first by analogy with optimal
control [7] and later as a limit of the discrete time equations
[8]. The discrete (continuous) time filter has the form of a
recursive algorithm (differential equation) which allows for
easy implementation in real time applications and a lot of its
success can be attributed to this property. Very important is
Kalman’s work [9] in deriving conditions for stability in the
time invariant case. A (deterministic) least squares formulation
and derivation of the continuous time Kalman filter was given
more recently by Willems [1]. As noted in [1] the possibility
of such a derivation had been “system theory folklore” ever
since the first appearance of Kalman’s work and he provides
a number of earlier references in this direction. The work by
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Willems inspired the analogous study [10] for discrete time
systems that are controllable and observable.

An active direction of research that emerged following
Kalman’s initial contribution focused on estimation in systems
with unknown inputs. Noise-free systems were considered first
and observers were designed for systems with a full column
rank first Markov parameter and zero feedthrough matrix [11],
[12], [13], [14]. This work was extended to systems with a
non-zero feedthrough matrix in [15] while the first Markov
parameter rank condition was relaxed in [16]. Estimation
of unknown inputs and states in a stochastic setting was
considered in [17] for discrete time systems, and extended
in [18], [19], [20] and [21] for systems without feedthrough.
Systems with a non-zero feedthrough matrix were treated
in [22] using a technique developed in [15] for noise-free
systems. In [23] an additional least-squares procedure was
used for input estimation to derive a filter for systems with
a full column rank feedthrough matrix. More recently [24],
[25], [26] inspired by [23] and [18] describe a procedure to
derive filters which relax the above matrix conditions. In [27],
[28] filters have been derived for linear discrete time systems
in the zero informational limit for the process noise as a
method to treat the estimation problem for unknown inputs.
In [27] there is no direct feedthrough of the process noise
to the measurements and there is an assumption that the first
Markov parameter has full column rank. In [29] there is further
analysis with reference to stability, convergence and system
inversion. In [28] the case where there is a direct feedthrough
matrix of full column rank is treated. We mention that [27],
[28] and [29] contrast with the present work in considering
discrete time stochastic systems, whereas here we deal with
the continuous time case and present a first principles approach
which is purely deterministic.

The problem formulation and assumptions in this paper are
in part motivated by examples in mechanical systems where
a direct feedthrough of unknown inputs to measured outputs
frequently occurs due to the use of accelerometers. We will
make the assumption that the direct feedthrough matrix of the
system has full column rank, though it is possible that this
could be relaxed at the expense of making the filter equations
more involved. Even so, it should be emphasised that the as-
sumption is mild enough to include the standard Kalman filter,
the Kalman filter with direct feedthrough of process noise to
measurements and the linear quadratic tracking problem as
special cases, as we demonstrate in Section VII.

III. PRELIMINARIES

A. Notation
A real scalar, a real m dimensional vector and a real

m × l dimensional matrix are denoted by R, Rm and Rm×l
respectively. A square symmetric matrix Θ = ΘT ∈ Rm×m
is positive (semi-positive or negative) definite and is denoted
by Θ > 0 (Θ ≥ 0 or Θ < 0) if θTΘθ > 0 (θTΘθ ≥ 0
or θTΘθ < 0) for all 0 6= θ ∈ Rm and we denote by
‖θ‖2Θ−1 the norm on Rm defined by ‖θ‖2Θ−1 := θTΘ−1θ
if Θ > 0. Furthermore, Lm2,e denotes the space of vector
signals of dimension m whose Lebesgue integrated squared 2-
norm exists on any finite interval. Let Lm∞ denote the space of

Lebesque integral m dimensional vector functions of bounded
∞-norm (see Appendix for a precise definition).

B. The Riccati equation

Consider the non-linear matrix differential equation:

Ṗ = AP + PAT − PCTR−1CP +BQBT (1)

in the unknown matrix function P : R → Rn×n where
A,B,C,R > 0, Q > 0 are fixed real known matrices. The
equation is known as a Riccati differential equation (RDE) and
is central to estimation problems (Kalman filter). Assuming
P (0) > 0, then the RDE has a unique positive definite solution
P (t) > 0 for all t ≥ 0 (see [30, p. 165]). In steady-state the
RDE (1) is given by the algebraic Riccati equation (ARE):

AP + PAT − PCTR−1CP +BQBT = 0 (2)

in the unknown matrix P ∈ Rn×n.
Lemma 1: The ARE (2) has a unique solution P∞ that is

stabilizing, i.e. A − P∞CTR−1C is Hurwitz, if and only if
(C,A) is detectable and (A,B) has no uncontrollable modes
on the imaginary axis. If these conditions hold P∞ ≥ 0.
Furthermore, P∞ is nonsingular if and only if (A,B) has
no stable uncontrollable modes.
Proof: See [31, Theorem 13.7], [32, p. 985], [33] or [34]. �

Lemma 2: Let the conditions of Lemma 1 hold such that P∞

is the unique positive semi-definite and stabilising solution
of the ARE (2). Then the unique positive definite solution
P (t) > 0 for all t ≥ 0 of the RDE (1) with the initial condition
P (0) > 0 has a limit as t→∞ which is given by P∞.
Proof: See [32], [35], [36] and [37, Theorem 3.7] noting that
the null space of P (0) is empty by assumption. �

Similarly the differential equation:

Ṡ = FS + SFT + SHTR−1HS −GQGT (3)

in the unknown matrix function S : R → Rn×n where
F,G,H,R > 0, Q > 0 are fixed real known matrices is an
RDE central to control problems (linear-quadratic-regulator).
Assuming S(0) > 0, then the RDE (3) has a unique positive
definite solution S(t) > 0 for all t ≤ 0. This follows from the
positive time case by considering the transformation t→ −t.
In steady-state the RDE (3) is given by the algebraic Riccati
equation (ARE):

FS + SFT + SHTR−1HS −GQGT = 0 (4)

in the unknown matrix S ∈ Rn×n.
Remark 1: Lemmas 1 and 2 carry over easily to (3) and

(4). Namely the ARE (4) has a unique solution S∞ that is
“anti-stabilizing”, i.e. −F − S∞HTR−1H is Hurwitz, if and
only if (H,−F ) is detectable and (F,G) has no uncontrollable
modes on the imaginary axis. If these conditions hold S∞ ≥ 0.
Furthermore, S∞ is nonsingular if and only if (F,G) has no
unstable uncontrollable modes. The unique positive definite
solution S(t) > 0 for t ≤ 0 of the RDE (3) with the terminal
condition S(0) > 0 has a limit as t → −∞ which is given
by S∞.
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IV. ESTIMATION PROBLEM

Consider the linear, finite-dimensional, continuous time
system with the state space description:

ẋ = Ax+Bw, (5)
z = Cx+Dw (6)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m
(full column rank) are fixed known matrices1 and w ∈ Lm2,e,
x ∈ Ln2,e and z ∈ Lp2,e are input, state and output related
through this linear system. We consider the problem to esti-
mate w and x, which is the same as estimating w and x(0)
since x is generated by (5), from the measurement of the
signal z and a prior estimate of the initial state x(0). We
assume that the state x and driving input w are not measured
directly, other than (indirectly) through the measurement of
z (i.e. all measurements of the system are made through the
output vector z). Each element of z may correspond to an
individual sensor or multiple entries of z may be generated
by a single device. To pose our problem precisely we will
denote by z̃ ∈ Lp2,e the actual measured output signal in an
experiment (see Fig. 1). We introduce the performance index:

CT (w, x(0)) =

∫ T

0

‖z̃(t)− z(t)‖2R−1dt+ ‖x(0)− γ‖2Γ−1

(7)

where 0 < R ∈ Rp×p, 0 < Γ ∈ Rn×n, γ ∈ Rn, 0 < T ∈ R
are specified. The vector γ represents the estimate of the initial
state available a-priori and Γ the accuracy/confidence of this
estimate. The problem we wish to solve is:

inf
w,x(0)

CT (w, x(0)) (8)

subject to (5) and (6). In particular we wish to compute the
optimal w and x(0) which we will denote by ŵ and x̂(0).

A key step in our solution of (8) is a “completion of squares”
construction for the performance index (7) which is given in
the following lemma.

Lemma 3: Consider the system:

ẋ1 = (A1 −K1C1)x1 + (B1 +K1)z̃, (9)

Ṗ1 = A1P1 + P1A
T
1 −K1RK

T
1 +B1RB

T
1 , (10)

K1 = P1C
T
1 R
−1, (11)

w1 = D†(z̃ − z1), (12)
z1 = Cx1 (13)

with the initial conditions P1(0) = Γ and x1(0) = γ, where
we have defined:

A1 = A−B1C, (14)

B1 = BD†, (15)
C1 = (I−Π)C, (16)

Π = DD†, (17)

D† = (DTR−1D)−1DTR−1. (18)

1The assumption that the system matrices are constant is for notational
convenience. We note that all finite horizon results in Sections IV-VII are
valid if the system matrices A, B, C, D are time-varying, with no change
required in the proofs.

