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Abstract— This paper studies the problem of steering
a linear system subject to state and input constraints to-
wards a goal location that may be inferred only through
noisy partial observations. We assume mixed-observable
settings, where the system’s state is fully observable and
the environment’s state defining the goal location is only
partially observed. In these settings, the planning problem
is an infinite-dimensional optimization problem where the
objective is to minimize the expected cost. We show how
to reformulate the control problem as a finite-dimensional
deterministic problem by optimizing over a trajectory tree.
Leveraging this result, we demonstrate that when the en-
vironment is static, the observation model piecewise, and
cost function convex, the original control problem can be
reformulated as a Mixed-Integer Convex Program (MICP)
that can be solved to global optimality using a branch-and-
bound algorithm. The effectiveness of the proposed ap-
proach is demonstrated on navigation tasks, where the goal
location should be inferred through noisy measurements.

Index Terms— Optimal control, observability, measure-
ment uncertainty.

I. INTRODUCTION

Model Predictive Control (MPC) is a mature control tech-
nology that in part owns its popularity to developments in
optimization solvers [1]–[10]. In MPC, at each time step
an optimal planned trajectory is computed solving a finite-
dimensional optimization problem, where the cost function
and constraints encode the control objectives and safety re-
quirements, respectively. Then, the first optimal control action
is applied to the system and the process is repeated at the
next time step based on the new measurement. This control
methodology is ubiquitous in industry, with applications rang-
ing from autonomous driving [11]–[13] to large scale power
systems [14]–[16].

For deterministic discrete-time systems, an optimal trajec-
tory represented by a sequence of states and control actions can
be computed leveraging a predictive model of the system. On
the other hand, when uncertainties are acting on the system
and/or only partial state observations are available, it is not
possible to plan an optimal trajectory for the closed-loop
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system, as its future evolution is uncertain. In these cases, the
controller should plan the evolution of the system taking into
account that in the future new measurements will be available.
More formally, the controller should plan the evolution of the
system using a policy that is a function mapping the system’s
state to a control action. Unfortunately planning over policies
is computationally intractable, even for the constrained linear
quadratic regulator problem when additive disturbances affect
the system’s dynamics [17].

Several strategies have been presented in the literature to
ease the computational burden of planning over policies [18]–
[25]. When the system dynamics are affected by disturbances
and the system’s state can be perfectly measured, the planning
problem can be simplified by computing affine disturbance
feedback policies that map disturbances to control actions [18],
[19], [25]. Another class of feedback policies is considered
in tube MPC strategies [20]–[23], where the control actions
are computed based on a predefined feedback term and a
feed-forward component that is computed online by solving
an optimization problem. Similar strategies may be used in
partially observable settings [26]–[28].

The above mentioned strategies are designed for uni-modal
disturbances and measurement noise. However, in several prac-
tical engineering applications uncertainties are multi-modal,
and it is required to design controllers that take the structure
of the uncertainty into account to reduce conservatism. For
instance, in autonomous driving a controller should plan
a trajectory taking into account that surrounding vehicles
and pedestrians may exhibit different behaviors that can be
categorized into modes, e.g., merging or lane keeping for a
car, and crossing or not crossing for a pedestrian [29]–[32].
Planning over a trajectory tree, where each branch is associated
with different uncertainty modes, is a standard strategy that
has been leveraged in the literature to synthesize a controller
that can handle multi-model disturbances [30]–[35], when
perfect state feedback is available. It is worth mentioning that
also adaptive dynamic programming strategies can be used
to design controllers for uncertain systems when perfect state
feedback is available [36]–[38].

In this work, we introduce the mixed-observable constrained
linear quadratic regular problem, where perfect state feedback
is not available for a subset of the state space. Compared to the
standard LQR problem, in our formulation we consider state
and input constraints and, most importantly, we assume that
only noisy environment measurements about the goal location
are available. Thus, the controller has to compute actions also
to collect informative measurements. This problem arises in
navigation tasks, where a robot has to find an object that
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could be in a finite number of candidate locations, and the
exact one has to be inferred through noisy measurements.
We assume that the system’s state is fully observable and
we model the partially observable environment state, which
represents the goal location, using a hidden Markov model
(HMM) [39]. The HMM is constructed based on the system
and the environment states and it allows us to characterize
the observation model by describing the sensors’ accuracy.
We consider discrete time systems and environments with
continuous and discrete state spaces, respectively. For this
reason, our approach generalizes the strategy from [40], where
the authors introduced the mixed-observable control problem
for discrete time systems with discrete state spaces.

