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Regression Filtration with Resetting to Provide Exponential Convergence
of MRAC for Plants with Jump Change of Unknown Parameters

Anton Glushchenko, Member, IEEE , Vladislav Petrov, and Konstantin Lastochkin

Abstract— This paper proposes a new method to provide the
exponential convergence of both the parameter and tracking errors
of the composite adaptive control system without the persistent
excitation (PE) requirement. Instead, the derived composite adap-
tive law ensures the above-mentioned properties under the strictly
weaker finite excitation (FE) condition. Unlike known solutions,
in addition to the PE requirement relaxation, it provides better
transient response under jump change of the plant uncertainty
parameters. To derive such an adaptive law, a novel scheme of
uncertainty filtration with resetting is proposed, which provides the
required properties of the control system. A rigorous proof of all
mentioned properties of the developed adaptive law is presented.
Such law is compared with the known composite ones, which
also relax the PE requirement, using the wing-rock problem to
conduct numerical experiments. The obtained results fully support
the theoretical analysis and demonstrate the advantages of the
proposed method.

Index Terms—Composite MRAC, exponential conver-

gence, finite excitation, stability analysis, wing rock.

I. INTRODUCTION

Several groups of adaptive observation and control methods have

been developed specifically to control the plants with significant

parameter uncertainty [1]. The first one includes adaptive observers

and adaptive laws to estimate the parameters of the plant or the dis-

turbance (Model Reference Adaptive Systems – MRAS) [1]–[3]. The

second group consists of methods of direct, indirect, and composite

Model Reference Adaptive Control (MRAC) [4], [5]. Both groups

require to identify the unknown parameters of the plant uncertainty,

which, in their turn, are used to estimate the plant states (MRAS) or

compensate for the influence of the uncertainty on the control quality

(MRAC). To achieve this, the plant uncertainty is expressed in the

linear regression form. Then the second Lyapunov method is applied

to derive the adaptive law to estimate its unknown parameters [6].

A well-known and deeply investigated drawback of the Lyapunov-

based identification is that the estimates converge exponentially to

the ground-truth values only when the requirement of the regressor

persistent excitation (PE) is met [6]–[8]. Generally speaking, the

parameter convergence is a very advantageous property considering

MRAC and MRAS [8], because it automatically guarantees expo-

nential convergence of the tracking error (between the states of the

observer and the plant for MRAS or the states of the plant and the

reference model for MRAC) [6]. It also provides the robustness of the

adaptive law to exogenous bounded disturbance. If the PE condition

is not satisfied, such a law requires the application of some robust

modifications [6], [9]. It was proved in [10] that the PE requirement

is satisfied if the number of the spectral lines in the reference signal

coincides with the number of the regression unknown parameters.
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For many practical applications, the fulfillment of this condition (as

a result of the reference signal modification) could be inconsistent

with the initial control objective, and also leads to increased power

consumption and wear of the actuators. So, in recent years the

aim to provide exponential parameter convergence under conditions,

which are strictly weaker than PE, has become of high interest. We

recommend [11] and references therein as a good survey of most of

the existing solutions to that problem. While only main methods to

relax PE in MRAC are considered in the following analysis.

Conventional adaptive law requires PE condition to provide the

exponential convergence as the objective of such law is minimization

of the function of the instantaneous (proportional) tracking error.

In case when the PE condition is not met, such function may

have a minimum at points, which do not coincide with the one

corresponding to the regression ideal parameters [12]. Therefore,

the main concept of most of the known methods of PE requirement

relaxation is the transformation of the problem from the optimization

of the proportional objective function to the proportional-integral one,

because it has a single minimum at the point corresponding to the

ideal parameters even in the finite excitation (FE) case [12].

Considering MRAC, this concept can be implemented using the

ideas of the composite adaptation method (CMRAC) [5]. According

to it, the adaptive law includes two summands: 1) to minimize

the tracking error as the difference between the states of the plant

and the reference model, 2) to estimate the ideal parameters of the

plant uncertainty. Further modifications of CMRAC are aimed at

optimization of the integral error of the uncertainty identification.

For this purpose, BackGround [13]–[15], Concurrent Learning (CL)

[16], [17], and PI adaptive law [18] have been proposed to obtain

an integral uncertainty identification error and thereby relax the PE

requirement to the finite (FE) or initial (IE) excitation ones.

To obtain the integral error, it is proposed [13]–[17] to save the

data on the uncertainty in the DataStack. For the same purpose, it

is proposed [18] to use an open loop integration in the memory

regression extension (MRE) procedure [11], [19] instead of the

Kreisselmeier filter [19]. The main common problems of these two

methods are, firstly, unbounded growth of the information matrix

(integral regressor) in the case of noise and disturbances or when the

PE condition holds. And, secondly, inaccurate identification of the

uncertainty piecewise-constant parameters. To solve the first problem,

it is proposed in [20] to use, considering MRE, not a purely integral

filter, but the one with exponential forgetting. Unlike [13]–[18], it

always allows to obtain a bounded regressor. But this method, as well

as [13]–[18], is not able to identify the switched parameters correctly.

Inaccurate identification of the piecewise-constant parameters is

caused by the fact that in this case the integral objective function

includes information not about one uncertainty (regression), but about

some superposition of several of them. Consequently, the minimum of

such objective function is at the point, which is the averaged value

of the ideal parameters of all accumulated regressions [12]. Such

superposition occurs because the methods [13]–[18], [20] do not have

an algorithm to forget completely the already used and outdated data

about uncertainty. As a solution to this problem, let the methods be

considered, which relax the PE requirement and simultaneously have

some forgetting property for outdated data.

http://arxiv.org/abs/2102.10359v4
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First of all, it is the approach [21] that use some production rule

to switch from integral filtering [18] to aperiodic Kreisselmeier’s

one [19]. The disadvantage of this method is that the outdated data

forgetting procedure is executed only when a special condition on

the product of the parameter error and the value of the unknown

parameters change holds. This significantly reduces the applicability

domain of such method. Secondly, it is [22], in which it has been

proposed to use a variable forgetting factor in the Kreisselmeier

filter [19] and a regression to identify the plant parameters, which

is obtained when some filtered regressor metric has maximum value.

Such a metric is calculated on the finite excitation intervals. Since this

approach does not provide strict guarantees on the improvement of the

maximum value of the chosen metric, then the update of regressions,

which are used for the parameter estimation, may not happen. So, this

method provides exponential parameter error convergence only if the

plant unknown parameters are time-invariant. Thirdly, in [23] it is

proposed to change the filtering forgetting factor [19] proportionally

to the value of the minimum eigenvalue of the filtered regressor.

