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Abstract—Decentralized optimization, particularly the
class of decentralized composite convex optimization
(DCCO) problems, has found many applications. Due
to ubiquitous communication congestion and random
dropouts in practice, it is highly desirable to design decen-
tralized algorithms that can handle stochastic communica-
tion networks. However, most existing algorithms for DCCO
only work in networks that are deterministically connected
during bounded communication rounds, and therefore can-
not be extended to stochastic networks. In this paper, we
propose a new decentralized dual averaging (DDA) algo-
rithm that can solve DCCO in stochastic networks. Under a
rather mild condition on stochastic networks, we show that
the proposed algorithm attains global linear convergence
if each local objective function is strongly convex. Our
algorithm substantially improves the existing DDA-type al-
gorithms as the latter were only known to converge sublin-
early prior to our work. The key to achieving the improved
rate is the design of a novel dynamic averaging consensus
protocol for DDA, which intuitively leads to more accurate
local estimates of the global dual variable. To the best of
our knowledge, this is the first linearly convergent DDA-
type decentralized algorithm and also the first algorithm
that attains global linear convergence for solving DCCO in
stochastic networks. Numerical results are also presented
to support our design and analysis.

I. INTRODUCTION

Consider a group of n agents (e.g., processors, machines),

each of which has its own objective function. They are

connected via a bidirectional communication network and

aim to cooperatively solve the following convex composite

optimization problem in a decentralized manner:

min
x∈Rm

{

F (x) :=
1

n

n
∑

i=1

fi(x) + h(x)

}

, (1)

where fi is the local smooth objective function of agent i and

h is a non-smooth regularization term that is shared across all
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the agents. Problem (1) is referred to as decentralized convex

composite optimization [1], [2] and finds broad applications

in optimal control of multi-agent systems [3], resource alloca-

tion [4], and large-scale machine learning [5], just to name a

few [6].

In this work, we focus on solving Problem (1) when

the communication network is stochastic. There are many

practical reasons that promote the consideration of stochas-

tic communication networks. Indeed, communication in real

networks is usually subject to congestion, errors, and random

dropouts, which is typically modeled as a stochastic process.

Besides, stochastic networks are useful for proactively reduc-

ing communication cost. For instance, the gossip protocol [7]

and Bernoulli protocol [8], which randomly choose a subset of

communication links from an underlying dense graph in each

iteration, have been widely regarded as effective strategies

to avoid high communication cost and network congestion.

Therefore, it is highly desirable to develop decentralized algo-

rithms that solve Problem (1) over stochastic communication

networks and attain a favorable convergence rate.

Over the past decade, many algorithms have been proposed

for solving Problem (1). Some of them exploit the compos-

ite structure in (1) and attain global linear convergence if

Problem (1) is strongly convex (see, e.g., [2], [9]), which is

the fastest rate of convergence that one can expect from a

first-order decentralized algorithm. However, such linear con-

vergence results are limited to time-invariant communication

networks, because the design of these algorithms inherently

requires knowledge of network topology a priori. Indeed, these

algorithms are typically developed upon leveraging centralized

primal-dual optimization paradigms, such as the alternating

direction method of multipliers (ADMM) [10], to solve the

following problem that is equivalent to (1):

min
x1,...,xn∈Rm

1

n

n
∑

i=1

(

fi(xi)+h(xi)
)

s.t. (L⊗I)x = 0, (2)

where x = [xT
1 , . . . , x

T
n ]

T , ⊗ denotes the Kronecker product,

I is an identity matrix of size m × m, and L denotes the

graph Laplacian associated with the communication network.

Since L needs to be explicitly given in formulation (2),

these algorithms and their associated linear convergence results

cannot be extended to stochastic communication networks,

where the network topology is time-varying and random.
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Among the existing decentralized optimization methods,

the decentralized dual averaging (DDA) algorithm proposed

by [11] and its later extensions [12]–[14] have been recog-

nized as a powerful framework that can handle stochastic

networks. However, the convergence rates of existing DDA-

type algorithms are rather slow. In fact, even for decentralized

convex smooth optimization in time-invariant networks, which

is deemed to be much simpler than Problem (1) in stochastic

networks, these algorithms were only known to converge

sublinearly. Specifically, existing DDA-type algorithms, when

applied to Problem (1), only attain an O(1/
√
t) sublinear

rate of convergence. For the special case of Problem (1) with

h ≡ 0, [15] recently showed that the convergence rate can be

improved to O(1/t). Nevertheless, it remains open whether a

DDA-type algorithm can attain linear rate of convergence.

Contribution. In this paper, we propose a new DDA algo-

rithm that solves Problem (1) in stochastic networks. Under a

rather mild condition on the stochastic network, we show that

the proposed algorithm has an O(1/t) rate of convergence

in the general case and a global linear rate of convergence

if each local objective function is strongly convex. Our work

contributes to the literature of decentralized optimization in

the following two aspects:

i) We develop the first decentralized algorithm that at-

tains global linear convergence for solving Problem(1) in

stochastic networks. Existing linearly convergent decen-

tralized algorithms for Problem (1) only work in networks

that are deterministically connected during bounded com-

munication rounds, and therefore cannot be extended to

stochastic networks. Our algorithm is based on a DDA

framework that is fundamentally different from these

algorithms.

ii) Our algorithmic design and convergence analysis shed

new light on DDA-type algorithms. Notably, it is the

first DDA-type algorithm that attains linear convergence.

Prior to our work, even for decentralized convex smooth

optimization in time-invariant networks, existing DDA-

type algorithms were only known to converge sublinearly.

The key to achieving the improved rate is the design of

a novel dynamic averaging consensus protocol for DDA,

which intuitively leads to more accurate local estimates

of the global dual variable.

II. RELATED WORKS

Decentralized algorithms for Problem (1) in determin-

istic networks. Due to its broad applications, Problem (1)

has received attention in the community of decentralized

optimization for many years; see, e.g., [1] for an early attempt.

It is only until recently that linearly convergent decentralized

algorithms have been developed for solving Problem (1) in

determinisitc networks. For time-invariant networks, [2] de-

veloped a decentralized proximal gradient method, where the

diffusion step and the proximal step are designed differently

from [1] such that not only the fixed point meets the global

optimality condition but also linear convergence can be at-

tained for strongly convex problems. Furthermore, the strategy

was generalized as a unified framework for proximal gradient

tracking in [16]. [9] proposed a distributed algorithm based on

randomized block-coordinate proximal method, which exhibits

an asymptotic linear convergence if the monotone operator

associated with Problem (1) is metrically subregular (a much

weaker condition than strong convexity). Very recently, [17]

proposed a unified decentralized algorithmic framework based

on the operator splitting theory, which attains linear conver-

gence for the strongly convex case. For deterministic time-

varying networks, the authors in [18] developed a linearly

convergent decentralized optimization algorithm based on the

gradient-tracking technique and elaborate objective surrogates.

However, it still requires the network to be connected dur-

ing bounded communication rounds, which is a worst-case

assumption about network connectivity [19] and does not nec-

essarily hold in stochastic networks. To summarize, existing

linearly convergent decentralized algorithms for Problem (1)

are only applicable to deterministic networks and cannot be

extended to the stochastic networks, which motivates the new

algorithm development and convergence analysis in this paper.

Decentralized optimization in stochastic networks. The

study of decentralized algorithms over stochastic networks

dates back to [19], who proposed a subgradient-based algo-

rithm with diminishing step sizes. The decentralized dual aver-

aging algorithm, which combines dual averaging method [20]

and consensus-seeking, was reported by [11] and can han-

dle stochastic networks with an O(1/
√
t) sublinear rate of

convergence. The decentralized accelerated gradient algorithm

with a random network model was proposed by [21], where

an O( log t
t

) sublinear convergence rate is obtained for smooth

problems. A decentralized ADMM algorithm was designed in

[22], where a few nodes are randomly selected to perform local

updates. Decentralized optimization with asynchronous local

updates was considered in [23], [24]. Later, [25], [26] validated

the use of a constant step size in decentralized gradient descent

over stochastic networks, leading to a global linear rate of con-

vergence for strongly convex and smooth problems. Recently,

[27] developed a unified framework for decentralized stochas-

tic gradient descent over stochastic networks. It is worth

mentioning that the aforementioned studies either consider

general non-smooth problems or focus on smooth problems.

In particular, they cannot exploit the composite structure of

Problem (1), partially due to the technical difficulty caused by

the so-called projection-consensus coupling [11] for methods

integrating consensus-seeking and projected/proximal gradient

descent.

In summary, to the best of our knowledge, no existing

methods can solve or can be easily extended to solve Problem

(1) in stochastic networks with global linear convergence.

III. PRELIMINARIES

A. Basic Setup

We consider the finite-sum optimization problem (1), in

which h is a closed convex function with its domain, denoted

by dom(h), being non-empty, and fi satisfies the following

assumptions for all i = 1, . . . , n. Typical choices of h
include the elastic net regularization, i.e., h(x) = λ1‖x‖1 +
λ2‖x‖22, λ1, λ2 ≥ 0, and the indicator function of a closed

convex set.
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Assumption 1. i) fi is continuously differentiable on an open

set that contains dom(h); ii) fi is (strongly) convex with

modulus µ ≥ 0 on dom(h), i.e., for any x, y ∈ dom(h),

fi(x) − fi(y)− 〈∇fi(y), x− y〉 ≥ µ

2
‖x− y‖2; (3)

and iii) ∇fi is Lipschitz continuous on dom(h) with Lipschitz

constant L > 0, i.e., for any x, y ∈ dom(h),

‖∇fi(x) −∇fi(y)‖ ≤ L‖x− y‖. (4)

Throughout the paper, we denote by x∗ an optimal solution

of Problem (1). Assumption 1 is standard in the study of

decentralized optimization [1], [28]. It is worth noting that

we allow µ = 0 in Assumption 1(ii), which reduces to the

general convex case.

B. Stochastic Communication Networks

We consider solving Problem (1) in a decentralized manner,

that is, each agent i holds a local objective function Fi :=
fi + h and a pair of agents can exchange information only if

they are connected in the communication network. Similar to

existing studies [1], [11], [29], [30], we use a doubly stochastic

matrix P (t) ∈ [0, 1]n×n to encode the network topology and

the weights of connected links at time t. We focus on the

fairly general setting of stochastic communication networks,

i.e., P (t) is a random matrix for every t. For the convergence of

the proposed decentralized algorithm, we make the following

assumption on P (t).