Our contribution is twofold. First, we show how to refor-
mulate the optimal control problem as a deterministic finite-
dimensional optimization problem over a trajectory tree. The
computational cost of solving this finite-dimensional opti-
mal control problem increases exponentially with the hori-
zon length, thus we introduce an approximation that can be
used to compute a feasible solution to the original problem.
Then, leveraging these results, we demonstrate that through a
nonlinear change of coordinates the original optimal control
problem can be approximated by solving a Mixed-Integer
Convex Program (MICP), when the environment is static and
the observation model is piecewise. As a corollary, we show
that when the observation model is constant the value function
associated with the optimal control problem is convex. Finally,
we test the proposed strategy on two navigation examples.

Notation: For a vector b ∈ Rn and an integer s ∈
{1, . . . , n}, we denote b[s] as the s-th component of the vector
b, b> indicates its transpose, M = diag(b) ∈ Rn×n is a
diagonal matrix with diagonal elements M [s, s] = b[s], and
v = 1/b is defined as a vector v ∈ Rn with entries v[s] =
1/b[s] for all s ∈ {1, . . . , n}. For a function T : Rn → R,
T (b) denotes the value of the function T at b. Throughout
the paper, we will use capital letters to indicate functions and
lower letters to indicate vectors. The set of positive integers is
denoted as Z0+ = {1, 2, . . .}, and the set of (strictly) positive
reals as (R+ = (0,∞)) R0+ = [0,∞). Furthermore, given a
set Z and an integer k, we denote the k-th Cartesian product
as Zk = Z × . . .×Z and |Z| as the cardinality of Z . Finally,
given a real number a ∈ R we define the floor function bac,
which outputs the largest integer i = bac such that i ≤ a.

II. PROBLEM FORMULATION

A. System and Environment Models

We consider the following linear time-invariant system:

xk+1 = Axk +Buk, (1)

where the state xk ∈ Rn, the input uk ∈ Rd, and k indexes
over discrete time steps. Furthermore, the above system is
subject to the following state and input constraints:

uk ∈ U ⊆ Rd and xk ∈ X ⊆ Rn,∀k ≥ 0. (2)

Our goal is to control system (1) in environments repre-
sented by partially observable discrete states. In particular,

the environment evolution is modeled using a hidden Markov
model (HMM) given by the tuple H = (E ,O, T, Z), where:
• E = {1, . . . , |E|} is a set of partially observable environ-

ment states;
• O = {1, . . . , |O|} is the set of observations.
• The function T : E × E × Rn → [0, 1] describes

the probability of transitioning to a state e′ given the
current environment state e and system’s state x, i.e.,
T (e′, e, x) := P(e′|e, x).

• The function Z : E × O × Rn → [0, 1] describes the
probability of observing o, given the environment state e
and the system’s state x, i.e., Z(e, o, x) := P(o|e, x).

As the environment state ek is partially observable, we
introduce the following belief vector:

bk ∈ B = {b ∈ R|E|0+ :

|E|∑
e=1

b[e] = 1}.

The belief bk is a sufficient statistics and each entry bk[e]
represents the posterior probability that the state of the en-
vironment ek equals e ∈ E , given the observation vector
ok = [o1, . . . , ok], the system’s trajectory xk = [x1, . . . , xk],
the state x(0), and the belief vector b(0) at time t = 0, i.e.,
bk[e] = P(e|ok,xk, x(0), b(0)).

Consider an example where a Mars rover has to find a
science sample that may be in one of several locations,
which are identified using coarse and low resolution surface
images [41], [42]. As the exact location is unknown, the rover
is required to collect measurements to identify the science
sample’s location. In this setting, the environment could be
represented by an HMM where the set of environment states
E collects the possible science sample locations, e.g., E =
{loc1, . . . , locn} and e = loci if the science sample is in
the i-th location. In the next section, we further formalize this
navigation task as a regulation problem.