Particularly, it is increased when the regressor excitation level is

high, and decreased to zero otherwise. Zero value of the forgetting

factor allows one to ensure that the filtered regressor does not

vanish and, therefore, relax the PE requirement for the parameter

error exponential convergence. In turn, high value of the forgetting

factor improves the rate of forgetting of the outdated data on the

uncertainty compared to filtering with a time-invariant forgetting

factor [19]. However, this approach guarantees that the outdated data

on the uncertainty are completely forgotten only when PE is met,

and requires the minimum and maximum values of the minimum

eigenvalue of the filtered regressor to be known a priori to effectively

adjust the filter parameter [19] and improve the forgetting quality.

Thus, considering the MRAC schemes, none of the above-mentioned

approaches ensures the exponential convergence of the estimation

process of the plant piecewise-constant parameters without PE.

Therefore, in this research, a new method is proposed, which

guarantees exponential convergence of the estimation process of the

plant unknown piecewise-constant parameters in case the regressor is

FE. It is proposed to reset the output of all filters, which are used in

the adaptive control system parametrization, to zero instantaneously

at time points, which corresponds to a piecewise-constant reference

signal r (t) value change. The need for instantaneous resetting of

all filters, rather than aperiodic forgetting, is motivated by [21]–[23],

according to which, when aperiodic forgetting is applied, often the

filter output does not have enough time to reach zero (or sufficiently

low value) in the absence of PE. This leads to inaccurate identification

of the unknown switched parameters under FE condition.

A similar idea has been applied to implement Concurrent Learning

Model Predictive Control system [24]. In this approach, when some

kind of plant identification error metric is low, the model is known

with high accuracy and MPC is applied. If such metric becomes high,

i.e. the ideal parameters of the plant have changed and need to be

identified again, the data stack of CL is cleared, and CMRAC is

used again. But this approach is not able to track piecewise-constant

unknown parameters without switching to MPC stage. The algorithm

may be stuck at CMRAC stage in case the ideal values of unknown

parameters change in the course of it. Therefore, unlike [24], we

propose to apply a resetting procedure to relax PE requirement for

MRAC, using reference signal r (t) as an indicator to reset the filter.

The novel features and main contributions of this paper are

summarized as follows: 1) the application of a resetting procedure

to update dynamically the outputs of all filters, which are used in

the adaptive control system parametrization; 2) the PE requirement

is relaxed to FE one to provide the exponential convergence of the

plant unknown piecewise-constant parameters estimates for MRAC.

It is proposed to combine and improve a number of recent

results [18]–[20], [25] in order to achieve the stated goals and main

contributions. (i) Introducing a resetting procedure into a method of

uncertainty parameterization on the basis of the aperiodic filtering

[18], it is proposed to obtain a measurable value of the filtered

uncertainty in a linear regression form. (ii) Using Kreisselmeyer

filtering with resetting as a part of the dynamic regressor extension

and mixing (DREM) procedure [25], it is proposed to transform the

matrix regressor obtained at the first step into a scalar one to improve

the identification quality. (iii) To obtain a composite adaptive law with

exponential convergence of the parameter error under FE condition, it

is proposed to augment the integral filter with exponential forgetting

[20] with a resetting procedure. Such procedure for the filters of (i)-

(iii) is proposed to be executed when the reference value is changed,

which makes it possible to completely and instantaneously exclude

the influence of outdated data on uncertainty on the control quality.

The rest of the paper is organized as follows. Section II presents

the notation used in the paper; Section III gives a generalized problem

statement; Section IV presents the proposed filtering procedure and

adaptive law; in Section V the exponential convergence of the

proposed CMRAC is proved; Section VI compares it with the known

methods; Section VII presents the results of simulation.

II. PRELIMINARIES

The following notations and definitions are used in the paper:

L∞ is the space of the essentially bounded functions, L2 is the

space of quadratically integrable functions, λmin (.) and λmax (.)
are the minimal and maximal eigenvalues of a matrix, vec (.) is the

operation of a matrix vectorization, ‖.‖ is the Euclidean norm of

a vector, ‖.‖F is the Frobenius norm of a matrix, o (.) means “is

ultimately smaller than”, tr(.) and (.)† are the matrix trace and the

Moore-Penrose pseudo-inverse operators, det {.} stands for a matrix

determinant, adj {.} – for an adjoint matrix, In×n is an identity

n × n matrix, 0n×n is a zero n × n matrix, exp (.) stands for an

exponential function, f (t) is a function, which depends on time (the

time argument is omitted when it does not cause any confusion).

Definition 1. A regressor ϕ (t) ∈ L∞ is finitely exciting

(ϕ (t) ∈ FE) over a time set [ts; ts + T ] ⊂ [t0; ∞] if there exist

ts ≥ t0 ≥ 0, T > 0 and a level of excitation α > 0 such that

ts+T∫

ts

ϕ (τ )ϕT (τ ) dτ ≥ αIn×n. (1)

Let ẋ (t) = f (x (t)) be a dynamic system with stable origin and

globally Lipshitz continuous right-hand side. Then:

Definition 2. A system equilibrium ∀t ≥ t0 + T is globally expo-

nentially stable (x (t) ∈ GES) if there exists κ > 0 and ρ > 0, such

that ‖x (t)‖ ≤ ρ ‖x (t0 + T )‖ e−κ(t−t0−T ) for any x (t0 + T ).

Definition 3. The solution x (t) is exponentially ultimately bounded

(x (t) ∈ EUB) with uniform ultimate bound R > 0 if for κ > 0,

ρ > 0 there exists a time instant t0 + T , such that ‖x‖ ≤

≤ρ ‖x (t0+T )‖e−κ(t−t0−T )+R for t≥ t0+T and any state x(t0+T).

III. PROBLEM STATEMENT

A. Systems Dynamics

The class of linear time-invariant (LTI) plants is considered:

∀t ≥ t0 ẋ (t) = Ax (t) +B (u (t) +∆ (t)) , x (t0) = x0, (2)

where x (t) ∈ R
n is a state vector with known initial conditions

x0, u (t) ∈ R
m is a control action, ∆(t) ∈ R

m is a parameter
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uncertainty, A ∈ R
n×n is a known state matrix, and B ∈ R

n×m is

a known input matrix of full column rank. Pair (A, B) is controllable

such that m ≤ n. The vectors x (t) , u (t) are measurable.

The uncertainty ∆(t) can be linearly parametrized such that:

∆(t) = ΘT (t) Φ (x (t)) , (3)

where Φ(x) ∈ R
p is a bounded measurable regressor, Θ(t) ∈ R

p×m

is a matrix of unknown parameters, for which the following holds.

Assumption 1. The parameters Θ(t) ∀t ≥ t0 have jump behavior:

Θ̇ (t) =
∑

j

θjδ
(
t− tj

)
, Θ(t) = Θ0 +

∑

j

θjh
(
t− tj

)
, (4)

where θj ∈ R
p×m is the value of the unknown parameter change,

h (t) is the step function, δ (t) is the delta function, tj > t0 is the

unknown time instant when the unknown parameters change.

So, the problem of the adaptive control of the LTI plant (2) with

the piecewise-constant parameters of uncertainty ∆(t) is considered.