Then the RDE (10) has a unique positive definite solution
P1(t) > 0 for all t ∈ [0, T ]. Furthermore, the performance
index defined in (7) is given by:

CT (w, x(0)) =

∫ T

0

‖(I−Π)(z̃(t)− z1(t))‖2R−1dt

+

∫ T

0

‖Π(RBT1 P1(t)−1(x(t)− x1(t)) + z̃(t)− z(t))‖2R−1dt

+ ‖x(T )− x1(T )‖2P1(T )−1 (19)

(w1 is defined here for convenience and will be first used in
Theorem 2).
Proof: The parallel projection Π satisfies Π2 = Π and:

(I−Π)TR−1D = 0. (20)

Hence the following identities hold:

K1D = 0, (21)
K1C1 = K1C. (22)

From (6) w = D†(z − Cx). Substituting into (5) gives:

ẋ = A1x+B1z = (A1 −K1C1)x+ (B1 +K1)z (23)

using (21) and (22). From (23) and (9) we obtain:

ẋ− ẋ1 = (A1 −K1C1)(x− x1)− (B1 +K1)(z̃ − z). (24)

We note that (I − Π)(z − z1) = C1(x − x1) from which it
follows that:

C1(x− x1) + (z̃ − z) = (I−Π)(z̃ − z1) + Π(z̃ − z). (25)

Hence from (20) and (25):

‖C1(x− x1) + (z̃ − z)‖2R−1

= ‖(I−Π)(z̃ − z1)‖2R−1 + ‖Π(z̃ − z)‖2R−1 . (26)

Using (10), (24) and (26) we verify the calculation:

d

dt

(
‖x− x1‖2P−1

1

)
=

d

dt

(
(x− x1)TP−1

1 (x− x1)
)

= 2(x− x1)TP−1
1 (ẋ− ẋ1)

− (x− x1)TP−1
1 Ṗ1P

−1
1 (x− x1)

= 2(x− x1)TP−1
1 ((A1 −K1C1)(x− x1)

− (B1 +K1)(z̃ − z))
− (x− x1)T (P−1

1 A1 +AT1 P
−1
1 − CT1 R−1C1

+ P−1
1 B1RB

T
1 P
−1
1 )(x− x1)

= −2(x− x1)T (P−1
1 B1 + CT1 R

−1)(z̃ − z)
− (x− x1)T (P−1

1 B1RB
T
1 P
−1
1 + CT1 R

−1C1)(x− x1)

= −‖RBT1 P−1
1 (x− x1) + Π(z̃ − z)‖2R−1

+ ‖Π(z̃ − z)‖2R−1

− ‖C1(x− x1) + (z̃ − z)‖2R−1

+ ‖(z̃ − z)‖2R−1

= −‖RBT1 P−1
1 (x− x1) + Π(z̃ − z)‖2R−1

− ‖(I−Π)(z̃ − z1)‖2R−1 + ‖(z̃ − z)‖2R−1 (27)

where in the penultimate step we have noted that B1Π =
B1. Integrating (27) in the interval [0, T ] gives the required
expression on noting that RBT1 = ΠRBT1 . �
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Theorem 1: The optimisation problem in (8) has a unique
solution ŵ, x̂(0) which is obtained as follows: first integrate
(9)–(11) forwards in time in the interval 0 ≤ t ≤ T with initial
conditions P1(0) = Γ and x1(0) = γ; then integrate:

˙̂x = A2x̂+B2z̃2 (28)

backwards in time with terminal condition:

x̂(T ) = x1(T ) (29)

to compute x̂(0) (and indeed x̂); and lastly set:

ŵ = D†(z̃2 − C2x̂) (30)

where:

A2 = A−B2C2, (31)
B2 = B1, (32)

C2 = C −RBT1 P−1
1 , (33)

z̃2 = z̃ −RBT1 P−1
1 x1. (34)

Furthermore, the minimum of the performance index (7) is:

inf
w,x(0)

CT (w, x(0)) =

∫ T

0

‖(I−Π)(z̃(t)− z1(t))‖2R−1dt

=

∫ T

0

‖z̃(t)− ẑ(t)‖2R−1dt+ ‖x̂(0)− γ‖2Γ−1 (35)

where we have denoted the optimal output by ẑ = Cx̂+Dŵ.
Proof: We note by an application of [30, Theorem 1, p. 40]
that (28) may be integrated on the interval [0, T ] to yield x̂.
Next we verify that (5) driven by w = ŵ from the initial
state x(0) = x̂(0) generates the state trajectory x = x̂, i.e.
˙̂x = Ax̂ + Bŵ. This is easily seen by substituting for ŵ to
obtain (28). We now claim that the following lower bound:

CT (w, x(0)) ≥
∫ T

0

‖(I−Π)(z̃(t)− z1(t))‖2R−1dt

holds for all w and x(0). To see this note that all terms in (19)
are non-negative and the first term is independent of w and
x(0). We proceed to claim that for x(0) = x̂(0) and w = ŵ
the last two terms in (19) are zero. To see that the second
term is zero we substitute w = ŵ from (30) and x = x̂ into
(19) with z defined in (6), i.e. z = ẑ = Cx̂+Dŵ. The third
term is zero with x = x̂ from (29). We therefore conclude that
w = ŵ, x(0) = x̂(0) achieve a minimum of the performance
index with the minimum given by (35). The second line in
(35) is given by substitution of the optimal solution into (7).

It remains to show that this solution is unique, which we
will now establish by contradiction. Let:

x = x̂+ δx, (36)
w = ŵ + δw (37)

be another solution that satisfies (5) with δx, δw not identically
zero in the interval [0, T ]. Substituting (36) and (37) into (5)
gives:

˙δx = Aδx+Bδw (38)

by noting that x̂, ŵ also satisfy (5) by construction. The
difference in the output is given by:

δz = Cδx+Dδw. (39)

We now substitute (36) and (37) into the performance index
(19) which gives:

CT (w, x(0)) =

∫ T

0

‖(I−Π)(z̃(t)− z1(t))‖2R−1dt

+

∫ T

0

‖Π(RBT1 P1(t)−1δx(t)− δz(t))‖2R−1dt

+ ‖δx(T )‖2P1(T )−1 (40)

using the fact that with x = x̂ and w = ŵ the integrand
in the second term of (19) is identically zero in the interval
[0, T ]. Under the assumption that the trajectory in (36), (37)
is a solution to the optimisation problem, the last two terms
in (40) have to be zero, which gives:

D†(RBT1 P
−1
1 δx− δz) = 0 (41)

on the interval [0, T ] since D is full column rank, and:

δx(T ) = 0 (42)

since P1(T ) > 0. Substituting δz from (39) into (41) gives:

δw = −D†C2δx (43)

using (33). Substituting δw from (43) into (38) gives:

˙δx = A2δx (44)

using (31). Solving (44) backwards in time with the terminal
condition (42) gives δx = 0 identically in the interval [0, T ],
and from (43) we have δw = 0 identically in the same interval,
which results in a contradiction. �

We now turn our attention to the filtered estimates (i.e.
end-of-interval estimates) of the state and input, namely x̂(T )
and ŵ(T ). In real time applications, the horizon T is itself a
variable. It would appear at first glance that a new optimisation
problem needs to be solved at every T to compute end-of-
interval estimates. The following result shows that this is not
the case.

Theorem 2: Let x1(t), w1(t) be defined by (9)–(12) with
P1(0) = Γ and x1(0) = γ, and x̂(t), ŵ(t) as in Theorem 1,
for a fixed time interval [0, T ]. Then:

x̂(T ) = x1(T ), (45)
ŵ(T ) = w1(T ). (46)

Proof: The result follows from (12), (29), (30), (33) and (34).
�

Theorem 2 shows that integrating (9)–(11) as the measure-
ments z̃ become available is sufficient to recover the end-of-
interval estimates without computing x(0) or w. Hence the
filter of Lemma 3 can be used in a receding horizon manner
as the optimal filter in real time. We further note that this filter
is non-anticipating, meaning that the end-of-interval estimates
x1(T ) and w1(T ) do not depend on future measurements, i.e.
z̃(t) for t > T . This property is required of any filter to be
applied in a real time application.
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V. TRACKING PROBLEM

In this section we will consider a related tracking problem.
Assume the state q and input u satisfy:

q̇ = Fq +Gu, (47)
y = Hq + Ju (48)

where F ∈ Rn×n, G ∈ Rn×m, H ∈ Rp×n and J ∈ Rp×m
(full column rank) are fixed known matrices and u ∈ Lm2,e,
q ∈ Ln2,e and y ∈ Lp2,e are input, state and output related
through this linear system. We wish to find an input u such
that the output y best tracks a desired signal ỹ ∈ Lp2,e over a
finite horizon T together with a penalty on the deviation of the
terminal state from a desired state ξ for a given but arbitrary
initial state η. More precisely, we introduce the performance
index:

WT (u) =

∫ T

0

‖ỹ(t)− y(t)‖2R−1dt+ ‖q(T )− ξ‖2Ξ−1 (49)

where 0 < R ∈ Rp×p, ξ ∈ Rn, 0 < Ξ ∈ Rn×n and propose
the problem:

inf
u
WT (u) (50)

subject to (47), (48) and q(0) = η. We denote the optimal
solution to (50) by û. We first give a completion of squares
result similar to Lemma 3 which we then use to solve (50) in
Theorem 3.

