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Abstract—Distributed state estimation is examined for a sensor
network tasked with reconstructing a system’s state through the
use of a distributed and event-triggered observer. Each agent
in the sensor network employs a deep neural network (DNN)
to approximate the uncertain nonlinear dynamics of the system,
which is trained using a multiple timescale approach. Specifically,
the outer weights of each DNN are updated online using a
Lyapunov-based gradient descent update law, while the inner
weights and biases are trained offline using a supervised learning
method and collected input-output data. The observer utilizes
event-triggered communication to promote the efficient use of
network resources. A nonsmooth Lyapunov analysis shows the
distributed event-triggered observer has a uniformly ultimately
bounded state reconstruction error. A simulation study is pro-
vided to validate the result and demonstrate the performance
improvements afforded by the DNNs.

I. INTRODUCTION

A wireless sensor network (WSN) is defined as a multi-
agent system composed of autonomous sensors scattered over
an area to monitor desired phenomena and connected through
wireless communication links [1]. By sharing partially ob-
servable state measurements of a system with their neighbors
and leveraging a consensus algorithm, WSNs are capable
of estimating the state of a system in a distributed fashion
[2]. This technique is called distributed state estimation, and
it allows each sensor in the WSN to reconstruct the entire
system state through local and cooperative information sharing
despite each agent only being able to measure part of the
system’s state. Distributed state estimation does not require a
data fusion center; therefore, it is a preferable state estimation
strategy since it can better accommodate each agent’s limited
computing capacity, eliminate single points of failure, and
promote scalability.

In [3], the authors developed a decentralized consensus-
based observer capable of performing stable distributed state
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estimation using adaptive weights that were generated by solv-
ing a semi-definite program. Given that agents within a WSN
may be powered by limited portable energy sources, results
like [4] and [5] developed distributed state estimation strategies
with event-triggered communication as a means to conserve
energy and network resources. Similarly, the authors in [6]
developed a distributed state observer with stochastic event-
triggered communication for a linear time-varying system,
which improves upon [3]–[5].

While results such as [3]–[6] provide valuable contributions
towards the literature on distributed state estimation, these
results, like many of the techniques in [2], are focused on
known linear systems. Results on distributed state estimation
for systems with uncertain and/or nonlinear dynamics are
scarce but well motivated. Additionally, the improved comput-
ing power of modern processors along with data availability
encourages the development of a distributed observer capable
of employing machine learning techniques as a means to
improve state reconstruction. However, the update laws used to
train the weights and biases of deep neural networks (DNNs)
do not typically have a stability analysis, which has mitigated
their use for online estimation and control. Conversely, in this
paper, we develop a Lyapunov-based update law for the outer
weights of a DNN and prove the stability of the DNN-based
function approximator for an uncertain nonlinear system.

Recently, the authors in [7]–[9] developed a model refer-
ence adaptive control architecture that utilizes a DNN as the
adaptive element while ensuring that the estimation error is
uniformly ultimately bounded (UUB) via a Lyapunov-based
stability analysis. These works are among the first to employ
DNNs for real-time control while providing a formal stability
assurance. The key innovation lies in the update of the DNN
weights. The outer layer weights evolve according to a real-
time analysis-based update law that ensures stability, and
the inner layer weights are modified using batch updates.
Based on this observation, the authors in [10] developed a
DNN adaptive controller for an uncertain nonlinear dynamical
system capable of asymptotically tracking a desired trajectory.
In this result, the outer layer weights of the DNN are updated
in real-time using a Lyapunov-based update law, while the
inner layer weights are updated using a data-driven supervised
learning algorithm, i.e., the Levenberg-Marquardt algorithm.
The results in [7] and [10] show that multiple timescale
learning with DNNs can yield improved performance when
compared to traditional adaptive techniques.

Results such as [11]–[13] provide alternative methods of
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employing DNNs for control and estimation. The work in [11]
developed a stabilizing regulator for a known discrete-time
nonlinear system using a receding-horizon optimal control
scheme. The proposed feedback control law is computed
offline, where a DNN is used to approximate the receding-
horizon regulator. In [12], a model predictive control (MPC)
policy for a known linear parameter-varying system is approx-
imated using a DNN that is trained online with supervised
learning. The authors in [13] provide a DNN-based strategy
to approximate an MPC control policy for a known linear
system that reduces memory requirements when compared to
other approximation techniques. While these methods provide
computationally efficient control strategies, they are not readily
applicable to uncertain nonlinear systems.

Inspired by [6], [7], and [10], we develop an adaptive event-
triggered distributed state observer that utilizes DNNs as a
means to improve state reconstruction for an uncertain non-
linear system. Using a nonsmooth Lyapunov stability analysis,
we prove that our observer is capable of UUB state reconstruc-
tion while being robust to a bounded exogenous disturbance.
Similar to [7] and [10], we develop a multiple timescale
learning strategy. In particular, the outer layer weights of
each DNN are adjusted online using a Lyapunov-based update
law that uses real-time feedback to ensure stability, while the
inner layer weights and biases are updated offline using a
supervised learning algorithm with collected input-output data.
The theoretical findings of our work are validated through
a simulation study. The observer is capable of reducing the
root-mean-square state estimation error of each agent in the
WSN by approximately 60% when compared to an identical
simulation, where the DNN inner weights and biases are held
constant.

