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Aizerman Conjectures for a class of multivariate

positive systems
Ross Drummond, Chris Guiver and Matthew C. Turner Member, IEEE

Abstract—The Aizerman Conjecture predicts stability for a
class of nonlinear control systems on the basis of linear system
stability analysis. The conjecture is known to be false in general.
Here, a number of Aizerman conjectures are shown to be true for
a class of internally positive multivariate systems, under a natural
generalisation of the classical sector condition and, moreover,
guarantee positivity in closed loop. These results are stronger
and/or more general than existing results. The paper relates the
obtained results to other, diverse, results in the literature.

I. INTRODUCTION

Consider the feedback interconnection depicted in Figure 1,

where G(s) is a linear-time-invariant (LTI) system and Φ(·, ·) :
R

p × R → R
m is a static, possibly time-varying, nonlinear

element. Such a configuration is commonly referred to as a

Lur’e (or Lurie or Lurye) system and has had much attention

devoted to it, since this class of systems arises naturally

in many areas of science and engineering [1], [2]. In the

Fig. 1: Feedback interconnection of linear control system G(s) and sector
bounded nonlinearity Φ.

single-input single-output case, meaning that u(t) and y(t)
in Figure 1 are scalars, the nonlinearity Φ = φ is typically

assumed to satisfy a sector condition

α ≤
φ(y)

y
≤ β ∀ y ∈ R, y 6= 0 (1)

for given α ≤ β. Aizerman conjectured in 1949 in [3] that the

system in Figure 1 will be stable if the set of linear systems,

formed by replacing the nonlinearity φ with a linear gain k,

were themselves stable for all k ∈ [α, β]. This conjecture is
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often known as the “Aizerman Conjecture”. The attraction of

the Aizerman Conjecture is that it allows the control engineer

to dispense with the more complicated and unwieldy analysis

and synthesis methods for nonlinear systems, such as Zames-

Falb multipliers, and instead harness the plethora of well-

known linear system techniques. Thus, by first identifying a

Lur’e system as one satisfying the Aizerman conjecture, its

analysis and control become both scalable to certify and also

interpretable to control practitioners, who are typically more

familiar with linear systems theory.

Remarkably, a version of the Aizerman Conjecture, known

as the complex (or generalised) Aizerman Conjecture, is true,

and dates back to the work of Hinrichsen and Pritchard [4].

The well-known Circle Criterion can be derived as a conse-

quence of the complex Aizerman Conjecture; see, for exam-

ple, [5]. However, the method loses much of its appeal in the

complex case, and the conclusions may be conservative.

The more familiar form of the Aizerman Conjecture, when k
is restricted to be real, has garnered much interest, and the

academic literature on the subject is vast, as highlighted by

numerous references in the 2006 survey paper [1]. Indeed,

the field of absolute stability theory arguably arose from the

initial studies on the Aizerman Conjecture, with early results in

the 1950s by Soviet scholars demonstrating the conjecture to

be true, up to some assumptions, when G(s) is a second order

system (see [6], [7] and the references therein), but false in

general, with counterexamples presented in, for example, [8]

and [9] (see also [6], [10] for more recent results). However,

for the reasons given above, much effort has been devoted

to identifying situations in which the Aizerman Conjecture

is true. Of these, the most relevant are those where certain

positivity assumptions are made on the linear part of the

system including [11], [12], [13] — these will be discussed

later in the paper.

Building upon these results, here a version of the Aizerman

Conjecture is shown to be true (in a sense made precise in

Theorem 1) for a class of multivariate positive Lur’e systems.

Moreover, the hypotheses are particularly simple to verify

and the proofs particularly short. To the best of the authors’

knowledge, the results given here are stronger and/or more

general than other comparable results in the literature.