B. Control Objectives

Given the environment’s belief b(t) and system’s state x(t),
our goal is solve the following finite time optimal control
problem (FTOCP):

J(x(t), b(t))

= min
π

EoN−1

[N−1∑
k=0

h(xk, uk, ek) + hN (xN , eN )

∣∣∣∣b(t)]
subject to xk+1 = Axk +Buk,

uk = πk(ok,xk, x(t), b(t)),

x0 = x(t),

uk ∈ U , xk ∈ X ,∀k ∈ {0, . . . , N − 1},
(3)

where the stage cost h : Rn × Rd × E → R and the terminal
cost hN : Rn × E → R. Note that the objective is a function
of the partially observable environment states ek ∈ E , and
the expectation is over the environment observations oN−1 =
[o1, . . . , oN−1], which are stochastic as discussed in Section II-
A. In the above FTOCP, the optimization is carried out over
the sequence of control policies π = [π0, . . . , πN−1], and at



each time k the policy πk : Ok × X k+1 × B → Rd maps the
environment observations up to time k, the system’s trajectory,
and the initial belief b(t) to the control action uk. Notice that
we focus on the solution to the above finite-time control task
and we do not analyze the stability properties of the closed-
loop system.

Computing the optimal solution to the FTOCP (3) is chal-
lenging as i) the environment’s state is partially observable,
ii) our goal is to minimize the expected cost, and iii) the
optimization is infinite dimensional as it is carried out over the
space of feedback policies, which are functions mapping states
and belief vectors to inputs. In what follows, we show that the
FTOCP (3) can be reformulated as a finite-dimensional non-
linear program (NLP). Leveraging the discrete nature of the set
of observations O, we will show that optimizing over feedback
policies is equivalent to optimizing over a tree of control
actions. Furthermore, we show that when the environment is
static, the cost functions h(·, ·, e) and hN (·, e) are convex and
quadratic, and the observation function Z(e, o, ·) : Rn → [0, 1]
is piecewise for all e ∈ E and o ∈ O, then the FTOCP (3)
can be recast as an MICP. Finally, we show that when the
observation model is constant the FTOCP (3) can be written
as a convex parametric optimization problem.

III. THE EXACT SOLUTION

A. Cost Reformulation
As discussed in Section II-A, the belief bk is a sufficient

statistics for an HMM [39]. Therefore, at each time k the
belief can be computed using the observation ok, the system’s
state xk, and the belief at the previous time step bk−1, i.e.,

bk[e] =
Z(e, ok, xk)

P(ok|xk, bk−1)

∑
i∈E

T (e, i, xk)bk−1[i]. (4)

For further details about the belief update equation please refer
to [40], [42]. The above equation can be written in compact
form:

bk =
Ae(ok, xk)bk−1
P(ok|xk, bk−1)

,

where P(ok|xk, bk−1) is a normalization constant and the
matrix Ae(ok, xk) ∈ R|E|×|E|, which is a function of the
observations ok and the system’s state xk at time k, is defined
as follows:

Ae(ok, xk) = Θ(ok, xk)Ω(xk), (5)

where

Ω(xk) =


T (1, 1, xk) . . . T (1, |E|, xk)
T (2, 1, xk) . . . T (2, |E|, xk)

...
...

T (|E|, 1, xk) . . . T (|E|, |E|, xk)

 (6)

and

Θ(ok, xk) = diag
( [
Z(1, ok, xk) . . . Z(|E|, ok, xk)

] )
.

Leveraging the above definitions, we show that the expected
cost from problem (3) can be rewritten as a summation over
the set of possible observations O.

Proposition 1. Consider the optimal control problem (3). The
expected cost can be equivalently written as

EoN−1

[
N−1∑
k=0

h(xk, uk, ek) + hN (xN , eN )

∣∣∣∣∣b0
]

=

N−1∑
k=0

∑
ok∈Ok

∑
e∈E

vok

k [e]h(xk, uk, e)

+
∑

oN∈ON

∑
e∈E

voN

N [e]hN (xN , e),

(7)

where the unnormalized belief vok

k = Ae(ok, xk)v
ok−1

k−1 and
the matrix Ae(ok, xk) ∈ R|E|×|E| is defined in (5).

Proof: First, we notice that, as the system dynamics are
deterministic, the expected stage cost at time step k can be
written as:

EoN−1
[h(xk, uk, ek)|xk, x0, b0]

=
∑

ok∈Ok

EoN−1
[h(xk, uk, ek)|xk, x0, b0,ok]P(ok|xk, x0, b0)

=
∑

ok∈Ok

∑
e∈E

bk[e]h(xk, uk, e)P(ok|xk, x0, b0)

=
∑

ok∈Ok

∑
e∈E

vok

k [e]h(xk, uk, e).