The rest of the paper is organized as follows. Section II
introduces notation and necessary concepts about graphs. Sec-
tion III introduces the system model and the sensor network.
Section IV precisely formulates the goal of this work. Section
V develops the proposed observer and closed-loop dynamics
of the error system encoding the state reconstruction error.
Sections VI and VII prove the UUB state reconstruction of
the proposed observer and investigate the performance of the
development, respectively. Section VIII summarizes this work
and suggests possible future directions.

II. PRELIMINARIES

A. Notation

Let R and Z denote the set of real numbers and integers,
respectively. We also write R≥x , [x,∞) , R>x , (x,∞) ,
R<x , (−∞, x) , Z≥x , R≥x ∩ Z, and Z>x , R>x ∩ Z
for x ∈ R. For p, q, n, u, v ∈ Z>0, the p× q zero matrix and
the p × 1 zero column vector are denoted by 0p×q and 0p,
respectively. The p× p identity matrix and the p× 1 column
vector of ones are denoted by Ip and 1p, respectively. The
Euclidean norm of a vector r ∈ Rp is denoted by ‖r‖ ,√
r>r. Given a positive integer M , let [M ] , {1, 2, ...,M}.

The Kronecker product of A ∈ Rp×q and B ∈ Ru×v is
denoted by (A⊗B) ∈ Rpu×qv . The block diagonal matrix
whose diagonal blocks consist of G1, G2, ..., Gn is denoted
by diag (G1, G2, ..., Gn). The ith, maximum, and minimum

eigenvalues of a symmetric matrix G ∈ Rp×p are denoted by
λi(G) ∈ R, λmax(G) ∈ R, and λmin(G) ∈ R, respectively.
The trace of a square matrix A ∈ Rp×p is denoted by tr(A).
Let vec(·) denote the vectorization transformation that converts
a matrix into a column vector. The symbol L∞ denotes the
set of essentially bounded measurable functions, i.e., given the
Lebesgue measurable function f : R→ R, f ∈ L∞ if and only
if inf {C ≥ 0 : |f (x)| ≤ C for almost every x∈R} ∈ R≥0.
The symbol ◦ denotes function composition, i.e., given suitable
functions f and g, (f ◦ g)(x) = f(g(x)).

B. Graphs

Let G , (V, E ,A) denote a static, weighted, and undirected
graph with node set V , [N ], for some N ∈ Z>0, edge set
E ⊆ V × V , and symmetric weighted adjacency matrix A ,
[aij ] ∈ RN×N . The edge (i, j) ∈ E if and only if node i can
send information to node j. Since G is undirected, (i, j) ∈ E
if and only if (j, i) ∈ E . An undirected graph is connected
if and only if there exists a sequence of edges in E between
any two distinct nodes. The neighbor set of node i is denoted
by Ni , {j ∈ V : (j, i) ∈ E}. Within this work, no self-
loops are considered, and therefore, aii , 0 for all i ∈ V .
Moreover, aij > 0 if (j, i) ∈ E , and aij = 0 if (j, i) /∈ E .
The degree matrix of G is defined as a diagonal matrix such
that ∆ , [∆ij ] ∈ RN×N , where ∆ij , 0 for all i 6= j, and
∆ii ,

∑
j∈V aij . The Laplacian matrix of G is denoted by

L ∈ RN×N and defined as L , ∆−A.

III. SYSTEM DYNAMICS AND NETWORK TOPOLOGY

Consider a system whose uncertain model is given by

ẋ0(t) = f(x0(t)) + d(t), (1)

where x0 : [0,∞) → Rn denotes the state, f : Rn → Rn
denotes the uncertain nonlinear dynamics, and d : [0,∞) →
Rn denotes an exogenous disturbance. Furthermore, consider
a sensor network composed of N agents, which are indexed
by V . For each i ∈ V , agent i is capable of continuously
measuring the output yi : [0,∞) → Rm, where the output
measurement is given by

yi(t) = Cix0(t) (2)

such that Ci ∈ Rm×n denotes the known output matrix
of agent i. The agents in the sensor network may have
different sensing capabilities, where each agent may be able
to measure a different component of the system’s state. Each
agent is also capable of intermittently communicating with
its neighbors, where the flow of information between the
agents in the sensor network is modeled through the static
and undirected communication graph G = (V, E ,A).1 The
following assumptions are used in the development of the
result.

Assumption 1. The function f is locally Lipschitz.

1Future works can consider measurement and process perturbations as well
as networked communication constraints such as delayed information and
packet dropouts. However, we work in the nominal setting for simplicity and
to highlight the novelty of the distributed state estimation strategy.



Assumption 2. The disturbance is continuous and bounded,
i.e., there exists a dmax ∈ R>0 such that ‖d(t)‖ ≤ dmax for
all t ≥ 0.

Assumption 3. The communication graph G is connected for
all t ≥ 0.

IV. OBJECTIVE

The objective is to develop a distributed observer capable
of reconstructing the state of an uncertain nonlinear dynamical
system. The distributed observer must also be event-triggered
to promote the efficient use of network resources. Furthermore,
we wish to design an observer that concurrently utilizes online
and offline learning strategies to ensure stability and enable
improved state reconstruction. To quantify the objective, let
the state estimation error e1,i : [0,∞) → Rn of agent i ∈ V
be defined as

e1,i(t) , x̂i(t)− x0(t), (3)

where x̂i : [0,∞) → Rn denotes the estimate of x0(t) as
computed by agent i. The state estimation error e1,i(t) is
an unmeasurable signal that is used only in the analysis. To
facilitate the use of event-triggered control, let x̃i : [0,∞)→
Rn denote agent i’s sampled state estimate. For example, if
agent i uses a zero-order hold policy and samples its state
estimate according to the increasing sequence {Tk}∞k=0, then
the sampled state estimate is given by x̃i(t) = x̂i(Tk) for
all t ∈ [Tk, Tk+1) and each k ∈ Z≥0. The sampled state
estimation error e2,i : [0,∞)→ Rn is defined as

e2,i(t) , x̃i(t)− x̂i(t). (4)