Lemma 4: Consider the system:

q̇1 = (F1 +M1H1)q1 + (G1 −M1)ỹ, (51)

Ṡ1 = F1S1 + S1F
T
1 +M1RM

T
1 −G1RG

T
1 , (52)

M1 = S1H
T
1 R
−1, (53)

u1 = J†(ỹ − y1), (54)
y1 = Hq1 (55)

with the terminal conditions S1(T ) = Ξ and q1(T ) = ξ, where
we have defined the matrices:

F1 = F −G1H, (56)

G1 = GJ†, (57)
H1 = (I− Λ)H, (58)

Λ = JJ†, (59)

J† = (JTR−1J)−1JTR−1. (60)

Then the RDE (52) has a unique positive definite solution
S1(t) > 0 for all t ∈ [0, T ]. Furthermore, the performance
index in (49) is given by:

WT (u) =

∫ T

0

‖(I− Λ)(ỹ(t)− y1(t)))‖2R−1dt

+

∫ T

0

‖Λ(RGT1 S1(t)−1(q(t)− q1(t))− ỹ(t) + y(t))‖2R−1dt

+ ‖η − q1(0)‖2S1(0)−1 . (61)

Proof: We sketch the outline of two proofs. A direct proof is
a completion of squares argument analogous to Lemma 3. It
differs from Lemma 3 only in the signs of some terms. An
indirect proof is to recognise that Lemma 4 is the time reversed

Lemma 3. The transformations d
dt → −

d
dt , A → −F , B →

−G, C → H , D → J , P1 → S1, x1 → q1, z1 → y1, z̃ → ỹ
and consequential correspondences A1 → −F1 etc. suffice to
give the result. Furthermore, S1(t) > 0 for all t ∈ [0, T ] is
guaranteed by the reversed time Lemma 2 (see Remark 1). �

Theorem 3: The optimisation problem in (50) has a unique
solution û which is obtained as follows: first integrate (51)–
(53) backwards in time with terminal conditions S1(T ) = Ξ
and q1(T ) = ξ; then integrate:

˙̂q = F q̂ +Gû (62)

forwards in time with û given by the feedback law:

û = J†(ỹ2 −H2q̂) (63)

and initial condition q̂(0) = η, where we have defined:

H2 = H +RGT1 S
−1
1 , (64)

ỹ2 = ỹ +RGT1 S
−1
1 q1. (65)

Furthermore, the minimum of the performance index (49) is:

inf
u
WT (u) =

∫ T

0

‖(I− Λ)(ỹ(t)− y1(t)))‖2R−1dt

+ ‖η − q1(0)‖2S1(0)−1 . (66)

Proof: We note that (62) with û given by (63) and q̂(0) = η
may be integrated [30, Theorem 1, p. 40] on the interval [0, T ]
to yield q̂, while û can be computed by substituting q̂ into (63).
We now claim that the following lower bound:

WT (u) ≥
∫ T

0

‖(I− Λ)(ỹ(t)− y1(t)))‖2R−1dt

+ ‖η − q1(0)‖2S1(0)−1

holds for all u. To see this note that all terms in (61) are non-
negative and the first and third terms are independent of u.
We proceed to claim that for u = û the second term in (61)
is zero. To see this we substitute u = û and q = q̂ into (61)
with y defined in (48), i.e. y = ŷ = Hq̂+Jû, and noting that
Λ2 = Λ. We therefore conclude that u = û is a solution to the
optimisation problem and the minimum of the performance
index (49) is given by (66).

It remains to show that this solution is unique, which we
will now establish by contradiction. Let:

q = q̂ + δq (67)
u = û+ δu (68)

be another solution that satisfies (47) with δq, δu not identi-
cally zero in the interval [0, T ]. Substituting (67) and (68) into
(47) gives:

δ̇q = Fδq +Gδu (69)

using (62). The difference in the output is given by:

δy = Hδq + Jδu. (70)
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We now substitute (69) and (70) into the performance index
(61) which gives:

WT (u) =

∫ T

0

‖(I− Λ)(ỹ(t)− y1(t)))‖2R−1dt

+

∫ T

0

‖Λ(RGT1 S1(t)−1δq(t) + δy(t))‖2R−1dt

+ ‖η − q1(0)‖2S1(0)−1 (71)

using the fact that with q = q̂ and u = û the integrand in the
second term of (61) is identically zero in the interval [0, T ].
Under the assumption that the trajectory in (67), (68) is a
solution to the optimisation problem, the second term in (71)
has to be zero, which gives:

J†(RGT1 S
−1
1 δq + δy) = 0 (72)

on the interval [0, T ] since J is full column rank. Substituting
δy from (70) into (72) gives:

δu = −J†H2δq (73)

using (64). Substituting δu from (73) into (69) gives:

δ̇q = (F −G1H2)δq. (74)

Solving (74) forwards in time with the initial constraint
δq(0) = 0, which follows since q(0) = q̂(0) = η, gives
δq = 0 identically in the interval [0, T ]. Using (73) we have
δu = 0 identically in the same interval, which results in a
contradiction. �

VI. CONSTRAINED ESTIMATION PROBLEM

We now turn our attention to the constrained optimisation
problem:

inf
w,x(0)

CT (w, x(0)) subject to x(τ) = ζ (75)

for ζ ∈ Rn and 0 ≤ τ ≤ T where (5) and (6) hold. Here
CT (w, x(0)) is defined as in (7) with the same meaning for
z̃, γ and Γ. Again we wish to compute the optimal w and
x(0) which we will denote by ŵ and x̂(0). A solution of this
optimisation problem will show how the optimal cost increases
compared to the unconstrained value when we demand that
the state passes through a prescribed point at a given time.
This will give an indication in a least squares sense of how
“likely” it is that the state passes through the optimum point
for the unconstrained problem. For example, if there is a sharp
rise in the cost when the state is required to pass through a
different point, then we may have more confidence in the value
of the unconstrained optimum state at that time. We will first
give Lemma 5 before deriving the solution to the optimisation
problem (75) in Theorem 4.

Lemma 5: Let x1, P1, z1, A2, B2, C2, z̃2 be defined as in
Lemma 3 and Theorem 1 and consider the system:

ẋ2 = A2x2 +B2z̃2, (76)

Ṗ2 = A2P2 + P2A
T
2 −B2RB

T
2 , (77)

w2 = D†(z̃2 − C2x2) (78)

with the terminal conditions P2(T ) = P1(T ), x2(T ) = x1(T ).
(Note that x2, w2 are the optimal trajectories of the optimisa-
tion problem given by (8), namely x2 = x̂, w2 = ŵ as defined
in Theorem 1.) Then CT (w, x(0)) is equivalently given by:

CT (w, x(0)) =

∫ T

0

‖(I−Π)(z̃(t)− z1(t))‖2R−1dt

+

∫ τ

0

‖Π(z̃2(t)− C2x(t)−Dw(t))‖2R−1dt

+

∫ T

τ

‖Π(z̃3(t)− C3x(t)−Dw(t))‖2R−1dt

+ ‖x(τ)− x2(τ)‖2
P−1

2 (τ)
(79)

where C3 and z̃3 are given by:

C3 = C2 +RBT2 P
−1
2 , (80)

z̃3 = z̃2 +RBT2 P
−1
2 x2. (81)

Proof: Using (6), (33) and (34) we obtain:

Π(RBT1 P
−1
1 (x− x1) + z̃ − z) = Π(z̃2 − C2x−Dw). (82)

Substituting (82) into (19) gives:

CT (w, x(0)) =

∫ T

0

‖(I−Π)(z̃(t)− z1(t))‖2R−1dt

+

∫ τ

0

‖Π(z̃2(t)− C2x(t)−Dw(t))‖2R−1dt

+

∫ T

τ

‖Π(z̃2(t)− C2x(t)−Dw(t))‖2R−1dt

+ ‖x(T )− x1(T )‖2
P−1

1 (T )
. (83)