(8)
In the above derivation we leveraged the independence
of the observations collected at each time step, i.e.,
P(ok|xk, x0, b0) = P(o1|x1, x0, b0) × . . . × P(ok|xk, x0, b0),
and we defined

vok

k [e] = Z(e, ok, xk)
∑
i∈E

T (e, i, xk)v
ok−1

k−1 [i],

which can be written in compact form as vok

k =
Ae(ok, xk)v

ok−1

k−1 . Finally, we notice that the derivation in (8)
holds also for the terminal cost function hN . Therefore, we
have that the desired result follows from (8) and the linearity
of the expectation in equation (7).

Fig. 1. Tree of trajectories for N = 3, where at each time k there are
|O| = 2 possible observations. Each predicted control action u

ok
k is

associated with an observation vector ok ∈ Ok. Thus, the above tree
encodes a policy given by the actions that the controller would apply in
the future depending on the observations collected up to time k.



B. Deterministic Reformulation

In the previous section, we showed how to leverage the
beliefs associated with all possible observations to express the
expectation as a summation. In this section, we show that
the optimization carried out over feedback policies can be
reformulated as an optimization over a tree of trajectories, as
the one shown in Figure 1.

The control policy πk : Ok ×X k+1 ×B from (3) maps the
vector of observations ok = [o1, . . . , ok] ∈ Ok, the system’s
trajectory, and the initial belief b0 = b(0) to the control
action uk, i.e., uk = π(ok,xk, x0, b0). Notice that the system
dynamics from problem (3) are deterministic and therefore,
given an initial condition x(t) and an initial belief b(t), the
control action at time k is a function only of the observation
vector ok. Thus, we define the control action uok

k ∈ Rd

associated with the observation vector ok ∈ Ok, and we
reformulate problem (3) as an optimization problem over the
set of control actions {uok

k ∈ Rd : k ∈ {0, . . . , N − 1},ok ∈
Ok}. This strategy allows us to optimize over policies as at
time k the controller plans |O|k distinct actions associated with
each uncertain sequence of observations ok = [o1, . . . , ok] ∈
Ok. Basically, the controller optimizes over a tree of control
actions, as shown in Figure 1. More formally, given the
environment’s belief b(t) and the system’s state x(t), we
rewrite problem (3) as:

J(x(t), b(t)) = min
u

N−1∑
k=0

∑
ok∈Ok

∑
e∈E

vok

k [e]h(xok

k , uok

k , e)

+
∑

oN∈ON

∑
e∈E

voN

N [e]hN (xoN

N , e)

subject to xok

k+1 = Ax
ok−1

k +Buok

k ,

x
o−1

0 = x(t), vo0
0 = b(t),

v
ok+1

k+1 = Ae(ok+1, x
ok

k+1)vok

k ,

uok

k ∈ U , xok

k+1 ∈ X ,
∀ok ∈ Ok,∀k ∈ {0, . . . , N − 1},

(9)
where the vector of observations ok = [o1, . . . , ok] for all
k ∈ {1, . . . , N − 1}, and at time k = 0 we defined o0 =
o−1 = b(t), and O0 = b(t). In the above problem, the matrix
of decision variables is defined as:

u = [uo0
0 , . . . , u

oN−1

N−1 ] ∈ Rd×
∑N−1

k=0 |O|
k

. (10)

Note that, for each time step k ∈ {0, . . . , N − 1}, the above
matrix collects the |O|k control actions associated with all
observation vectors from the set Ok.

Lemma 1. Assume that X and U are compact. Let C ⊂ X be
a control invariant set for system (1) subject to constraints (2),
i.e., ∀x ∈ X there exists u ∈ U such that Ax + Bu ∈ C. If
x(t) ∈ C, then problem (9) admits an optimal solution.

Proof: By definition, we have that for x(t) ∈ C there exists
a sequence of N control actions that keep the system inside
C. Hence, problem (9) is feasible. Compactness of state and
input constraint sets yields the desired result.

C. Practical Approach

The FTOCP (9) is a finite-dimensional NLP that can be
solved with off-the-self solvers. However, the computational
cost of solving (9) is non-polynomial in the horizon length,
as the number of decision variables from (10) grows exponen-
tially with the horizon length N . Indeed, at each time step k
the predicted trajectory branches as a function of the discrete
observation ok ∈ O, as shown in Figure 1. In this section,
we introduce an approximation to the FTOCP (9), where
the predicted trajectory branches every Nb time steps. This
strategy allows us to limit the number of optimization variables
and, for a prediction horizon of N steps, the computational
burden is proportional to the ratio N/Nb.