The estimated output of the system with respect to agent i is
denoted by ŷi : [0,∞) → Rm, where the output estimation
error e3,i : [0,∞)→ Rm is defined as

e3,i(t) , ŷi(t)− yi(t). (5)

Contrary to (3), the sampled state estimation error e2,i(t) and
the output estimation error e3,i(t) are both measurable by
agent i, where e3,i(t) is used to drive the estimate of agent
i towards the state of the system. Given the state estimation
error in (3), the sensor network is said to have successfully
reconstructed the state of the system whenever

lim sup
t→∞

‖e1,i(t)‖ ≤ ε ∀i ∈ V (6)

for some user-defined ε > 0.

V. OBSERVER DEVELOPMENT

Let {tik}∞k=0 be an increasing sequence of event-times for
agent i, where tik denotes the kth instance agent i samples
and broadcasts its state estimate of the system in (1) to
all agents j ∈ Ni. Note that the broadcast information is
received by all neighbors simultaneously, i.e., we assume
perfect communication. The sampled state estimate of the
system as computed by agent i is defined as2

x̃i(t) , x̂i(t
i
k), t ∈ [tik, t

i
k+1) (7)

2A zero-order hold, i.e., sampled state estimate, is used in this work since
the system dynamics are unknown. Future works can consider observers that
allow x̃i(t) to vary over t ∈ [tik, t

i
k+1).

for all j ∈ Ni∪{i}, where the state estimate x̂i(t) is generated
by the subsequently defined observer. Hence, all neighbors of
agent i, including agent i, have access to the synchronized
sampled state estimate from agent i.

Assumption 4. The state of the system in (1) evolves within
a compact set D ⊂ Rn for all time, i.e., x0(t) ∈ D for all
t ≥ 0.

Since the nonlinear function f is continuous and x0(t) is
contained within a compact set by Assumption 4, we can
invoke the Stone-Weierstrass Theorem to express the nonlinear
dynamics in (1) within D as

f(x0(t)) = W>0 σ(Φ(x0(t))) + ε(x0(t)), (8)

where W0 ∈ RL×n denotes the ideal outer layer weight matrix,
σ : Rp → RL denotes a vector containing bounded continuous
activation functions3, Φ : Rn → Rp encodes the ideal inner
DNN, and ε : Rn → Rn denotes the bounded function
reconstruction error [14, Theorem 7.32]. Note that W0, Φ,
and ε are unknown. The ideal inner DNN can be expressed as

Φ(x0(t)) = (W>` φ` ◦W>`−1φ`−1 ◦ ... ◦W>1 φ1)(x0(t)), (9)

where ` ∈ Z≥1 denotes the number of user-defined inner
layers of the DNN, q ∈ [`], Wq ∈ RLq×nq+1 denotes the ideal
weight matrix for the qth inner layer, and φq : Rnq → RLq

denotes a vector function composed of scalar basis functions
corresponding to the qth inner layer. Note that n1 = n and
n`+1 = p. Moreover, for each q ∈ [`], Wq is unknown. Using
(8), the system model in (1) can be expressed as

ẋ0(t) = W>0 σ(Φ(x0(t))) + ε(x0(t)) + d(t). (10)

Based on (10) and the subsequent stability analysis, the
distributed observer of agent i ∈ V is defined as

˙̂xi(t) , Ŵ>i (t)σ(Φ̂i(x̂i(t))) +K1(zi(t)− C>i e3,i(t)),

zi(t) ,
∑
j∈Ni

aij (x̃j (t)− x̃i (t)) ,

ŷi(t) , Cix̂i(t),

(11)

where Ŵi : [0,∞) → RL×n denotes the estimated outer
weight matrix of the system as computed by agent i, Φ̂i :
Rn → Rp encodes the estimated inner DNN computed by
agent i, and K1 ∈ Rn×n is the symmetric solution to the
bilinear matrix inequality

1

2
(IN ⊗K1)C>C +

1

2
C>C(IN ⊗K1) + (L⊗K1) ≥ k1InN .

(12)
Observe that C , diag(C1, C2, ..., CN ) ∈ RmN×nN denotes
the output matrix of the sensor network, and k1 ∈ R>0 is a
user-defined parameter. The bilinear matrix inequality in (12)
encodes an observability condition that originates from the
subsequent stability analysis (see Section VI). The estimated
inner DNN Φ̂i(x̂i(t)) is modeled as a piecewise continuous
function that is similar to (9), where T ip denotes the pth instance
agent i updates its DNN by training on collected input-output

3Examples of continuous activation functions are the sigmoid function, the
hyperbolic tangent, and the Gaussian function.



data. Hence, the set of discontinuities of Φ̂i(x̂i(t)) is given by
{T ip}∞p=1.

Remark 1. Agent i may collect input-output data from the
system in (1) and train a new inner DNN while the weights
and biases of the previous inner DNN are held constant. Once
training is complete, the new inner DNN can be switched in
via (11) [10].