B. Reference Model Dynamics

The reference model for plant (2) is chosen as:

ẋref (t) = Arefxref (t) +Bref r (t) , xref (t0) = x0ref , (5)

where xref (t) ∈ R
n is the reference model state vector, r (t) ∈ R

m

is the reference signal, Aref ∈ R
n×n, Bref ∈ R

n×m. The matrix

Aref is chosen so as the equation AT
refP + PAref = −Q has a

solution P with Q = QT > 0, P = PT > 0. Reference signal r (t)
for plant (2) is chosen so as to satisfy the following assumptions.

Assumption 2. The reference r (t) is a piecewise-constant function:

r (t) =
∑

k

rkh (t− tk), (6)

where rk ∈ R
m is the value of the reference change, tk ≥ t0 is a

known time instant of the reference change.

Assumption 3. After each change of the reference value it holds that

the regressor Φ (x) ∈ FE over a time range [tk; tk + T ].

The most preferable relationship between the time instants tj and

tk for practical scenarios is shown in Fig. 1 of [26].

C. Control Law

The control law u (t) to provide the control quality (5) to plant (2)

is chosen as state feedback with direct uncertainty compensation:

u(t)=ubl(t)−uad(t)=Kxx(t)+Krr(t)−Θ̂T(t)Φ(x (t)) , (7)

where Kx ∈ R
m×n, Kr ∈ R

m×m are the parameters of the baseline

part ubl (t), Θ̂ (t) ∈ R
p×m is the unknown parameters estimate.

The control law (7) is substituted into (2) to obtain:

ẋ(t)=(A+BKx)x(t)+BKrr (t)+B
(
ΘT−Θ̂T (t)

)

︸ ︷︷ ︸

Θ̃T(t)

Φ(x (t)) , (8)

where Θ̃ (t) ∈ R
p×m is the error between Θ(t) and Θ̂ (t).

D. Tracking Error Dynamics

The control objective is to make (8) behave as the reference model

(5). To do this, we assume that the parameters of the baseline part

of (7) satisfy the following conventional matching conditions.

Assumption 4. There exists Kx ∈ R
m×n, Kr ∈ R

m×m such that:

A+BKx = Aref ; BKr = Bref . (9)

If Assumption 2 is met, then the error equation between (8) and

(5) is written as:

ėref (t) = Areferef (t)+BΘ̃T (t)Φ (x (t)) , eref (t0)=e0. (10)

The augmented error ξ (t) =
[

eTref (t) vec
(

Θ̃T (t)
)]T

is intro-

duced into (10). Then, we are in position to formulate the adaptive

control goal for the plant (2).

Goal 1. Let the assumption 1-4 be met, then the task is to derive a

law to adjust the parameters of the adaptive part uad (t) such that

the augmented error is globally exponentially stable (ξ (t) ∈ GES).

Remark 1. Assumption 2 is met for most real plants, excluding the

ones from the inner loop of cascade control systems. The meaning of

Assumption 3 is that each change of the reference value r (t) in accor-

dance with (6) results in the finite excitation of the Φ(x). Assumption

4 is a standard assumption for MRAC. Practically speaking, the value

of tk can be obtained online using r (t) 6= r (t− Td) ⇔ t = tk,

where Td > 0 is sufficiently close to zero.

IV. MAIN RESULT

In this section, a composite adaptive law is to be derived to meet the

stated Goal. To obtain such a law: in subsection A the filtered value

∆f (t) = ΘT (t) Φf (x (t)) ∈ R
m of uncertainty (3) is expressed

from (10), in subsection B, applying DREM procedure, the matrix

regressor Φf (x) is transformed into a scalar one ω (t) ∈ R, in

subsection C the integral filtration with resetting and forgetting is

proposed to obtain the regressor Ω (t) ∈ R, which does not vanish

if Φ(x) ∈ FE, from ω (t) ∈ R and derive a composite adaptive law

with relaxed excitation requirements.

A. Plant Uncertainty Calculation

First of all, the filtered value ∆f (t) of uncertainty ∆(t) is to be

obtained from the error equation (10). For this purpose, we introduce

the following aperiodic links with resetting:

µ̇f (t) = −kµf (t) + ėref (t) , µf

(
t+r
)
= 0n,

ėf (t) = −kef (t) + eref (t) , ef
(
t+r
)
= 0n,

(11)

u̇adf (t) = −kuadf (t) + uad (t) , uadf

(
t+r
)
= 0m,

Φ̇f (x (t)) = −kΦf (x (t)) + Φ (x (t)) , Φf

(
x
(
t+r
))

= 0p,
(12)

where t+r = tk is the resetting time instant.

Lemma 1. Let k > 0 be sufficiently large, then the filtered value

∆f (t) ∈ R
m of uncertainty ∆(t) can be evaluated as follows:

∆f (t) = B†
(

eref (t)− kef (t) − e−k(t−t+r )eref
(
t+r
)
−

− Arefef (t) + Buadf (t)
)
= ΘT (t) Φf (x (t)) .

(13)

Proof can be found in the Supplementary Material [26].

Proposition 1. A sufficient condition of Φf (x) ∈ FE is that k > 0
and Φ(x) ∈ FE (for proof see Lemma 6.8 in [6]).

B. Scalarization via DREM

The DREM procedure [25], [27]–[29] relaxes PE condition and

transforms Φf (x) into a new scalar regressor ω (t) ∈ R. This allows

one to both simplify significantly the synthesis of the adaptive law

with the required properties and improve the transient quality of

the obtained estimates (see [25], [27]–[29] for more details). DREM

consists of extension and mixing steps. The extended linear regression

equation is derived as a result of the first of them:

ẏ (t) = −ly (t) + Φf (x (t))∆T
f (t) , y

(
t+r
)
= 0p×m,

ϕ̇ (t) = −lϕ (t) + Φf (x (t)) ΦT
f (x (t)) , ϕ

(
t+r
)
= 0p×p.

(14)
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The mixing step is represented as the following lemma.

Lemma 2. Let l > 0 be sufficiently large, then from (14) the mixed

regression can be obtained as follows:

Y (t)=adj {ϕ (t)} y(t)=det{ϕ (t)} Ip×pΘ(t)=ω(t)Θ(t) , (15)

where Y (t) ∈ R
p×m.

Proof can be found in the Supplementary Material [26].

Proposition 2. If Φf (x) is FE, then ω (t) is also FE [27].

The equations of the conventional estimator of the regression (15)

parameters are written as:
˙̃Θ (t) = −γω2 (t) Θ̃ (t) , where γ > 0.

According to the results of [25], [27]–[29], the following implication

holds for this adaptive law: ω (t) /∈ L2 ⇔ lim
t→∞

Θ̃ (t) = 0. Since,

when ω (t) /∈ L2, only the asymptotic convergence of the parameter

error is guaranteed, the application of the DREM procedure alone is

insufficient to achieve the stated goal.