Assumption 2. For every t ≥ 0, it holds that i) the network is

undirected; ii) P (t)1 = 1 and 1TP (t) = 1T , where 1 denotes

the all-one vector of dimensionality n; iii) P (t) is independent

of the random events that occur up to time t−1; and iv) there

exists a constant β ∈ (0, 1) such that
√

ρ

(

Et

[

P (t)TP (t)
]

− 11T

n

)

≤ β, (5)

where ρ(·) denotes the spectral radius and the expectation

Et[·] is taken with respect to the distribution of P (t) at time t.

Assumption 2 has been used for analyzing the convergence

of a host of decentralized algorithms; see, e.g., [7], [25], [27].

It is satisfied by numerous stochastic communication settings;

we take the following two common settings as examples. i)

Randomized gossip: At every time t one communication link

(i, j) is sampled from an underlying graph G. Suppose that

we take P (t) = I − 1
2 (ei − ej)(ei − ej)

T , where I is the

identity matrix and ei ∈ R
n is a vector with 1 in the i-th

position and 0 otherwise. Then, it is known that Assumption 2

is satisfied provided that the underlying graph G is connected;

see, e.g., [7]. ii) Bernoulli stochastic networks: Consider an

underlying graph G, where the state (online or offline) of each

link (i, j) is a Bernoulli process with link probability wij .

Suppose the corresponding Bernoulli processes are statistically

independent for different pairs of edges, and wij = wji.

Denote by L(t) the Laplacian at time t, and set P (t) =
I − L(t)/(2d), where d = maxi di and di is the degree of

node i in G. It can be verified that Assumption 2 holds when

the second largest eigenvalue of Laplacian average L is strictly

positive [8].

C. Dual Averaging Method

Our algorithm is based on the dual averaging method that

was originally proposed by [20]. The dual averaging method

originally proposed by [20] can be directly applied to solve

Problem (1) in a centralized manner. In particular, let d be a

strongly convex function with modulus 1 on dom(h) such that

x(0) = argmin
x∈Rm

d(x) ∈ dom(h) and d(x(0)) = 0. (6)

Then, the dual averaging method starts with x(0) and itera-

tively generates {x(t)}t≥1 according to

x(t) = argmin
x∈Rm

{

t−1
∑

τ=0

aτ+1ℓ(x;x
(τ)) + d(x)

}

, (7)

where

at =
a

(1 − aµ)t
, t = 1, 2, . . . (8)

for some constant a > 0, ℓ : Rm × R
m → R is defined as

ℓ(y; z) := f(z) + 〈∇f(z), y − z〉+ µ

2
‖y − z‖2 + h(y) (9)

for any y, z ∈ R
m, and f = 1

n

∑n
i=1 fi. It is worth noting

that for the strongly convex case (i.e., µ > 0), the sequence

{at}t≥1 is geometrically increasing; for the general convex

case (i.e., µ = 0), the sequence {at}t≥1 equals the constant

a. Moreover, both (7) and (8) require the modulus µ of strong

convexity. In practice, one can use a lower bound of µ or

simply set µ = 0 in (7) and (8) if no valid lower bound is

available.

The following theorem summarizes the convergence prop-

erty of the above dual averaging method, which is a direct

extension of Theorem 3.2 by [31] to problems with non-

smooth regularization terms. A proof of Theorem 1 is provided

in [32, Appendix F].

Theorem 1. When Assumption 1 is satisfied, let {x(t)}t≥0

be the sequence of iterates generated by the dual averaging

method (7), if a ≤ L−1, then

F (x̃(t))− F (x∗) ≤ d(x∗)
At

, t = 1, 2, . . . ,

where At =
∑t

τ=1 aτ and x̃(t) = A−1
t

∑t
τ=1 aτx

(τ). More-

over, the following estimates on A−1
t hold: i) If µ > 0, then

1
At

≤ (1−aµ)t

a
; and ii) If µ = 0, then 1

At

= 1
at
.

IV. ALGORITHM AND MAIN RESULTS

From Theorem 1, one can observe that the dual averaging

method, when applied to solve Problem (1) in a centralized

manner, attains global linear convergence if Problem (1) is

strongly convex. The existing dual averaging based decen-

tralized algorithms, however, converge only sublinearly. In

view of this, the following question arises naturally: can we

develop a dual averaging based decentralized algorithms that

can achieve the same order of convergence as its centralized

counterpart, that is, linear convergence? In this section, we put

an affirmative answer to this question by developing a new

DDA algorithm that incorporates a novel dynamic averaging

consensus protocol for each local update, which intuitively
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leads to more accurate local estimates of the global dual

variable. We show that the new DDA, when applied to solve

Problem (1) in stochastic networks, converges linearly if each

local objective is strongly convex. Our algorithmic design and

convergence analysis shed new light on DDA-type algorithms,

as it is the first DDA-type algorithm that can achieve linear

convergence. Besides, it is also the first linearly convergent

algorithm for solving Problem (1) in stochastic networks.

To motivate the design of our DDA method, we observe

that by letting At =
∑t

τ=1 aτ and

z(t) =
t−1
∑

τ=0

aτ+1

(

1

n

n
∑

i=1

∇fi(x
(τ))− µx(τ)

)

,

the update rule (7) can be written as

x(t) = argmin
x∈Rm

{

〈z(t), x〉+At

(µ

2
‖x‖2 + h(x)

)

+ d(x)
}

.

(10)

Thus, it is sensible for each agent to locally estimate the global

dual variable z(t) to fulfill decentralization. To this end, we

propose the following dynamic averaging consensus protocol:

z
(t)
i =

n
∑

j=1

p
(t−1)
ij

(

z
(t−1)
j + ats

(t−1)
j

)

, (11a)

s
(t)
i =

n
∑

j=1

p
(t−1)
ij s

(t−1)
j +

(

∇fi(x
(t)
i )− µx

(t)
i

)

−
(

∇fi(x
(t−1)
i )− µx

(t−1)
i

)

, (11b)

where p
(t)
ij is the (i, j)-th element in the mixing matrix P (t),

z
(t)
i is the i-th agent’s local estimate of z(t) at time t and s

(t)
i

is an auxiliary vector for reducing consensus error. Equipped

with these, each agent i can perform a local computation to

update its estimate of the global primal variable x(t):

x
(t)
i = argmin

x∈Rm

{

〈z(t)i , x〉+At

(µ

2
‖x‖2 + h(x)

)

+ d(x)
}

.

(12)

We denote by N (t)
i the set of agents that are connected with

agent i at time t. Then, the entire algorithm can be summarized

in Algorithm 1.

Our protocol (11) differs from the one used in the original

DDA [11] in (11b), where the latter simply lets s
(t)
i =

∇fi(x
(t)
i ) for all agents i. Our update in (11b) is a sec-

ond order dynamic averaging consensus protocol motivated

by [33], and equips each agent i with an s
(t)
i that can track the

global variable 1
n

∑n
i=1(∇fi(x

(t)
i ) − µx

(t)
i ). Intuitively, (11)

can lead to much more accurate local estimates {z(t)i }ni=1 of

the global dual variable z(t). Moreover, as we will show in the

convergence analysis, the novel update (11b) validates the use

of geometrically increasing weights {at}t≥0 in (11a). This

contrasts with the use of decaying weights in other DDA-

type algorithms and is key to achieving the linear convergence

result.

Before proceeding, we make some remarks on Algorithm 1.

First, Algorithm 1 provides a unified treatment for both general

Algorithm 1 The proposed decentralized dual averaging al-

gorithm for Problem (1)

1: Input: µ ≥ 0, a > 0, x(0) ∈ dom(h) and a strongly

convex function d with modulus 1 on dom(h) such that (6)

holds

2: Initialize: a0 = a, A0 = 0, x
(0)
i = x(0), z

(0)
i = 0, and

s
(0)
i = ∇fi(x

(0))− µx(0) for all i = 1, . . . , n
3: for t = 1, 2, · · · do

4: set at = at−1/(1− aµ) and At = At−1 + at
5: In parallel (for agent i, i = 1, . . . , n)

6: collect z
(t−1)
j and s

(t−1)
j from all agents j ∈ N (t−1)

i

7: update z
(t)
i and s

(t)
i by (11)

8: compute x
(t)
i by (12)

9: broadcast z
(t)
i and s

(t)
i to all agents j ∈ N (t)

i

10: end for

convex and strongly convex cases. In particular, if µ = 0, we

simply set at = a and At = at for all t. Second, to satisfy the

condition in (6), one can choose an arbitrary x(0) ∈ dom(h)
and let d(x) := d̃(x)− d̃(x(0))−〈∇d̃(x(0)), x−x(0)〉, where d̃
is any strongly convex function with modulus 1, e.g., d̃(x) =
‖x‖2/2. It is easy to verify that such x(0) and d satisfy (6).

Third, for agent i with N (t−1)
i = ∅, it will not perform

Step 6. However, all the agents are required to compute x
(t)
i

according to Steps 7 and 8. Finally, similar to the standard

dual averaging method, we assume that the subproblem (12)

can be computed easily. This holds for a host of applications.

For example, if we choose d(x) = ‖x−x(0)‖2/2, then the sub-

problem (12) reduces to computing the proximal operator of

Ath/(1+µAt), which admits a closed-form solution in many

applications. Compared to ADMM-based methods [34], where

typically a non-trivial dual problem is solved at each iteration,

the proposed method has lighter computational cost per step.

When subproblem (12) cannot be computed efficiently, one

may run another loop to compute an approximate solution,

which is common decentralized composite optimization.

Remark 1. (Intuition behind (11)) In the centralized dual

averaging update (10), only z(t) contains global information.

Therefore, if z(t) can be estimated sufficiently accurate by the

agents, they can solve (1) in a decentralized way. We follow the

idea in [33] that the second-order dynamic average consensus

can be used to estimate the average of local signals whose

second-order differences are relatively bounded. Particularly,

observe that

z
(t)
i =

t−1
∑

τ=0

at+1

(

∇fi(x
(τ)
i )− µx

(τ)
i

)

.

Take ∇fi(x
(τ)
i ) − µx

(τ)
i −

(

∇fi(x
(τ−1)
i )− µx

(τ−1)
i

)

as the

second-order difference of z
(t)
i . By (4), one obtains its upper

bound
∥

∥

∥
∇fi(x

(τ)
i )− µx

(τ)
i −

(

∇fi(x
(τ−1)
i )− µx

(τ−1)
i

)∥

∥

∥

≤ (L+ µ)‖x(τ)
i − x

(τ−1)
i ‖, ∀i = 1, · · · , n.

