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Abstract

We study the averaging-based distributed optimization solvers over random networks. We show a
general result on the convergence of such schemes using weight-matrices that are row-stochastic almost
surely and column-stochastic in expectation for a broad class of dependent weight-matrix sequences.
In addition to implying many of the previously known results on this domain, our work shows the
robustness of distributed optimization results to link-failure. Also, it provides a new tool for synthesizing
distributed optimization algorithms. To prove our main theorem, we establish new results on the rate
of convergence analysis of averaging dynamics over (dependent) random networks. These secondary
results, along with the required martingale-type results to establish them, might be of interest to a
broader research endeavors in distributed computation over random networks.

1 Introduction

Distributed optimization has received increasing attention in recent years due to its applications in distributed
control of robotic networks [3], study of opinion dynamics in social networks [10], distributed estimation and
signal processing [4, 22, 28], and power networks [6–8].

In distributed optimization, we are often interested in finding an optimizer of a decomposable function
F (z) =

∑n
i=1 fi(z) such that fi(·)s are distributed through a network of n agents, i.e., agent i only knows

fi(·), and we are seeking to solve this problem without sharing the local objective function fi(z). Therefore,
the goal is to find distributed dynamics over time-varying networks that, asymptotically, all the nodes agree
on an optimizer of F (·).

The most well-know algorithm that achieves this is, what we refer to as, the averaging-based distributed
optimization solver where each node maintains an estimate of an optimal point, and at each time step,
each node computes the average of the estimates of its neighbors and performs (sub-)gradient descent on
its local objective function [19]. However, in order for such an algorithm to converge, the corresponding
weight matrices should be doubly stochastic. While making a row-stochastic or a column-stochastic matrix
is easy, this is not the case for doubly stochastic matrices. Therefore, it is often assumed that such a doubly
stochastic matrix sequence is given.

A solution to overcome this challenge is to establish more complicated distributed algorithms that effec-
tively reconstruct the average-state distributively. The first algorithm in this category was proposed in [32],
which is called subgradient-push (or push-sum), and later was extended for time-varying networks [18]. In
this scheme, the weight matrices are assumed to be column-stochastic, and through the use of auxiliary
state variables the approximate average state is reconstructed. Another scheme in this category that works
with row-stochastic matrices, but does not need the column-stochastic assumption, is proposed in [15, 33].
However, to use this scheme, every node needs to be assigned and know its unique label. Assigning those
labels distributively is also another challenge in this respect. In addition, both these schemes invoke division
operation which results in theoretical challenges in establishing their stability in random networks [24, 25].

Another solution to address this challenge is to use gossip [12] and broadcast gossip [17] algorithms
over random networks. The weight matrices of gossip algorithms are row-stochastic and in-expectation
column-stochastic. This fact was generalized in [16], where it is proven that it is sufficient to have row-
stochastic weight matrices, that are column-stochastic in-expectation. In all the above works on distributed
optimization over random networks, all weight matrices are assumed to be independent and identically
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distributed (i.i.d.). In [14], the broader class of random networks, which is Markovian networks was studied
in distributed optimization; however, weight matrices were assumed to be doubly stochastic almost surely.
Also, our work is closely related to the existing works on distributed averaging on random networks [11,29–31].

In this paper, we study distributed optimization over random networks, where the randomness is not
only time-varying but also, possibly, dependent on the past. Under the standard assumptions on the local
objective functions and step-size sequences for the gradient descent algorithm, we show that the averaging-
based distributed optimization solver at each node converges to a global optimizer almost surely if the weight
matrices are row-stochastic almost surely, column-stochastic in-expectation, and satisfy certain connectivity
assumptions.

The paper is organized as follows: we conclude this section by introducing mathematical notations that
will be used subsequently. In Section 2, we formulate the problem of interest and state the main result of this
work and discuss some of its immediate consequences. To prove the main result, first we study the behavior
of the distributed averaging dynamics over random networks in Section 3. Then, in Section 4, we extent this
analysis to the dynamics with arbitrary control inputs. Finally, the main result is proved in Section 5. We
conclude this work in Section 6.

Notation and Basic Terminology: The following notation will be used throughout the paper. We let
[n] , {1, . . . , n}. We denote the space of real numbers by R and natural (positive integer) numbers by N.
We denote the space of n-dimensional real-valued vectors by R

n. In this paper, all vectors are assumed to
be column vectors. The transpose of a vector x ∈ R

n is denoted by xT . For a vector x ∈ R
n, xi represents

the ith coordinate of x. We denote the all-one vector in R
n by en = [1, 1, . . . , 1]T . We drop the superscript

n in en whenever the dimension of the space is understandable from the context. A non-negative matrix A

is a row-stochastic (column-stochastic) matrix if Ae = e (eTA = eT ).
Let (Ω,F ,Pr) be a probability space and let {W (t)} be a chain of random matrices, i.e., for all t ≥ 0 and

i, j ∈ [n], wij(t) : Ω → R is a Borel-measurable function. For random vectors (variables) x(1), . . . ,x(t), we
denote the sigma-algebra generated by these random variables by σ(x(0), . . . ,x(t)). We say that {F(t)} is
a filtration for (Ω,F) if F(0) ⊆ F(1) ⊆ · · · ⊆ F . Further, we say that a random process {V (t)} (of random
variables, vectors, or matrices) is adapted to {F(t)} if V (t) is measurable with respect to F(t).

Throughout this paper we mainly deal with directed graphs. A directed graph G = ([n], E) (on n vertices)
is defined by a vertex set (identified by) [n] and an edge set E ⊂ [n]× [n]. A graph G = ([n], E) has a spanning
directed rooted tree if it has a vertex r ∈ [n] as a root such that there exists a (directed) path from r to
every other vertex in the graph. For a matrix A = [aij ]n×n, the associated directed graph with parameter
γ > 0 is the graph Gγ(A) = ([n], Eγ(A)) with the edge set Eγ(A) = {(j, i) | i, j ∈ [n], aij > γ}. Later, we fix
the value 0 < γ < 1 throughout the paper and hence, unless otherwise stated, for notational convenience,
we use G(A) and E(A) instead of Gγ(A) and Eγ(A).

The function f : Rm → R is convex if for all x, y ∈ R
m and all θ ∈ [0, 1],

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

We say that g ∈ R
m is a subgradient of the function f(·) at x̂ if for all x ∈ R

m, f(x) − f(x̂) ≥ 〈g, x− x̂〉 ,
where 〈u1, u2〉 = uT

1 u2 is the standard inner product in R
m. The set of all subgradients of f(·) at x is denoted

by ∇f(x). For a convex function f(·), ∇f(x) is not empty for all x ∈ R
m (see e.g., Theorem 3.1.15 in [21]).

Finally, for convenience and due to the frequent use of ℓ∞ norm in the study of averaging dynamics, we use
‖ · ‖ to denote the ℓ∞ norm ‖x‖ , maxi∈[m] |xi|.

2 Problem Formulation and Main Result

In this section, we discuss the main problem and the main result of this work. The proof of the result is
provided in the subsequent sections.

2.1 General Framework

Consider a communication network with n nodes or agents such that node i has the cost function fi : R
m → R.

Let F (z) ,
∑n

i=1 fi(z). The goal of this paper is to solve

arg min
z∈Rm

F (z) (1)
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distributively with the following assumption on the objective function.

Assumption 1 (Assumption on the Objective Function) We assume that:

(a) All fi(z) are convex functions over R
m.

(b) The optimizer set Z , argminz∈Rm F (z) is non-empty.

(c) The subgradients fi(z)s are uniformly upper bounded, i.e., for all g ∈ ∇fi(z), ‖g‖ ≤ Li for all z ∈ R
m

and all i ∈ [n]. We let L ,
∑n

i=1 Li.