C. Resetting Filtration and Adaptive Law Derivation

Then the integral filter with exponential forgetting and resetting

should be used [30] to guarantee the exponential convergence of the

error Θ̃ (t) when ω (t) ∈ FE:

v̇f (t) = exp






−

t∫

t
+
r

σdτ







v (t) , vf

(

t+r

)

= 0, (16)

where σ > 0, v (t) and vf (t) are the input and output respectively.

Remark 2. According to [20], the filtration (16) allows one to obtain

a non-zero regressor and thereby, as proved in [20], relax the PE

requirement for exponential convergence of the parameter error. In

contrast to other methods, e.g. the integral-like filter [18], the filter

(16) guarantees a bounded vf (t) in case of noise and disturbances.

If the input of vf (t) is ω (t)Y (t), then, using (15), we obtain:

Υ(t)=
t∫

t
+
r

exp



−
t∫

t
+
r

σdτ1



ω(τ)Y (τ) dτ, Υ
(
t+r
)
=0p×m,

Ω (t) =
t∫

t
+
r

exp



−
t∫

t
+
r

σdτ1



ω2 (τ) dτ , Ω
(
t+r
)
= 0,

(17)

where Υ(t) ∈ Rp×m.

According to Assumption 3, if t = tk , then Φ(x) ∈ FE for

[tk; tk + T ]. According to Propositions 1 and 2, if Φ(x) ∈ FE,

then ω (t) ∈ FE. So, taking into account the definition of tk and t+r ,

ω (t) ∈ FE over the interval
[
t+r ; te

]
, te ≥ t+r . So, the following

proposition can be introduced and proved.

Proposition 3. If ω (t) ∈ FE over the interval
[
t+r ; te

]
, then

1) ∀t ≥ t+r Ω(t) ∈ L∞, Ω (t) ≥ 0;

2) ∀t ≥ te Ω (t) > 0, ΩLB ≤ Ω(t) ≤ ΩUB .

For proof, please, refer to the Supplementary Material [26].

According to Proposition 3 and in contrast to ω (t), the regressor

Ω(t), which is obtained by filtering with resetting (16), does not

vanish over any time interval between two consecutive changes of the

reference value. It allows us to derive the law to adjust the adaptive

controller parameters uad (t) according to the composite method [5]:

˙̂
Θ(t)=Γ1Φ(x (t))eT

ref
(t)PB+Γ2(t) Ω(t)

(

Υ(t)−Ω(t) Θ̂(t)
)

,

Γ̇2 (t) = λ1Γ2 (t) − λ2Γ2
2 (t)Ω

2 (t) , Γ2 (t0) > 0,
(18)

where Γ1 ∈ R
p×p and Γ2 (t) ∈ R are the adaptive gains, λ1 > 0,

λ2 > 0 are the forgetting and damping factors respectively.

In (18) the first summand is to provide the convergence of the

tracking error eref (t), and the second one – the parameter error

Θ̃ (t). The properties of Ω (t), which are proved in Proposition 3,

give the opportunity to use variable adaptive gain Γ2 (t) in (18).

Proposition 4. If ω (t) ∈ FE over the interval
[
t+r ; te

]
, then

∀t > t+r the following inequality holds: Γ2min ≤ Γ2 (t) ≤ Γ2max.

For proof, please, refer to the Supplementary Material [26].

Remark 3. According to [20], [29], [30], for the boundedness of

Γ2 (t), it is sufficient that Ω(t) is bounded by its lower ΩLB and

upper ΩUB bounds, both of which are above zero, and does not

converge to zero Ω❩❩→0. Therefore, the proof of Proposition 4 [26] is

given in brief, but sufficient version. We recommend to refer to [20],

[29], [30] for more details.

Remark 4. Right-hand side of (18) has a point of discontinuity

due to filtering (16). However, the time instant t+r , at which the

discontinuity occurs, is determined by the external signal r (t) and

does not depend on the internal signals x (t) and eref (t) of the

closed-loop system (10). This completely excludes the possibility of

chattering in (16), (18) and allows analyzing the stability of the

closed-loop (10), assuming the time instant t+r is initial one.

V. STABILITY ANALYSIS

The scope of this section is to analyze the stability of the system

(10) when the law (18) is applied to adjust uad (t). In this case,

the behavior of the error ξ (t) is completely defined by the mutual

relation of tj and the interval
[
t+r ; te

]
. Three situations are possible:

1) tj ≤ t+r – the unknown parameters change has happened before

the change of the reference value r (t); 2) tj ∈
(
t+r ; te

)
– the

unknown parameters change has happened when the regressor is FE

because of r (t) value change; 3) tj ≥ te – the unknown parameters

change has happened after FE time range. The boundedness of Γ2 (t)
for all cases allows us to introduce the Lyapunov function:

V (ξ)=eT
ref

Peref+tr
(

Θ̃TΓ−1
1 Θ̃

)

,H=blockdiag
{

P, Γ−1
1

}

,

λmin (H)
︸ ︷︷ ︸

λm

‖ξ‖2 ≤ V (‖ξ‖) ≤ λmax (H)
︸ ︷︷ ︸

λM

‖ξ‖2. (19)

The derivative of (19) with respect to the equations of the system

(10) and the adaptive loop (18) for any t 6= tj is written as:

V̇ (ξ) = −eTrefQeref − 2tr
(

Θ̃TΓ−1
1 Γ2Ω

(

Υ− ΩΘ̂
))

, (20)

For further analysis, let each case be considered separately.

Theorem 1. (Case 1) If tj ≤ t+r and Φ(x) ∈ FE, then the

augmented error ξ (t) is exponentially stable (ξ (t) ∈ GES).

Theorem 2. (Case 2) If tj ∈
(
t+r ; te

)
and Φ (x) ∈ FE, then the aug-

mented error ξ (t) is exponentially ultimately bounded (ξ (t) ∈ EUB)
with the ultimate bound R.

Theorem 3. (Case 3) If tj ≥ te and Φ (x) ∈ FE, then the augmented

error ξ (t) is exponentially ultimately bounded (ξ (t) ∈ EUB) with

ultimate bound R1.

Proofs of Theorems 1-3 are given in Supplementary Material [26].

It follows from the proofs that if the unknown parameters Θ(t)
change their values: 1) before the finite excitation, caused by the

change of the reference r (t), then ξ (t) ∈ GES; 2) during or after

FE time range, then ξ (t) ∈ EUB with ultimate bound R or R1 [26].