We next note that Lemma 4 remains true for time varying
matrices. The proof will apply Lemma 4 to the last two terms
of (83) in the interval [τ, T ] rather than [0, T ]. First we make
the following notational substitutions: q → x, u → w, ỹ →
Πz̃2, F → A, G → B, H → ΠC2, J → D and setting ξ =
x1(T ), Ξ = P1(T ). Making these replacements in (56)–(60)
and then (53) gives F1 = A2, G1 = B2, H1 = 0, Λ = Π, J† =
D† and M1 = 0. Substituting these into (51), (52) and (54)
with the notational substitutions q1 → x2, S1 → P2 and u1 →
w2 gives (76)–(78). We next note that the expression in (49)
with the notational substitutions and the lower limit replaced
by τ is the same as the last two terms in (83). Therefore,
using Lemma 4, we can replace these terms by the expression
in (61), which gives (79) using (80) and (81) and the fact that
the first integral on the right hand side of (61) is zero since
(I −Π)Π = 0. �

Theorem 4: The optimisation problem (75) has a unique
solution ŵ, x̂(0) which is obtained as follows: first integrate
(9)–(11) forwards in time in the interval 0 ≤ t ≤ T with initial
conditions P1(0) = Γ and x1(0) = γ which gives x1 and P1

in the interval 0 ≤ t ≤ T ; then integrate (76)–(78) backwards
in time in the interval τ ≤ t ≤ T with terminal conditions
P2(T ) = P1(T ) and x2(T ) = x1(T ) which gives x2 and P2

in the interval τ ≤ t ≤ T ; then integrate:

˙̂x = Ax̂+Bŵ (84)
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backwards in time in the interval 0 ≤ t ≤ τ with the feedback
law: ŵ = D†(z̃2−C2x̂); and the terminal condition x(τ) = ζ
to find x̂, ŵ in the interval 0 ≤ t ≤ τ ; then integrate (84)
forwards in time in the interval τ ≤ t ≤ T with the feedback
law: ŵ = D†(z̃3 − C3x̂) and the initial condition x(τ) = ζ
to find x̂, ŵ in the interval τ ≤ t ≤ T . The minimum of the
performance index is:

∫ T

0

‖(I−Π)(z̃(t)− z1(t))‖2R−1dt+ ‖ζ − x2(τ)‖2
P−1

2 (τ)
.

(85)

Proof: We proceed similarly to the proof of Theorem 1.
The first and fourth terms of the performance index in (79)
are independent of x(0) and w, subject to the constraint
x(τ) = ζ. The two integrands in (79) are identically zero
in their respective intervals for x = x̂ and w = ŵ, which can
be verified by substitution. Uniqueness is proven similarly to
Theorem 1 for the intervals 0 ≤ t ≤ τ and τ ≤ t ≤ T
separately. �

The solution to the constrained optimisation problem (75)
given in Theorem 4 introduced the vector and matrix variables
x2, w2 and P2. We recall that x2 and w2 coincide with the state
and input trajectories on the interval [0, T ] that minimise the
performance criterion (7) as shown in Theorem 1. We may
now provide an interpretation of the matrix variable P2. In
Theorem 4 it is shown that the unique minimum of (75) takes
the same form as the first expression on the right hand side of
(35) but with an additional quadratic term which is zero when
ζ = x2(τ), in which case we recover the results of Theorem
1. Consider now the eigenvector-eigenvalue decomposition
of P2(τ). Components of ζ − x2(τ) in those eigenvector
directions of P2(τ) which have small eigenvalues (i.e. large
eigenvalues of P−1

2 (τ)) give a large contribution to the second
term in (85). Hence the measurements provide high confidence
that the state x(τ) should be close to x2(τ) in those directions.
Fig. 2 illustrates the interpretation of P2(τ) in the 2-D case.
The figure shows an ellipse with centre x2(τ) whose axes are
aligned with the eigenvectors of P2(τ) and lengths given by
the corresponding eigenvalue square roots. All points on the
ellipse increase the minimum performance index (85) by 1.

x2(τ)

√
λ1(τ)√

λ2(τ)

Fig. 2. An ellipse with semi-axes of length given by the eigenvalue square
roots of P2(τ),

√
λ1(τ) and

√
λ2(τ), and aligned with the corresponding

eigenvectors.

VII. SPECIAL CASES

A. Standard Kalman filter

We now show how the continuous time Kalman filter can
be derived as a special case of the filter in Theorems 1 and 2.
We therefore consider a system described by:

ẋ = Ax+Bw (86)
z = Cx (87)

with noisy measurement z̃ of z. Note that we assume as
standard that sensor measurements of the state are not directly
affected by the process noise w. In the standard Kalman filter
the process noise w can be interpreted as a small magnitude
disturbance to the system. Hence we need to incorporate a
weighted 2-norm constraint on w in the performance index (7).
In particular, we consider the following optimisation problem:

inf
w,x(0)

(∫ T

0

‖z̃(t)− z(t)‖2R−1dt

+

∫ T

0

‖w‖2Q−1dt+ ‖x(0)− γ‖2Γ−1

)
(88)

where γ is given and R, Q and Γ are given positive-definite
matrices of appropriate dimension. To translate this into the
framework of this paper we introduce a virtual measurement
of w which is equal to zero. More precisely, we consider an
augmented system with (real and virtual) outputs given by:

za =

[
C
0

]
x+

[
0
I

]
w (89)

and for which we have the measurement:

z̃a =

[
z̃
0

]
. (90)

We define an augmented block diagonal weighting matrix Ra
given by:

Ra =

[
R 0
0 Q

]
. (91)

The following result is obtained by applying Lemma 3 and
Theorem 1 to this augmented system.

Theorem 5: Consider the system:

ẋ1 = Ax1 +K(z̃ − Cx1), (92)

Ṗ1 = AP1 + P1A
T −KRKT +BQBT , (93)

K = P1C
TR−1 (94)

for P1(0) = Γ and x1(0) = γ. The optimisation problem (88)
where z is defined by (86)–(87) has a unique solution ŵ, x̂(0)
where ŵ is defined by the feedback law:

ŵ = QBTP−1
1 (x̂− x1) (95)

and x̂(t) is obtained by solving ˙̂x = Ax̂ + Bŵ backwards
on the interval [0, T ] with terminal condition x̂(T ) = x1(T ).
Furthermore, the optimal cost (88) is given by:∫ T

0

‖z̃ − Cx1‖2R−1dt. (96)
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Proof: Replacing (6) by (89), z̃ and R in (7) by (90) and
(91), and applying Lemma 3 gives equations (92)–(94) after
some simplification. Equations (95) and (96) are obtained
by substituting from (89), (90) and (91) into (30) and (35)
respectively. �

The filter (92)–(94) is an end-of-interval estimator (cf.
Theorem 2) in the sense that x̂(T ) = x1(T ), ŵ(T ) = w1(T )
and takes the form of the standard Kalman filter with gain K.
The above result reduces to that given in [1] with R = I and
Q = I.

It is interesting to note that by substituting for ŵ from (95)
we obtain an equation for the optimal state estimate:

˙̂x = Ax̂+BQBTP−1
1 (x̂− x1)

where x̂(T ) = x1(T ) that coincides with the standard form
for the smoothed estimate in Kalman filtering (see [38, eqn.
34(a)]). Similarly by specialising (77) to the present case we
have the equation:

Ṗ2 = (A+BQBTP−1
1 )P2 + P2(A+BQBTP−1

1 )T

−BQBT

where P2(T ) = P1(T ), which is the corresponding form for
the smoothed covariance (see [38, eqn. 34(b)]). We note that
the interpretations of P1(t) and P2(t) derived in Section VI
for the more general problem now apply immediately to the
present case, and hence provide an analogous deterministic
interpretation of the state covariances in standard Kalman
filtering.

B. Kalman filter with input feedthrough
We consider the extension of the standard Kalman filter to

the case where there is direct feedthrough of the input to the
measurements. In particular we consider a system described
by:

ẋ = Ax+Bw, (97)
z = Cx+Dw (98)

with noisy measurement z̃ of z. As in section VII-A we incor-
porate a weighted 2-norm constraint on w in the performance
index (7) and consider the optimisation problem (88) with
z given by (98) rather than (87). To solve this we proceed
similarly and consider an augmented output given by:

za =

[
C
0

]
x+

[
D
I

]
w (99)

and for which we have the measurement z̃a as in (90) and we
define an augmented weighting matrix as in (91).