The error between the ideal outer weight matrix and the
estimated outer weight matrix of agent i, i.e., W̃i : [0,∞)→
RL×n, is defined as

W̃i(t) ,W0 − Ŵi(t). (13)

Since the ideal outer weights are unknown, W̃i(t) is not mea-
surable. Based on the subsequent Lyapunov stability analysis,
the outer weight update law of agent i, which is embedded
within the continuous projection operator denoted by proj(·, ·)
and defined in [15, Equation 4], is designed as4

ω̇i(t) = proj(µi, ωi),

µi ,− vec(Γiσ(Φ̂i(x̂i(t)))e
>
3,i(t)Ci),

ωi , vec(Ŵi(t)),

(14)

where Γi ∈ RL×L is a user-defined positive definite matrix
used to adjust the learning rate of the outer layer weights
for the DNN of agent i. Moreover, since the inner DNN
is treated as an arbitrary piecewise continuous function, the
user is free to employ virtually any offline training policy.
An example policy is discussed in Section VII and additional
training strategies can be found in [8] and [9].

Using (2), (3), and the definition of ŷi(t) in (11), e3,i(t)
can be alternatively expressed as

e3,i(t) = Cie1,i(t). (15)

Substituting (3) and (4) into the definition of zi(t) in (11)
yields

zi(t) =
∑
j∈Ni

aij(e1,j(t)− e1,i(t)) +
∑
j∈Ni

aij(e2,j(t)− e2,i(t)).

(16)
The expression in (16) is not measurable since it contains
state estimation errors for agents j ∈ Ni ∪ {i}. However, the
expression for zi(t) in (11) is measurable and equivalent to
(16), where (16) is used in the analysis. The closed-loop error
dynamics of e1,i(t) can now be determined by substituting
(10)–(13), (15), and (16) into the time derivative of (3), when
it exists, while adding and subtracting W>0 σ(Φ̂i(x̂i(t))) to
obtain

ė1,i(t) = −W̃>i (t)σ(Φ̂i(x̂i(t)))−K1C
>
i Cie1,i(t) + χi(t)

+K1

∑
j∈Ni

aij(e1,j(t)− e1,i(t))

+K1

∑
j∈Ni

aij(e2,j(t)− e2,i(t)),

(17)

4The projection operator is used to ensure Ŵi(t) remains within the set
Ω , {w ∈ RL×n : ‖w‖ ≤ ω̄} for all t ≥ 0, where ω̄ ∈ R>0 is a
user-defined parameter.

where χi(t) ,W>0 (σ(Φ̂i(x̂i(t)))−σ(Φ(x0(t))))−ε(x0(t))−
d(t) ∈ Rn.

To express the subsequent development in a compact form,
let e1(t) , [e>1,1(t), e>1,2(t), ..., e>1,N (t)]> ∈ RnN , e2(t) ,
[e>2,1(t), e>2,2(t), ..., e>2,N (t)]> ∈ RnN , e3(t) , [e>3,1(t), e>3,2(t)

, ..., e>3,N (t)]> ∈ RmN , x̂(t) , [x̂>1 (t), x̂>2 (t), ..., x̂>N (t)]> ∈
RnN , χ(t) , [χ>1 (t), χ>2 (t), ..., χ>N (t)]> ∈ RnN , and
z(t) , [z>1 (t), z>2 (t), ..., z>N (t)]> ∈ RnN . The block diago-
nal matrix composed from the DNN outer weight errors is
W̃ (t) , diag(W̃1(t), W̃2(t), ..., W̃N (t)) ∈ RLN×nN . Simi-
larly, the block diagonal matrix consisting of the DNN outer
weight estimates is Ŵ (t) , diag(Ŵ1(t), Ŵ2(t), ..., ŴN (t)) ∈
RLN×nN . Let σi(t) , σ(Φ̂i(x̂i(t))) for every agent i ∈
V . The block diagonal matrices consisting of {Γi}i∈V and
the DNN components of all agents prior to being multi-
plied by their corresponding outer weights are denoted by
Γ , diag(Γ1,Γ2, ...,ΓN ) ∈ RLN×LN and σ(Φ̂(x̂(t))) ,
[σ>1 (t), σ>2 (t), ..., σ>N (t)]> ∈ RLN , respectively.

Using (17) and the stacked expressions for e1(t), e2(t),
χ(t), C, W̃ (t), Ŵ (t), and σ(Φ̂(x̂(t))), the closed-loop dy-
namics of e1(t) are

ė1(t) = −W̃>(t)σ(Φ̂(x̂(t)))− (IN ⊗K1)C>Ce1(t)

− (L⊗K1)e1(t)− (L⊗K1)e2(t) + χ(t).
(18)

Since W0 is a fixed matrix, σ(·) is a bounded function, the
function reconstruction error ε is bounded, and the disturbance
is bounded given Assumption 2, there exists a constant χmax ∈
R>0 such that ‖χ(t)‖ ≤ χmax for all t ≥ 0. Moreover, from
(16), it follows that z(t) can be expressed as

z (t) = −(L⊗ In)e1(t)− (L⊗ In)e2(t). (19)

Using (19) and Young’s inequality, it follows that

− ‖e1(t)‖2 ≤ ‖e2(t)‖2 − 1

2‖L⊗ In‖2
‖z(t)‖2, (20)

which is a useful inequality employed in the development of
the event-trigger mechanism for the sensor network.