For cases 2 and 3 let the ways to minimize the ulti-

mate bound of the errors eref (t) and Θ̃ (t) be analyzed sep-

arately for each of them. For this purpose, taking into ac-

count the definitions of κmin, ε, ε1 [26] and assuming
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λmin (Γ1) = λmax (Γ1), the equations of bounds of both errors

eref (t) and Θ̃ (t) are obtained from proofs of Theorems 2 and 3:

∥

∥

∥
Θ̃
∥

∥

∥
≤



























r1=

√

√

√

√

(

Ω1UBΩUBΓ2max
Ω2
LB

Γ2min

)2

‖Θ1‖
2
F
, for tj∈

(

t+r ;te
)

,

r2 =

√

√

√

√

(

Γ2maxΩ
2
UB

Γ2minΩ
2
LB

)2

‖Θ1‖
2
F , for tj ≥ te,

∥

∥

∥
eref

∥

∥

∥
≤















r1

√

λmin

(

Γ−1
1

)

Γ2minΩ
2
LB

λmax(P )
λmin(P )

λ
−1
min(Q), for tj∈

(

t+r ;te
)

,

r2

√

λmin

(

Γ−1
1

)

Γ2minΩ
2
LB

λmax(P )
λmin(P )

λ
−1
min

(Q), for tj≥te,

(21)

It follows from (21) that in both cases the ultimate bound of

the parameter error can be reduced by the minimization of the

multiplication Γ2maxΓ
−1
2min. However, such minimization is often

difficult to be implemented in practice, because the values of Γ2max

and Γ2min, according to Proposition 4, are determined by the

regressor Ω (t). The ultimate bound of the tracking error eref (t) can

be reduced by improvement of λmax (Γ1) or reduction of Γ2min. But

the improvement of λmax (Γ1) leads to the higher sensitivity of the

adaptive law (18) to noise and disturbances and deterioration of the

quality of the transient process of
˙̂
Θ (t) and uad (t). The reduction

of Γ2min (by the change of λ1 and λ2) results in the decrease of

the convergence speed to the ideal parameters of the uncertainty in

case 1. So, in practice, λmax (Γ1), λ1 and λ2 must be chosen by

compromise between the ultimate bounds R, R1 and the quality of

the transient process of
˙̂
Θ (t) and uad (t).

Thus, according to the conducted stability analysis, the obtained

adaptive law (18) provides the properties required by Goal when the

uncertainty parameters change before the reference r (t) switch.

VI. COMPARISON WITH KNOWN ADAPTIVE LAWS

The main difference of the developed system from the majority

of the known ones is the requirement (6) of a certain type of the

reference signal r (t), which is necessary to guarantee the stable

implementation of the resetting procedure for the filtering (11), (12),

(14), (17). This fact does not allow one to apply the obtained system

in cases when r (t) is the output of the command filter or the outer

loop controller. But, as far as the plants, for which r (t) satisfies

the requirement stated in Assumption 2, are concerned, the obtained

system allows one to provide the exponential convergence of the

estimates of the piecewise-constant uncertainty parameters to their

ideal values when such values have changed before the change of

the reference r (t) and the regressor is FE.

In contrast to existing CMRAC schemes, in this paper, owing

to the application of the DREM procedure, it is proposed (18)

to augment the basic adjustment law Φ(x) eTrefPB with not a

matrix law, which ensures convergence of the integral error of

the uncertainty identification, but with a scalar DREM-based one

to provide monotonic estimation of each Θ̃ (t) element. So, be-

ing used together with Φ (x) eTrefPB, it does not cause addi-

tional fluctuations of the transient curves of Θ̂ (t) values. More-

over, if the following condition holds: Γ1Φ(x (t)) eTref (t)PB =

= o
(

Γ2 (t) Ω (t)
(

Υ(t)− Ω(t) Θ̂ (t)
))

, then the proposed adap-

tive law (18) ensures that

∣
∣
∣Θ̃i (ta)

∣
∣
∣ ≤

∣
∣
∣Θ̃i (tb)

∣
∣
∣ , ∀ta ≥ tb.

The properties of the regressor Ω (t), which is obtained using the

filtration with resetting (16), also make it possible, unlike in other

CMRAC schemes, to use a variable gain Γ2 (t) in (18).

Next, we briefly compare the developed law (18) with some

previously proposed in the literature.

A. Comparison with Basic Robust Adaptive law

In practice, the conventional adaptive law Φ(x) eTrefPB is always

augmented with the robust modifications. For example, if the σ-

modification is used, then it is written as [6], [9]:

˙̂
Θ (t) = Γ1

(

Φ(x (t)) eTref (t)PB − σΘ̂ (t)
)

(22)

The robust adaptive law (22) guarantees ξ (t) ∈ EUB for the

plant (2) in the presence of the bounded disturbances. As for the

proposed adaptive law (18), it is proved in the theorems 1-3 that

ξ (t) ∈ GES or ξ (t) ∈ EUB in the absence of the disturbances. This

is both necessary and sufficient to provide robustness (ξ (t) ∈ EUB)
of (18) against bounded disturbances [6], [8], [9]. So, in contrast

to the conventional adaptive law Φ(x) eTrefPB, not only does the

proposed one (18) guarantee ξ (t) ∈ GES in case 1, but also it does

not require additional robust modifications.

B. Comparison with Switched MRAC

Using (12), (13), and (14)1, it is proposed in [31] to apply the

following switched adaptive law:

˙̂
Θ (t) = Γ1 (Te + Tl + Tll + Tsw)

Te = Φ (x (t)) eT
ref

(t)PB; Tl = kl
(
∆f (t)−Θ̂TΦf (x (t))

)T
;

Tll = kll
(
y (t) − ϕ (t) Θ̂ (t)

)
;

Tsw = ksw
(
ysw (t)− ϕsw (t) Θ̂ (t)

)
.

(23)

Here kl > 0, kll > 0, ksw > 0, ysw (t) ∈ R
p×m and

ϕsw (t) ∈ R
p×p are defined as:

ysw (t) =







0p×m, if det

(
t∫

0

Φf (τ )ΦT
f (τ ) dτ

)

= 0,

y (T ) otherwise,

ϕsw (t) =







0p×p, if det

(
t∫

0

Φf (τ )ΦT
f (τ ) dτ

)

= 0,

ϕ (T ) otherwise.

(24)

where T is a time instant, when the determinant in (24) becomes

positive, ϕ (T ) is a filtered regressor of full rank.

According to the proof in [31], the law (24) guarantees

ξ (t) ∈ GES when Φ (x) ∈ IE. As Φf (x)ΦT
f (x) is the positive

semi-definite matrix, then the switching in (24) is possible only once.

Consequently, in contrast to (18), the adaptive law (24) guarantees

ξ (t) ∈ GES only when the uncertainty parameters are constant.

C. Comparison with FE CMRAC

The FE CMRAC adaptive law [22] also uses filtering, which

is similar to (11), (12)1, to obtain the numerical value of the

uncertainty (13). It also uses the variable forgetting factor l (t) of

the Kreisselmeier filter (14):

l (t) = lm + (lM − lm) tanh
(

ϑ
∥
∥
∥Φ̇f (x)

∥
∥
∥

)

, (25)

where lm and lM are minimum and maximum values of the param-

eter l (t), ϑ > 0, tanh (.) is the hyperbolic tangent function. The

law (25) to adjust l (t) allows one to set the higher weight to the

uncertainty data, which are obtained when Φf (x) changes rapidly.