Theorem 6: Consider the system:

ẋ1 = Ax1 +Bw1 +Kx(z̃ − Cx1 −Dw1), (100)

Ṗ1 = AP1 + P1A
T −KxRKx

T

+ (B −KxD)Pw(B −KxD)T , (101)
w1 = Kw(z̃ − Cx1), (102)

Kw = QDT (DQDT +R)−1, (103)

Kx = P1C
TR−1, (104)

Pw = (I−KwD)Q (105)

with P1(0) = Γ and x1(0) = γ. The optimisation problem
(88) where z is given by (97)–(98) has a unique solution ŵ,
x̂(0) where ŵ is defined by the feedback law:

ŵ = Kw(z̃ − Cx̂) + PwB
TP−1

1 (x̂− x1) (106)

and x̂(t) is obtained by solving ˙̂x = Ax̂ + Bŵ backwards
on the interval [0, T ] with terminal condition x̂(T ) = x1(T ).
Furthermore, the optimal cost (88) is:∫ T

0

‖z̃ − Cx1‖2(DQDT +R)−1dt. (107)

Proof: We will apply Lemma 3 replacing (6) by (99), z̃ and
R in (7) by (90) and (91). Substituting into (18) gives:

D† =
[
Kw I−KwD

]
(108)

where we have used the definition (103) and the matrix
inversion identities (3.1) and (3.2) of Section 6.3 in [39].
Substituting into (14), (15), (16) and (12) using (108) gives:

A1 = A−BKwC, (109)

B1 = B
[
Kw I−KwD

]
, (110)

C1 =

[
I−DKw

−Kw

]
C (111)

and (102) respectively. Noting the symmetry DKwR =
(DKwR)T we find after substituting into (11) using (111)
and the definition (104) that:

K1 = Kx

[
I−DKw −RKT

wQ
−1
]
. (112)

We now verify:[
I−DKw

−Kw

]T [
R 0
0 Q

]−1 [
I−DKw

−Kw

]
= R−1(I−DKw)

+KT
wD

TR−1(−I +DKw +R(DQDT +R)−1)

= R−1(I−DKw) (113)

= (DQDT +R)−1 (114)

= R−1(R−DPwDT )R−1. (115)

From (11) using (111), (113) and (104) we obtain:

K1C1 = Kx(I−DKw)C. (116)

Similarly from (11) using (111), (115) and (104) we obtain:

K1RaK
T
1 = KxRK

T
x − (KxD)Pw(KxD)T . (117)

Substituting into (9) using (109), (116), (110), (112) and (102)
gives (100). Using (103), (104) and (105) we obtain:

KwCP1 = Pw(KxD)T . (118)

By substituting from (108) we obtain:

D†RaD
†T = Pw. (119)

Substituting into (10) using (109), (117), (118) and (119) gives
(101). Equation (106) follows from (30) using (108) and (119).
Equation (107) follows from the first expression in (35) using
(108) and (114). �
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We again note that by substituting for ŵ from (106) we
obtain the differential equation for the optimal state estimate:

˙̂x = Ax̂+BKw(z̃ − Cx̂) +BPwB
TP−1

1 (x̂− x1) (120)

where x̂(T ) = x1(T ). Similarly (77) specialises to:

Ṗ2 = (A−BKwC +BPwB
TP−1

1 )P2

+ P2(A−BKwC +BPwB
TP−1

1 )T −BPwBT . (121)

Finally, we point out that the augmented input feedthrough
matrix in (99) is full column rank for all D. Furthermore, the
standard Kalman filter can be recovered trivially by setting
D = 0 in (100)–(105), (120) and (121).

C. Standard LQ tracking on a finite time horizon

We now show how the standard linear-quadratic (LQ) track-
ing solution on a finite time horizon can be derived as a special
case of the tracking problem in Theorem 3. In the standard
LQ tracking problem we wish to find a low energy input such
that the output tracks a desired output trajectory ỹ(t). More
precisely, we consider the optimisation problem:

inf
u

(∫ T

0

‖ỹ(t)−Hq(t)‖2R−1 + ‖u(t)‖2Q−1dt+ ‖q(T )‖2Ξ−1

)
,

(122)

for given H and positive-definite matrices R, Q and Ξ, where
the state q and input u satisfy q̇ = Fq + Gu, and the initial
state q(0) = η is known. To put this into the form required to
apply Lemma 4 and Theorem 3 we introduce the augmented
output, desired output and weight matrix given by:

ya =

[
H
0

]
q +

[
0
I

]
u, (123)

ỹa =

[
ỹ
0

]
, (124)

Ra =

[
R 0
0 Q

]
. (125)

Theorem 7: Consider the system:

q̇1 = Fq1 −K(ỹ −Hq1), (126)

Ṡ1 = FS1 + S1F
T + S1H

TR−1HST1 −GQGT , (127)

K = S1H
TR−1 (128)

with the terminal condition S1(T ) = Ξ and q1(T ) = ξ. The
optimisation problem (122) has a unique solution û given by
the feedback law:

û = −QGTS−1
1 (q̂ − q1) (129)

and q̂(t) is obtained by solving ˙̂q = F q̂+Gû forwards in the
interval [0, T ] with the initial condition q̂(0) = η. Furthermore,
the optimal cost (122) is:∫ T

0

‖ỹ −Hq1‖2R−1dt+ ‖η − q1(0)‖2S1(0)−1 . (130)

Proof: Replacing (48) by (123), ỹ and R in (49) by (124)–
(125) and applying Lemma 4 gives equations (126)–(128) after
some simplification. Equations (129) and (130) are obtained by

substituting from (123)–(125) into (63) and (66) respectively.
�

The above result is the standard LQ tracking solution
[40, Section 8.3] and the dual to the Kalman filtering and
smoothing solution derived in Section VII-A. In the standard
LQ regulator problem we wish to find the low energy input u
that brings the state q to the origin. This is a specialisation of
the LQ tracking problem which corresponds to setting ỹ = 0
and ξ = 0. In this case q1(t) = 0 for all t and hence the
feedback law (129) is given by û = −QGTS−1

1 q̂ and the
minimum cost is given by ‖η‖2S1(0)−1 . This is recognised as
the classical LQ regulator result on a finite time horizon.

VIII. STEADY STATE FILTER

A. Stability

We first consider the convergence properties of the filter of
Lemma 3 (end of interval estimator) as T → ∞. In order to
express convergence conditions directly in terms of A,B,C,D
we first need to establish the following two Lemmas.

Lemma 6: Let D have full column rank. s0 ∈ C is
an uncontrollable mode of (A1, B1) if and only if it is an
uncontrollable mode of (A,B).
Proof: If s0 is an uncontrollable mode of (A,B) then there
exists 0 6= x ∈ Cn such that x∗A = x∗s0 and x∗B = 0.
Hence x∗(A−BD†C) = x∗s0 and x∗BD† = 0. The converse
follows since D† has full row rank. �

Lemma 7: Let D have full column rank. s0 ∈ C is an
unobservable mode of (C1, A1) if and only if it is an invariant

zero of the system (5)–(6), i.e.
[
A− s0I B
C D

]
does not have

full column rank.
Proof: The proof is a more general result to [31, Lemma 13.9]
to all system modes. �

Theorem 8: Suppose (A,B) has no uncontrollable mode
s0 ∈ C with Re(s0) = 0, the system (5)–(6) has no invariant
zero s0 ∈ C with Re(s0) ≥ 0 and z̃(t) ∈ Lp∞[0,∞). Then the
ARE:

A1P
∞
1 + P∞1 AT1 −K∞1 RK∞T1 +B1RB

T
1 = 0 (131)

where K∞1 = P∞1 CT1 R
−1 has a unique solution P∞1 such

that A∞ = A1 − K∞1 C1 is Hurwitz. Furthermore, P∞1 ≥ 0
and P1(t) → P∞1 as t → ∞ where P1(t) is given by (10)
with the initial condition P1(0) = Γ. Consider the system:

ẋ∞1 = A∞x∞1 +B∞z̃, (132)

w∞1 = D†(z̃ − Cx∞1 ) (133)

with any initial condition x∞1 (0) ∈ Rn where B∞ = B1 +
K∞1 . Then:

1) x1(t)− x∞1 (t)→ 0 as t→∞;
2) w1(t)− w∞1 (t)→ 0 as t→∞

where x1(t) and w1(t) are given by (9) and (12) with the
initial condition x1(0) = γ.
Proof: The claims in regard to (131) follow directly by
applying Lemmas 1 and 2 to the RDE (10) and expressing the
convergence conditions in terms of A,B,C,D using Lemmas
6 and 7. The convergence results 1) and 2) follow from Lemma
11 (Appendix). �
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We remark that the system (132)–(133) is the “limiting
form” of the end-of-interval estimator of Lemma 3 in which
P1(t) is replaced by P∞1 . We do not assert any convergence
property other than 1) and 2) in Theorem 8.