Therefore, the dynamic average consensus scheme can be used
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to estimate n−1
∑n

i=1 z
(t)
i which is a good approximation of

z(t). This motivates our update formulas (11).

Remark 2. (Comparison with gradient-tracking methods [25],

[35]) Recall the update in [25], [35] as follows

x
(t)
i =

n
∑

j=1

p
(t−1)
ij

(

x
(t−1)
j − as

(t−1)
j

)

s
(t)
i =

n
∑

j=1

p
(t−1)
ij s

(t−1)
j +∇fi(x

(t)
i )−∇fi(x

(t−1)
i )

(13)

It contains three key differences from our update in (11): i)

(13) updates s
(t)
i by estimating the average of local gradients

n−1
∑n

i=1 ∇fi(x
(t)
i ), but (11) updates s

(t)
i by estimating the

term n−1
∑n

i=1

(

∇fi(x
(τ)
i )− µx

(τ)
i

)

; ii) (13) weights s
(t)
i

with constant a, but (11) weights s
(t)
i with geometically

increasing {at}t≥0 that is motivated by the dual averaing

method; iii) In the proposed DDA method, another proximal

operator is performed over z
(t)
i to get x

(t)
i . The gradient

evaluated over x
(t)
i is then used to update s

(t)
i . While (13)

does not accommodate proximal operators.

The rest of this section presents the convergence results of

Algorithm 1. To proceed, we denote

M =

[

β β
a(L+µ)
1−aµ

(

β + 1
1−aµ

)

β+aβ(L+µ)
1−aµ

]

, (14)

where L and µ are given in Assumption 1, β ∈ (0, 1) is defined

in Assumption 2, and a is an input of Algorithm 1. Matrix

M is the key to our convergence analysis as it defines the

dynamics of the iterates generated by Algorithm 1. Let ρ(M)
be the spectral radius of M. To facilitate the presentation of

our convergence analysis, we define

ν := ρ(M)
√

1− aµ,

η := (1 − aµ)(1− ν)2,

θ := (1 − aµ)(1− ν2).

(15)

The following result on ν, η, and θ is fundamental to

our convergence analysis whose proof can be found in Ap-

pendix IV-A.

Lemma 1. The value of ν monotonically increases with a if

a ∈ (0, 1/µ). Moreover, if

1

a
>

β(2L+ 3µ)

(1− β)2
+ µ, (16)

then ν < 1. Consequently, η and θ are both positive and

monotonically decrease with a if (16) is satisfied.

Equipped with Lemma 1, we are ready to present the main

results of this paper, which pertain to the convergence property

of Algorithm 1. Similar to some existing works [11], we first

present the convergence property of an auxiliary sequence

{y(t)}t≥0, which then immediately implies the convergence

property of the sequence {x(t)
i : i = 1, . . . , n}t≥0 generated

by Algorithm 1. In particular, we define

y(t) = argmin
x∈Rm

{

〈z(t), x〉+At

(µ

2
‖x‖2 + h(x)

)

+ d(x)
}

,

(17)

where y(0) = x(0), z(t) = 1
n

∑n
i=1 z

(t)
i and {z(t)i : i =

1, . . . , n}t≥0 are generated by Algorithm 1.

Theorem 2. When Assumptions 1 and 2 are satisfied, the

constant a in Algorithm 1 satisfies (16), and

γ :=
1

a
− 2L+ µ− 4L− 2µ

η
> 0, (18)

where η is defined in (15), then, for all t ≥ 1, it holds that

E[F (ỹ(t))]− F (x∗) ≤ C

At

, (19)

where ỹ(t) = A−1
t

∑t
τ=1 aτy

(τ) with y(τ) defined in (17),

C := d(x∗) +
a
(

2L− µ
)

σ2

nθ(L+ µ)2
> 0,

and σ2 is the variance of local gradients at t = 0, i.e.,

σ2 =
n
∑

i=1

∥

∥

∥

∥

∥

∥

∇fi(x
(0))− 1

n

n
∑

j=1

∇fj(x
(0))

∥

∥

∥

∥

∥

∥

2

.

Moreover, for all t ≥ 1 and i = 1, . . . , n, we have

E[‖x̃(t)
i − ỹ(t)‖2] ≤ D

At

, (20)

where x̃
(t)
i = A−1

t

∑t
τ=1 aτx

(τ)
i and D = 4nC

ηγ
+ 2aσ2

θ(L+µ)2 > 0.

The proof of Theorem 2 is postponed to Appendix II.

Theorem 2 can be regarded as a decentralized counterpart

of Theorem 1. Due to the presence of consensus error in

the decentralized setting, Theorem 2 requires a more delicate

choice of a for convergence. It is shown in [32, Appendix E]

that there exists an ā > 0 such that any a ∈ (0, ā) satisfies the

conditions in Theorem 2. Moreover, ā is roughly in the order

O((1 − β)2/L).
As a consequence of Theorem 2, we show in Corollary 1

that Algorithm 1 attains global linear convergence if µ > 0.

Its proof is given in Appendix III-A.

Corollary 1. Suppose that the premise of Theorem 2 holds. If

µ > 0, then for all t ≥ 1 and i = 1, . . . , n, we have

E[‖x̃(t)
i − x∗‖2] ≤ 2

a

(

2C

µ
+D

)

(1 − aµ)t, (21)

where x̃
(t)
i = A−1

t

∑t
τ=1 aτx

(τ)
i and C,D are positive con-

stants given in Theorem 2.

To the best of our knowledge, Corollary 1 provides the first

linear convergence result for solving Problem (1) in stochastic

networks. It is also the first linear convergence result for any

DDA-type algorithms.

Remark 3. Corollary 1 requires h to be uniform for all

agents. From a technical perspective, this is necessarily made

to ensure that (38) in the proof of Theorem 2 and Lemma

5 remain valid. The authors in [16] proved that with agent

specific non-smooth regularization, linear convergence cannot

be achieved (in the worst case) for decentralized composite

optimization even in time-invariant networks.
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As Corollary 1 also holds when Algorithm 1 is applied to

solving Problem (1) with h ≡ 0 in time-invariant networks,

it would be interesting to compare our linear convergence

result with those of decentralized algorithms that also converge

linearly in this special case. Based on the above remark on a,

one can observe that the rate of linear convergence in Corol-

lary 1 is roughly O((1 − ρ)t), where ρ = Θ
(

(1− β)2/κ
)

.

This rate is sub-optimal for decentralized convex smooth

optimization in time-invariant networks, where a better rate

ρ = Θ((1 − β)/κ) is achieved by, for example, [17]. This is

mainly due to the consensus-based gradient-tracking mecha-

nism. DIGing [28], Harnessing [35], and AugDGM [25] are

based on similar strategies, for which the convergence rate is

Θ((1−β)2/κ). Indeed, under the algorithmic framework based

on operator splitting [17], the gradient-tracking mechanism

essentially leads to a contraction matrix I − (I − P )2 on the

recursion. The convergence rates of decentralized primal-dual

algorithms, e.g., EXTRA [30], NIDS [36], typically have better

dependence on the network topology, that is, Θ((1 − β)/κ).
However, they are limited to time-invariant networks to the

best of our knowledge.

For the case µ = 0, Theorem 2 implies that Algorithm 1

has a global O(1/t) rate of convergence. In particular, we

have the following corollary whose proof is presented in

Appendix III-B.

Corollary 2. Suppose that the premise of Theorem 2 holds. If

µ = 0, then for all t ≥ 1 and i = 1, . . . , n, we have

E[F (ỹ(t))]− F (x∗) ≤ C

at
, (22)

E[‖x̃(t)
i − ỹ(t)‖2] ≤ D

at
, (23)

where ỹ(t) = 1
t

∑t
τ=1 y

(τ), x̃
(t)
i = 1

t

∑t
τ=1 x

(τ)
i , and C,D are

positive constants given in Theorem 2. In addition, if h ≡ 0
in Problem (1), d(x) = ‖x‖2/2, and

1

a
> 2L ·max

{

β

(1− β)2
, 1 +

6

(1 − ν)2

}

, (24)

where β and ν are given in (5) and (15), respectively, then

we further have

E[F (x̃
(t)
i )]− F (x∗) ≤ 1

t

(

n‖x∗‖2
2a

+
6σ2

L
(

1− ν2
)

)

. (25)

Similar to some existing works (e.g., [37]), we can only

ensure the O(1/t) rate for the objective value at the aux-

iliary sequence {ỹ(t)}t≥1 and the distance of each agent’s

local estimate x̃
(t)
i to ỹ(t) when h 6≡ 0; see (22) and (23)

respectively. The major difficulty is that we cannot derive
1
n

∑n
i=1 x

(t)
i = y(t) when h 6≡ 0, which prevents us from

getting (43). It remains open whether the O(1/t) rate for the

objective value at {x̃(t)
i }t≥1, as in (25), can be established

when h 6≡ 0 without additional assumptions. We leave it as

future work.

V. NUMERICAL EXPERIMENTS

For the experiments, we consider the decentralized LASSO

problem [37] and the decentralized sparse logistic regression

problem [2]. We present numerical results of Algorithm 1

(named as DDA below), and compare it with the following

algorithms:

i) Proximal gradient exact first-order algorithm (PG-

EXTRA) in [1]:

z(t) =z(t−1) − x(t−1) + P̃(2x(t−1) − x(t−2))

− a(∇(t−1) −∇(t−2)),

x(t) =Proxah(z
(t)),

where P̃ = (I+P )⊗I

2 , h(x) =
∑n

i=1 h(xi), and Proxa
h
(z) :=

argminx∈Rmn

{

h(x) + 1
2a‖x− z‖2

}

.
ii) Proximal primal-dual diffusion (P2D2) algorithm in [2]:

z(t) =(I − αB) z(t−1) + (I −B) (x(t−1) − x(t−2))

− a(∇(t−1) −∇(t−2)),

x(t) =Proxah(z
(t)),

where B = (I−P )⊗I

2 .

iii) Distributed subgradient method (DSM) in [19]:

x(t) = P(t−1)x(t−1) − at−1r
(t−1),

where r(t) ∈ ∂F(x(t)) and F(x) =
∑n

i=1 F (xi).
iv) Conventional DDA (named as C-DDA below) in [38]:

z(t) =P(t−1)z(t−1) + r(t−1),

x(t) =argmin
x∈Rmn

{

at−1〈z(t),x〉+ d(x)
}

,

where d(x) =
∑n

i=1 d(xi).
We note that when applied to solve Problem (1) in stochastic

networks, PG-EXTRA and P2D2 have no convergence guar-

antees and DSM and C-DDA have sublinear convergence in

theory.