In this paper, we are dealing with the dynamics of the n agents estimates of an optimizer z∗ ∈ Z which
we denote them by xi(t) for all i ∈ [n]. Therefore, we view x(t) as a vector of n elements in the vector
space R

m.
A distributed solution of (1) was first proposed in [19] using the following deterministic dynamics

xi(t+ 1) =

n
∑

j=1

wij(t+ 1)xj(t)− α(t)gi(t)

for t ≥ t0 for an initial time t0 ∈ N, initial conditions xi(t0) ∈ R
m for all i ∈ [n], where gi(t) ∈ R

m is a
subgradient of fi(z) at z = xi(t) for i ∈ [n], and {α(t)} is a step-size sequence (in [19] the constant step-sizes
variation of this dynamics was studied). We simply refer to this dynamics as the averaging-based distributed
optimization solver. We can compactly write the above dynamics as

x(t + 1) = W (t+ 1)x(t)− α(t)g(t), (2)

where, g(t) = [g1(t), . . . ,gn(t)]
T is the vector of the sub-gradient vectors and matrix multiplication should

be understood over the vector-field R
m, i.e.,

[W (t+ 1)x(t)]i ,

n
∑

j=1

wij(t+ 1)xj(t).

In distributed optimization, the goal is to find distributed dynamics xi(t)s such that limt→∞ xi(t) = z where
z ∈ Z for all i ∈ [n].

2.2 Our Contribution

In the paper, we consider the random variation of (2), i.e., when {W (t)} is a chain of random matrices. This
random variation was first studied in [13] where to ensure the convergence, it was assumed that this sequence
is doubly stochastic almost surely and i.i.d.. This was generalized to random networks that is Markovian
in [14]. The dynamics (2) with i.i.d. weight matrices that are row-stochastic almost surely and column-
stochastic in-expectation was studied in [16]. A special case of [16] is the asynchronous gossip algorithm
that were introduced in [17]. In this work, we provide an overarching framework for the study of (2) with
random weight matrices that are row-stochastic almost surely and column-stochastic in-expectation, that
are not even independent in general. More precisely, we have following assumptions.

Assumption 2 (Stochastic Assumption) We assume that the weight matrix sequence {W (t)}, adapted
to a filtration {F(t)}, satisfies

(a) For all t ≥ t0, W (t) is row-stochastic almost surely.

(b) For every t > t0, E[W (t) | F(t− 1)] is column-stochastic (and hence, doubly stochastic) almost surely.

Similar to other works in this domain, our goal is to ensure that limt→∞ xi(t) = z almost surely for some
optimal z ∈ Z for all i ∈ [n]. To reach such a consensus value, we need to ensure enough flow of information
between the agents, i.e., the associated graph sequence of {W (t)} satisfies some form of connectivity over
time. More precisely, we assume the following connectivity conditions.
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Assumption 3 (Conditional B-Connectivity Assumption) We assume that for all t ≥ t0

(a) Every node in G(W (t)) has a self-loop, almost surely.

(b) There exists an integer B > 0 such that the random graph GB(t) = ([n], EB(t)) where

EB(t) =

(t+1)B
⋃

τ=tB+1

E(E[W (τ)|F(tB)])

has a spanning rooted tree almost surely.

Note that Assumption 3-(b) is satisfied if the random graph with vertex set [n] and the edge set
⋃(t+1)B

τ=tB+1 E(E[W (τ)|F(τ − 1)]) has a spanning rooted tree almost surely.
Finally, we assume the following standard condition on the step-size sequence {α(t)}.

Assumption 4 (Assumption on Step-size) For the step-size sequence {α(t)}, we assume that 0 <

α(t) ≤ Kt−β for some K,β > 0 and all t ≥ t0, limt→∞
α(t)

α(t+1) = 1, and

∞
∑

t=t0

α(t) = ∞ and
∞
∑

t=t0

α2(t) < ∞. (3)

The main result of this paper is the following theorem.

Theorem 1 Under the Assumptions 1-4 on the model and the dynamics (2), limt→∞ xi(t) = z∗ almost
surely for all i ∈ [n] and all initial conditions xi(t0) ∈ R

m, where z∗ is a random vector that is supported on
the optimal set Z.

Before continuing with the technical details of the proof, let us first discuss some of the higher-level
implications of this result:

1. Gossip-based sequential solvers: Gossip algorithms, which were originally studied in [1, 2], have
been used in solving distributed optimization problems [12,17]. In gossip algorithms, at each round, a node
randomly wakes up and shares its value with all or some of its neighbors. However, it is possible to leverage
Theorem 1 to synthesize algorithms that do not require choosing a node independently and uniformly at
random or use other coordination methods to update information at every round. An example of such a
scheme is as follows:

Example 1 Consider a connected undirected network1 G = ([n], E). Consider a token that is handed se-
quentially in the network and initially it is handed to an arbitrary agent ℓ(0) ∈ [n] in the network. If at time
t ≥ 0, agent ℓ(t) ∈ [n] is in the possession of the token, it chooses one of its neighbors s(t+1) ∈ [n] randomly
and by flipping a coin, i.e., with probability 1

2 shares its information to s(t + 1) and passes the token and
with probability 1

2 keeps the token and asks for information from s(t+ 1). It means

ℓ(t+ 1) =

{

ℓ(t), with probability 1
2

s(t+ 1), with probability 1
2

.

Finally, the agent ℓ(t+ 1), who has the token at time t+ 1 and is receiving the information, does

xℓ(t+1)(t+ 1) =
1

2
(xs(t+1)(t) + xℓ(t)(t)) − α(t)gℓ(t+1)(t).

For the other agents i 6= ℓ(t+ 1), we set

xi(t+ 1) = xi(t)− α(t)gi(t).

1The graphs do not need to be time-invariant, and this example can be extended to processes over underlying time-varying

graphs.
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Let F(t) = σ(x(0), . . . ,x(t), ℓ(t)), and the weight matrix W (t) = [wij(t)] be

wij(t) =



















1
2 , i = j = ℓ(t)
1
2 , i = ℓ(t), j ∈ {s(t), ℓ(t− 1)} \ {ℓ(t)}

1, i = j 6= ℓ(t)

0, otherwise

,

which is the weight matrix of this scheme. Note that E[W (t)|F(t − 1)] = V (ℓ(t− 1)) where V (h) = [vij(h)]
with

vij(h) =































3
4 , i = j = h
1
4δi

, i = h, (i, j) ∈ E
1
4δi

, j = h, (i, j) ∈ E

1, i = j 6= h

0, otherwise

,

where δi is the degree of the node i. Note that the matrix E[W (t)|F(t − 1)] is doubly stochastic, satisfies
Assumption 3-(a), and only depends on ℓ(t−1). Now, we need to check whether {W (t)} satisfies Assumption
3-(b). We have

E[W (t+ n)|F(t)] = E[E[W (t + n) | F(t+ n− 1)] | F(t)]

= E[V (ℓ(t+ n− 1)) | F(t)]

= E

[

n
∑

i=1

V (ℓ(t+ n− 1))1{ℓ(t+n−1)=i}

∣

∣

∣

∣

F(t)

]

=

n
∑

i=1

E[V (i)1{ℓ(t+n−1)=i} | F(t)]

=

n
∑

i=1

V (i)E[1{ℓ(t+n−1)=i} | F(t)].

If the network is connected, starting from any vertex, after n− 1 steps, the probability of reaching any other
vertex is at least (2∆)−(n−1) > 0, where ∆ , maxi∈[n] δi. Therefore, we have E[1{ℓ(t+n−1)=i}|F(t)] > 0 for
all i ∈ [n] and t, and hence, Assumption 3-(b) is satisfied with B = n.

2. Robustness to link-failure: Our result shows that (2) is robust to random link-failures. Note that
the results such as [13] will not imply the robustness of the algorithms to link failure as it assumes that
the resulting weight matrices remain doubly stochastic. To show the robustness of averaging-based solvers,
suppose that we have a deterministic doubly stochastic sequence {A(t)}, and suppose that each link at any
time t fails with some probability p(t) > 0. More precisely, let B(t) be a failure matrix where bij(t) = 0 if a
failure on link (i, j) occurs at time t and otherwise bij(t) = 1 and we have

E[bij(t)|F(t− 1)] = 1− p(t), (4)

for i, j ∈ [n]. For example, if B(t) is independent and identically distributed, i.e.,

bij(t) =

{

0, with probability p

1, with probability 1− p
,

then B(t) satisfies (4). Define W (t) = [wij(t)] as follows

wij(t) ,

{

aij(t)bij(t), i 6= j

1−
∑

j 6=i aij(t)bij(t), i = j
.
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Note that W (t) is row-stochastic, and since A(t) is column-stochastic, E[W (t)|F(t−1)] is column-stochastic.
Thus, Theorem 1, using W (t), translates to a theorem on robustness of the distributed dynamics (2): as long
as the connectivity conditions of Theorem 1 holds, the dynamics will reach a minimizer of the distributed
problem almost surely. For example, if the link failure probability satisfies p(t) ≤ p̄ for all t and some p̄ < 1,
our result implies that the result of Proposition 4 in [20] (for unconstrained case) would still hold under
the above link-failure model. It is worth mentioning that if {A(t)} is time-varying, then E[W (t)] would be
time-varying and hence, the previous results on distributed optimization using i.i.d. row-stochastic weight
matrices that are column-stochastic in-expectation [16] would not imply such a robustness result.