B. The steady state filter as a stable left inverse

We adopt the notation introduced in [31, Ch. 3] and denote
the transfer function of (5)–(6) by:[

A B
C D

]
= C(sI−A)−1B +D. (134)

We consider the transfer function of the steady state filter
(132)–(133): [

A∞ B∞

−D†C D†

]
. (135)

Theorem 9: Suppose (A,B) has no uncontrollable mode
s0 ∈ C with Re(s0) = 0 and the system (5)–(6) has no
invariant zero s0 ∈ C with Re(s0) ≥ 0. Then (135) is a
stable left inverse of (134).
Proof: To see this we consider the cascade connection of (135)
with (134) and verify the calculation:[

A∞ B∞

−D†C D†

] [
A B
C D

]

=

 A∞ B∞C B∞D
0 A B

−D†C D†C D†D


=

 A∞ B∞C B
0 A B

−D†C D†C I


where we have used the transfer matrix product operation in
[31, Sec. 3.6] and noting that K∞1 D = 0 (cf. (21)). The
product is equivalently given by: A∞ 0 0

0 A B
−D†C 0 I

 = I

using the similarity transformation:[
I −I
0 I

]
after some simplification and noting that K∞1 C1 = K∞1 C (cf.
(22)). We recall from Theorem 8 that A∞ is Hurwitz. �

C. The infinite time smoother as a left inverse

Lemma 8: Suppose (A,B) has no uncontrollable mode s0 ∈
C with Re(s0) ≤ 0 and the system (5)–(6) has no invariant
zero s0 ∈ C with Re(s0) ≥ 0. Then P∞1 > 0. Furthermore,
let:

A∞2 = A−B1C
∞
2 , (136)

C∞2 = C −RBT1 (P∞1 )−1. (137)

Then −A∞2 is Hurwitz.

Proof: P∞1 > 0 follows by applying Lemma 1 to the ARE
(131) using Lemmas 6 and 7 to express the convergence
conditions in terms of A,B,C,D. Now note that:

A∞2 = A1 +B1RB
T
1 (P∞1 )−1

by substituting (137) into (136) and then using (14). We may
then verify that:

A∞2 P
∞
1 + P∞1 (A∞)T = 0

by substituting for A∞, A∞2 and using (131). Hence (A∞)T

and −A∞2 are similar which means that −A∞2 is Hurwitz. �
We now assume that the conditions of Lemma 8 hold and

consider the cascade connection of two systems. The first
system has input z̃ and output z̃∞2 . It is given by:

ẋ∞1 = A∞x∞1 +B∞z̃, (138)

z̃∞2 = z̃ −RBT1 (P∞1 )−1x∞1 (139)

and has the transfer function:[
A∞ B∞

−RBT1 (P∞1 )−1 I

]
. (140)

(Note that (138) coincides with (132).) The second system is
driven by the output of the first and has output ŵ∞. It is given
by:

˙̂x∞ = A∞2 x̂
∞ +B2z̃

∞
2 ,

ŵ∞ = D†(z̃∞2 − C∞2 x̂∞)

and has the transfer function:[
A∞2 B2

−D†C∞2 D†

]
. (141)

This cascade connection is the “limiting form” of the construc-
tion for the optimal estimator of Theorem 1 and is shown next
to be a left inverse of the original system. We do not assert
any formal convergence property for this cascade connection.

Theorem 10: Suppose (A,B) has no uncontrollable mode
s0 ∈ C with Re(s0) ≤ 0 and the system (5)–(6) has no
invariant zero s0 ∈ C with Re(s0) ≥ 0. Then the cascade
connection of (140) with (141):[

A∞2 B2

−D†C∞2 D†

] [
A∞ B∞

−RBT1 (P∞1 )−1 I

]
(142)

is a left inverse of the system (5)–(6).
Proof: To see this consider the cascade connection of (142)
with (134) which is given by:

A∞2 −B1RB
T
1 (P∞1 )−1 B2C B

0 A∞ B∞C B
0 0 A B

−D†C∞2 −D†RBT1 (P∞1 )−1 D†C I


where we have used the transfer matrix product operation and
noting that B2D = B and B∞D = B (cf. proof of Theorem
9). The product is equivalently given by:

A∞2 −B1RB
T
1 (P∞1 )−1 0 0

0 A∞ 0 0
0 0 A B

−D†C∞2 −D†RBT1 (P∞1 )−1 0 I

 = I
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using the similarity transformation:I 0 −I
0 I −I
0 0 I


after some simplification. �

Remark 2: The conditions of Theorem 10 can be writ-
ten is several alternative ways, e.g. (C1, A1) detectable and
(−A1, B1) stabilizable, or equivalently (−A,B) stabilizable.
We can interpret this as a forwards in time detectability
condition for the first stage of the inversion and a backwards
in time stabilisability condition for the second stage.

Remark 3: It is interesting to note that there is a natural state
transformation given by x2 = (P∞1 )−1x1 which leads to the
alternative state space representation of the transfer function
in (140): [

(−A∞2 )T (P∞1 )−1B∞

−RBT1 I

]
. (143)

Writing the state-space form of the cascade connection of
(142) with the right hand factor replaced by (143) and then
making use of the similarity transformation:[

I 0
−(P∞1 )−1 I

]
we obtain the following state space realisation for the left
inverse of Theorem 10: A1 −B1RB

T
1 B1

−CT1 RC1 −AT1 CT1 R
−1

−D†C −D†RBT1 D†

 . (144)

It is notable that this state-space realisation does not depend
explicitly on the solution P∞1 of the Riccati equation (131) but
has the Hamiltonian for the Riccati equation for −(P∞1 )−1 as
its A-matrix. We will encounter a similar form for the infinite
horizon tracking problem in Remark 7.

D. Remarks on the optimal steady-state solutions as a left
inverse

Theorems 9 and 10 show that the filtering (end-of-interval
estimate) and smoothing (whole interval estimate) solutions
of the estimation problem of Section IV take the form of left
inverses of the system. In the former case the left inverse is
stable under certain conditions, while in the latter case the left
inverse has poles split between the left and right half-planes.
The stable left inverse of (135) can be written as[

A1 −K∞1 C1 B1 +K∞1
−D†C D†

]
(145)

and it is interesting to note that this is a different left inverse
to one that is widely known in the literature (e.g. [41], [31])
which only coincides with (145) when K∞1 = 0. It is of further
interest to note that (145) is a left inverse of the the system
for any matrix K∞1 which satisfies the condition K∞1 D = 0.
(The proof of Theorem 9 continues to be valid with just this
assumption.) We will encounter another left inverse of the form
(145) in the next section.

We now turn to the left inverse of Theorem 10. After
applying a similarity transformation (142) takes the form A∞2 K∞1 C1 −K∞1

0 A1 −K∞1 C1 B1 +K∞1
−D†C∞2 −D†C D†

 . (146)

Generally, when p > m, (146) is different to (145). However,
if p = m, we can easily show that K∞1 = 0 and all the
unstable modes associated with A∞2 in (146) cancel out. It is
then seen that (146) coincides with (145) which is also the
same as the left inverse in [41]. The equality of all three left
inverses in the square case is expected since the left inverse
is unique in this case.

The above observations show that the steady-state solution
of the smoothing problem has the identical solution to the
end-of-interval estimation problem for the special case when
p = m. Since the latter is a stable, causal filter, it appears that
there is no extra benefit from the anti-causal processing that
is characteristic of the smoothed solution in this special case
of p = m. It is interesting to ask if the same conclusion holds
for the finite horizon problem. In fact it is possible to deduce
from Theorem 1 that

d

dt
(x̂− x1) = B1RB

T
1 P
−1
1 (x̂− x1)

when p = m which means that x̂ and x1 are equal identically
on the whole interval [0, T ] and not just at time T . Thus,
indeed, the smoothed solution is identical with the end-of-
interval estimate for the special case of p = m.

IX. INFINITE HORIZON TRACKING

A. An anti-stable left inverse

We begin by considering the convergence of the construc-
tion of Lemma 4 as the horizon length increases. We show
that q1(t) and u1(t) converge for any fixed t to the state and
input of an anti-stable time invariant system solved backwards
in time.