Given the current state x(t), the environment’s belief b(t),
the constant Nb ∈ Z0+, and the prediction horizon N = PNb

with P ∈ Z0+, we solve the following FTOCP:

Ĵ(x(t), b(t))

= min
a

N−1∑
k=0

∑
ōj(k)∈Oj(k)

∑
e∈E

v̄
ōj(k)

k [e]h(s
ōj(k)

k , a
ōj(k)

k , e)

+
∑

ōj(N)∈Oj(N)

∑
e∈E

v̄
ōj(N)

k [e]hN (s
ōj(N)

N , e)

subject to s
ōj(k)

k+1 = As
ōj(k−1)

k +Ba
ōj(k)

k ,

s
ō−1

0 = x(t), v̄ō0
0 = b(t),

v̄
ōj(k+1)

k+1 = Ce(ōj(k+1), s
ōj(k)

k+1 , k)v̄
ōj(k)

k ,

a
ōj(k)

k ∈ U , sōj(k)

k+1 ∈ X ,
j(k) = bk/Nbc,
∀ōj(k) ∈ Oj(k),∀k ∈ {0, . . . , N − 1},

(11)
where for P = N/Nb ∈ Z0+ and j(k) = bk/Nbc the matrix
of decision variables

a=[aō0
0 , . . . , a

ō0

P , . . . , a
ōj(k)

k , . . . , a
ōj(N−1)

N−1 ]∈Rd×
∑P−1

k=0 Nb|O|k,
(12)

the vector of observations ōj(N−1) = ōP−1 = [ō1, . . . , ōP−1],
and the matrix Ce(ōk, s

ōj(k−1)

k , k) is defined as:

Ce(ōj(k), s
ōj(k−1)

k , k)

=

{
Ae(ōj(k), s

ōj(k−1)

k ) If bk/Nbc = t/Nb and k > 0

Ω(s
ōj(k−1)

k ) Otherwise
,

(13)
where Ω(·) is defined as in (6).

Compare the FTOCP (9) with the FTOCP (11). In the
FTOCP (9) we optimize over the tree of trajectories shown in
Figure 1, and therefore the complexity of the problem grows
exponentially with the horizon length N . On the other hand,
in the FTOCP (11) we optimize over a tree of trajectories that
branches every Nb time steps, and the matrix of optimization
variables (12) grows exponentially with the ratio P = N/Nb.
Therefore, in the FTOCP (11) the user-defined constant Nb

may be used to limit the computational complexity when
planning over a horizon N . As a trade-off, the optimal value
function Ĵ associated with the FTOCP (11) only approximates
the value function J associated with the FTOCP (9).



IV. STATIC ENVIRONMENTS, PIECEWISE OBSERVATION
MODEL, AND QUADRATIC COST: THE EXACT SOLUTION

In this section, we consider problems with static environ-
ments, piecewise observation model, and convex quadratic cost
function. Under these assumptions, we show that problem (9)
can be reformulated as an MICP.

In what follows, we first introduce the problem setup. Then,
we show how to reformulate problem (9) as an MICP.

Assumption 1 (Static Environment). The environment is
static, which in turns implies that the transition function T
is defined as follows: T (e, e) = 1, T (e′, e) = 0,∀e ∈ E and
∀e′ ∈ E such that e 6= e′.

Assumption 2 (Piecewise Observation Model). The obser-
vation model is a piecewise function of the system state x. In
particular, given R disjointed polytopic regions {Xi}Ri=1 such
that ∪Ri=1Xi = X , we have that: Z(e, o, x) = Mi(e, o) if x ∈
Xi, for a set of functions Mi : E × O → [0, 1].

Assumption 3 (Convex Quadratic Cost Function). For a
fixed environment state e ∈ E , the stage cost h(·, ·, e) :
Rn × Rd → R and the terminal cost hN (·, e) : Rn → R are
convex and quadratic, i.e., h(x, u, e) = ||x − x(e)g ||Q + ||u −
u
(e)
g ||R, hN (x, e) = ||x− x(e)g ||QN

where the weighted square
norm ||x||Q = x>Qx for the positive semi-definite matrix Q,
and the vectors x(e)g ∈ Rn and u(e)g ∈ Rd are user-defined.