A. Strongly Convex Problems

The aforementioned algorithms are applied to the following

problem:

min
x∈Rm

1

n

n
∑

i=1

1

2
‖bi − Cix‖2, s.t. ‖x‖1 ≤ R,

where R > 0 is a constant, and (Ci, bi) represents the data

tuple available to agent i with Ci ∈ R
60×50 and bi ∈ R

60. The

data is randomly generated according to the setting by [36].

Firstly, a sparse signal x♯ ∈ R
50 is randomly generated,

where the probability for each element being nonzero is 0.25.

Then, each Ci is randomly generated and then normalized

such that Assumption 1 holds with L = 1 and µ = 0.5. Set

R = 1.1‖x♯‖1. produced based on bi = Cix
♯ + ǫi, where ǫi

is a random noise vector.

We consider two common configurations of stochastic com-

munication networks. The first one is Bernoulli networks [8],

where a fixed graph is first generated and at any time t, each

edge of the fixed graph is sampled with probability ι ∈ (0, 1),
which results in a random sub-graph of the fixed graph. In

our experiment, we generate a fixed graph in the same way

as [34], where the sparsity parameter ξ, i.e., the ratio between

the number of edges in the generated fixed graph and the
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number of edges in the complete graph, is chosen to be

0.2. Based on each fixed graph, we generate two Bernoulli

networks with ι set to be 0.05 and 0.1, respectively. The

second one is randomized gossip networks [7], where only

a single edge of a fixed graph is sampled at any time t. In

particular, the probability to sample the link (i, j) is set as
1

n(|Ni|+1) with |Ni| representing the number of neighbors of

i in the supergraph at every time t. In our experiment, we

consider cycle graph, 2D grid, and complete graph as the fixed

graphs for generating randomized gossip networks.

For all the tested algorithms, we evaluate their perfor-

mance in terms of the relative square error (RSE) defined

by
∑

n

i=1‖x
(t)
i

−x∗‖2

∑

n

i=1‖x
(0)
i

−x∗‖2
, where x∗ is identified by applying the

centralized proximal gradient method [39] to Problem (26)

such that the norm of the difference of two consecutive iterates

is less than 10−14. The algorithm by [40] is used to perform

projection onto l1-norm ball. All the algorithms are initialized

with x
(0)
i = 0 for all i. The parameters for each algorithm

are chosen in the following way. For DDA and C-DDA, we

employ d(x) = ‖x‖2/2. We choose α = 0.5 in P2D2 and set

at = 1/
√
t+ 1 for C-DDA. For the two groups of Bernoulli

networks, we set the a in DDA to be 0.1 and set 0.1 for the

step sizes in P2D2 and PG-EXTRA. For randomized gossip,

we use a = 0.1 for DDA, and set 10−4 for the step sizes

in P2D2 and PG-EXTRA. Since DSM can not be applied to

constrained problems, it is not considered in this setting.

The simulation results are plotted in Figure 1. In particular,

the performance on Bernoulli networks and randomized gossip

networks is presented in the first and the second column of

Figure 1, respectively. In the first column, the bottom plot

demonstrates the performance in time-invariant networks that

is used for generating Bernoulli networks. Although P2D2 and

PG-EXTRA demonstrate a similar performance with DDA on

time-invariant networks, they do not converge to the minimizer

when applied to stochastic networks. In line with our theoret-

ical results, DDA linearly converges and outperforms C-DDA

in all the network configurations.

B. General Convex Problems

The following decentralized sparse logistic regression prob-

lem is considered

min
x∈Rm

1

n

n
∑

i=1

fi(x) + φ‖x‖1, (26)

where

fi(x) =
1

mi

mi
∑

j=1

ln(1 + exp(−yijM
iT
j x)),

and {M i
j , y

i
j}mi

j=1 are data samples private to agent i. In our

experiment, we set φ = 0.001, and use Spambase data set in

the UCI Machine Learning Repository [41] to generate our

problem instance. In particular, we extract 3000 out of the

total 4601 samples in the original data set and evenly distribute

them to the n = 30 agents, i.e., mi = 100 for all i.
Two types of stochastic communication networks are con-

sidered. For Bernoulli networks, we generate a fixed graph

Fig. 1. Comparison results for decentralized LASSO in different network
configurations.

with the sparsity parameter 0.4. Based on it, we construct

two Bernoulli networks by setting ι = 0.1 and ι = 0.2,

respectively. In the second setting, we also consider cycle

graph, 2D grid, and complete graph as the fixed graphs for

generating randomized gossip networks. We identify x∗ by

using the centralized proximal gradient method, where the

stopping criterion is set as the norm of the difference of

two consecutive iterates smaller than 10−14. The performance

of all the tested algorithms is evaluated in terms of the

suboptimality defined by F (n−1
∑n

i=1 x
(t)
i )− F (x∗). All the

algorithms are initialized with x
(0)
i = 0 for all agents i.

The parameters of each algorithm are chosen properly to

reflect their performance. For DDA and C-DDA, we simply

choose d(x) = ‖x‖2/2. We choose α = 0.5 in P2D2 and

set at = 1/
√
t+ 1 for C-DDA and DSM. For the Bernoulli

networks, i.e., those sampled from a supergraph with sparsity

parameter 0.4 (first column of Figure 2), we use the same

a = 0.2 for DDA, P2D2, and PG-EXTRA. For randomized

gossip, we use a = 0.05 for DDA, and set 10−4 for the

step sizes in P2D2 and PG-EXTRA. We note that choosing a

smaller step size in P2D2 and PG-EXTRA generally makes

them more stabilizing. In fact, a larger step size will result

in even worse behaviour of these two methods in randomized

gossip networks.

The simulation results are plotted in Figure 2. Specifically,
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Fig. 2. Comparison results for decentralized logistic regression in
different network configurations.

the first column of Figure 2 presents the performance on

Bernoulli networks and the second column shows the perfor-

mance on randomized gossip networks. We note that the last

plot of the first column is for time-invariant networks, which

is the fixed graph for generating the Bernoulli networks in the

first column. One can observe that our DDA is substantially

faster than DSM and C-DDA in all the network settings,

which supports our theoretical development. In addition, while

P2D2 and PG-EXTRA perform very similar to DDA on

time-invariant networks, they both diverge when applied to

stochastic networks. This suggests that decentralized algo-

rithms that are designed for time-invariant networks may not

work effectively in stochastic networks.

To summarize, the simulation results confirm our theoretical

findings and demonstrate the superior performance of the

proposed Algorithm 1 on both time-invariant and stochastic

networks.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new decentralized algorithm

for solving Problem (1) in stochastic networks. The proposed

algorithm, based on the framework of dual averaging method,

is facilitated by designing a novel dynamic averaging consen-

sus protocol. To the best of our knowledge, this is the first

linearly convergent DDA-type decentralized algorithm and

also the first algorithm that attains global linear convergence

for solving Problem (1) in stochastic networks.

As we remarked after Corollary 1, it remains open whether

Algorithm 1 can be further improved such that it achieves

the optimal rate of linear convergence when applied to the

special setting of Problem (1). Besides, it is unknown if

O(1/t) convergence rate of the objective error at the local

estimates can be established for the general convex case.

Another practical issue about decentralized optimization is

the privacy risk due to information exchange among multiple

agents. We leave them as future research.

APPENDIX I

OVERVIEW OF THE APPENDIX AND PRELIMINARIES

In the Appendix, we begin with some notation to streamline

the presentation. Then, we present the proof of Theorem 2

and the proofs of Corollaries 1 and 2 in Appendix II and III,

respectively. The proofs of supporting lemmas are postponed

to Appendix IV.

First, we introduce the following notation:

x(t) =









x
(t)
1
...

x
(t)
n









, s(t) =









s
(t)
1
...

s
(t)
n









, z(t) =









z
(t)
1
...

z
(t)
n









,

∇(t) =









∇f1(x
(t)
1 )

...

∇fn(x
(t)
n )









, y(t) =







y(t)

...

y(t)






, z(t) =

1

n

n
∑

i=1

z
(t)
i ,

(27)

x(t) =
1

n

n
∑

i=1

x
(t)
i , g(t) =

1

n

n
∑

i=1

∇fi(x
(t)
i ), s(t) =

1

n

n
∑

i=1

s
(t)
i ,

(28)

s̃(t) = s(t) − 1⊗ s(t), z̃(t) = z(t) − 1⊗ z(t), (29)

∆x(t−1) = x(t) − x(t−1), ∆y(t−1) = y(t) − y(t−1), (30)

∆x(t−1) = x(t) − x(t−1), ∆y(t−1) = y(t) − y(t−1), (31)

where 1 is an all-one column vector of dimension n. We

remark that bold lowercase letters represent a vector of di-

mension m × n, while normal lowercase letters represent a

vector of dimension m. Equipped with these notation, we can

re-write the update rule (11) in the following compact form:

z(t) = P(t−1)
(

z(t−1) + ats
(t−1)

)

, (32a)

s(t) = P(t−1)s(t−1) +∇(t) −∇(t−1) − µ∆x(t−1), (32b)

where P(t) = P (t)⊗ I with I being an identity matrix of size

n× n.

For a real-valued random vector x, we define

‖x‖E =
√

E[‖x‖2]. (33)

Accordingly, for a square random matrix W , we define

‖W‖E = sup‖x‖E=1‖Wx‖E. Given two real-valued random

vectors x, y, the Minkowski inequality [42] states that

‖x+ y‖E ≤ ‖x‖E + ‖y‖E. (34)
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Finally, it is known that Assumption 1(iii) implies that

fi(x) − fi(y)− 〈∇fi(y), x− y〉 ≤ L

2
‖x− y‖2 (35)

for any x, y ∈ dom(h).

APPENDIX II
PROOF OF THEOREM 2

In this section, we provide the proof of Theorem 2.

To start, we show the following result that quantifies the de-

viation between the local estimates {x(t)
i }t≥0 and the auxiliary

sequence {y(t)}t≥0.

Lemma 2. Suppose that a satisfies (16). Then, for all t ≥ 0,

it holds that

t
∑

τ=0

aτ+1E[‖x(τ) − y(τ)‖2]

≤ 2

η

t−1
∑

τ=0

aτ+1E[‖∆y(τ)‖2] + 2aσ2

θ(L + µ)2
,

(36)

where σ is defined in Theorem 2, η and θ are given in (15),

and both η and θ are positive due to (16) and Lemma 1.

Proof of Lemma 2. The proof is postponed to Appendix IV-B.