3 Autonomous Averaging Dynamics

To prove Theorem 1, we need to study the time-varying distributed averaging dynamics with a particular
control input (gradient-like dynamics). To do this, first we study the autonomous averaging dynamics (i.e.,
without any input) and then, we use the established results to study the controlled dynamics.

For this, consider the time-varying distributed averaging dynamics

x(t+ 1) = W (t+ 1)x(t), (5)

where {W (t)} satisfying Assumption 3. Defining transition matrix

Φ(t, τ) , W (t) · · ·W (τ + 1),

and Φ(τ, τ) = I, we have x(t) = Φ(t, τ)x(τ). Note that since W (t)s are row-stochastic matrices (a.s.) and
the set of row-stochastic matrices is a semi-group (with respect to multiplication), the transition matrices
Φ(t, τ) are all row-stochastic matrices (a.s.).

We say that a chain {W (t)} achieves consensus for the initial time t0 ∈ N if for all i, limt→∞ ‖xi(t)−x̃‖ = 0
almost surely, for all choices of initial condition x(t0) ∈ (Rm)n in (5) and some random vector x̃ = x̃

x(t0). It
can be shown that an equivalent condition for consensus (for time t0) that limt→∞ Φ(t, t0) = eπT (t0) for a
random stochastic vector π(t0, ω) ∈ R

n, almost surely where ω ∈ Ω is a sample point.
For a matrix A = [aij ], let

diam(A) = max
i,j∈[n]

1

2

n
∑

ℓ=1

|aiℓ − ajℓ|,

and the mixing parameter

Λ(A) = min
i,j∈[n]

n
∑

ℓ=1

min{aiℓ, ajℓ}.

Note that for a row-stochastic matrix A, diam(A) ∈ [0, 1]. For a vector x = [xi] where xi ∈ R
m for all i, let

d(x) = max
i,j∈[n]

‖xi − xj‖.

Note that d(x) ≤ 2maxi∈[n] ‖xi‖. Also, if we have consensus, then limt→∞ d(x(t)) = 0 and
limt→∞ diam(Φ(t, t0)) = 0 and in fact, the reverse implications are true [5], i.e., a chain achieves consensus
(for time t0) if and only if limt→∞ d(x(t)) = 0 for all x(t0) ∈ (Rm)n or limt→∞ diam(Φ(t, t0)) = 0.

The following results relating the above quantities are useful for our future discussions.

Lemma 1 ( [9, 27]) For n× n row-stochastic matrices A,B, we have

diam(AB) ≤ (1− Λ(A))diam(B).

Lemma 2 For any n× n row-stochastic matrices A,B, we have

(a) d(Ax) ≤ diam(A)d(x) for all x ∈ (Rm)n,
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(b) d(x+ y) ≤ d(x) + d(y) for all x,y ∈ (Rm)n,

(c) diam(A) = 1− Λ(A),

(d) diam(AB) ≤ diam(A)diam(B), and

(e)
∥

∥

∥
xi −

∑n
j=1 πjxj

∥

∥

∥
≤ d(x) for all i ∈ [n], x ∈ (Rm)n, and any stochastic vector π ∈ [0, 1]n (i.e.,

∑n
i=1 πi = 1).

Proof: The proof is provided in Appendix.

The main goal of this section is to obtain an exponentially decreasing upper bound (in terms of t1 − τ1
and t2 − τ2) on E[diam(Φ(t2, τ2))diam(Φ(t1, τ1)) | F(τ1)].

Using this result and the connectivity assumption 3, we can show that the transition matrices Φ(t, s)
become mixing in-expectation for large enough t− s.

Lemma 3 Under Assumption 3 (Connectivity), there exists a parameter θ > 0 such that for every s ≥ t0,
we have almost surely

E[Λ(Φ((n2 + s)B, sB)) | F(sB)] ≥ θ.

Proof: Fix s ≥ 0. Let T be the set of all collection of edges E such that the graph ([n], E) has a spanning
rooted tree, and for k ∈ [n2],

EB(k) ,

(s+k)B
⋃

τ=(s+k−1)B+1

E (E[W (τ)|F((s + k − 1)B)]).

For notational simplicity, denote F(sB) by F and F((s+ k)B) by Fk for k ∈ [n2]. Let V = {ω | ∀k EB(k) ∈
T}. From Assumption 3, we have P (V ) = 1. For ω ∈ V and k ≥ 1, define the random graph ([n], Tk) on n

vertices by

Tk =

{

Tk−1, if Tk−1 ∈ T

Tk−1 ∪ {uk}, if Tk−1 6∈ T
,

with T0 = ∅, where

uk ∈ EB(k) ∩ T k−1, (6)

and T k is the edge-set of the complement graph of ([n], Tk). Note that since EB(k) has a spanning rooted
tree, if Tk−1 6∈ T, then EB(k) should contain an edge that does not belong to Tk−1, which we identify it as uk

in (6). Hence, Tk is well-defined. Since there are at most n(n− 1) potential edges in a graph on n vertices,
Tn2 has a spanning rooted tree for ω ∈ V .

For k ∈ [n2], let

DB(k) ,

(s+k)B
⋃

τ=(s+k−1)B+1

Eν(W (τ)),

for some fixed 0 < ν < γ, and
H(k) , ∪k

τ=1DB(τ).

Consider the sequences of events {Uk} defined by Uk , {ω ∈ V | Tk ⊂ H(k)}, for k ≥ 1, and U0 = V . Note
that if Tk−1 ∈ T, then Tk−1 ⊂ H(k − 1) implies Tk ⊂ H(k), and if Tk−1 6∈ T, then Tk−1 ⊂ H(k − 1) and
uk ∈ DB(k) imply Tk ⊂ H(k). Hence, for k ≥ 1

1{Uk} ≥ 1{Uk−1}1{Tk−1 6∈T}1{uk∈D
B
(k)} + 1{Uk−1}1{Tk−1∈T}. (7)

7



On the other hand, from Tower rule, we have

E[1{Uk−1}1{Tk−1 6∈T}1{uk∈D
B
(k)} | F ] (8)

= E[1{Uk−1}1{Tk−1 6∈T}E[1{uk∈D
B
(k)}|Fk−1] | F ].

Let uk(ω) = (jk(ω), ik(ω)). Since uk ∈ EB(k), there exists (s+ k − 1)B < τk ≤ (s+ k)B such that

uk ∈ E (E[W (τk)|Fk−1]),

and, we have

E[(1 − ν)1{1−wikjk
(τk)≥1−ν}|Fk−1] ≤ E[1− wikjk(τk)|Fk−1] ≤ 1− γ.

Therefore,

E[1{uk∈D
B
(k)} | Fk−1] ≥ E[1{uk∈Eν(W (τk))} | Fk−1]

= E[1{wikjk
(τk)>ν} | Fk−1]

= 1− E[1{wikjk
(τk)≤ν} | Fk−1]

= 1− E[1{1−wikjk
(τk)≥1−ν} | Fk−1]

≥ 1−
1− γ

1− ν
, p > 0,

which holds as ν < γ. This inequality and (8) imply that

E[1{Uk−1}1{Tk−1 6∈T}1{uk∈D
B
(k)} | F ] ≥ pE[1{Uk−1}1{Tk−1 6∈T} | F ].