Assumption 4 (Strictly Positive Belief). All entries of the
belief vector b(0) are strictly positive, i.e., b(0) ∈ B+ = {b ∈
R|E|0+ :

∑|E|
i=1 b[e] = 1}. Furthermore, we cannot observe the

true environment state e ∈ E from any state x ∈ X , i.e.,
P(o = e|e, x) = Z(e, o, x) : E × O × Rn → (0, 1).

Given the system’s state x(t) and the inverse belief vector
z(t) = 1/b(t) ∈ R|E|, we define the following FTOCP:

V (x(t), z(t)) = min
u,δ

N−1∑
k=0

∑
ok∈Ok

∑
e∈E

h(xok

k , uok

k , e)

zok

k [e]

+
∑

oN∈ON

∑
e∈E

hN (xoN

N , e)

zoN

N [e]

subject to xok

k+1 = Ax
ok−1

k +Buok

k ,

x
o−1

0 = x(t), zo0
0 = z(t),

uok

k ∈ U , xok

k ∈ X ,
z

ok+1

k+1 =
∑R

i=1Di(ok+1)zok

k δok

k,i,

δok

k,i = 1Xi(x
ok

k ),∀i ∈ {1, . . . , R},
∀k ∈ {0, . . . , N − 1},

(14)
where the indicator function 1Xi(x

ok

k ) = 1 if xok

k ∈ Xi and
zero otherwise, and the optimization variables

u = [uo0
0 , . . . , u

oN−1

N−1 ] ∈ Rd×
∑N−1

k=0 |O|k ,

δ = [δo0
0,1, . . . , δ

oN−1

N−1,R] ∈ {0, 1}R
∑N−1

k=0 |O|k .
(15)

Notice that at each time k for the vector of observations ok, we
have that the integer variable δok

k,i equals one if and only if the
state xok

k ∈ Xi. In the above problem, for all i ∈ {1, . . . , R}

the entries of diagonal matrices Di(o) ∈ R|E|×|E| are defined
as follows:

Di(o)[e, e] = 1/Mi(o, e),∀e ∈ E ,∀o ∈ O. (16)

The following theorem shows that, under Assumptions 1–
4, problem (14) is equivalent to problem (3). Furthermore,
problem (14) can be recast as an MICP.

Theorem 1. Consider problem (3) and problem (14). Let
Assumptions 1–4 hold. Then, for z(t) = 1/b(t) we have that

J(x(t), b(t)) = V (x(t), z(t)),

for all x(t) ∈ X . Furthermore, for all z(t) ∈ R|E|+ and x(t) ∈
Rn problem (14) can be recast as a Mixed-Integer Convex
Program (MICP).

Proof: First we show that zok

k = 1/vok

k for all k ∈
{0, . . . , N − 1}. From Assumptions 1–2, we have that for
xk ∈ Xi the unnormalized belief update is

vok

k [e] = Z(e, ok, xk)
∑
i∈E

T (e, i)v
ok−1

k−1 [i]

= Z(e, ok, xk)v
ok−1

k−1 [e]

= Mi(e, ok)v
ok−1

k−1 [e].

(17)

From the above equation and definition (16), we have that
zok

k [e] = 1/vok

k [e],∀e ∈ E , which in turns implies that
the optimal cost from problem (14) equals the one from
problem (9) and therefore

J(x(t), b(t)) = V (x(t), z(t)),

for all x(t) ∈ X .
Notice that the objective function in problem (14) is convex,

as it is given by a convex quadratic function over a strictly
positive linear function [43]. Furthermore, given the initial
condition z(t) we can compute an upper-bound zmax

k [e] for
each e-th entry of the unnormalized belief zok

k , i.e.,

zmax
k [e] =

(
max

o∈O,i∈{1,...,R}
Di(o)

)k−1
zo0
0 [e] ≥ zok

k [e]. (18)

Finally, we have that the piecewise model from Assumption 2
is a mixed logical dynamical (MLD) systems [44]. Thus
following the procedure presented in [44], problem (14) can
be recast as an MICP using the upper-bound from (18).

Corollary 1. Consider problem (14) and let Assumptions 1–4
hold. If the observation model is not a function of the system’s
state, i.e., for some G : E × O → [0, 1] we have that

Z(e, o, x) = G(e, o),∀x ∈ X .

Then, the value function V (x(t), z(t)) from problem (14) is
convex in its arguments.