Lemma 2 states that if a satisfies (16), then the accumula-

tive deviation between y(t) and x(t) admits an upper bound

constituted by the successive change of y(t) plus a constant.

Next, we present the following lemma that pertains to a

descent-like property of Algorithm 1.

Lemma 3. For all t ≥ 1, it holds that

t
∑

τ=1

aτ

(〈

g(τ−1), y(τ) − x∗
〉

+ h(y(τ))− h(x∗)
)

− d(x∗)

≤ µ

2

t
∑

τ=1

aτ

(

‖x(τ−1) − x∗‖2 − ‖x(τ−1) − y(τ)‖2
)

− 1

2

t
∑

τ=1

(1 + µAτ−1)‖y(τ) − y(τ−1)‖2. (37)

Proof of Lemma 3. The proof is postponed to Appendix IV-C.

Equipped with the above two technical lemmas, we are

ready to present the proof of Theorem 2.

Proof of Theorem 2. For all τ ≥ 0, one has

1

n

n
∑

i=1

aτ

(

fi(y
(τ))− fi(x

∗)
)

≤ 1

n

n
∑

i=1

aτ

(

fi(x
(τ−1)
i )− fi(x

∗) +
L

2
‖y(τ) − x

(τ−1)
i ‖2

+ 〈∇fi(x
(τ−1)
i ), y(τ) − x

(τ−1)
i 〉

)

≤ 1

n

n
∑

i=1

aτ

(L

2
‖y(τ) − x

(τ−1)
i ‖2 − µ

2
‖x(τ−1)

i − x∗‖2

+ 〈∇fi(x
(τ−1)
i ), y(τ) − x∗〉

)

=
1

n

n
∑

i=1

aτ

(L

2
‖y(τ) − x

(τ−1)
i ‖2 − µ

2
‖x(τ−1)

i − x∗‖2
)

+ aτ

〈

g(τ−1), y(τ) − x∗
〉

, (38)

where the two inequalities follow from (35) and (3), respec-

tively, and the equality uses the definition of g(τ−1). Upon

summing up (38) from τ = 1 to τ = t and using Lemma 3

and F = 1
n

∑n
i=1 fi + h, we obtain

t
∑

τ=1

aτ

(

F (y(τ))− F (x∗)
)

≤ 1

n

t
∑

τ=1

n
∑

i=1

aτ

(L

2
‖y(τ) − x

(τ−1)
i ‖2 − µ

2
‖x(τ−1)

i − x∗‖2
)

+
µ

2

t
∑

τ=1

aτ

(

‖x(τ−1) − x∗‖2 − ‖x(τ−1) − y(τ)‖2
)

− 1

2

t
∑

τ=1

(1 + µAτ−1)‖y(τ) − y(τ−1)‖2 + d(x∗). (39)

Using the definition of ∆y(τ−1) and the fact

‖x(τ−1) − x∗‖2 =

∥

∥

∥

∥

∥

1

n

n
∑

i=1

x
(τ−1)
i − x∗

∥

∥

∥

∥

∥

2

≤ 1

n

n
∑

i=1

‖x(τ−1)
i − x∗‖2,

one can simplify the above inequality to

t
∑

τ=1

aτ

(

F (y(τ))− F (x∗)
)

≤ 1

n

t
∑

τ=1

n
∑

i=1

aτ

(

L

2
‖y(τ) − x

(τ−1)
i ‖2 − µ

2
‖y(τ) − x(τ−1)‖2

)

− 1

n

t
∑

τ=1

1 + µAτ−1

2
‖∆y(τ−1)‖2 + d(x∗). (40)
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By the definition of x(τ−1), x(τ), and y(τ), one can verify
n
∑

i=1

‖y(τ) − x(τ−1)‖2

=

n
∑

i=1

(

‖x(τ−1)‖2 − ‖x(τ−1)
i ‖2 + ‖y(τ) − x

(τ−1)
i ‖2

)

=
n
∑

i=1

(

‖x(τ−1) − y(τ−1)‖2 − ‖x(τ−1)
i − y(τ−1)‖2

)

+

n
∑

i=1

‖y(τ) − x
(τ−1)
i ‖2

≥
n
∑

i=1

(

‖y(τ) − x
(τ−1)
i ‖2 − ‖x(τ−1)

i − y(τ−1)‖2
)

= ‖y(τ) − x(τ−1)‖2 − ‖y(τ−1) − x(τ−1)‖2.
Besides, recall that F is convex , ỹ(t) = A−1

t

∑t
τ=1 aτy

(τ),

and At =
∑t

τ=1 aτ . These, together with (40), yield

At

(

F (ỹ(t))− F (x∗)
)

≤
1

n

t
∑

τ=1

aτ

(

L− µ

2
‖y(τ) − x

(τ−1)‖2 +
µ

2
‖x(τ−1) − y

(τ−1)‖2
)

−
1

n

t
∑

τ=1

1 + µAτ−1

2
‖∆y

(τ−1)‖2 + d(x∗).

Upon using the inequality

‖y(τ) − x(τ−1)‖2 ≤ 2‖∆y(τ−1)‖2 + 2‖y(τ−1) − x(τ−1)‖2,
we further obtain

At

(

F (ỹ(t))− F (x∗)
)

≤ 1

n

t
∑

τ=1

aτ

(

L− µ− 1 + µAτ−1

2aτ

)

‖∆y(τ−1)‖2

+
2L− µ

2n

t
∑

τ=1

aτ‖x(τ−1) − y(τ−1)‖2 + d(x∗)

=
2L− µ− 1

a

2n

t
∑

τ=1

aτ‖∆y(τ−1)‖2

+
2L− µ

2n

t
∑

τ=1

aτ‖x(τ−1) − y(τ−1)‖2 + d(x∗),

where the equality follows from the identity
1+µAτ−1

aτ

= 1−aµ
a

,
which holds due to the update rule of {at}t≥0 and {At}t≥0.

Upon taking expectation on both sides of the above inequality

and using Lemma 2, one has

At

(

E[F (ỹ(t))]− F (x∗)
)

+
γ

2n

t
∑

τ=1

aτE[‖∆y(τ−1)‖2]

≤ d(x∗) +
(2L− µ)aσ2

nθ(L + µ)2
= C, (41)

where γ > 0 is defined in (18). This implies (19)

as desired. Moreover, it follows from (41) and

At

(

E[F (ỹ(t))]− F (x∗)
)

≥ 0 that

t
∑

τ=1

aτE[‖∆y(τ−1)‖2] ≤ 2nC

γ
.

This, together with the convexity of ‖·‖2, Jensen’s Inequality,

at ≤ at+1 for all t ≥ 0, and Lemma 2, yields

AtE[‖x̃(t) − ỹ(t)‖2] ≤
t
∑

τ=1

aτE[‖x(τ) − y(τ)‖2]

≤
t
∑

τ=0

aτ+1E[‖x(τ) − y(τ)‖2]

≤ 2

η

t−1
∑

τ=0

aτ+1E[‖∆y(τ)‖2] + 2aσ2

θ(L + µ)2

≤ 4nC

ηγ
+

2aσ2

θ(L + µ)2
= D,

which implies (20) as desired.

APPENDIX III

PROOFS OF COROLLARIES 1 AND 2

In this section, we provide the proofs of Corollary 1 and

Corollary 2.

A. Proof of Corollary 1

Proof of Corollary 1. Since µ > 0, we obtain from the update

of At in Algorithm 1 that

1

At

=
µ

(

1
1−aµ

)t

− 1
≤ (1− aµ)t

a
.

Besides, upon using the fact that F is strongly convex with

modulus µ, one has that for all t ≥ 0 and i = 1, . . . , n,

‖x(t)
i − x∗‖2 ≤ 2‖x(t)

i − y(t)‖2 + 2‖y(t) − x∗‖2

≤ 2‖x(t)
i − y(t)‖2 + 4

µ

(

F (y(t))− F (x∗)
)

.

These, together with (19) and (20), yields (21).

B. Proof of Corollary 2

Proof of Corollary 2. The upper bounds in (22) and (23)

directly follow from the results in Theorem 2 and

1

At

=
1

at
.

For the special case h(x) = 0 and d(x) = 1
2‖x‖2, we consider

F (x
(τ)
i )− F (y(τ)) = f(x

(τ)
i )− f(y(τ))

≤ 1

n

n
∑

j=1

(

fj(x
(τ)
i )− 〈∇fj(x

(τ)
j ), y(τ) − x

(τ)
j 〉 − fj(x

(τ)
j )
)

≤ 1

n

n
∑

j=1

(

〈∇fj(x
(τ)
j ), x

(τ)
i − x

(τ)
j 〉 − 〈∇fj(x

(τ)
j ), y(τ) − x

(τ)
j 〉

+
L

2
‖x(τ)

i − y(τ) + y(τ) − x
(τ)
j ‖2

)

=
1

n

n
∑

j=1

(

〈∇fj(x
(τ)
j ), x

(τ)
i − y(τ)〉+ L‖x(τ)

i − y(τ)‖2

+ L‖y(τ) − x
(τ)
j ‖2

)

=
〈

g(τ), x
(τ)
i − y(τ)

〉

+ L‖x(τ)
i − y(τ)‖2 + L

n
‖y(τ) − x(τ)‖2,

(42)
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where the two inequalities follow from (3) and (35), respec-

tively. The closed-form solutions for (12) and (17) can be

derived as

x
(τ)
i = − z

(τ)
i

1 + µAτ

, y(τ) = − z(τ)

1 + µAτ

.

Therefore y(τ) = x(τ). We sum up (42) from i = 1 to i = n
to get

n
∑

i=1

(

F (x
(τ)
i )− F (y(τ))

)

≤ 2L‖y(τ) − x(τ)‖2. (43)

Upon summing up (43) from τ = 1 to τ = t and using the

convexity of F , we obtain

t
n
∑

i=1

(

F (x̃
(t)
i )− F (y(τ))

)

≤
t
∑

τ=1

n
∑

i=1

(

F (x
(τ)
i )− F (y(τ))

)

≤ 2L
t
∑

τ=1

‖y(τ) − x(τ)‖2,

(44)

where x̃
(t)
i = 1

t

∑t
τ=1 x

(τ)
i . After taking expectation on both

sides of the above inequality and using Lemma 2 with aτ = a,

we get

t
n
∑

i=1

E

[

F (x̃
(t)
i )− F (y(t))

]

≤ 4L

η

t
∑

τ=1

E[‖∆y(τ−1)‖2] + 4Lσ2

θ(L + µ)2

=
4L

(1− ν)2

t
∑

τ=1

E[‖∆y(τ−1)‖2] + 4σ2

L(1− ν2)
.