The note is organised as follows. Section II describes the

class of systems considered, and contains the main result,

Theorem 1. Section III contains further background and seeks

to contextualise the work by relating it to relevant known

results in the literature. Brief conclusions appear in Section IV.
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A. Notation

Notation is mainly standard, but the reader’s attention is

drawn to the following. For a real matrix (vector) M , the

notation M ≥ 0, M > 0 and M ≫ 0 means that M has

non-negative elements, non-negative elements and is not equal

to the zero matrix (vector), or positive elements, respectively.

The symbols ≤, < and ≪ are defined similarly. It is also

convenient to define

R
n×m
+ =

{

M ∈ R
n×m : M ≥ 0

}

which comprises so-called nonnegative matrices (vectors).

A square matrix M is called Hurwitz if every eigen-

value of M has negative real part. The spectral abscissa

(the maximum of the real part of the eigenvalues of M ) is

denoted s(M). For a vector v ≥ 0, vm is the value of smallest

element, while vM denotes the largest. Further, ‖ · ‖ denotes

the Euclidean norm of a vector, or for a matrix, the norm

induced by the Eulidean norm. An n ×m matrix with unity

elements is denoted 1n×m.

For a transfer function G(s), the H∞ norm, ‖G‖∞, is

defined as

‖G‖∞ = sup
ω∈R

‖G(jω)‖ = sup
ω∈R

σ̄
(

G(jω)
)

where σ̄(M) denotes the maximum singular value of M .

The L∞ norm of a locally essentially bounded signal z is

defined as

‖z‖L∞(0,t) := ess sup
0≤τ≤t

max
i

|zi(τ)|

This note will deal with the well-studied notions of positive

systems and positive stability, as in, for example [14], [15], in

addition to the familiar notions of asymptotic and exponential

stability. Indeed, the system of ordinary differential equations

ẋ = f(x, t) f(·, ·) : Rn × R → R
n (2)

is said to be a positive system, or just positive, if x(t) ≥ 0 for

all t ≥ 0 whenever x(0) ∈ R
n
+. Similarly, the system (2) is

said to be positively globally exponentially stable (pGES) if it

is positive and there exist η, λ > 0 such that every solution x
of (2) satisfies

‖x(t)‖ ≤ ηe−λt‖x(0)‖ ∀ t ≥ 0 ∀ x(0) ∈ R
n
+ (3)

II. THE AIZERMAN CONJECTURE FOR POSITIVE SYSTEMS

A. Positive Linear systems

Consider first the positive linear system of differential

equations

ẋ = Mx (4)

where M ∈ R
n×n is Metzler, that is Mij ≥ 0 for all i 6= j.

Metzler matrices are also called essentially non-negative [14,

p. 146], [15, p.30] or quasi positive [16, p. 60]. They play the

same role in nonnegative differential equations as nonnegative

matrices in difference equations (discrete-time).

The following facts are well known

Fact 1. (4) is a positive system if, and only if, M is a

Metzler matrix. Further, if M is additionally Hurwitz, then

there exists v ∈ R
n
+, v ≫ 0, such that vTM ≪ 0.

Proofs of these claims may be found in, for instance, [14,

Theorem 3.1, p.146] and [15, Lemma 2.2, p.31], respectively.

We highlight that stable positive linear systems admit linear

Lyapunov functions constructed in terms of vectors v ∈ R
n
+ as

above; see, for instance, [17]. These ideas will be employed

frequently throughout the paper.

Incorporating inputs and outputs, consider now the familiar

linear control system

G(s) ∼

{

ẋ = Ax+Bu

y = Cx
(5)

where A ∈ R
n×n, B ∈ R

n×m and C ∈ R
p×n. As

usual, u(t), x(t) and y(t) in (5) denote the input, state

and output variables, which take values in R
m, Rn and R

p,

respectively. We recall that (5) is called

• internally positive if x ≥ 0 for all x(0) ≥ 0 and all u ≥ 0
• externally positive if y ≥ 0 whenever x(0) = 0 and for

all u ≥ 0

Here x ≥ 0 means x(t) ≥ 0 for all t ≥ 0, and similarly for u
and y. These systems are well-studied in the literature; see, for

instance [18], [19]. Internal positivity is equivalent to A being

Metzler, and B and C being nonnegative [18, Theorem 2], and

external positivity is equivalent to the impulse response h(t) =
CeAtB taking nonnegative values [18, Theorem 1]. External

positivity does not stipulate positivity of the state, and is harder

to characterise further [20], [21], but has been considered in

the work of [22] to some extent.