Proof: As the observation model does not dependent on
the system’s state, we have that the belief update in prob-
lem (14) can be re-written as follows: zok+1

k+1 = F (ok+1)zok

k ,
where F (o)[e, e] = 1/G(o, e) for all e ∈ E and o ∈ O.
Therefore, problem (14) is a convex parametric program and
V (x(t), z(t)) is a convex function [45].



V. EXAMPLES

We tested the proposed strategy on two navigation problems,
where a linear system has to reach a goal location that may be
inferred only through partial observations. The goal location
represents an object to be retrieved and whose location is
only partially known. We consider the following discrete time
unstable point mass model:

xk+1 =


1 0 1 0
0 1 0 1
0 0 1.1 0
0 0 0 1.1

xk +


0 0
0 0
1 0
0 1

uk, (19)

where the state vector xk = [Xk, Yk, v
x
k , v

y
k ] collects the

position of the system (Xk, Yk) and the velocity (vxk , v
y
k) along

the X–Y plane. In the above system, the input uk = [axk, a
y
k]

represents the accelerations along the X and Y coordinates.

A. Mixed Observable Regulation Problem
In this example, the constraint sets are defined as follows:

U = {u ∈ R2 : ||u||∞ ≤ 10},
X = {[X,Y, vx, vy]> ∈ R4 : −5 ≤ X ≤ 15, ||Y ||∞ ≤ 10},

and the cost matrices from Assumption 3 are

Q = 10−5In, R = 10−3Id, and QN = 102In,

where In ∈ Rn×n represents the identity matrix.
The set of partially observable states E = {0, 1} and the

associated goal locations x
(0)
g = [14, 8, 0, 0]> and x

(1)
g =

[14,−8, 0, 0]>, as shown in Figures 2–3. The environment
state, and consequently the goal location, is inferred through
partial observations. Given the true environment state e ∈ E
and the system’s state x ∈ Rn, the probability of measuring
the observation o = e is given by the following piecewise
observation model:

Z(o = e, e, x) = P(o = e|e, x) =

{
p1 If x ∈ X1

p2 = 0.85 If x ∈ X2

,

(20)
where

X1 = {[X,Y, vx, vy] ∈ R4 : −1 ≤ X ≤ 15, ||Y ||∞ ≤ 10}
X2 = {[X,Y, vx, vy] ∈ R4 : −5 ≤ X < −1, ||Y ||∞ ≤ 10}.
We implemented the finite-dimensional MICP (14) using

CVXPY [46] and Gurobi [47]. In order to limit the com-
putational burden, we leveraged the strategy discussed in
Section III-C for N = 60, and Nb ∈ {12, 15, 20, 30}. All
computations are run on a 2015 MacBook Pro and the code
can be found at https://github.com/urosolia/
mixed-observable-LQR.

We tested the proposed strategy for two different scenarios.
In the first scenario, we set the probability p1 of the observa-
tion model (20) equal to 0.85, and in the second one we set
p1 = 0.7. In both cases, we considered as initial condition
x(0) = [0, 0, 0, 0]>, an initial belief b(0) = [0.5, 0.5]>,
a prediction horizon N = 60, and we assumed that an
observation is collected every Nb = 30 time steps. In the first
scenario shown in Figure 2, the probability p1 = p2 = 0.85
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Fig. 2. Optimal trajectory computed solving the MICP (14) for N = 60
and assuming that an observation is collected every Nb = 30 time
steps, as discussed in Section III-C. In this scenario p1 = p2 = 0.85,
therefore the optimizer computes a trajectory that first steers the system
towards the goals and then commits to one of the two goal locations
depending on observation measured at time t = Nb.
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Fig. 3. Optimal trajectory computed solving the MICP (14) for N = 60
and assuming that an observation is collected every Nb = 30 time
steps, as discussed in Section III-C. In this scenario p1 = 0.7, therefore
the controller steers the system backwards to reach region X2 to collect
a measurement that is correct with probability p2 = 0.85, before
committing to a goal location.

TABLE I
OPTIMAL COST V (x(0), b(0)) AND SOLVER TIME FOR DIFFERENT

VALUES OF Nb AND CONSEQUENTLY OF P = N/Nb .