Therefore, (7) implies

E[1{Uk}|F ] ≥ pE[1{Uk−1}1{Tk−1 6∈T}|F ] + E[1{Uk−1}1{Tk−1∈T}|F ]

≥ p
(

E[1{Uk−1}1{Tk−1 6∈T}|F ] + E[1{Uk−1}1{Tk−1∈T}|F ]
)

= pE[1{Uk−1}|F ],

and hence E[1{Uk}|F ] ≥ pk. Finally, since Tn2 has a spanning rooted tree, from Lemma 1 in [13], we have

Λ(W (n2B,ω) · · ·W (n(n− 1)B + n− 1, ω) · · ·W (1, ω)) ≥ νn
2B,

for ω ∈ Un2 . Therefore, we have

E[Λ(Φ((n2 + s)B, sB)) | F(sB)] ≥ νn
2B

E[1{Un2} | F ] ≥ νn
2Bpn

2

, θ > 0,

which completes the proof.
Finally, we need the following result, which is proved in Appendix, to prove the main result of this section.

Lemma 4 For a random process {Y (k)}, adapted to a filtration {F(k)}, let

E[Y (k)|F(k − 1)] ≤ a(k)

for K1 ≤ k ≤ K2 almost surely, where K1 ≤ K2 are arbitrary positive integers and a(k)s are (deterministic)
scalars. Then, we have almost surely

E

[

K2
∏

k=K1

Y (k)

∣

∣

∣

∣

F(K1 − 1)

]

≤
K2
∏

k=K1

a(k).

Now, we are ready to prove the main result for the convergence rate of the autonomous random averaging
dynamics.
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Lemma 5 Under Assumption 3 (Connectivity), there exist 0 < C and 0 ≤ λ < 1 such that for every
t0 ≤ τ1 ≤ t1 and t0 ≤ τ2 ≤ t2 with τ1 ≤ τ2, we have almost surely

E[diam(Φ(t2, τ2))diam(Φ(t1, τ1))|F(τ1)] ≤ Cλt1−τ1λt2−τ2 .

Proof: First, we prove

E[diam(Φ(t, τ))|F(τ)] ≤ C̃λ̃t−τ , (9)

for some 0 < C̃ and 0 ≤ λ̃ < 1. Let s , ⌈ τ
B
⌉ and K , ⌊ t−sB

n2B
⌋. We have

E[diam(Φ(t, τ))|F(τ)] = E

[

diam

(

Φ(t, sB +Kn2B)

[

K
∏

k=1

Φ(sB + kn2B, sB + (k − 1)n2B)

]

Φ(sB, τ)

)∣

∣

∣

∣

∣

F(τ)

]

(a)

≤ E

[

K
∏

k=1

(1 − Λ(Φ(sB + kn2B, sB + (k − 1)n2B))

∣

∣

∣

∣

∣

F(τ)

]

(b)

≤ (1− θ)K

≤ C̃(1− θ)
t−τ

n2B ,

where C̃ = (1− θ)−1− 1

n2 and (a) follows from Lemma 1, Lemma 2-(d), and diam(Φ(., .)) ≤ 1, and (b) follows

from Lemma 3 and 4. Since θ > 0, we have λ̃ , (1 − θ)
1

n2B < 1.
To prove the main statement, we consider two cases:

(i) intervals (τ1, t1] and (τ2, t2] do not have an intersection, and

(ii) (τ1, t1] and (τ2, t2] intersect.

For case (i), since the two intervals do not overlap, we have t1 ≤ τ2, and hence

E[diam(Φ(t2, τ2))diam(Φ(t1, τ1))|F(τ1)] = E

[

E[diam(Φ(t2, τ2))|F(τ2)]diam(Φ(t1, τ1))

∣

∣

∣

∣

F(τ1)

]

≤ C̃λ̃t1−τ1C̃λ̃t2−τ2 ,

which follows from (9). For case (ii), let’s write the union of the intervals (τ1, t1] and (τ2, t2] as disjoint union
of three intervals:

(τ1, t1] ∪ (τ2, t2] = (s1, s2] ∪ (s2, s3] ∪ (s3, s4],

for s1 ≤ s2 ≤ s3 where (s2, s3] , (τ1, t1] ∩ (τ2, t2], (s1, s2] ∪ (s3, s4] , (τ1, t1]△(τ2, t2]. Using this, it can be
verified that

E[diam(Φ(t2, τ2))diam(Φ(t1, τ1))|F(τ1)]
(a)

≤E[diam(Φ(s4, s3))diam
2(Φ(s3, s2))diam(Φ(s2, s1))|F(τ1)]

(b)

≤E[diam(Φ(s4, s3))diam(Φ(s3, s2))diam(Φ(s2, s1))|F(τ1)]

(c)

≤ C̃λ̃s2−s1C̃λ̃s3−s2C̃λ̃s4−s3

= C̃λ̃s2−s12C̃
√

λ̃
2(s3−s2)

C̃λ̃s4−s3

≤ C̃3
√

λ̃
t1−τ1√

λ̃
t2−τ2

,

where (a) follows from Lemma 2-(d) , (b) follows from diam(A) ≤ 1 for all row-stochastic matrices A,

and (c) follows from (9) and Lemma 4. Letting C , max{C̃2, C̃3} and λ ,
√

λ̃, we arrive at the conclusion.
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4 Averaging Dynamics with Gradient-Flow Like Feedback

In this section, we study the controlled linear time-varying dynamics

x(t + 1) = W (t+ 1)x(t) + u(t). (10)

Note that the feedback u(t) = −α(t)g(t) leads to the dynamics (2). The goal of this section is to establish
bounds on the convergence-rate of d(x) (to zero) in-expectation and almost surely for a class of regularized
input u(t).

We start with the following two lemmas.

Lemma 6 For dynamics (10) and every t0 ≤ τ ≤ t, we have

d(x(t)) ≤ diam(Φ(t, τ))d(x(τ)) +
t−1
∑

s=τ

diam(Φ(t, s+ 1))d(u(s)). (11)

Proof: Note that the general solution for the dynamics (10) is given by

x(t) = Φ(t, τ)x(τ) +
t−1
∑

s=τ

Φ(t, s+ 1)u(s). (12)

Therefore, using the sub-linearity property of d(·) (Lemma 2-(b)), we have

d(x(t))≤d(Φ(t, τ)x(τ)) +

t−1
∑

s=τ

d(Φ(t, s+ 1)u(s))

≤diam(Φ(t, τ))d(x(τ)) +

t−1
∑

s=τ

diam(Φ(t, s+ 1))d(u(s)),

where the last inequality follows from Lemma 2-(a).

Lemma 7 Let {β(t)} be a positive (scalar) sequence such that limt→∞
β(t)

β(t+1) = 1. Then for any θ ∈ [0, 1),

there exists some M > 0 such that

t−1
∑

s=τ

β(s)θt−s ≤ Mβ(t),

for all t ≥ τ ≥ t0.

Proof: The proof is provided in Appendix.

To prove the main theorem, we need to study how fast E[d(x(t))] and E[d2(x(t))] approach to zero when
the diameter of the control input d(u(t)) goes to zero. Since E[d2(x(t))] ≥ E

2[d(x(t))], it suffice to study
convergence rate of E[d2(x(t))].

Lemma 8 Under Assumptions 2, 3, and 4, if almost surely d(u(t)) < qα(t) for some q > 0, then we have,

E[d2(x(t))]

α2(t)
≤ M̂

for some M̂ > 0 and all t ≥ t0.
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Proof: Taking the square of both sides of (11), for t > τ ≥ t0, we have

d2(x(t)) ≤ diam2(Φ(t, τ))d2(x(τ)) + 2diam(Φ(t, τ))d(x(τ))

t−1
∑

s=τ

diam(Φ(t, s+ 1))d(u(s))

+
t−1
∑

s=τ

t−1
∑

ℓ=τ

diam(Φ(t, s+ 1))d(u(s))diam(Φ(t, ℓ + 1))d(u(ℓ)).

Taking the expectation of both sides of the above inequality, and using d(u(t)) < qα(t) almost surely, we
have

E[d2(x(t))] ≤ E[diam2(Φ(t, τ))d2(x(τ))] + 2

t−1
∑

s=τ

E
[

diam(Φ(t, τ))d(x(τ))diam(Φ(t, s+ 1))d(u(s))
]

+

t−1
∑

s=τ

t−1
∑

ℓ=τ

E
[

diam(Φ(t, s+ 1))d(u(s))diam(Φ(t, ℓ + 1))d(u(ℓ))
]

≤ E

[

E[diam2(Φ(t, τ))|F(τ)]d2(x(τ))

]

+ 2

t−1
∑

s=τ

E

[

E[diam(Φ(t, τ))diam(Φ(t, s+ 1))|F(τ)]d(x(τ))

]

α(s)q

+

t−1
∑

s=τ

t−1
∑

ℓ=τ

E[diam(Φ(t, s+ 1))diam(Φ(t, ℓ + 1))]α(s)α(ℓ)q2.