(45)

By setting µ = 0 and d(x∗) = 1
2‖x∗‖2 in (41), we have

at
(

E[F (ỹ(t))]− F (x∗)
)

≤ −
(

1

2a
− L− 2L

(1 − ν2)

)

a

n

t
∑

τ=1

E[‖∆y(τ−1)‖2]

+
‖x∗‖2
2

+
2aσ2

nL(1− ν2)
.

(46)

Also, by multiplying n/a > 0 on both sides of the above

inequality and adding the resultant inequality to (45), we

obtain

t
(

E[F (x̃
(t)
i )]− F (x∗)

)

≤ t

n
∑

i=1

(

E[F (x̃
(t)
i )]− F (x∗)

)

≤ −
( 1

2a
− L− 6L

(1 − ν)2

)

t
∑

τ=1

E[‖∆y(τ−1)‖2]

+
n

2a
‖x∗‖2 + 6σ2

L
(

1− ν2
) .

(47)

Now, using the condition in (24), we arrive at (25).

APPENDIX IV

PROOFS OF SUPPORTING LEMMAS FOR THEOREM 2

A. Proof of Lemma 1

Proof of Lemma 1. We first show that ν monotonically in-

creases with a if a ∈ (0, 1/µ). Recall that M is defined in (14).

Then, the characteristic polynomial of M, denoted by p(λ), is

a quadratic function:

p(λ) :=det(λI −M) = (λ−M11)(λ−M22)−M12M21

=λ2 − β(2 + aL)

1− aµ
λ+

β2

1− aµ
− aβ(L + µ)

(1− aµ)2
.

(48)

Using this, we obtain that M has two real eigenvalues λ1 =
(ξ1 + ξ2)/2 and λ2 = (ξ1 − ξ2)/2, where

ξ1 =
β(2 + aL)

1− aµ
, ξ2 =

√

a2β2L2 + 4aβ(β + 1)(L+ µ)

1− aµ
.

(49)

Notice that ξ1 > 0 and ξ2 > 0 for any a ∈ (0, 1/µ). Thus,

we have λ1 > 0 and |λ1| > |λ2| for any a ∈ (0, 1/µ). It then

follows that ρ(M) = λ1 and

ν(a) = ρ(M)
√

1− aµ = λ1

√

1− aµ

=
β(2 + aL)

2
√
1− aµ

+

√

a2β2L2 + 4aβ(β + 1)(L + µ)

2
√
1− aµ

.
(50)

By routine calculation, one can verify that ν′(a) > 0 if a ∈
(0, µ−1). Therefore, the value of ν monotonically increases

with a if a ∈ (0, µ−1).
Next, we show that ν < 1 if (16) is satisfied. Note that (16)

implies that 0 < a < µ−1 and β(2L+ 3µ)/(1− β)2 < 1/a−
µ = (1 − aµ)/a. It then follows that 1−aµ ∈ (0, 1] and hence

0 < (1− β)2 − aβ(2L+ 3µ)

1− aµ

= 1+ β2 −
(

β +
β + aβ(L + µ)

1− aµ

)

− aβ(L+ µ)

1− aµ
.

Upon dividing both sides of the above inequality by 1 − aµ,

we obtain

0 <
1

1− aµ
+

β2

1− aµ
− 1

1− aµ

(

β +
β + aβ(L+ µ)

1− aµ

)

− aβ(L+ µ)

(1− aµ)2

≤ 1

1− aµ
+

β2

1− aµ
− 1√

1− aµ

(

β +
β + aβ(L + µ)

1− aµ

)

− aβ(L+ µ)

(1− aµ)2

= p

(

1√
1− aµ

)

, (51)

where the second inequality is due to 1 − aµ ∈ (0, 1] and

the equality follows from (48). Besides, using the definition

of characteristic polynomial, one further has

0 < p

(

1√
1− aµ

)

=

(

1√
1− aµ

−M11

)(

1√
1− aµ

−M22

)

−M12M21.

(52)
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By (14), β ∈ (0, 1), and 1− aµ ∈ (0, 1], we have that M12 >
0, M21 > 0, and 1/

√
1− aµ > M11. It then follows that

1/
√
1− aµ > M22 and hence

p′
(

1√
1− aµ

)

=
2√

1− aµ
−M11 −M22 > 0.

This, together with the fact that q is a quadratic func-

tion, implies that q(λ) is monotonically increasing on

[1/
√
1− aµ,∞). It then follows from (51) that 1√

1−aµ
>

λ1 = ρ(M), which implies that ν < 1.

B. Proof of Lemma 2

In this subsection, we first present three technical lemmas,

and then provide the proof of Lemma 2.

Lemma 4. For the sequences {s(t)}t≥0 and {z(t)}t≥0 defined

in (28), one has that for any t ≥ 0,

s(t) = g(t) − µx(t), z(t) =
t−1
∑

τ=0

aτ+1s
(τ). (53)

Proof. We prove by an induction argument. Since s
(0)
i =

∇fi(x
(0)) − µx(0), z

(0)
i = 0 and x

(0)
i = x(0) for all i,

we readily have that (53) holds when t = 0. Now, suppose

that (53) holds for t− 1. From (27) and (28), we observe that

the following identities hold for any τ ≥ 0:

x(τ) =
1

n
(1T ⊗ I)x(τ), g(τ) =

1

n
(1T ⊗ I)∇(τ),

s(τ) =
1

n
(1T ⊗ I)s(τ), z(τ) =

1

n
(1T ⊗ I)z(τ).

(54)

It then follows from this and (32b) that

s(t) =
1

n
(1T ⊗ I)s(t)

=
1

n
(1T ⊗ I)(P (t−1) ⊗ I)s(t−1) +

1

n
(1T ⊗ I)∇(t)

− 1

n
(1T ⊗ I)∇(t−1) − µ

n
(1T ⊗ I)∆x(t−1)

=
1

n
(1TP (t−1) ⊗ I)s(t−1) + g(t) − g(t−1) − µx(t) + µx(t−1)

=
1

n
(1T ⊗ I)s(t−1) + g(t) − g(t−1) − µx(t) + µx(t−1)

= s(t−1) + g(t) − g(t−1) − µx(t) + µx(t−1)

= g(t) − µx(t),

where the second equality is due to (32b), the third equality

uses the fact that (A⊗B)(C ⊗D) = (AC ⊗BD), the fourth

equality follows from the fact that P (t−1) is doubly stochastic,

and the last equality is due to the assumption that (53) holds

for t− 1. Similarly, by (32a) and (54), we obtain

z(t) =
1

n
(1T ⊗ I)z(t)

=
1

n
(1T ⊗ I)(P (t−1) ⊗ I)

(

z(t−1) + ats
(t−1)

)

=
1

n
(1T ⊗ I)

(

z(t−1) + ats
(t−1)

)

= z(t−1) + ats
(t−1) =

t−1
∑

τ=0

aτ+1s
(τ).

Therefore, (53) holds for t and the induction argument is

completed.

Lemma 5. For the sequence {x(t)
i : i = 1, . . . , n}t≥0

generated by Algorithm 1 and the auxiliary sequence {y(t)}t≥0

defined in (17), one has that for all t ≥ 0 and i = 1, . . . , n,

‖x(t)
i − y(t)‖ ≤ 1

1 + µAt

∥

∥z
(t)
i − z(t)‖, (55)

where z(t) is defined in (28).

Proof. It is easy to see that (55) holds when t = 0 because

both sides of (55) equal 0. Now, suppose that t ≥ 1. Recall

that d is strongly convex with modulus 1. Let the mapping

R : Rm → R
m be defined as

R(ω) := argmin
x∈Rm

{〈ω, x〉+ φ(x)} ,

where φ(x) = At(µ‖x‖2/2+h(x))+ d(x) is strongly convex

with modulus 1 + µAt. Then, by (12) and (17), we have

y(t) = R(z(t)), x
(t)
i = R(z

(t)
i ), ∀i = 1, . . . , n.

Moreover, the mapping R is Lipschitz continuous with Lip-

schitz constant (1 + µAt)
−1; see, e.g., [43, Proposition 4.9].

This immediately implies (55) as desired.

Next, we recall a lemma from [25, Lemma 4].

Lemma 6. Suppose that {q(t)}t≥0 and {p(t)}t≥0 are two

sequences of positive scalars such that for all t ≥ 0,

q(t) ≤ νtc+

t−1
∑

τ=0

νt−τ−1p(τ)

where ν ∈ (0, 1) and c ≥ 0 is a constant. Then, the following

holds for all t ≥ 0:

t
∑

τ=1

(q(τ))2 ≤ 2

(1 − ν)2

t−1
∑

τ=0

(p(τ))2 +
2c2

1− ν2
.

Now we are ready to prove Lemma 2.

Proof of Lemma 2. From Lemma 4, we have

z(τ) = z(τ−1) + aτs
(τ−1).

This, together with (32a) and the definition of z̃(τ) in (29),

yields

z̃(τ) = P(τ−1)z(τ−1) − 1⊗ z(τ−1)

+ aτ

(

P(τ−1)s(τ−1) − 1⊗ s(τ−1)
)

.
(56)

It then follows from (34) that

‖z̃(τ)‖E ≤
∥

∥

∥
P(τ−1)z(τ−1) − 1⊗ z(τ−1)

∥

∥

∥

E

+ aτ

∥

∥

∥
P(τ−1)s(τ−1) − 1⊗ s(τ−1)

∥

∥

∥

E

.
(57)

Note that 1⊗z̄(τ−1) = (1⊗I)z̄(τ−1), which, together with (54)

and the identity (A⊗B)(C ⊗D) = (AC ⊗BD), yields

1⊗ z̄(τ−1) =
1

n
(1⊗ I)(1T ⊗ I)z(τ−1) =

(

11T

n
⊗ I

)

z(τ−1).
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Using this and P(τ−1) = P (τ−1) ⊗ I , we obtain

P(τ−1)z(τ−1) − 1⊗ z(τ−1)

= (P (τ−1) ⊗ I)z(τ−1) −
(

11T

n
⊗ I

)

z(τ−1)

=

((

P (τ−1) − 11T

n

)

⊗ I

)

z(τ−1)

=

((

P (τ−1) − 11T

n

)

⊗ I

)

(

z̃(τ−1) + (1⊗ I)z̄(τ−1)
)

=

((

P (τ−1) − 11T

n

)

⊗ I

)

z̃(τ−1)

+
((

P (τ−1)1− 1
)

⊗ I
)

z̄(τ−1)

=

((

P (τ−1) − 11T

n

)

⊗ I

)

z̃(τ−1),

where the third equality uses (29) and 1 ⊗ z̄(τ−1) = (1 ⊗
I)z̄(τ−1), the fourth equality follows from the identity (A ⊗
B)(C ⊗ D) = (AC ⊗ BD), and the last one is due to

the fact that P (τ−1) is doubly stochastic. Then, by (33) and
Assumption 2, one has
∥

∥

∥
P

(τ−1)
z
(τ−1) − (1⊗ I)z(τ−1)

∥

∥

∥

E

=

∥

∥

∥

∥

∥

((

P
(τ−1) −

11T

n

)

⊗ I

)

z̃
(τ−1)

∥

∥

∥

∥

∥

E

(i)
≤ ‖z̃(τ−1)‖E

√

√

√

√ρ

(

E

[

(

P (τ−1) −
11T

n

)T (

P (τ−1) −
11T

n

)

])

= ‖z̃(τ−1)‖E

√

ρ

(

E

[

P (τ−1)T P (τ−1)
]

−
11T

n

)

≤ β‖z̃(τ−1)‖E

where we use (A⊗B)T = AT ⊗BT and (A⊗B)(C⊗D) =
AC ⊗ BD and that P (τ−1) is independent of z̃(τ−1) in (i).