Nb = 12 Nb = 15 Nb = 20 Nb = 30

V (x(0), b(0)) 1237.43 1583.31 2196.75 3265.31
Solver Time [s] 134.1 12.1 2.8 1.7
P = N/Nb 5 4 3 2

and the observations collected in regions X1 and X2 are
equally informative. Thus, the optimizer steers the system
forward, and after collecting an observation at time t = Nb

commits to a goal location. On the other hand, when p1 = 0.7
the observation collected in region X1 is not as informative as
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the one collected in region X2. Therefore, the optimizer plans a
trajectory that moves backward and visits region X2 to collect
an observation that is correct with probability p2 = 0.85,
before committing to steer the system towards a goal location,
as shown in Figure 3.

Table I shows the optimal cost and the computational time
to solve the MICP for different values of Nb and for N = 60.
As discussed in Section III-C, as P = N/Nb gets larger the
optimization tree has more branches and, consequently, the
problem complexity increases. In particular, the number of op-
timization variables v =

∑P−1
k=0 Nb|O|k grows exponentially

as a function of P .

B. Partially Observable Navigation Problem
We test the proposed strategy on the navigation task shown

in Figures 4–5. In this example, there are two obstacles (black
regions) and the objective is to reach a goal location that can
only be inferred through partial observations. The observation
model is piecewise and it is defined as follows:

Z(o = e, e, x) = P(o = e|e, x) =


p1 = 0.5 If x ∈ X1

p2 = 0.7 If x ∈ X2

p3 = 0.85 If x ∈ X3

p4 = 0.85 If x ∈ X4

,

(21)
where regions X1, X2, X3, and X4 are depicted in Figures 4–
5. Less formally, the observation function in (21) models the
accuracy of the sensors that are more accurate when the system
is close to the candidate goal location and there is no occlusion
caused by the obstacles. Indeed, observations collected in
region X1 are not informative; on the other hand, in region
X2 the probability that an observation is correct is p2 = 0.7,
and the most informative observations are collected in regions
X3 and X4. Finally, we consider the unstable point mass
model (19) and the cost function is defined by the following
matrices Q = 10−4In, R = 10−2Id, and QN = 10In where
In ∈ Rn×n represents the identity matrix.

We implemented the MICP using CVXPY [46]. Notice that
the feasible regions is non-convex as there are two obstacles
in the environment. For this reason, at time k we introduced
integer variables to constraint the state of the system xk to lie
in either X1, X2, X3, or X4. For implementation details please
refer to the source code available at https://github.
com/urosolia/mixed-observable-LQR.

We tested the proposed strategy for two initial belief vectors.
In both scenarios, we set a prediction horizon N = 30 and
the parameter Nb = 10. Therefore, the optimal trajectory
computed solving the MICP branches at time t = 10 and
time t = 20. Figure 4 shows the optimal trajectory tree when
the initial belief b(0) = [0.8, 0.2]>. Notice that, as we have a
strong belief that the environment state e = 0, the controller
plans a trajectory tree that goes through region X2 to reach
the goal location associated with the state e = 0. On the other
hand, when the initial belief b(0) = [0.5, 0.5]>, the optimizer
plans a trajectory that collects observations only in regions X3

and X4, as shown in Figure 5. This result is expected as when
we do not have any prior knowledge about the goal location–
in this example b(0) = [0.5, 0.5]>–an optimal strategy should
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Fig. 4. Optimal trajectory computed solving the MICQ for N = 30 and
Nb = 10. The objective is to steer the system to the goal location that
is a function of the partially observable state e ∈ {0, 1}, while avoiding
the two obstacles (black rectangles). In this scenario, the initial belief
b(0) = [0.8, 0.2]> and the observation model is piecewise over the
regions X1, X2, X2, and X4.
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Fig. 5. Optimal trajectory computed solving the MICQ for N = 30 and
Nb = 10. The objective is to steer the system to the goal location that
is a function of the partially observable state e ∈ {0, 1}, while avoiding
the two obstacles (black rectangles). In this scenario, the initial belief
b(0) = [0.5, 0.5]> and the observation model is piecewise over the
regions X1, X2, X2, and X4.

maximize the number of informative observations that are
collected in regions X3 and X4.

VI. CONCLUSIONS

In this work, we introduced the mixed-observable con-
strained linear quadratic regulator problem, where the goal
of the controller is to steer the system to a goal location
that may be inferred only through partial observations. We
showed that when the system’s state space is continuous and
the environment’s state is discrete, the control problem can
be reformulated as a finite-dimensional optimization problem
over a trajectory tree. Leveraging this result, we showed that
under mild assumptions the control problem can be recast as
an MICP through a nonlinear change of coordinates.
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