The main point of the novelty of the study [22] is the developed

algorithm to obtain the full-rank regressor:

ta = max

{

argmax
τ∈[0; t]

λmin (ϕ (τ ))

}

,

ϕa (t) = ϕ (ta) , ya (t) = y (ta) .

(26)

1However, in [22], [31] the above-mentioned filtration is used without
resetting.
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It allows one to choose the adaptive law as:

˙̂
Θ = Γ1

(

Φ(x (t)) eTref (t)PB+Γ2

(

ya (t)−ϕa (t) Θ̂ (t)
))

(27)

In contrast to switching (24) in Switched MRAC, algorithm (26)

allows obtaining a full-rank regressor every time when FE exists.

However, the values of ϕa (t) and ya (t) will be updated according

to (26) only if the minimum eigenvalue of the matrix ϕ (t) over the

new FE time range is higher than it has been over the previous one.

In addition, in contrast to the filtering with the resetting procedure

(17) used in this study, the Kreisselmeier filtration (14) with a variable

parameter (25) does not allow one to forget completely the outdated

information about ϕ (t) and y (t). Therefore, the adaptive law (27)

is applicable to piecewise-constant uncertainty parameters only if:

1) a new finite excitation leads to an improvement of the minimum

eigenvalue of ϕ (t), and 2) y (t) has been completely forgotten by the

moment the new finite excitation occurs. In this case, the proposed

adaptation loop (18), according to the proof of Theorem 1, guarantees

ξ (t) ∈ GES without additional conditions of complete forgetting of

y (t) and growth of the minimal eigenvalue of ϕ (t).

D. Comparison with Directional Forgetting CL MRAC

In [21] it was proposed to use directional forgetting in (14)2. This

allowed one to implement forgetting of the outdated data y (t) only

in the direction of the newly obtained data. Further, the authors

used a switching algorithm, based on the rank condition, between

filtering with the directional forgetting and the one with the open-

loop integrator [18]:

ẏ (t) =





Φf (t)∆T
f
(t), if rank (ϕ (t))<rank

(

ϕ (t) + Φf (t)ΦT
f
(t)

)

,

−l
ϕ(t)Φf (t)ΦT

f (t)

ΦT
f
(t)ϕ(t)Φf (t)

y (t)+Φf (t)∆T
f
(t) otherwise,

ϕ̇ (t) =





Φf (t) ΦT
f
(t), if rank (ϕ (t))<rank

(

ϕ (t)+Φf (t) ΦT
f
(t)

)

,

−l
ϕ(t)Φf (t)ΦT

f (t)

ΦT
f
(t)ϕ(t)Φf (t)

ϕ (t) + Φf (t) ΦT
f
(t) otherwise.

(28)

It allows choosing the adaptive law as:

˙̂
Θ(t)=Γ1

(

Φ (x (t)) eTref (t)PB+Γ2

(

y (t)−ϕ (t) Θ̂ (t)
))

. (29)

The common disadvantage of the proposed method and the di-

rectional forgetting CL MRAC one is the need to meet the special

conditions, under which the exponential convergence of the parameter

error to zero is guaranteed. The resetting filtration method requires

that the uncertainty parameters must change their values before the

change of the reference r (t). The directional forgetting CL MRAC

approach requires stricter requirement θjΘ̃
T (t) ≥ 0 to be met.

However, the function of r (t) change is defined by a user of the

adaptive system, so the condition that the parameters change their

values in prior to the reference r (t) is weaker then θjΘ̃
T (t) ≥ 0.

E. Comparison with efficient learning MRAC

In [23] an algorithm to calculate the filtered uncertainty value on

the basis of aperiodic filtering, which is similar to (11) and (12)2, is

also used. However, unlike (25) and (28), the filter (14)2 forgetting

factor is proposed to be defined as follows:

l (t) =







l0, if
2λmin(ϕ(t))−λUB

min−λLB
min

λUB
min

−λLB
min

≥ 1

l0
2

(
2λmin(ϕ(t))−λUB

min−λLB
min

λUB
min

−λLB
min

+ 1

)

, otherwise
(30)

2In [21], [23] the above-mentioned filtration is used without resetting.

where 0 < λLB
min ≤ λmin (ϕ (t)) ≤ λUB

min are the minimum

eigenvalue of the regressor and its lower and upper bounds, l0 > 0 is

the scaling factor. Based on the filtration (14) with variable forgetting

factor (30), in [23] it is proposed to use the composite law in the form

of (29). According to (30), if the eigenvalue λmin (ϕ (t)) → λUB
min,

then l (t) → l0, and filtering (14) with (30) provides a high update

rate of data on the uncertainty. On the contrary, if the eigenvalue

λmin (ϕ (t)) → λLB
min, then l (t) → 0, and filtering (14) loses the

ability to update the data on the uncertainty in the limit. Thus, when

(30) is used in (14), the law (29) guarantees the convergence of the

parameter error if after the time instant tj the minimum eigenvalue

λmin (ϕ (t)) keeps value, which is close to λUB
min, over a sufficiently

long time range. Compared to the requirement that the uncertainty

parameters switch is prior to the reference signal change, such a

condition seems to be restrictive, difficult to be satisfied for many

important cases, and is usually equivalent to the PE requirement.

Remark 5. In order to illustrate the advantages of proposed ap-

proach systematically it should be noted that its main salient feature

is that the outdated data are removed with the help of resetting

procedure driven by exogenous reference signal without dependence

on any internal signals of the closed loop, therefore, the developed

method completely excludes the possibility of chattering and avoid

superpositional mixing instantaneously (not aperiodically).

VII. NUMERICAL SIMULATION

The wing-rock phenomenon in the roll motion of slender delta

wings has been chosen as the plant for the experiments:
[
ẋ1 (t)
ẋ2 (t)

]

=

[
0 1
0 0

][
x1 (t)
x2 (t)

]

+

[
0
1

](

u (t)+ΘT (t)Φ (x (t))
)

, (31)

where x1 (t) is the roll angle, x2 (t) is the roll rate, u (t) is the virtual

control, Φ(x) =
[
x1 x2 |x1|x2 |x2|x2 x31

]T
. Similar to the

experiments in [22], the numerical value of the parameters Θ(t) was

taken from [32] and increased by a factor of 1000. The jump change

of the uncertainty parameters simulated an instantaneous, comparing

to the wing rock dynamics, change in the attack angle from 15 to 25

degrees and back. Therefore, the parameters in (4) were defined as:

Θ0 =
[
3.63 −8.58 20.2 −21.9 −51.88

]T
;

θ1 =
[
−22.22 23.74 −82.66 31.45 73.33

]T
;

θ2 = −θ1; j = {1; 2} .