VI. STABILITY ANALYSIS

The following objects are presented to facilitate the devel-
opment. Let χ̄(t) , χ(t) − (InN − C>C)W̃>(t)σ(Φ̂(x̂(t))).
Observe that C is bounded by construction. Similarly, W̃ (t) is
bounded since W0 is fixed and the projection operator ensures
Ŵi(t) is bounded for each i ∈ V . Moreover, σ(·) is bounded
by design. Hence, there exists a χ̄max ∈ R>0 such that
‖χ̄(t)‖ ≤ χ̄max for all t ≥ 0. Furthermore, there exists a con-
stant W̃max ∈ R>0 such that 1

2 tr
(
W̃>(t)Γ−1W̃ (t)

)
≤ W̃max,

which can be made arbitrarily small through the choice of Γ.
Let k1 , k2 + ρ2

δ , α , k2 − 1
κ , and δ̄ , δ + ε. Select κ > 0,

k2 >
1
κ , δ > 0, ρ ≥ χ̄max, and ε > 0. Hence, k1 > 0, δ̄ > 0,

and α > 0.
The event-times {tik}∞k=0 that dictate when agent i samples

and broadcasts its state estimate x̂i(t), as outlined in (7), are



generated by the event-trigger mechanism

tik+1 , inf
{
t > tik : φ1‖e2,i(t)‖2 ≥ φ2‖zi(t)‖2 +

ε

N

}
,

φ1 ,
k2
2

+
κ

2
‖L⊗K1‖2, φ2 ,

k2
4‖L⊗ In‖2

.

(21)
Since k2 and κ are positive, φ1 > 0 and φ2 > 0.5 Moreover,
the event-trigger mechanism in (21) originates from the sub-
sequent stability analysis. Notice that (21) requires each agent
to sample their state estimate whenever the error between the
sampled and continuous estimates becomes sufficiently large.

Theorem 1. The observer in (11) and update law in (14) for
each i ∈ V ensure the state estimation error e1(t) is UUB in
the sense that

‖e1(t)‖2 ≤
(
‖e1(0)‖2 + tr(W̃>(0)Γ−1W̃ (0))

)
e−αt

+ 2

(
W̃max +

δ̄

α

)
(1− e−αt)

(22)

provided Assumptions 1–4 are satisfied, there exists a matrix
K1 satisfying the bilinear matrix inequality in (12), and agent i
broadcasts its state estimate as determined by the event-trigger
mechanism in (21) for each i ∈ V .

Proof. Consider the Lyapunov function candidate V : D →
R≥0 defined as

V (ζ(t)) ,
1

2
e>1 (t)e1(t) +

1

2
tr(W̃>(t)Γ−1W̃ (t)), (23)

where ζ(t) , [e>1 (t), vec(W̃ (t))>]> ∈ RnN+nLN2

. Observe
that V (ζ(t)) can be bounded as

1

2
e>1 (t)e1(t) ≤ V (ζ(t)) ≤ 1

2
e>1 (t)e1(t) + W̃max. (24)

Suppose ξ : [0,∞) → RnN+nLN2

is a Filippov solu-
tion to the differential inclusion ξ̇(t) ∈ K[H](ξ(t)), where
ξ(t) = ζ(t), the mapping K[·] provides a calculus for
computing Filippov’s differential inclusion as defined in [16],
and H : RnN+nLN2 → RnN+nLN2

is defined as H(ξ(t)) =

[ė>1 (t), vec(
˙̃
W (t))>]>. The time derivative of V (ζ(t)) exists

almost everywhere (a.e.) and

V̇ (ξ(t))
a.e.
∈ ˙̃
V (ξ(t)), (25)

where ˙̃
V (ξ(t)) is the generalized time derivative of V (ζ(t))

along the Filippov trajectories of ξ̇(t) = H(ξ(t)). By [17,
Equation 13],

˙̃
V (ξ(t)) ,

⋂
η∈∂V (ξ(t))

η>
[
K[H]>(ξ(t)), 1

]>
, (26)

where ∂V (ξ(t)) denotes the Clarke generalized gradient of
V (ξ(t)). Since V (ξ(t)) is continuously differentiable in ξ(t),
∂V (ξ(t)) = {∇V (ξ(t))}, where ∇ denotes the gradient
operator. Using the calculus of K[·] from [16] and simplifying

5The piecewise continuity of e2,i(t), ε > 0, and (21) can be used to show
that, after each event-time of agent i, there exists a well-defined time interval
over which agent i does not trigger.

the substitution of (18) into the generalized time derivative of
(23), one has

˙̃
V (ξ(t)) ⊆− e>1 (t)W̃>(t)K

[
σ(Φ̂(x̂(t)))

]
+ e>1 (t)K[χ(t)]

−
{
e>1 (t)(L⊗K1)e1(t)

}
− e>1 (t)(L⊗K1)K[e2(t)]

−
{
e>1 (t)(IN ⊗K1)C>Ce1(t)

}
−tr
(
W̃>(t)Γ−1K

[
˙̂
W (t))

])
.

(27)
Using the estimated outer weight update law in (14) for each
i ∈ V and the stacked expressions for W̃ (t), Ŵ (t), e3(t), C, Γ,
and σ(Φ̂(x̂(t))), the time derivative of 1

2 tr(W̃>(t)Γ−1W̃ (t))
yields

tr(W̃>(t)Γ−1
˙̂
W (t)) =

∑
i∈V

tr(W̃>i (t)Γ−1i
˙̂
W i(t))

=
∑
i∈V

vec(Γ−1i W̃i(t))
>proj(µi, ωi)

≥ −e>3 (t)CW̃>(t)σ(Φ̂(x̂(t))).
(28)

Substituting (15) for all i ∈ V into e3(t) yields e3(t) =
Ce1(t). Adding and subtracting C>C while using e3(t) =
Ce1(t) results in

e>1 (t)W̃>(t)σ(Φ̂(x̂(t))) = e>3 (t)CW̃>(t)σ(Φ̂(x̂(t)))