Using the same arguments as above, we have
∥

∥

∥
P(τ−1)s(τ−1) − 1⊗ s(τ−1)

∥

∥

∥

E

≤ β‖s̃(τ−1)‖E. (58)

It then follows from (57) that

‖z̃(τ)‖E ≤ β
(

‖z̃(τ−1)‖E + aτ‖s̃(τ−1)‖E
)

. (59)

Similarly, from Lemma 4, (29), and (32b), we obtain

‖s̃(τ)‖E ≤
∥

∥

∥
P(τ−1)s(τ−1) − (1⊗ I) s(τ−1)

∥

∥

∥

E

+
∥

∥

∥
∇(τ) −∇(τ−1) − (1⊗ I) (g(τ) − g(τ−1))

∥

∥

∥

E

+ µ
∥

∥

∥
(1⊗ I)∆x(τ−1) −∆x(τ−1)

∥

∥

∥

E

.

(60)

By (54), one can verify that

∇(τ) −∇(τ−1) − (1⊗ I)(g(τ) − g(τ−1))

=

((

I − 11T

n

)

⊗ I

)

(

∇(τ) −∇(τ−1)
)

,

∆x(τ−1) − (1⊗ I)∆x(τ−1) =

((

I − 11T

n

)

⊗ I

)

∆x(τ−1),

which respectively imply that

‖∇(τ) −∇(τ−1) − (1⊗ I)(g(τ) − g
(τ−1))‖E

≤

∥

∥

∥

∥

∥

(

I −
11T

n

)

⊗ I

∥

∥

∥

∥

∥

‖∇(τ) −∇(τ−1)‖E ≤ ‖∇(τ) −∇(τ−1)‖E,

‖∆x
(k−1) − (1⊗ I)∆x

(k−1)‖E

≤

∥

∥

∥

∥

∥

(

I −
11T

n

)

⊗ I

∥

∥

∥

∥

∥

‖∆x
(k−1)‖E ≤ ‖∆x

(k−1)‖E.

Besides, it follows from (4) that ‖∇(τ) − ∇(τ−1)‖E ≤
L‖∆x(k−1)‖E. Upon substituting these and (58) into (60), we

obtain

‖s̃(τ)‖E ≤ β‖s̃(τ−1)‖E + (L+ µ)‖∆x(τ−1)‖E. (61)

Multiplying the both sides of the above inequality by aτ+1 =
aτ/(1− aµ), we have

aτ+1‖s̃(τ)‖E
≤ 1

1− aµ

(

βaτ‖s̃(τ−1)‖E + (L+ µ)aτ‖∆x(τ−1)‖E
)

.

(62)

Upon using Lemma 5 and

‖∆x(τ−1)‖E
≤ ‖x(τ) − y(τ)‖E + ‖x(τ−1) − y(τ−1)‖E + ‖∆y(τ−1)‖E,

one has

aτ‖∆x
(τ−1)‖E

≤
aτ

1 + µAτ
‖z̃(τ)‖E +

aτ

1 + µAτ−1
‖z̃(τ−1)‖E + aτ‖∆y

(τ−1)‖E

= a‖z̃(τ)‖E +
a

1− aµ
‖z̃(τ−1)‖E + aτ‖∆y

(τ−1)‖E,

where the equality follows from

1 + µAτ

aτ
=

( 1
1−aµ

)τ

a
1−aµ

(

1
1−aµ

)τ−1 =
1

a
.

In light of (59), we have

aτ‖∆x(τ−1)‖E ≤
(

aβ +
a

1− aµ

)

‖z̃(τ−1)‖E

+ aβaτ‖s̃(τ−1)‖E + aτ‖∆y(τ−1)‖E.
Therefore

aτ+1‖s̃(τ)‖E ≤β + aβ(L + µ)

1− aµ
aτ‖s̃(τ−1)‖E

+
a(L+ µ)

1− aµ

(

β +
1

1− aµ

)

‖z̃(τ−1)‖E

+
L+ µ

1− aµ
aτ‖∆y(τ−1)‖E.

(63)

By combining (59) and (63), the following inequality can be

established:
[

‖z̃(τ)‖E
aτ+1‖s̃(τ)‖E

]

≤ M

[

‖z̃(τ−1)‖E
aτ‖s̃(τ−1)‖E

]

+
L+ µ

1− aµ

[

0
aτ‖∆y(τ−1)‖E

]
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where M is defined in (14). By iterating the preceding linear

system inequality and using

‖z̃(0)‖= 0, ‖s̃(0)‖=

√

√

√

√

n
∑

i=1

∥

∥∇fi(x(0))− g(0)
∥

∥

2
:= σ,

we obtain

[

‖z̃(t)‖E
at+1‖s̃(t)‖E

]

≤ L+ µ

1− aµ

t−1
∑

τ=0

Mt−τ−1√aτ+1

[

0√
aτ+1‖∆y(τ)‖E

]

+Mt

[

0
a1σ

]

=
√
at

L+ µ

1− aµ

t−1
∑

τ=0

(

M
√

1− aµ
)t−τ−1

[

0√
aτ+1‖∆y(τ)‖E

]

+Mt

[

0
a1σ

]

.

Recall that the eigenvalues for matrix M are λ1 = (ξ1 + ξ2)/2
and λ2 = (ξ1 − ξ2)/2, where

ξ1 =
β(2 + aL)

1− aµ
, ξ2 =

a(L+ µ)

1− aµ

√

β2L2

(L+ µ)2
+

4β(β + 1)

a(L+ µ)
.

Thus, the analytical form for the nth power of M is (see,

e.g., [44])

Mn = λn
1

(

M− λ2I

λ1 − λ2

)

+ λn
2

(

M− λ1I

λ2 − λ1

)

= λn
1

(

M− λ2I

λ1 − λ2

)

− λn
2

(

M− λ1I

λ1 − λ2

)

.

It then follows that

(Mn)12 =
M12(λ

n
1 − λn

2 )

λ1 − λ2
=

β(λn
1 − λn

2 )

λ1 − λ2
≤ 2β(ρ(M))n

ξ2
,

where ρ(M) is the spectral radius of M. Due to our assump-

tion that

1

a
>

β(2L+ 3µ)

(1 − β)2
+ µ >

2β(L+ µ)

(1− β)2

and β ∈ (0, 1), we have ξ2 > 2aβ(L+µ)
1−aµ

. Therefore,

‖z̃(t)‖E ≤
2β L+µ

1−aµ

√
at

ξ2

t−1
∑

τ=0

νt−τ−1√aτ+1‖∆y(τ)‖E

+
2β

ξ2
(ρ(M))

t
a1σ

≤
√
at

a

t−1
∑

τ=0

νt−τ−1√aτ+1‖∆y(τ)‖E

+
1− aµ

a(L+ µ)
(ρ(M))t a1σ.

(64)

This bound, together with Lemma 5, yields
√
at+1‖x(t) − y(t)‖E

≤
√
at+1

1 + µAt

(√
at
a

t−1
∑

τ=0

νt−τ−1√aτ+1‖∆y(τ)‖E +
(ρ(M))

t

L+ µ
σ

)

≤
∑t−1

τ=0 ν
t−τ−1√aτ+1‖∆y(τ)‖E√

1− aµ
+

√

a
1−aµ

νtσ

L+ µ
.

(65)

The desired inequality (36) then follows from this and

Lemma 6.

C. Proof of Lemma 3

Proof of Lemma 3. Define

mt(x) :=

t−1
∑

τ=0

aτ+1

(

〈g(τ), x〉+ µ

2
‖x− x(τ)‖2 + h(x)

)

+ d(x)

where m0(x) = d(x). Due to z(t) =
∑t−1

τ=0 aτ+1(g
(τ)−µx(τ))

in Lemma 4, we can equivalently express (17) as

y(t) = argmin
x∈Rm

mt(x).

Since mτ−1(x) is strongly convex with modulus 1 + µAτ−1,

we have, ∀x ∈ dom(h),

mτ−1(x) −mτ−1(y
(τ−1)) ≥ 1

2
(1 + µAτ−1)‖x− y(τ−1)‖2.

Further, by noticing

mτ (x) = mτ−1(x) + aτ

(

〈g(τ−1)
, x〉+

µ

2
‖x− x

(τ−1)‖2 + h(x)
)

,

we have

0 ≤mτ−1(y
(τ))−mτ−1(y

(τ−1))− 1

2
(1 + µAτ−1) ‖y(τ) − y(τ−1)‖2

=mτ (y
(τ)) − aτ

(

〈g(τ−1), y(τ)〉+ µ

2
‖y(τ) − x(τ−1)‖2 + h(y(τ))

)

−mτ−1(y
(τ−1))− 1

2
(1 + µAτ−1) ‖y(τ) − y(τ−1)‖2,

which is equivalent to

aτ

(

〈g(τ−1), y(τ)〉+ h(y(τ))
)

≤ mτ (y
(τ))−mτ−1(y

(τ−1))− µ

2
aτ‖y(τ) − x(τ−1)‖2

− 1

2

(

1 + µAτ−1

)

‖y(τ) − y(τ−1)‖2.