(32)

The reference signal (6) was implemented as a square wave:

r (t) =







1, for 0<t ≤ 8,
0, for 8<t ≤ 16,
1, for 16<t ≤ 24.

(33)

To demonstrate the performance of the system in all three cases

considered in the stability analysis, at t1 = 4 seconds the parameter

Θ0 was changed by the value of θ1, and at t2 = 17 the sum of

Θ0 + θ1 was changed by the value of θ2. The parameters of the

baseline controller ubl (t) were calculated according to the method

of the LQ synthesis by optimization of the following quality criterion:

J =

∞∫

0

(

xT (τ )QLQx (τ ) + uTbl (τ )RLQubl (τ )
)

dτ , (34)

where QLQ = diag {2800, 1}, RLQ = 100. The values of other

constants of the adaptive control system are shown in Table I.

The aim of the experiment was to compare the developed system

(CMRAC) with the solution based on the conventional adaptive law

Γ1Φ(x) eTrefPB (MRAC) when the same value of the adaptation

gain Γ1 = 500I5×5 was used in both laws.
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TABLE I

SIMULATION PARAMETERS

Parameter Value Parameter Value

Θ̂ (0) 05×1 Γ2 (0) 1
Q diag {100, 10} λ2 450
PB [9.45; 4.43] l 10
Γ1 500I5×5 k 10
λ1 1100 σ 5

Fig.1 shows the change of the reset time t+r value in the course

of the experiment.

Fig. 1. Reset time t
+
r curve in the course of the experiment.

It follows from Fig. 1 that the reset of the filtering procedure (11),

(12), (14), (17) was made strictly at the moments of r (t) change.

Fig. 2 shows the transients of the regressor Ω(t) at time intervals

corresponded to change either of r (t) or the uncertainty parameters.

Fig. 2. Transients of the regressor Ω (t).

Considering the regressor Ω(t), its transients in Fig. 2 proved the

conclusions about its properties drawn in Proposition 3. The low

magnitude
(

∼ 10−61 ÷ 10−69
)

of Ω (t) is explained by the fact

that the multiplication by the adjoint matrix is used in (15) . The

difference of about
(

∼ 108
)

between Ω(t) values at different stages

of the experiment verified the need to adjust Γ2 (t).

The transients of the control action u (t) (a), states x (t) (b), and

the estimates of the unknown parameters (c) are shown in Fig. 3.

So, for the developed system, the oscillations of curves of the

control signal u (t) and state vector x (t) had existed exactly till the

moment when the uncertainty ideal parameters were identified. Using

the proposed law (18), the parameter error was always bounded, and

exponentially stable over the intervals [0; 4] and [8; 16]. This verified

the proof of Theorems 1-3 and the conclusions made in Remark 3.

Figure 4 shows the transients for the state x1 (t) and the augmented

tracking error ξ (t) obtained by application of the developed adaptive

law (18), the classical law Γ1Φ (x) eTrefPB, and the composite laws

(23), (27), (29) with (28), and (29) with (30).

Table II contains the parameters values of the laws (23), (27), (29)

with (28), and (29) with (30), which were used for the simulation.

The values of all other parameters were set according to Table I.

Fig. 3. Transients of unknown parameters estimates Θ̂ (t), control
action u (t) and states x (t).

Fig. 4. Transients of state x1 (a) and augmented error (b).

As follows from the transients presented in Fig. 4, over the interval

[0; 4] all composite laws (18), (23), (27), (29) with (28) and (29) with

(30) ensured exponential convergence of the augmented error to zero.

At the same time, when the uncertainty parameters had changed at

time instant t = 4, only the adaptive laws (18) and (29) with (30)

preserved the property of exponential convergence of the augmented

tracking error to zero after the reference value change at time instant

t = 8. Here, it should be specially noted that i) the adaptive law

(29) with (30) ensured ξ (t) ∈ GES for t ≥ 8 because λmin (ϕ (t))
kept the value, which was close to λUB

min, over a sufficiently long

time range; ii) the adaptive law (18) ensured ξ (t) ∈ GES for

t ≥ 8 because uncertainty parameters had changed their values

before change of the reference value; iii) considering the time interval

t ≥ t2 = 17, the exponential stability of the augmented error ξ (t)
was provided by (23) owing to the fact that ysw (t) stored the data

about the true regression parameters Θ0, which were recorded to

ysw (t) over the interval [0; 4] according to (24) at time point T .

Also, the transients shown in Fig.4 demonstrated the advantages

of the proposed system of composite adaptive control over the

existing ones. Only the developed system provides strict guarantees

to avoid the superpositional mixing of the data on the regressions

with different parameters after each r (t) value change (if the uncer-

tainty parameters had changed their values before that). Fig. 4 also

clearly shows that the control quality, which was provided by the

known composite control systems when the superpositional mixing

happened, was sufficiently worse than the one by the conventional

TABLE II

SIMULATION PARAMETERS

Parameter Value Parameter Value

kl 5 l for (28) 10

kll 1000 λLB
min 10−12

ksw 50000 λUB
min 10−5

lm 0.1 Γ2 for (27) 2500
lM = l0 10 Γ2 for (29) with (28) 2500

ϑ 1 Γ2 for (29) with (30) 1000
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MRAC. Under such conditions, the law (18) deteriorated the tran-

sients quality insignificantly. Some extended simulation results are

shown in Supplementary Material [26].

In general, the results of the experiments validated the analytically

proved property of the developed system to guarantee exponential

convergence of the parameter error when the FE requirement of the

regressor was met and the uncertainty parameters changed before

the change of the reference r (t). Also, in comparison with the

conventional law, it was possible to improve the quality of the

transients of eref (t) and u (t) after the completion of the uncertainty

parameters identification.

VIII. CONCLUSION AND FUTURE WORK

In this paper, in order to relax PE requirement for the MRAC

scheme with the piecewise-constant uncertainty parameters of the

plant, the method was proposed, which was based on a novel scheme

of uncertainty filtration with resetting. Such scheme made it possible

to develop a CMRAC adaptation law, which guaranteed exponential

convergence of the parameter error to zero if FE requirement was met

and the following conditions were satisfied: 1) the reference r (t) was

a piecewise-constant signal; 2) a change of r (t) caused the regressor

finite excitation; and 3) the unknown piecewise-constant parameters

had already changed their values before the change of r (t). The

analytical stability analysis, as well as the conducted numerical

experiments, demonstrated the main properties of the obtained system

and verified the paper contribution. The proposed method differs from

the existing ones, which are also used to relax PE requirement for

MRAC, by application of the filters (11), (12), (14) and (16) with

resetting. It relaxes PE requirement not only for the constant unknown

uncertainty parameters, but also for the piecewise-constant ones under

some weak additional assumptions.