Therefore, from Lemma 5, we have

E[d2(x(t))] ≤ Cλ2(t−τ)
E[d2(x(τ))] +

2Cq

λ
λt−τ

E[d(x(τ))]

t−1
∑

s=τ

λt−sα(s) +
Cq2

λ2

t−1
∑

s=τ

t−1
∑

ℓ=τ

α(s)α(ℓ)λt−sλt−ℓ

≤ Cλ2(t−τ)
E[d2(x(τ))] +

2CqM

λ
λt−τ

E[d(x(τ))]α(t) +
Cq2M2

λ2
α2(t),

where the last inequality follows from Lemma 7 and the fact that

t−1
∑

s=τ

t−1
∑

ℓ=τ

α(s)α(ℓ)λt−sλt−ℓ =

(

t−1
∑

s=τ

α(s)λt−s

)2

.

Dividing both sides of the above inequality by α2(t) and noting α(τ)
α(t) λ

t−τ =
∏t−1

κ=τ
α(κ)

α(κ+1)λ, we have

E[d2(x(t))]

α2(t)
≤ C

E[d2(x(τ))]

α2(τ)

(

t−1
∏

κ=τ

α(κ)

α(κ+ 1)
λ

)2

+ 2
CqM

λ

E[d(x(τ))]

α(τ)

(

t−1
∏

κ=τ

α(κ)

α(κ+ 1)
λ

)

+
Cq2M2

λ2
.

Since limτ→∞
α(τ)

α(τ+1) = 1, for any λ̂ ∈ (λ, 1), there exists τ̂ such that for τ ≥ τ̂ , we have µ(τ)
µ(τ+1)λ ≤ λ̂.

Therefore,

E[d2(x(t))]

α2(t)
≤ C

E[d2(x(τ))]

α2(τ)
λ̂2(t−τ) +

2CqM

λ

E[d(x(τ))]

α(τ)
λ̂t−τ +

Cq2M2

λ2
.

Taking the limit of the above inequality, we get

lim sup
t→∞

E[d2(x(t))]

α2(t)
≤ lim

t→∞
C
E[d2(x(τ))]

α2(τ)
λ̂2(t−τ) + lim

t→∞

2CqM

λ

E[d(x(τ))]

α(τ)
λ̂t−τ +

Cq2M2

λ2

=
Cq2M2

λ2
.

As a result, there exists an M̂ > 0 such that E[d2(x(t))]
α2(t) ≤ M̂ .
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To prove the main theorem, we also need to show that d(x(t)) converges to zero almost surely (as will
be proved in Lemma 11). To do so, using the previous results, we will show (in Lemma 11) that

E[d(x(t))|F(τ)] ≤ E[diam(Φ(t, τ))|F(τ)]d(x(τ)) +Kτ−γ ,

for some K, γ > 0. However, since
∑∞

τ=t0
τ−γ is not necessarily summable, we cannot use the standard

Siegmund-Robbins Theorem [26] to argue d(x(t)) → 0 based on this inequality. We will use the facts that
E[diam(Φ(t, τ))|F(τ)] < 1 if t− τ is large enough, and diam(Φ(t, τ)) ≤ 1 for all t ≥ τ ≥ t. This leads us to
prove a martingale-type result in Lemma 10. To prove this lemma, we first show the following.

Lemma 9 Consider a non-negative random process a(t) such that

E[a(t+ 1) | F(t)] ≤ λ̃

for some λ̃ < 1 and all t ≥ 0. For λ satisfying λ̃ < λ < 1, define the sequence of stopping-times {ts}s≥0 by

ts , inf{t > ts−1|a(t) ≤ λ},

with t0 = 0. Then, lims→∞(ts+1 − ts)t
−β
s = 0 almost surely for all β > 0.

Proof: Let us define the martingale S(t) by

S(t) = S(t− 1) +
(

1{a(t)>λ} − E[1{a(t)>λ}|F(t− 1)]
)

,

where S(0) = 0. Noting |S(t+ 1)− S(t)| ≤ 1, from Azuma’s inequality, we have

P (S(t+ σ) − S(t) > σρ) ≤ exp

(

−
σ2ρ2

2σ

)

, (13)

for all σ ∈ N and ρ ∈ (0, 1). For θ > 0, let the sequences of events

Aθ(t) ,
{

ω
∣

∣S(t+ ⌊θtβ⌋)− S(t) > ⌊θtβ⌋ρ
}

.

From (13), we have

P (Aθ(t)) ≤ exp

(

−
1

2
(θtβ − 1)ρ2

)

,

implying
∑∞

t=1 P (Aθ(t)) < ∞ as exp
(

−tβ
)

≤ M
t2

for sufficiently large M (depending on β). Therefore, the
Borel–Cantelli Theorem implies that P ({Aθ(t) i.o.}) = 0 for all θ > 0.

For θ > 0, let the sequences of events

Bθ(t) ,

{

ω

∣

∣

∣

∣

t̂− t

tβ
> θ where t̂ = inf{τ > t|a(τ) ≤ λ}

}

.

We show that Bθ(t) ⊂ Aθ(t) for all t, θ. Fix a constant ρ ∈ (0, 1) such that 1 − λ̃
λ

> ρ. Since E[a(τ) |

F(τ − 1)] ≤ λ̃, we have

E[λ1{a(τ)≥λ} | F(τ − 1)] ≤ E[a(τ) | F(τ − 1)]

≤ λ̃ < λ(1− ρ)

and hence,

E[1{a(τ)≥λ} | F(τ − 1)] < 1− ρ. (14)

Let σ(t) , ⌊θtβ⌋. If t̂− t > θtβ , then

S(t+ σ(t)) − S(t) = σ(t)−

t+σ(t)
∑

τ=t+1

E[1{a(τ)>λ}|F(τ − 1)]

> σ(t)− σ(t)(1 − ρ) = σ(t)ρ,
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which follows from (14). Therefore, we have Bθ(t) ⊂ Aθ(t), and hence, P ({Bθ(t) i.o.}) = 0 for all θ > 0.
Finally, by contradiction, we show that lims→∞(ts+1 − ts)t

−β
s = 0. Since, if lims→∞(ts+1 −

ts)t
−β
s 6= 0 almost surely, then lim sups→∞(ts+1 − ts)t

−β
s > 0 almost surely, and hence,

P
(

lim sups→∞(ts+1 − ts)t
−β
s > ǫ

)

> 0 for some ǫ > 0. Therefore, P ({Bǫ(t) i.o.}) > 0, which is a
contradiction.

Lemma 10 Suppose that {D(t)} is a non-negative random (scalar) process such that

D(t+ 1) ≤ a(t+ 1)D(t) + b(t), almost surely (15)

where {b(t)} is a deterministic sequence and {a(t)} is an adapted process (to {F(t)}), such that a(t) ∈ [0, 1]
and

E[a(t+ 1) | F(t)] ≤ λ̃,

almost surely for some λ̃ < 1 and all t ≥ 0. Then, if

0 ≤ b(t) ≤ Kt−β̃

for some K, β̃ > 0, we have limt→∞ D(t)tβ = 0, almost surely, for all β < β̃.

Proof: Let ts , inf{t > ts−1|a(t) ≤ λ} and t0 = 0 for some λ̃ < λ < 1, and c(s) ,
∑ts+1−1

τ=ts+1 b(τ) . Also,
define

A ,

{

ω

∣

∣

∣

∣

lim
s→∞

ts+1 − ts

t
min{β̃−β,1}
s

= 0

}

.

Note that Lemma 9 implies P (A) = 1. On the other hand, using (15), we have

D(ts+1) ≤ D(ts)

ts+1
∏

ℓ=ts+1

a(ℓ) +

ts+1−1
∑

τ=ts

b(τ)

ts+1
∏

ℓ=τ+2

a(ℓ)

≤ D(ts)λ + c(s),

where the last inequality follows from a(t) ∈ [0, 1] and a(ts+1) ≤ λ. Letting R(t) = D(t)tβ , we have

R(ts+1) ≤

(

ts+1

ts

)β

R(ts)λ+ c(s)tβs+1.