+ e>1 (t)(InN − C>C)W̃>(t)

· σ(Φ̂(x̂(t))).
(29)

Substituting (28) and (29) into (27) and utilizing (25), it
follows that

V̇ (ζ(t))
a.e.
≤ − e>3 (t)CW̃>(t)σ(Φ̂(x̂(t)))

− e>1 (t)(InN − C>C)W̃>(t)σ(Φ̂(x̂(t)))

− e>1 (t)(L⊗K1)e1(t)− e>1 (t)(L⊗K1)e2(t)

− e>1 (t)(IN ⊗K1)C>Ce1(t) + e>1 (t)χ(t)

+ e>3 (t)CW̃>(t)σ(Φ̂(x̂(t)))
a.e.
≤ − e>1 (t)(L⊗K1)e1(t)− e>1 (t)(L⊗K1)e2(t)

− e>1 (t)(IN ⊗K1)C>Ce1(t) + e>1 (t)χ̃(t).
(30)

Using Young’s inequality, (30) can be upper bounded as

V̇ (ζ(t))
a.e.
≤ − e>1 (t)

(
1

2
(IN ⊗K1)C>C +

1

2
C>C(IN ⊗K1)

+ (L⊗K1)

)
e1(t) +

κ

2
‖L⊗K1‖2‖e2(t)‖2

+
1

2κ
‖e1(t)‖2 + χ̄max‖e1(t)‖.

(31)
Using the bilinear matrix inequality in (12) and k1 = k2 + ρ2

δ ,
(31) can be upper bounded by

V̇ (ζ(t))
a.e.
≤ −

(
k2 −

1

2κ

)
‖e1(t)‖2 +

κ

2
‖L⊗K1‖2‖e2(t)‖2

+ χ̄max‖e1(t)‖ − ρ2

δ
‖e1(t)‖2.

(32)



Since ρ ≥ χ̄max, it follows that χ̄max‖e1(t)‖ − ρ2

δ ‖e1(t)‖2 ≤
δ. Using this inequality and (20), (32) can be upper bounded
as

V̇ (ζ(t))
a.e.
≤ − 1

2

(
k2 −

1

κ

)
‖e1(t)‖2 + δ̄

+
∑
i∈V

(
φ1‖e2,i(t)‖2 − φ2‖zi(t)‖2 −

ε

N

)
.

(33)

Based on (33), the event-trigger mechanism for each agent i ∈
V is given by (21). Since each agent provides state feedback
according to the event-trigger mechanism in (21), (33) can be
upper bounded as

V̇ (ζ(t))
a.e.
≤ −1

2
α‖e1(t)‖2 + δ̄, (34)

where α = k2− 1
κ . Using (24), (34) can be upper bounded as

V̇ (ζ(t))
a.e.
≤ −αV (ζ(t)) + αW̃max + δ̄. (35)

Note that V (ζ(t)) is continuous over R>0, and V̇ (ζ(t)) is
continuous almost everywhere in R>0. The discontinuities of
V̇ (ζ(t)) occur over the set

⋃
k,p∈Z≥0

⋃
i∈V{tik}∪{T ip}, which

is countable. Integrating (35) yields

V (ζ(t)) ≤ V (ζ(0))e−αt +

(
W̃max +

δ̄

α

)
(1− e−αt). (36)

Using (24) and (36), the result in (22) follows.
We now show the constituent signals used in the observer

are bounded. By Assumption 4, x0(t) ∈ L∞. Since e1(t) ∈
L∞ given (22), the definition of e1(t) implies e1,i(t) ∈ L∞
for each i ∈ V . Since x0(t) ∈ L∞ and e1,i(t) ∈ L∞ for
each i ∈ V , (3) implies x̂i(t) ∈ L∞ for each i ∈ V . Since
x̂i(t) ∈ L∞, (7) implies x̃i(t) ∈ L∞. Since x̃i(t) ∈ L∞ for
each i ∈ V , (11) implies zi(t) ∈ L∞. Since x̂i(t) ∈ L∞
and Ci is a fixed matrix, (11) implies ŷi(t) ∈ L∞. Since
x0(t) ∈ L∞ and Ci is a fixed matrix, (2) implies yi(t) ∈ L∞.
Since ŷi(t) ∈ L∞ and yi(t) ∈ L∞, (5) implies e3,i(t) ∈ L∞.
Lastly, Ŵi(t) ∈ L∞ by construction. �

Theorem 2. The difference between consecutive broadcast
times generated by the event-trigger mechanism of agent i ∈ V
in (21) is uniformly lower bounded by

tik+1 − tik ≥
1

emax
2,i

√
ε

Nφ1
(37)

for all instances k ∈ Z≥0, where emax
2,i ∈ R>0 is a bounding

constant such that ‖Ŵi(t)‖‖σ(Φ̂i(x̂i(t)))‖ + ‖K1‖‖zi(t)‖ +
‖K1C

>
i ‖‖e3,i(t)‖ ≤ emax

2,i and φ1 is a constant defined in (21).