Summing up the above inequality from τ = 1 to τ = t leads

to
t
∑

τ=1

aτ

(

〈g(τ−1), y(τ)〉+ h(y(τ))
)

≤ mt(y
(t))−m0(y

(0))−
t
∑

τ=1

1

2

(

(1 + µAτ−1)‖∆y(τ−1)‖2

+ µaτ‖y(τ) − x(τ−1)‖2
)

= mt(y
(t))−

t
∑

τ=1

1

2

(

(1 + µAτ−1)‖y(τ) − y(τ−1)‖2

+ µaτ‖y(τ) − x(τ−1)‖2
)

.

(66)
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where the equality is due to y(0) = x(0) and (6). Then, we
turn to consider

t
∑

τ=1

aτ 〈∇f(x(τ−1)),−x
∗〉

≤ max
x∈Rm

{

t
∑

τ=1

aτ

(

〈∇f(x(τ−1)),−x〉 −
µ

2
‖x− x

(τ−1)‖2

− h(x)
)

− d(x)
}

+ d(x∗) +
t
∑

τ=1

aτ

(

µ

2
‖x(τ−1) − x

∗‖2 + h(x∗)
)

= − min
x∈Rm

{

t
∑

τ=1

aτ

(

〈∇f(x(τ−1)), x〉+
µ

2
‖x− x

(τ−1)‖2

+ h(x)
)

+ d(x)
}

+ d(x∗) +
t
∑

τ=1

ak

(

µ

2
‖x(k−1) − x

∗‖2 + h(x∗)
)

= −rt(x
(t)) + d(x∗) +

t
∑

τ=1

aτ

(µ

2
‖x(τ−1) − x

∗‖2 + h(x∗)
)

.

(67)

which in conjunction with (66) leads to the inequality in (37).

APPENDIX V

ESTIMATION OF a

As we remarked after Theorem 2, there exists an ā ∈
(0, µ−1) such that the conditions in Theorem 2 are satisfied

by any a ∈ (0, ā). Of course, we would like to find an ā as

large as possible, but finding the maximum value of ā requires

solving a nonlinear equation associated with (18), which does

not admit a closed-form solution. Instead, we provide in the

following lemma a conservative estimation of ā.

In Theorem 2, we have two conditions on a, i.e.,

1

a
>

β(2L+ 3µ)

(1− β)2
+ µ, (68)

and

1

a
> 2L− µ+

4L− 2µ

η(a)
, (69)

where η(a) = (1 − aµ)(1 − ρ(M)
√
1− aµ)2. Moreover,

ρ(M) = λ1 = (ξ1 + ξ2)/2, where ξ1, ξ2 are defined in (49).

Then, one can verify that by taking a = 1/(2µ), we have

η

(

1

2µ

)

=

(

1− β(
√
2 + L

2
√
2µ
)−

√

β2L2

8µ2 + β(β + 1)(1 + L
µ
)
)2

2
.

We have shown that η decreases with a if (68) is satisfied, so

η(a) > η

(

1

2µ

)

for all a satisfying 0 < a < 1/(2µ) and (68). Then, as long
as a satisfies

1

a
>

β(2L + 3µ)

(1− β)2
+ µ,

1

a
> 2L− µ+

4L− 2µ

η( 1
2µ

)

= 2L− µ+
8L− 4µ

(

1− β(
√
2 + L

2
√

2µ
)−

√

β2L2

8µ2 + β(β + 1)(1 + L
µ
)
)2

,

1

a
> 2µ,

(70)
then a also satisfies (68) and (69). This implies that we can

take

a = min







1

2µ
,

1
β(2L+3µ)

(1−β)2
+ µ

,E







where

E =
(

1− β(
√
2 + L

2
√

2µ
)−

√

β2L2

8µ2 + β(β + 1)(1 + L
µ
)
)2

(2L− µ)

(

4 +
(

1− β(
√
2 + L

2
√

2µ
)−

√

β2L2

8µ2 + β(β + 1)(1 + L
µ
)
)2

) .

It would be interesting to estimate the order of ā when the

condition number κ = L/µ goes to ∞ and the β, which relates

to the connectivity of the stochastic network, goes to 1. By the

standard limiting argument, one can verify that the dominating

term inside the above brace is the second term, which is in

the order O((1− β)2/L).

APPENDIX VI

PROOF OF THEOREM 1

In this section, we first provide a technical lemma, and then

present the proof of Theorem 1.

Lemma 7. Suppose that the premise of Theorem 1 holds. For

the sequence {x(t)}t≥0 generated by (7), it holds that

t
∑

τ=1

aτ

(

〈∇f(x(τ−1)), x(τ) − x∗〉+ h(x(τ))− h(x∗)
)

− d(x∗)

≤ −1

2

t
∑

τ=1

(

1 + µAτ

)

‖x(τ) − x(τ−1)‖2

− µ

2

t
∑

τ=1

aτ‖x(τ−1) − x∗‖2.

(71)

Proof. We define

rt(x) :=

t−1
∑

τ=0

aτ+1ℓ(x;x
(τ)) + d(x), t = 0, 1, . . . ,

where r0(x) = d(x) and ℓ(x;x(τ)) is defined in (9). It then

follows that for any τ ≥ 1,

rτ (x) = rτ−1(x)

+ aτ

(

〈∇f(x(τ−1)), x〉 + µ

2
‖x− x(τ−1)‖2 + h(x)

)

.

(72)
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By (7), we know that x(τ−1) = argminx∈Rm rτ−1(x). More-

over, rτ−1(x) is strongly convex with modulus 1 + µAτ−1.

Then, we obtain ∀x ∈ dom(h)

rτ−1(x)− rτ−1(x
(τ−1)) ≥ 1

2
(1 + µAτ−1)‖x− x(τ−1)‖2.

Therefore,

0 ≤rτ−1(x
(τ))− rτ−1(x

(τ−1))− 1

2

(

1 + µAτ−1

)

‖x(τ) − x(τ−1)‖2

=− aτ
(

〈∇f(x(τ−1)), x(τ)〉 + µ

2
‖x(τ) − x(τ−1)‖2 + h(x(τ))

)

+ rτ (x
(τ))− rτ−1(x

(τ−1))− 1

2

(

1 + µAτ−1

)

‖x(τ) − x(τ−1)‖2,

where the equality follows from (72). This, together with

Aτ = Aτ−1 + aτ , leads to

aτ

(

〈∇f(x(τ−1)), x(τ)〉+ h(x(τ))
)

≤ rτ (x
(τ))− rτ−1(x

(τ−1))− 1

2

(

1 + µAτ

)

‖x(τ) − x(τ−1)‖2.
Summing up the above inequality from τ = 1 to τ = t yields

t
∑

τ=1

aτ

(

〈∇f(x(τ−1)), x(τ)〉+ h(x(τ))
)

≤ rt(x
(t))− r0(x

(0))−
t
∑

τ=1

1

2

(

1 + µAτ

)

‖x(τ) − x(τ−1)‖2

= rt(x
(t))−

t
∑

τ=1

1

2

(

1 + µAτ

)

‖x(τ) − x(τ−1)‖2,

(73)

where the equality follows from r0(x) = d(x) and (6). Then,
we turn to consider

t
∑

τ=1

aτ 〈∇f(x(τ−1)),−x
∗〉

≤ max
x







t
∑

τ=1

aτ

(

〈∇f(x(τ−1)),−x〉 − µ

2
‖x − x

(τ−1)‖2 − h(x)

)

− d(x)







+ d(x∗) +
t

∑

τ=1

aτ

(

µ

2
‖x(τ−1) − x

∗‖2 + h(x∗)

)

= − min
x∈Rm







t
∑

τ=1

aτ

(

〈∇f(x
(τ−1)

), x〉 + µ

2
‖x − x

(τ−1)‖2 + h(x)

)

+ d(x)







+ d(x∗) +
t

∑

τ=1

aτ

(

µ

2
‖x(τ−1) − x

∗‖2 + h(x∗)

)

= −rt(x
(t)

) + d(x
∗
) +

t
∑

τ=1

aτ

(

µ

2
‖x(τ−1) − x

∗‖2 + h(x
∗
)

)

.

(74)

Upon summing up (73) and the above inequality, we ob-

tain (71) as desired.

Proof of Theorem 1. Recall that f = 1
n

∑n
i=1 fi. Using (35)

and (3) sequentially, we have

aτ

(

f(x(τ))− f(x∗)
)

≤ aτ

(L

2
‖x(τ) − x(τ−1)‖2 + f(x(τ−1))

+ 〈∇f(x(τ−1)), x(τ) − x(τ−1)〉 − f(x∗)
)

≤ aτ

(L

2
‖x(τ) − x(τ−1)‖2 +

〈

∇f(x(τ−1)), x(τ) − x∗
〉

− µ

2
‖x(τ−1) − x∗‖2

)

.

Upon summing up the above inequality from τ = 1 to τ = t
and using Lemma 7 and F = f + h, we obtain

t
∑

τ=1

aτ

(

F (x(τ))− F (x∗)
)

≤
t
∑

τ=1

(aτ
2

(

L‖x(τ) − x(τ−1)‖2 − 1 + µAτ

aτ
‖x(τ) − x(τ−1)‖2

))

+ d(x∗).

According to (8) and At =
∑t

τ=1 aτ , one has

1 + µAτ

aτ
=

( 1
1−aµ

)τ

a
1−aµ

(

1
1−aµ

)τ−1 =
1

a
. (75)

By substituting this into the above inequality and using the

condition a ≤ L−1, we obtain

t
∑

τ=1

aτ

(

F (x(τ))− F (x∗)
)

≤
(

L− 1

a

) t
∑

τ=1

aτ
2
‖x(τ) − x(τ−1)‖2 + d(x∗) ≤ d(x∗).

Upon dividing both sides of the above inequality by At and

using the convexity of F and x̃(t) = A−1
t

∑t
τ=1 aτx

(τ), we

obtain

F (x̃(t))− F (x∗) ≤ d(x∗)
At

.

Now it remains to show the statements i) and ii) in Theorem 1.

By the definitions of at and At, we readily have At = at when

µ = 0 and
1

At

=
µ

( 1
1−aµ

)t − 1

when µ > 0. Moreover, by 0 < a < L−1 and L ≥ µ, one

has 0 < aµ < 1 when µ > 0. This, together with the above

identity, yields that when µ > 0,

1

At

=
µ

( 1
1−aµ

)t − 1
=

µ(1− aµ)t

1− (1 − aµ)t

≤ µ(1− aµ)t

1− (1 − aµ)
=

(1 − aµ)t

a
.

This completes the proof.
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