Note that, for ω ∈ A, we have

lim
s→∞

ts+1

ts
= lim

s→∞
1 +

ts+1 − ts

ts
= 1. (16)

As a result, for any λ̂ ∈ (λ, 1), there exists ŝ such that for s ≥ ŝ, we have
(

ts+1

ts

)β

λ ≤ λ̂, and hence

R(ts+1) ≤ R(ts)λ̂+ c(s)tβs+1.

Therefore,

R(ts) ≤ λ̂s−ŝR(tŝ) +

s−1
∑

τ=ŝ

c(τ)tβτ+1λ̂
s−τ−1.

Taking the limits of the both sides, we have

lim sup
s→∞

R(ts) ≤ lim sup
s→∞

λ̂s−ŝR(tŝ) +

s−1
∑

τ=ŝ

c(τ)tβτ+1λ̂
s−τ−1

= lim
s→∞

c(s)tβs+1,
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which is implied by Lemma 3.1-(a) in [23]. For ω ∈ A, we have

lim
s→∞

c(s)tβs+1

(a)

≤ lim
s→∞

K(ts+1 − ts)

t
β̃
s

t
β
s+1

= lim
s→∞

K(ts+1 − ts)

t
β̃−β
s

t
β
s+1

t
β
s

(b)
= lim

s→∞

K(ts+1 − ts)

t
β̃−β
s

= 0. (17)

where (a) follows from b(t) ≤ Kt−β̃, and (b) follows from (16). Therefore, lims→∞ R(ts) = 0. Now for any t >

0 with ts ≤ t < ts+1, let σ(t) = s. By the definition of R(t), we have R(t) ≤
(

t
σ(t)

)β

R(tσ(t))+ c(σ(t))tβ
σ(t)+1.

Therefore, lims→∞ R(ts) = 0 and Inequality (17) imply

lim sup
t→∞

R(t) ≤ lim
t→∞

(

t

σ(t)

)β

R(tσ(t)) + c(σ(t))tβ
σ(t)+1 = 0,

which is the desired conclusion as R(t) = D(t)tβ .

Finally, we are ready to show the almost sure convergence limt→∞ d(x(t)) = 0 (and more) under our
connectivity assumption and a regularity condition on the input u(t) for the controlled averaging dynamics
(10).

Lemma 11 Suppose that {W (t)} satisfies Assumption 3. Then, if d(u(t)) < qt−β̃ almost surely for some
q ≥ 0, we have limt→∞ d(x(t))tβ = 0, almost surely, for β < β̃.

Proof: From inequality (11), we have

d(x(k)) ≤ diam(Φ(k, τ))d(x(τ)) +

k−1
∑

s=τ

diam(Φ(τ, s+ 1))d(u(s))

(a)

≤ diam(k, τ))d(x(τ)) +

k−1
∑

s=τ

qs−β̃

≤ diam(Φ(k, τ))d(x(τ)) + (k − τ)qτ−β̃ , (18)

where (a) follows from diam(Φ(., .)) ≤ 1. Let C > 0 and λ ∈ [0, 1) be the constants satisfying the statement
of Lemma 5. Since λ < 1, for T = ⌈| logC

log λ
|⌉+ 1, we have λ̃ , CλT < 1. Then, Lemma 5 implies that

E[diam(Φ(T (t+ 1), T t))|F(T t)] ≤ CλT = λ̃ < 1. (19)

Let D(t) , d(x(T t)). From inequality (18), for τ = T t and k = T (t+ 1), we have

D(t+ 1) ≤ diam(Φ(T (t+ 1), T t))D(t) + T 1−β̃qt−β̃ .

Taking conditional expectation of both sides of the above inequality given F(T t), we have

E[D(t+ 1)|F(T t)] ≤ E[diam(Φ(T (t+ 1), T t))|F(T t)]D(t) + T 1−β̃qt−β̃ .

By letting a(t+1) , diam(Φ(T (t+1), T t)) and b(t) , Tqt−β̃, we are in the setting of Lemma 10. Therefore,
by Inequality (19) and diam(Φ(T (t+ 1), T t)) ≤ 1, the conditions of Lemma 10 hold, and hence,

lim
t→∞

D(t)tβ = 0 (20)

almost surely.
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On the other hand, letting τ = T
⌊

k
T

⌋

in (18) we have

d(x(k)) ≤ D

(⌊

k

T

⌋)

+ T 1−β̃q

⌊

k

T

⌋−β̃

.

Therefore,

lim
k→∞

d(x(k))kβ ≤ lim
k→∞

D

(⌊

k

T

⌋)

kβ + T 1−β̃q

⌊

k

T

⌋−β̃

kβ

≤ lim
k→∞

D

(⌊

k

T

⌋)(

T

(⌊

k

T

⌋

+ 1

))β

+ Tq(k − T )−β̃kβ

= 0,

where the last equality follows from (20) and β̃ > β.

5 Convergence Analysis of the Main Dynamics

Finally, in this section, we will study the main dynamics (2), i.e., the dynamics (10) with the feedback
policy ui(t) = −α(t)gi(t) where gi(t) ∈ ∇fi(xi(t)). Throughout this section, we let x̄ , 1

n
eTx for a vector

x ∈ (Rm)n,
First, we prove an inequality (Lemma 13) which plays a key role in the proof of Theorem 1 and to do

so, we make use of the following result which is proven as a part of the proof of Lemma 8 (Equation (27))
in [18].

Lemma 12 ( [18]) Under Assumption 1, for all v ∈ R
m, we have

n 〈ḡ(t), x̄(t)− v〉 ≥ F (x̄(t))− F (v)− 2
n
∑

i=1

Li‖xi(t)− x̄(t)‖.

Lemma 13 For the dynamics (2), under Assumption 1, for all v ∈ R
m, we have

E[‖x̄(t+ 1)− v‖2|F(t)] ≤ ‖x̄(t)− v‖2 + α2(t)
L2

n2
+

n
∑

i=1

‖xi(t)− x̄(t)‖2

−
2α(t)

n
(F (x̄(t))− F (v)) +

4α(t)

n

n
∑

i=1

Li‖xi(t)− x̄(t)‖.

Proof: Multiplying 1
n
eT from left to both sides of (2), we have

x̄(t+ 1) = W (t+ 1)x(t)− α(t)ḡ(t)

= x̄(t)− α(t)ḡ(t) +W (t+ 1)x(t)− x̄(t),

where W (t) , 1
n
eTW (t). Therefore, we can write

‖x̄(t+ 1)− v‖2 = ‖x̄(t)− v − α(t)ḡ(t) +W (t+ 1)x(t)− x̄(t)‖2

= ‖x̄(t)− v‖2 + ‖α(t)ḡ(t)‖2 + ‖W (t+ 1)x(t) − x̄(t)‖2 − 2α(t)
〈

ḡ(t),W (t+ 1)x(t) − v
〉

+ 2
〈

x̄(t)− v,W (t+ 1)x(t)− x̄(t)
〉

.

Taking conditional expectation of both sides of the above equality given F(t), we have

E[‖x̄(t+ 1)− v‖2|F(t)] = ‖x̄(t)− v‖2 + ‖α(t)ḡ(t)‖2 + E
[

‖W (t+ 1)x(t)− x̄(t)‖2|F(t)
]

− 2α(t)
〈

ḡ(t),E
[

W (t+ 1)x(t)− v|F(t)
]〉

+ 2
〈

(x̄(t)− v),E
[

W (t+ 1)x(t)− x̄(t)|F(t)
]〉

=‖x̄(t)− v‖2 + ‖α(t)ḡ(t)‖2 + E
[

‖W (t+ 1)x(t)− x̄(t)‖2|F(t)
]

− 2 〈α(t)ḡ(t), x̄(t)− v〉 .

15



The last equality follows from the assumption that, W (t+1) is doubly stochastic in-expectation and hence,

E[W (t+ 1)|F(t)] =
1

n
eT ,

which implies
〈

ḡ(t),E
[

W (t+ 1)x(t)− v|F(t)
]〉

= 〈α(t)ḡ(t), x̄(t)− v〉 ,

and
E
[

W (t+ 1)x(t) − x̄(t)|F(t)
]

= 0.