Proof. Let t ≥ tik ≥ 0 and i ∈ V . Substituting (11) into the
time derivative of (4) yields

ė2,i(t)
a.e.
= −Ŵ>i (t)σ(Φ̂i(x̂i(t)))−K1

(
zi(t)− C>i e3,i(t)

)
,

where ‖ė2,i(t)‖
a.e.
≤ ‖Ŵi(t)‖‖σ(Φ̂i(x̂i(t)))‖+ ‖K1‖‖zi(t)‖+

‖K1C
>
i ‖‖e3,i(t)‖. Recall that zi(t) ∈ L∞ and e3,i(t) ∈

L∞ from the proof of Theorem 1. Moreover, Ŵi(t) and
σ(Φ̂i(x̂i(t))) are bounded by construction. Therefore, there

exists emax
2,i ∈ R>0 such that ‖Ŵi(t)‖‖σ(Φ̂i(x̂i(t)))‖ +

‖K1‖‖zi(t)‖+ ‖K1C
>
i ‖‖e3,i(t)‖ ≤ emax

2,i . Observe that

d

dt
‖e2,i(t)‖ =

e>2,i(t)ė2,i(t)

‖e2,i(t)‖
a.e.
≤ ‖ė2,i(t)‖.

Therefore, d
dt‖e2,i(t)‖

a.e.
≤ emax

2,i . Recalling that ‖e2,i(tik)‖ = 0

and integrating d
dt‖e2,i(t)‖

a.e.
≤ emax

2,i over [tik,∞), it follows
that ‖e2,i(t)‖ ≤ emax

2,i (t − tik) for all t ∈ [tik,∞). Using
‖e2,i(t)‖ ≤ emax

2,i (t− tik) and the triggering condition in (21),
the inequality in (37) follows. �

VII. SIMULATION RESULTS

To examine the performance of the developed estimation
strategy, two numerical simulations are provided for a Van
der Pol oscillator, where the model in (1) is used with

f(x0(t)) =

µ(x(t)− x3(t)/3− y(t))
x(t)/µ
−µz(t)

 , (38)

x0(t) , [x(t), y(t), z(t)]> ∈ R3, and µ = 0.3. The distur-
bance affecting the system is given by

d(t) = [0.5sin(3t), 0.75cos(t), cos(3.75t)]
>
.

The sensor network used to reconstruct the state of the system
consists of three agents, where the output matrix of Agents 1,
2 and 3 are C1 = [1 0 0], C2 = [0 1 0], and C3 = [0 0 1],
respectively. Hence, each agent can measure one component
of the system’s state, and all agents cover the entire state of the
system. Preliminary observations show that the bilinear matrix
inequality in (12) has a solution whenever the combined output
measurements of the agents cover the entire system state and
the graph G is connected. The adjacency matrix of the sensor
network is

A =

0 1 1
1 0 0
1 0 0

 ,
where Agent 1 can communication with Agents 2 and 3, but
Agents 2 and 3 can only communicate with Agent 1. The
first simulation investigates the performance of the observer
when the weights and biases of all inner DNNs are held
constant and only the outer weights of the DNNs are updated
to ensure stability. The second simulation is identical to the
first with the exception that the weights and biases of all inner
DNNS are updated using input-output data. The simulation
parameters, used in both simulations, are N = 3, κ = 1,
ε = 3 × 103, Γ = 3I3, ρ = 2, δ = 0.3, and k2 = 10.
Therefore, k1 = 23.3, where the CVX MATLAB toolbox in
[18] and [19] was used to compute a K1 that satisfies (12)
as K1 = diag(134.86, 263.23, 263.23). Both simulations were
40 time units long and used an integration time-step of 10−3

time units. The initial condition of the system and Agents 1–3
are x0 = [5 7 8]> and xi = [0 0 0]> for i ∈ [3], respectively.

Each agent used a 5-layer DNN to approximate the system
dynamics. Layers 1–3 each consist of 12 nodes, Layer 4
consists of 5 nodes, and Layer 5 consists of 3 nodes. Each layer
is affine, i.e., each activation function is scaled by a weight
and shifted by a bias, and all nodes use the tangent-sigmoid



activation function. Layers 1–4 used weights and biases, while
Layer 5 only used weights (biases set equal to zero). Given
the model in (38), the dimension of the input and output of
each agent’s DNN is 3. As the outer weights of agent i’s DNN
are updated online using (14), the user is free to specify an
offline update procedure for the weights and biases of the inner
DNN. This decoupling in training structure leads to a multiple
timescale adaptation technique. Additional information about
such methods can also be found in [7] and [10].

Input-output data and the Levenberg-Marquardt algorithm
are used by the Deep Learning MATLAB toolbox in [20]
to train the weights and biases of the inner DNN for each
agent. Ideally, each agent would utilize x0(t) as input data
and ẋ0(t) − d(t) as output data to train the inner DNN
approximation of f . However, each agent does not have access
to x0(t), ẋ0(t), and d(t). Therefore, the input-output data
used to train Layers 1–4 of the DNN for agent i are x̂i(t)
and ˙̂xi(t). Given a continuously differentiable function, such
as the DNN of agent i with fixed weights and biases, and
labeled input-output data, the Levenberg-Marquardt algorithm
identifies a local minimizer for the nonlinear least squares
problem formed from the given model and data. The algorithm
is a combination of gradient descent and the Gauss-Newton
method, which leads to efficient computation [21]. Because the
Levenberg-Marquardt algorithm relies on labeled input-output
data, i.e., each input corresponds to a known particular output,
the algorithm can be considered a supervised learning strategy.