In further research, we plan: 1) to improve the transient response

of the obtained system over the intervals when the ideal uncertainty

parameters have not been found yet; 2) to extend the obtained

results to Case 2 and 3 by development of a robust resetting scheme

based on an algorithm to detect uncertainty parameters change (some

preliminary results in this sense can be found in [33], [34]).
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[12] L. Ljung, and T. Söderström, Theory and practice of recursive identifi-

cation, MIT press series in signal proc., opt., and control, 1983.
[13] E. N. Johnson, and S. M. Oh, “Adaptive control using combined online

and background learning neural network,” in Proc. IEEE Conference on

Decision and Control (CDC), vol. 5, Bahamas, 2004, pp. 5433–5438.
[14] A. Kutay, G. Chowdhary, A. Calise, and E. Johnson, “A comparison of

select direct adaptive control methods under actuator failure accommo-
dation,” in Proc. AIAA Guidance, Navigation and Control Conference

and Exhibit., AIAA, Reston, VA, 2008.
[15] G. Chowdhary, and E. Johnson, “Theory and flight test validation of

long term learning adaptive flight controller,” in Proc. AIAA Guidance,
Navigation and Control Conf. and Exhibit, AIAA, Reston, VA, 2008.

[16] G. Chowdhary, T. Yucelen, M. Muhlegg, and E. Johnson, “Concurrent
learning adaptive control of linear systems with exponentially convergent
bounds,” International Journal of Adaptive Control and Signal Process-

ing, vol. 27, no. 4, pp. 280–301, 2013.
[17] G. Chowdhary, M. Mühlegg, and E. Johnson, “Exponential parameter

and tracking error convergence guarantees for adaptive controllers with-
out persistency of excitation,” International Journal of Control, vol. 87,
no. 8, pp. 1583–1603, 2014.

[18] S. B. Roy, S. Bhasin, and I. N. Kar, “Combined MRAC for unknown
MIMO LTI systems with parameter convergence,” IEEE Transactions
on Automatic Control, vol. 63, no. 1, pp. 283–290, 2017.

[19] G. Kreisselmeier, “Adaptive observers with exponential rate of conver-
gence,” IEEE Trans. on Automatic Control, vol.22, no. 1, pp. 2–8, 1977.

[20] A. Glushchenko, V. Petrov, and K. Lastochkin “Robust method to
provide exponential convergence of model parameters solving linear
time-invariant plant identification problem,” Int. Journal of Adaptive
Control and Signal Processing, vol. 35, no. 6, pp. 1120–1137, 2021.

[21] H. I. Lee, H. S. Shin, A. Tsourdos, “Concurrent learning adaptive control
with directional forgetting,” IEEE Trans. on Autom. Control, vol. 64, no.
12, pp. 5164–5170, 2019.

[22] N. Cho, H. S. Shin, Y. Kim, and A. Tsourdos, “Composite model
reference adaptive control with parameter convergence under finite
excitation,” IEEE Trans. on Autom. Control, vol.63, no.3, pp.811–818,
2017.

[23] Y. Pan, S. Aranovskiy, A. Bobtsov, H. Yu, “Efficient learning from
adaptive control under sufficient excitation,” International Journal of

Robust and Nonlinear Control, vol. 29, no. 10, pp. 3111–3124, 2019.
[24] G. Chowdhary, M. Mühlegg, J. How, and F. Holzapfel “A concurrent

learning adaptive-optimal control architecture for nonlinear systems,” in
Proc. IEEE Conf. on Decision and Control, Florence, 2013, pp. 868–873.

[25] S. Aranovskiy, A. Bobtsov, R. Ortega, and A. Pyrkin, “Performance
enhancement of parameter estimators via dynamic regressor extension
and mixing,” IEEE Transactions on Automatic Control, vol. 62, no. 7,
pp. 3546–3550, 2016.

[26] A. Glushchenko, V. Petrov, and K. Lastochkin, “Supplement to ’Regres-
sion Filtration with Resetting to Provide Exponential Convergence of
MRAC for Plants with Jump Change of Unknown Parameters’ in IEEE-
TAC”, 2022. Preprint. Available:
https://arxiv.org/src/2102.10359v4/anc/supp.pdf.

[27] S. Aranovskiy, A. Belov, R. Ortega, N. Barabanov, and A. Bobtsov,
“Parameter identification of linear time-invariant systems using dynamic
regressor extension and mixing,” International Journal of Adaptive

Control and Signal Processing, vol. 33, no. 6, pp. 1016–1030, 2019.
[28] S. Aranovskiy, R. Ushirobira, M. Korotina, and A. Vedyakov “On

preserving-excitation properties of a dynamic regressor extension
scheme,” IEEE Transactions on Automatic Control, pp. 1-6, 2022.

[29] M. Korotina, S. Aranovskiy, R. Ushirobira, and A. Vedyakov, “On
parameter tuning and convergence properties of the DREM procedure,”
in Proc. Europ. Control Conf., Saint-Petersburg, Russia, 2020, pp. 1–7.

[30] A. Glushchenko, V. Petrov, and K. Lastochkin, “I-DREM: Relaxing the
Square Integrability Condition,” Automation and Remote Control, vol.
82, no. 7, pp. 1233–1247, 2021.

[31] S. B. Roy, S. Bhasin, and I. N. Kar, “A UGES switched MRAC
architecture using initial excitation,” IFAC-PapersOnLine, vol. 50, no.
1, pp. 7044–7051, 2017.

[32] J. M. Elzebda, A. H. Nayfeh, and D. T. Mook, “Development of an
Analytical Model of Wing Rock for Slender Delta Wings,” Journal of

Aircraft, vol. 26, no. 8, pp. 737—743, 1989.
[33] A. Glushchenko, and K. Lastochkin, “Unknown Piecewise Constant

Parameters Identification with Exponential Rate of Convergence,” 2022.
Preprint. Available: https://arxiv.org/pdf/2203.11685.pdf.

[34] A. Glushchenko, and K. Lastochkin, “Exponentially Stable MRAC
of MIMO Switched Systems with Matched Uncertainty and
Completely Unknown Control Matrix,” 2022. Preprint. Available:
https://arxiv.org/pdf/2208.03972.pdf.

https://arxiv.org/src/2102.10359v4/anc/supp.pdf
https://arxiv.org/pdf/2203.11685.pdf
https://arxiv.org/pdf/2208.03972.pdf

	I Introduction
	II Preliminaries
	III Problem Statement
	III-A Systems Dynamics
	III-B Reference Model Dynamics
	III-C Control Law
	III-D Tracking Error Dynamics

	IV Main Result
	IV-A Plant Uncertainty Calculation
	IV-B Scalarization via DREM
	IV-C Resetting Filtration and Adaptive Law Derivation

	V Stability Analysis
	VI Comparison with Known Adaptive Laws
	VI-A Comparison with Basic Robust Adaptive law
	VI-B Comparison with Switched MRAC
	VI-C Comparison with FE CMRAC
	VI-D Comparison with Directional Forgetting CL MRAC
	VI-E Comparison with efficient learning MRAC

	VII Numerical Simulation
	VIII Conclusion and Future Work
	References