Theorem 11: Suppose (F,G) has no uncontrollable mode
s0 ∈ C with Re(s0) = 0, the system (47)–(48) has no invariant
zero s0 ∈ C with Re(s0) ≤ 0 and ỹ(t) ∈ Lp∞[0,∞). Then the
ARE:

F1S
∞
1 + S∞1 FT1 +M∞1 RM∞1

T −G1RG
T
1 = 0 (147)

where M∞1 = S∞1 HT
1 R
−1 has a unique solution S∞1 such that

−F∞ is Hurwitz where F∞ = F1 + M∞1 H1. Furthermore,
S∞1 ≥ 0 and S1(t, T ) → S∞1 as T →∞ for any fixed t ≥ 0
where S1(t, T ) equals S1(t) in (52) with the terminal condition
S1(T ) = Ξ. Consider the system:

q̇∞1 = F∞q∞1 +G∞ỹ, (148)

u∞1 = J†(ỹ −Hq∞1 ) (149)

with any terminal condition q∞1 (T ) ∈ Rn where G∞ = G1−
M∞1 . Then:

1) q1(t, T )−q∞1 (t, T )→ 0 as T →∞ for any fixed t ≥ 0;
2) u1(t, T )−u∞1 (t, T )→ 0 as T →∞ for any fixed t ≥ 0

where q1(t, T ) equals q1(t) in (51) with the terminal condition
q1(T ) = ξ and u1(t, T ) equals u1(t) in (54).
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Proof: The claims in regard to (147) follow directly by apply-
ing Remark 1 to the RDE (52) and expressing the convergence
conditions in terms of F,G,H, J using Lemmas 6 and 7
with the appropriate notational substitutions. The convergence
results 1) and 2) follow from the time reversed Lemma 11
(Appendix). �

Remark 4: It is interesting to note the contrasting form of 1)
and 2) in Theorems 8 and 11. At first sight this is unexpected
since the estimation and tracking problems are dual to each
other. The difference arises since the infinite horizon limit of
the time window [0, T ] is taken to be [0,∞) in both cases,
namely the left hand limit is fixed at the origin while the right
hand limit tends to ∞, which is not symmetric since the two
problems are dual by time reversal.

We now consider the transfer function of the system (148)–
(149): [

F∞ G∞

−J†H J†

]
. (150)

Theorem 12: Suppose (F,G) has no uncontrollable mode
s0 ∈ C with Re(s0) = 0 and the system (47)–(48) has no
invariant zero s0 ∈ C with Re(s0) ≤ 0. Then (150) is an
anti-stable left inverse of the system (47)–(48).
Proof: To see this we consider the cascade connection of
(150) with the transfer function of the system (47)–(48)
and then perform the transfer matrix product and similarity
transformation similarly to the proof of Theorem 9. �

Remark 5: After the notational substitutions F ↔ A etc
(150) reduces to (145) with K∞1 = Q∞1 C

T
1 R
−1 and Q∞1

equal to the anti-stabilizing solution of the Riccati equation
(131). As before K∞1 D = 0. It is thus interesting to note that
the steady-state form of the end-of-interval estimator and the
steady-state form of the construction of Lemma 4 reduce to
the same type of left inverse (145) of the system but with K∞1
determined from a stabilizing (resp. anti-stabilizing) solution
of the same Riccati equation.

B. The infinite horizon controller

We now consider the convergence properties of the unique
solution û of the tracking problem (50), which is given in
Theorem 3, in the infinite time horizon limit, i.e. as T →∞.

Theorem 13: Suppose (F,G) has no uncontrollable mode
s0 ∈ C with Re(s0) ≥ 0, i.e. it is stabilizable, the system
(47)–(48) has no invariant zero s0 ∈ C with Re(s0) = 0 and
ỹ(t) ∈ Lp∞[0,∞). Then the ARE:

S∞2 F1 + FT1 S
∞
2 − S∞2 G1RG

T
1 S
∞
2 +HT

1 R
−1H1 = 0

(151)

has a unique solution S∞2 that is stabilising, i.e. F∞2 in (154)
is Hurwitz, and S∞2 ≥ 0. Consider the system:

˙̂q∞(t) = F q̂∞(t) +Gû∞(t), (152)

û∞(t) = J†(ỹ∞2 (t)−H∞2 q̂∞(t)) (153)

with the initial condition q̂∞(0) = η where:

F∞2 = F −G1H
∞
2 , (154)

G∞2 = HT
1 R
−1 − S∞2 G1, (155)

H∞2 = H +RGT1 S
∞
2 , (156)

ỹ∞2 (t) = ỹ(t) +RGT1 q
∞
2 (t), (157)

q∞2 (t) =

∫ ∞
t

eF
∞T
2 (τ−t)G∞2 ỹ(τ)dτ. (158)

Then the unique optimal control input û(t, T ) of the tracking
problem (50) with the initial condition q(0) = η (i.e. û as
defined in (63)) converges as T → ∞, i.e. limT→∞ û(t, T )
exists for any fixed t ≥ 0, and the limit is given by û∞(t).

Proof: Let S1, q1 be defined by (51), (52) with the terminal
conditions S1(T ) = Ξ, q1(T ) = ξ. We introduce the variables:
S2 = S−1

1 , q2 = S−1
1 q1. Hence S2, q2 are generated by

solving:

Ṡ2 = −S2F1 − FT1 S2 + S2G1RG
T
1 S2 −HT

1 R
−1H1, (159)

q̇2 =
(
− FT1 + S2G1RG

T
1

)
q2 +

(
S2G1 −HT

1 R
−1
)
ỹ

(160)

backwards in time with the given terminal conditions:

S2(T ) = S−1
1 (T ) = Ξ−1,

q2(T ) = S−1
1 (T )q1(T ) = Ξ−1ξ.

We now apply Remark 1 to the ARE (151) and the RDE
(159). The conditions of the theorem are obtained in terms
of F,G,H, J using Lemmas 6 and 7 with the appropriate
notational substitutions. Furthermore F∞2 is Hurwitz and:

lim
T→∞

S−1
1 (t, T ) = lim

T→∞
S2(t, T ) = S∞2 (161)

for all Ξ > 0 and for any fixed t ≥ 0. We introduce the
anti-stable and time-invariant equation:

q̇∞2 = −F∞T2 q∞2 −G∞2 ỹ. (162)

We now consider the time reversed equations (160) and (162)
for a given T (i.e. solved forwards in time). These equations
take the form of (176) and (177) in Lemma 11 (Appendix)
on the interval [0, T ], where we note that u(t) depends on
T , but with sup0≤t≤T |u(t)|∞ ≤ ‖ỹ(t)‖∞ for any T . Now
choose any ε > 0 and find the T0 guaranteed by Lemma 11.
Then the time reversed solutions are within ε in norm for
T0 ≤ t ≤ T providing T0 ≤ T . Hence, for any T > T0,
|q2(t)− q∞2 (t)|∞ < ε for 0 ≤ t ≤ T − T0. It follows that:

lim
T→∞

q2(t, T ) = q∞2 (t) (163)

for any fixed t ≥ 0, where q∞2 (t) is given by the convo-
lution form (158). We now return to compute the limit of
the unique optimal input û(t, T ) given in Theorem 3, i.e.
limT→∞ û(t, T ). Taking the limit in (64), (65) and substituting
from (161), (163) gives:

lim
T→∞

H2(t, T ) = H∞2 ,

lim
T→∞

ỹ2(t, T ) = ỹ∞2 (t)
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where ỹ∞2 (t) and H∞2 are given by (154)–(158). Rewriting
(62) for the infinite horizon with a notational substitution and
taking the limit in (63) gives the feedback law (153). �

Remark 6: Evaluating q∞2 for all finite t using (158) is costly
even if it is possible. It can be approximated for any finite t0
as accurately as required by:

qλ2 (t0) =

∫ t0+λ

t0

eF
∞T
2 (τ−t0)G∞2 ỹ(τ)dτ (164)

for a sufficiently large λ > 0 since F∞2 is Hurwitz. Integrating
(162) forwards in time for t > t0 with the initial condition
qλ2 (t0) obtained from (164) gives q∞2 (t) approximately for t
near t0 but errors amplify since (162) is anti-stable. A practical
compromise is to evaluate (164) at regular intervals and to
integrate (162) within those intervals.

C. The steady state controller as an unstable left inverse

Theorem 14: Suppose (F,G) has no uncontrollable mode
s0 ∈ C with Re(s0) ≥ 0, i.e. it is stabilizable, and the system
(47)–(48) has no invariant zero s0 ∈ C with Re(s0) = 0.
Then the infinite horizon controller is given by the cascade
connection of an anti-stable system with input ỹ and output
ỹ∞2 and transfer function:[

(−F∞2 )T −G∞2
RGT1 I

]
followed by a stable system with input ỹ∞2 and output û and
transfer function: [

F∞2 G1

−J†H∞2 J†

]
.

Furthermore, their cascade connection, given by:[
F∞2 G1

−J†H∞2 J†

] [
(−F∞2 )T −G∞2
RGT1 I

]
(165)

is a left inverse of the system (47)–(48).
Proof: Apply the transfer matrix product operation and a
system similarity transformation similarly to the proof of
Theorem 10. Note that F∞2 is Hurwitz from Theorem 13. �

Remark 7: Theorem 14 can also be seen by noting that (165)
is in fact identical with the left inverse of Theorem 10 after
the appropriate notational substitutions A↔ F , etc. This can
be seen by forming the state-space of the cascade connection
of (165) and then making use of the similarity transformation:[

I 0
S∞2 −I

]
to obtain the realisation: F1 −G1RG

T
1 G1

−HT
1 RH1 −FT1 HT

1 R
−1

−J†H −J†RGT1 J†


which has the same form as (144). In this case the Hamiltonian
corresponds exactly to the Riccati equation (151) for S∞2 .