The learning rate, i.e., the step size used to train the inner
DNN weights and biases at each iteration, was lower bounded
by 10−3. The loss function used for training was the mean
squared error (MSE) between the estimated output generated
by a known input and the corresponding known output. Each
training iteration was set to last until the MSE was less than
10−2 or a maximum of 25 training epochs had elapsed. For
each training iteration, 70% of the data was used for training,
15% was used for validation, and 15% was used for testing.
The weights and biases of Layers 1–4 for all DNNs were
initialized as 0.1. The weights of Layer 5 for the DNN of
each agent were identically initialized as

Ŵi(0) =


2.51 4.59 3.40
−2.44 0.47 −2.45
0.05 −3.61 3.14
1.99 −3.50 −2.56
3.90 −2.42 4.29

 .
For the second simulation, data collection and training

were performed by each agent during the first half of the
simulation, and the resulting DNN model was implemented
during the second half of the simulation. Specifically, each
agent collected data during t ∈ [10, 16] and trained their
inner DNN during t ∈ [16, 20]. Each agent then implemented
their updated inner DNN model for t ≥ 20. While data
collection can begin at any time, we observed improved state
reconstruction after the transient response elapsed.

The results of the simulations are illustrated in Figures
1–3 and Table I. Note that although the agents performed
data collection, training, and implementation in a synchronous
manner for simplicity, asynchronous learning cycles can also

Figure 1. This figure illustrates the norm of the state estimation error, i.e.,
‖e1,i(t)‖, for each agent. The inner layer weights and biases of the DNNs
are held constant for the entire simulation and only the outer layer weights
are updated according to (14).

Figure 2. This figure portrays the norm of the state estimation error, i.e.,
‖e1,i(t)‖, for each agent. When t = 10, as denoted by the black dashed line,
each agent begins collecting input-output data. Each agent stops their data
collection process when t = 16, which is denoted by the solid black line. For
t ∈ [16, 20], each agent uses their collected data to train their inner DNN
weights and biases, where training stops and the new DNN of each agent is
switched in at t = 20 according to (11). The red dashed line corresponds to
the DNN implementation time of each agent.

be employed. Figure 1 shows the norm of the state estimation
error of all agents, where the weights and biases of Layers 1–4
are held constant and only the weights of Layer 5 are updated.
Similarly, Figure 2 shows the norm of the state estimation
error of all agents, where the weights and biases of Layers 1–
4 and the weights of Layer 5 are updated. The black dashed
line, black solid line, and red dashed line in Figure 2 denote
the start of the data collection process, the end of the data
collection process and beginning of the training process, and
the end of the training process and DNN application time,
respectively. Figure 3 shows the event-times of each agent
for t ∈ [19.75, 20.25] for the second simulation. The average
difference between consecutive broadcast times for Agents
1, 2, and 3 were 0.0047, 0.0089, and 0.0095 time units,
respectively, where no significant difference between broadcast
times for the two simulations was observed.

Table I lists the root-mean-square error (RMSE) of ‖e1,i(t)‖



Figure 3. The event-times for each agent are depicted above for t ∈
[19.75, 20.25]. A 0, or white space, denotes no communication, and a 1,
or blue line, denotes a communication event. A 0.5 time unit window of the
simulation is shown, rather than entire simulation, to more clearly depict the
intermittency and asynchrony in communication.

for each agent during t ≥ 20 for both simulations. Table I also
lists the percent change between the two RMSE statistics,
where the RMSE without DNN learning and with DNN
learning define the initial and final values, respectively, used
in the percent change computation. Figure 2 and Table I
demonstrate that the multiple timescale learning strategy can
provide significant improvements in state reconstruction. A
single training iteration of the inner DNNs reduced the RMSE
of the state estimation error by approximately 60% for each
agent. While additional training iterations could have been per-
formed, a single iteration is simulated since additional training
cycles produced minimal improvements in state reconstruction
for this case.

Table I
STATE ESTIMATION RMSE WITH & WITHOUT DNN LEARNING

Agent RMSE Without
DNN Learning

RMSE With
DNN Learning

Percent Change

1 0.1827 0.0777 -57.47%
2 0.1775 0.0634 -64.28%
3 0.2070 0.0876 -57.68%

The root-mean-square of ‖e1,i(t)‖ for each agent is presented for both
simulations, which was computed for t ∈ [20, 40].

VIII. CONCLUSION

An adaptive event-triggered distributed state observer for
a sensor network is developed, which is capable of recon-
structing the state of an uncertain nonlinear system while
being robust to a bounded disturbance. A DNN is used by
each agent in the sensor network to approximate the uncertain
nonlinear system dynamics from input-output data. The inner
layer weights and biases are trained using the Levenberg-
Marquardt algorithm in an offline manner, while the outer layer
weights are updated using an analysis-based update law and
real-time feedback. The result is a multiple timescale learning
strategy. A nonsmooth Lyapunov stability analysis is provided
that indicates the system’s state can be uniformly reconstructed
to within an ultimate bound.

As seen in Figure 1, the observer drives the state recon-
struction error for each agent below unity, which implies
that the observer is capable of good performance without

DNNs and that the observer parameters can be relaxed to
decrease the frequency of communication. With respect to
Figures 1 and 2, it is evident that the use of DNNs allowed
each agent to reduce their state reconstruction error by a
substantial margin (approximately 60% reduction). Moreover,
the improvement in performance only required a single learn-
ing cycle, where additional learning cycles can be executed
as necessary. A key observation noted during the simulation
study is that training DNNs with data collected during the
transient response leads to smaller performance improvements
when compared to training using data collected during steady
state. Furthermore, higher quality data, such as that generated
from frequent communication, leads to improved performance.
Future pursuits that could build on this result include using
multiple DNNs to learn the system dynamics and disturbance
separately, developing distributed consensus algorithms that
share local weights and biases from the DNNs, and exploring
the trade-off between triggering and state reconstruction using
DNNs.
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