Note that W (t + 1) is a stochastic vector (almost surely), therefore, due to the convexity of norm-square
‖ · ‖2, we get

‖W (t+ 1)x(t)− x̄(t)‖2 ≤
n
∑

i=1

W i(t+ 1)‖xi(t)− x̄(t)‖2

≤
n
∑

i=1

‖xi(t)− x̄(t)‖2,

as W i(t+ 1) ≤ 1 for all i ∈ [n]. Therefore,

E[‖x̄(t+ 1)− v‖2|F(t)]=‖x̄(t)− v‖2 + ‖α(t)ḡ(t)‖2 + E
[

‖W (t+ 1)x(t)− x̄(t)‖2|F(t)
]

− 2 〈α(t)ḡ(t), x̄(t)− v〉

≤ ‖x̄(t)− v‖2 + ‖α(t)ḡ(t)‖2 +
n
∑

i=1

‖xi(t)− x̄(t)‖2 − 2 〈α(t)ḡ(t), x̄(t)− v〉 .

Finally, Lemma 12 and the fact that

‖ḡ(t)‖2 =
1

n2

∥

∥

∥

∥

∥

n
∑

i=1

gi(t)

∥

∥

∥

∥

∥

2

≤
1

n2

(

n
∑

i=1

‖gi(t)‖

)2

≤
L2

n2
,

complete the proof.

Proof of Theorem 1: Recall that Siegmund and Robbins Theorem [26] states that for a non-negative
random process {V (t)} (adapted to the filtration {F(t)}) satisfying

E [V (t+ 1)|F(t)] = (1 + a(t))V (t)− b(t) + c(t), (21)

where a(t), b(t), c(t) ≥ 0 for all t, and
∑∞

t=0 a(t) < ∞ and
∑∞

t=1 c(t) < ∞ almost surely, limt→∞ V (x(t))
exists and

∑∞
t=1 b(t) < ∞ almost surely. In order to utilize this result and Lemma 13, for all t ≥ 0, let

V (t) , ‖x̄(t)− z‖2,

a(t) , 0,

b(t) , −
2α(t)

n
(F (x̄(t)) − F (z)), and

c(t) , α2(t)
L2

n2
+

n
∑

i=1

‖xi(t)− x̄(t)‖2 +
4α(t)

n

n
∑

i=1

Li‖xi(t)− x̄(t)‖,

where z ∈ Z. First, note that a(t), b(t), c(t) ≥ 0 for all t. To invoke the Siegmund and Robbins result (21),
we need to to prove that

∑∞
t=0 c(t) < ∞, almost surely. Since

∑∞
t=0 α

2(t) < ∞, it is enough to show that

∞
∑

t=0

‖xi(t)− x̄(t)‖2 < ∞

and
∞
∑

t=0

α(t)‖xi(t)− x̄(t)‖ < ∞,
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almost surely, for all i ∈ [n]. From Lemma 2-(e) and Lemma 8, we have

E

[

‖xi(t)− x̄(t)‖

α(t)

]

≤
E [d(x(t))]

α(t)
≤
√

M̂ < ∞

for some M̂ > 0. Therefore, we have

lim
T→∞

E

[

T
∑

t=0

α(t)‖xi(t)− x̄(t)‖

]

= lim
T→∞

E

[

T
∑

t=0

α2(t)
‖xi(t)− x̄(t)‖

α(t)

]

= lim
T→∞

T
∑

t=0

α2(t)E

[

‖xi(t)− x̄(t)‖

α(t)

]

≤
√

M̂

∞
∑

t=0

α2(t) < ∞.

Similarly, using Lemma 8, there exists some M̂ > 0 such that

E
[

‖xi(t)− x̄(t)‖2
]

α2(t)
≤

E
[

d2(x(t))
]

α2(t)
≤ M̂,

for all t ≥ 0, where the first inequality follows from Lemma 2 - (e). Therefore,

lim
T→∞

E

[

T
∑

t=0

‖xi(t)− x̄(t)‖2

]

= lim
T→∞

E

[

T
∑

t=0

α2(t)
‖xi(t)− x̄(t)‖2

α2(t)

]

≤ M̂

∞
∑

t=0

α2(t) < ∞.

Therefore, using Monotone Convergence Theorem, we have

E

[

∞
∑

t=0

α(t)‖xi(t)− x̄(t)‖

]

< ∞, and

E

[

∞
∑

t=0

‖xi(t)− x̄(t)‖2

]

< ∞,

which implies
∑∞

t=0 α(t)‖xi(t)− x̄(t)‖ < ∞ and
∑∞

t=0 ‖xi(t)− x̄(t)‖2 < ∞, almost surely.
Now that we showed that c(t) is almost surely a summable sequence, Siegmund and Robbins Theorem

implies that almost surely
lim
t→∞

V (t) = lim
t→∞

‖x̄(t)− z‖2 exists,

and
∞
∑

t=1

α(t)(F (x̄(t)) − F (z)) < ∞.

For z ∈ Z, let’s define

Ωz ,







ω

∣

∣

∣

∣

∣

lim
t→∞

‖x̄(t, ω)− z‖ exists,
∞
∑

t=1
α(t)(F (x̄(t, ω))− F ∗) < ∞







,

where F ∗ , minz∈Rm F (z). Per Sigmund-Robbins result, we know that P (Ωz) = 1. Now, let Zd ⊂ Z be a
countable dense subset of Z and let

Ωd ,
⋂

z∈Zd

Ωz.
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Since Zd is a countable set, we have P (Ωd) = 1 and for ω ∈ Ωd, since
∑∞

t=1 α(t)(F (x̄(t, ω))− F ∗) < ∞ and
α(t) is not summable, we have

lim inf
t→∞

F (x̄(t)) = F ∗.

This fact and the fact that F (·) is a continuous function implies that for all ω ∈ Ωd, we have
lim inft→∞ ‖x̄(t, ω) − z∗(ω)‖ = 0 for some z∗(ω) ∈ Z. To show this, let {x̄(tk)} be a sub-sequence that
limk→∞ F (x̄(tk, ω)) = F ∗ (such a sub-sequence depends on the sample path ω). Since ω ∈ Ωd and

lim
t→∞

‖x̄(t, ω)− ẑ‖ exists

for some ẑ ∈ Zd, we conclude that {x̄(t, ω)} is a bounded sequences. Therefore, {x̄(tk, ω)} is also bounded
and it has an accumulation point z∗ ∈ R

m and hence, there is a sub-sequence {x̄(tkτ
, ω)}τ≥0 of {x̄(tk, ω)}k≥0

such that
lim
τ→∞

x̄(tkτ
, ω) = z∗.

As a result of continuity of F (·), we have

lim
τ→∞

F (x̄(tkτ
)) = F (z∗) = F ∗

and hence, z∗ ∈ Z. Note that the point z∗ = z∗(ω) depends on the sample path ω.
Since Zd ⊆ Z is dense, there is a sequence {q∗(s, ω)}s≥0 in Zd such that lims→∞ ‖q∗(s, ω)− z∗(ω)‖ = 0.

Note that since ω ∈ Ωd, limt→∞ ‖x̄(t, ω)− q∗(s, ω)‖ exists for all s ≥ 0 and we have

lim
t→∞

‖x̄(t, ω)− q∗(s, ω)‖ = lim
t→∞

‖x̄(t, ω)− z∗(ω) + z∗(ω)− q∗(s, ω)‖

≤ lim inf
t→∞

‖x̄(t, ω)− z∗(ω)‖+ ‖q∗(s, ω)− z∗(ω)‖

= ‖q∗(s, ω)− z∗(ω)‖.

Therefore, we have

lim
s→∞

lim
t→∞

‖x̄(t, ω)− q∗(s, ω)‖ = 0. (22)

On the other hand, we have

lim sup
t→∞

‖x̄(t, ω)− z∗(ω)‖ = lim sup
t→∞

‖x̄(t, ω)− q∗(s, ω) + q∗(s, ω)− z∗(ω)‖

≤ lim sup
t→∞

‖x̄(t, ω)− q∗(s, ω)‖+ ‖q∗(s, ω)− z∗(ω)‖

=
(

lim
t→∞

‖x̄(t, ω)− q∗(s, ω)‖
)

+ ‖q∗(s, ω)− z∗(ω)‖.