X. CONCLUSIONS

The paper has proposed a framework for estimation in
which the output of the dynamical system comprises all
variables that are measured, and the variables to be estimated
comprise, equally, system states and exogenous inputs. The
unique optimum solution on a finite horizon takes a two-
stage form in which the first stage provides an end-of-interval
estimator which can be solved in real time as the horizon
length increases. The estimation problem is general enough to
include the Kalman filter and, for the dual tracking problem,
the linear quadratic tracking problem as special cases.

A further contribution of this paper has been to provide
an interpretation of the solution of the Riccati differential
equation which is analogous to the meaning of the covari-
ance matrix in stochastic filtering. The solution of a matrix
Lyapunov differential equation P2(t) is shown to have an
analogous interpretation to the smoothed covariance in the
stochastic case. This has been achieved by considering the
least-squares estimation problem with an additional constraint
that the state passes through a prescribed point at a given time
in the fixed horizon.

The paper has considered the natural time invariant limiting
forms of the estimation and tracking problems. Conditions
were given for the convergence of the finite horizon solutions
to these limits. Stability of the end-of-interval estimator on the
infinite horizon requires a minimum phase condition (i.e. that
there are no invariant zeros of the system in the closed right
half plane) as well as the absence of uncontrollable modes on
the imaginary axis. The time invariant systems were shown
to be stable or anti-stable left inverses of the original system
under appropriate conditions.

XI. APPENDIX

We define the vector norm and induced matrix norm:

|x(t)|∞ = max
j
|xj(t)|,

|G(t)|∞ = max
i

∑
j

|Gij(t)|

where x(t) ∈ Rn and G(t) ∈ Rn×n and the signal norms:

‖x(t)‖∞ = sup
t≥0
|x(t)|∞, (166)

‖G(t)‖∞ = sup
t≥0
|G(t)|∞ (167)

for signals which belong to the corresponding Lebesgue space
Ln∞[0,∞) or Ln×n∞ [0,∞). (Strictly we should take the es-
sential supremum in (166) and (167) though this will always
coincide with the supremum for signals encountered here.) We
further define the norm:

‖G(t)‖1 = max
i

∑
j

∫ ∞
0

|Gij(τ)|dτ.

Lemma 9: Suppose x(t) ∈ Rn satisfies:

ẋ(t) = A(t)x(t) + f(t) (168)
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where A(t) is continuously time varying and limt→∞A(t) =
A with A Hurwitz, f(t) ∈ Ln∞[0,∞) and x(0) ∈ Rn. Then
x(t) is uniformly bounded, i.e. ‖x(t)‖∞ <∞.
Proof: First we set M1 = ‖eAt‖1 noting that M1 < ∞ since
A is Hurwitz. Next we choose δ > 0 such that δM1 < 1.
Since A(t) → A we can find t0 such that |A(t) − A|∞ < δ
for all t > t0. We next consider the free and forced solution
of (168) on the interval [0, t0]. We define:

M2 =

{
sup

0≤t≤t0
|x(t)|∞ : ẋ(t) = A(t)x(t), x(0) = x0

}
where M2 = M2(x0) and:

M3 =

{
sup

0≤t≤t0
|x(t)|∞ : ẋ(t) = A(t)x(t) + f(t),

x(0) = 0, ‖f(t)‖∞ ≤ 1 for t ∈ [0, t0]

}
.

We note that M2 < ∞ and M3 < ∞ follows from [30,
Theorem 1, p. 40]. Hence:

|x(t)|∞ < M2 +M3‖f(t)‖∞ for all t ∈ [0, t0]. (169)

We next define: M4 = ‖eAt‖∞. We can see that M4 <∞ as
follows. Let A = TJT−1 be a Jordan decomposition and let
λ̄ be the largest real part among the eigenvalues of A. Then:

|eAt|∞ ≤ |T |∞|T−1|∞e−λ̄t
(

1 + t+ · · ·+ tn−1

(n− 1)!

)
(170)

which is uniformly bounded since A is Hurwitz and thus λ̄ <
0. We now consider the solution of (168) for t ≥ t0. We can
write:

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)u(τ)dτ

where we have defined: u(t) = (A(t)−A)x(t) + f(t). Then:

|x(t)|∞ =

∣∣∣∣eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)u(τ)dτ

∣∣∣∣
∞

≤ |eA(t−t0)x(t0)|∞ +

∣∣∣∣ ∫ t

t0

eA(t−τ)f(τ)dτ

∣∣∣∣
∞

+

∣∣∣∣ ∫ t

t0

eA(t−τ)(A(t)−A)x(t)dτ

∣∣∣∣
∞

≤M4(M2 +M3‖f(t)‖∞)

+M1(‖f(t)‖∞ + δ sup
t0≤τ≤t

|x(τ)|∞). (171)

Combining (171) with (169) we obtain:

|x(t)|∞ ≤ max{1,M4}(M2 +M3‖f(t)‖∞)

+M1(‖f(t)‖∞ + δ sup
0≤t≤t1

|x(t)|∞) (172)

for all t ∈ [0, t1] and any t1. Since this is true for all t we can
replace the LHS of (172) by sup0≤t≤t1 |x(t)|∞. Therefore:

sup
0≤t≤t1

|x(t)|∞ ≤
1

1− δM1(
max{1,M4}(M2 +M3‖f(t)‖∞) +M1‖f(t)‖∞

)
(173)

Since this is true for all t1 the RHS is an upper bound for
‖x(t)‖∞ which completes the proof. �

Lemma 10: Suppose x(t) ∈ Rn satisfies:

ẋ(t) = Ax(t) + f(t) (174)

where A ∈ Rn×n is Hurwitz, f(t) ∈ Ln∞[0,∞),
limt→∞ f(t) = 0 and x(0) ∈ Rn. Then limt→∞ x(t) = 0.
Proof: We consider the solution to (174):

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)f(τ)dτ. (175)

Since A is Hurwitz it follows that limt→∞ eAt = 0 and thus
without loss of generality we set x(0) = 0 in (175). We set
M =

∫∞
0
|eAt|∞dt, where M < ∞ using (170). Choose any

ε > 0. We first set δ = ε/2M . Since limt→∞ f(t) = 0 we can
find t0 such that |f(t)|∞ < δ for all t > t0. Then for t > t0:

|x(t)|∞ =

∣∣∣∣ ∫ t

0

eA(t−τ)f(τ)dτ

∣∣∣∣
∞

≤
∫ t0

0

|eA(t−τ)|∞|f(τ)|∞dτ

+

∫ t

t0

|eA(t−τ)|∞|f(τ)|∞dτ

≤ ‖f(t)‖∞
∫ t

t−t0
|eAτ |∞dτ + δ

∫ t−t0

0

|eAτ |∞dτ

< ‖f(t)‖∞
(

sup
t−t0≤τ≤t

|eAτ |∞
)
t0 + δM.

We note using (170) that limt→∞ |eAt|∞ = 0 and thus there
exists t1 > t0 such that:

sup
t−t0≤τ≤t

|eAτ |∞ ≤
ε

2‖f(t)‖∞t0

for all t > t1. It follows that |x(t)|∞ < ε for all t > t1. �
Lemma 11: Suppose x(t), x1(t) ∈ Rn satisfy:

ẋ(t) = A(t)x(t) +B(t)u(t), (176)
ẋ1(t) = Ax1(t) +Bu(t) (177)

where A(t), B(t) are continuously time varying,
limt→∞A(t) = A with A Hurwitz, limt→∞B(t) = B,
u(t) ∈ Lm∞[0,∞) and x(0), x1(0) ∈ Rn. Then
limt→∞(x(t) − x1(t)) = 0. More precisely, given any
ε > 0, ∃T0 such that |x(t) − x1(t)|∞ < ε for all t > T0,
where T0 depends on ‖u(t)‖∞ but not u(t) itself.
Proof: First note from Lemma 9 that ‖x(t)‖∞ is finite. More-
over it can be seen from the proof of Lemma 9 that ‖x(t)‖∞
has an upper bound which depends on ‖B(t)‖∞‖u(t)‖∞ but
otherwise does not depend on u(t) (see (173)). Now write:

ẋ(t)− ẋ1(t) = A(x(t)− x1(t)) + (A(t)−A)x(t)

+ (B(t)−B)u(t).

The conclusion follows from Lemma 10 by noting that the
choice of t0 and t1 can be made independent of the choice of
u(t) for a given bound on ‖u(t)‖∞. �
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