Therefore,

lim sup
t→∞

‖x̄(t, ω)− z∗(ω)‖ = lim
s→∞

lim sup
t→∞

‖x̄(t, ω)− z∗(ω)‖

≤ lim
s→∞

lim
t→∞

‖x̄(t, ω)− q∗(s, ω)‖+ lim
s→∞

‖q∗(s, ω)− z∗(ω)‖

= 0, (23)

where the last equality follows by combining (22) and lims→∞ ‖q∗(s, ω)−z∗(ω)‖ = 0. Note that (23), implies
that almost surely (i.e., for all ω ∈ Ωd), we have

lim
t→∞

x̄(t) = z∗(ω)

exists and it belongs to Z.
Finally, according to Assumption 1 and 4, we have

d(α(t)g(t)) ≤ 2Kt−β max
i∈[n]

Li.
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Therefore, from lemma 11, we conclude that limt→∞ d(x(t)) = 0 almost surely, and hence

lim
t→∞

‖x̄(t)− xi(t)‖ = 0 almost surely.

Since we almost surely have limt→∞ x̄(t) = z∗ for a random vector z∗ supported in Z, we have
limt→∞ xi(t) = z∗ for all i ∈ [n] almost surely and the proof is complete.

6 Conclusion and Future Research

In this work, we showed that the averaging-based distributed optimization solving algorithm over dependent
random networks converges to an optimal random point under the standard conditions on the objective
function and network formation that is conditionally B-connected. To do so, we established a rate of
convergence for the second moment of the autonomous averaging dynamics over such networks and used
that to study the convergence of the sample-paths and second moments of the controlled variation of those
dynamics.

Further extensions of the current work to non-convex settings, accelerated algorithms, and distributed
online learning algorithms are of interest for future consideration on this topic.

Proof of Lemma 2: For the proof of part (a), let x
(k)
i be the kth coordinate of xi, and define the vector

y = [y(1), . . . , y(m)]T where

y(k) =
1

2
(u(k) + U (k)),

with u(k) = mini∈[n] x
(k)
i and U (k) = maxi∈[n] x

(k)
i . Therefore, for ℓ ∈ [n], we have

‖xℓ − y‖ = max
k∈[m]

|x
(k)
ℓ − y(k)|

= max
k∈[m]

∣

∣

∣

∣

x
(k)
ℓ −

1

2
(u(k) + U (k))

∣

∣

∣

∣

(a)

≤ max
k∈[m]

1

2

∣

∣

∣
u(k) − U (k)

∣

∣

∣

=
1

2
d(x), (24)

where (a) follows from u(k) ≤ x
(k)
ℓ ≤ U (k). Also, we have

d(Ax) = max
i,j∈[n]

∥

∥

∥

∥

∥

n
∑

ℓ=1

aiℓxℓ −
n
∑

ℓ=1

ajℓxℓ

∥

∥

∥

∥

∥

= max
i,j∈[n]

∥

∥

∥

∥

∥

n
∑

ℓ=1

aiℓ(xℓ − y)−
n
∑

ℓ=1

ajℓ(xℓ − y) +

n
∑

ℓ=1

(ajℓ − aiℓ)y

∥

∥

∥

∥

∥

= max
i,j∈[n]

∥

∥

∥

∥

∥

n
∑

ℓ=1

(aiℓ − ajℓ)(xℓ − y)

∥

∥

∥

∥

∥

where the last equality holds as A is a row-stochastic matrix and hence,
∑n

ℓ=1(ajℓ − aiℓ) = 0. Therefore,

d(Ax) = max
i,j∈[n]

∥

∥

∥

∥

∥

n
∑

ℓ=1

(aiℓ − ajℓ)(xℓ − y)

∥

∥

∥

∥

∥

(a)

≤ max
i,j∈[n]

n
∑

ℓ=1

|aiℓ − ajℓ|‖xℓ − y‖

(b)

≤ max
i,j∈[n]

1

2
d(x)

n
∑

ℓ=1

|aiℓ − ajℓ|

≤ diam(A)d(x),
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where (a) follows from the triangle inequality, and (b) follow from (24). For the part (b), we have

d(x+ y) = max
i,j∈[n]

‖(x+ y)i − (x+ y)j‖

= max
i,j∈[n]

‖xi − xj + yi − yj‖

(b)

≤ max
i,j∈[n]

(‖xi − xj‖+ ‖yi − yj‖)

≤ max
i,j∈[n]

‖xi − xj‖+ max
i,j∈[n]

‖yi − yj‖

= d(x) + d(y),

where (b) follows from the triangle inequality.
For the proof of part (c), we have

diam(A) = max
i,j∈[n]

n
∑

ℓ=1

1

2
|aiℓ − ajℓ|

= max
i,j∈[n]

n
∑

ℓ=1

(

1

2
(aiℓ + ajℓ)−min{aiℓ, ajℓ}

)

(a)
= max

i,j∈[n]
1−

n
∑

ℓ=1

min{aiℓ, ajℓ}

= 1− min
i,j∈[n]

n
∑

ℓ=1

min{aiℓ, ajℓ}

= 1− Λ(A),

where (a) follows from the fact that A is row-stochastic. The proof of part (d) follows from part (c) and
Lemma 1.

For the part (e), due to the convexity of ‖ · ‖, we have

∥

∥

∥

∥

∥

∥

xi −
n
∑

j=1

πjxj

∥

∥

∥

∥

∥

∥

≤
n
∑

j=1

πj ‖xi − xj‖ ≤
n
∑

j=1

πjd(x) = d(x).

Proof of Lemma 4: We prove by induction on K2. By the assumption, the lemma is true for K2 = K1.
For K2 > K1, we have

E

[

K2+1
∏

k=K1

Y (k)

∣

∣

∣

∣

F(K1 − 1)

]

= E

[

E

[

K2+1
∏

k=K1

Y (k)

∣

∣

∣

∣

F(K2)

]

∣

∣

∣

∣

F(K1 − 1)

]

= E

[

E [Y (K2 + 1)|F(K2)]

K2
∏

k=K1

Y (k)

∣

∣

∣

∣

F(K1 − 1)

]

≤ E

[

a(K2 + 1)

K2
∏

k=K1

Y (k)

∣

∣

∣

∣

F(K1 − 1)

]

≤
K2+1
∏

k=K1

a(k).
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Proof of Lemma 7: Consider τ̂ ≥ t0 such that θ̂ , supt≥τ̂
β(t)

β(t+1)θ < 1 and let D(t) ,
∑t−1

s=τ β(s)θ
t−s.

Dividing both sides by β(t) > 0, for t > τ̂ , we have

D(t)

β(t)
=

t−1
∑

s=τ

β(s)

β(t)
θt−s

=

t−1
∑

s=τ

t−1
∏

κ=s

β(κ)

β(κ+ 1)
θ

≤
τ̂−1
∑

s=τ

t−1
∏

κ=s

β(κ)

β(κ+ 1)
θ +

t−1
∑

s=τ̂

θ̂t−s

=

τ̂−1
∑

s=τ

t−1
∏

κ=s

β(κ)

β(κ+ 1)
θ +

t−τ̂
∑

k=1

θ̂k

≤
τ̂−1
∑

s=τ

t−1
∏

κ=s

β(κ)

β(κ+ 1)
θ +

θ̂

1− θ̂
.

Let

M1 , sup
t>τ̂

sup
τ̂≥τ≥t0

τ̂−1
∑

s=τ

t−1
∏

κ=s

β(κ)

β(κ+ 1)
θ +

θ̂

1− θ̂
.

Note that

lim
t→∞

t−1
∏

κ=s

β(κ)

β(κ+ 1)
θ ≤ lim

t→∞
θ̂t−τ̂

τ̂−1
∏

κ=s

β(κ)

β(κ+ 1)
θ = 0.

Therefore, supt≥τ

∏t−1
κ=s

β(κ)
β(κ+1)θ < ∞, and hence, M1 < ∞. Thus, D(t) ≤ max{M1,M2}β(t), where

M2 , maxτ̂≥t≥τ≥t0

∑t−1
s=τ

β(s)
β(t) θ

t−s, and the proof is complete.
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[19] A. Nedić and A. Ozdaglar. Distributed subgradient methods for multi-agent optimization. IEEE
Transactions on Automatic Control, 54(1):48, 2009.
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