B. Positive Lur’e Systems

Consider the class of systems depicted in Figure 1 with r1 =
0 and r2 = 0. The interconnection of the linear element (5)

and the static nonlinear feedback u = Φ(y, ·) can be written

ẋ(t) = Ax(t) +BΦ(Cx, t) (6)

Here the multivariate function Φ : Rp × R → R
m is assumed

to satisfy Φ(0, t) = 0 for all t ≥ 0, which ensures that x = 0
is an equilibrium of (6). A standing assumption throughout the

paper is that the feedback interconnection in Figure 1 is well-

posed. Specifically, it is assumed that, for every x(0) ∈ R
n,

there exists a unique locally absolutely continuous function x :
R+ → R

n satisfying (6) almost everywhere. Well-posedness

is guaranteed under standard assumptions on Φ: if Φ(z, t) is

locally Lipschitz in z and (Lebesgue) measurable in t, plus

some mild additional boundedness conditions on Φ; see, for

example, [23, Theorem 54, Proposition C.3.8].

Although the classical Aizerman Conjecture was stated for

single-input single-output (SISO) systems, the more general

multi-input multi-output (MIMO) case is treated here, with

little additional difficulty.

For positive systems, a sector bound for multivariable Φ
seems most naturally expressed in terms of componentwise

inequalities. Indeed, given Σ1,Σ2 ∈ R
m×p with Σ1 ≤ Σ2,

the function Φ is said to belong to Sector[Σ1,Σ2] if

Σ1z ≤ Φ(z, t) ≤ Σ2z ∀ z ∈ R
p
+, ∀ t ≥ 0 (7)

Here, the Aizerman Conjecture will insist on ensuring a posi-

tive system in closed loop, and not simply (global exponential)
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stability. Consequently, the pGES estimate (3) and sector

condition (7) are only required to hold for nonnegative initial

states and arguments, respectively; see also Remark 1 below.

We note that (6) need not be a monotone control system, in

the sense of [24] (at least in the usual nonnegative orthant

R
n
+), even when Φ satisfies (7).

Before stating results for Lur’e systems, a useful stepping-

stone is to consider positivity and pGES for linear feedback

systems. It transpires that, for positive systems, verifying the

linear positivity and stability conditions amount to checking

the properties of matrices at the “end-points” of the sector, as

described in the next lemma.

For the remainder of the work, we let Σ1,Σ2 ∈ R
m×p

with Σ1 ≤ Σ2 be given.

Lemma 1. Consider (5) with B,C ≥ 0, and the hypothesis

(H) A + BΣC is Hurwitz and Metzler for all Σ such

that Σ1 ≤ Σ ≤ Σ2.

The following statements hold.

(1) Hypothesis (H) is equivalent to A+BΣ1C being Metzler

and A+BΣ2C being Hurwitz.

(2) Hypothesis (H) is necessary and sufficient for the lin-

ear feedback system of (5) and y = Σu, that is (6)

with Φ(z, t) = Σz, to be pGES for all Σ1 ≤ Σ ≤ Σ2.

Proof. (1) That (H) is sufficient for the claimed properties is

clear, as Σ = Σ1 and Σ = Σ2 are included in (H). Conversely,

for Σ such that Σ1 ≤ Σ ≤ Σ2, the hypothesis B,C ≥ 0 yields

that

A+BΣ1C ≤ A+BΣC ≤ A+BΣ2C

Hence, A + BΣC is Metzler, as A + BΣ1C is. Moreover, a

consequence of [16, Corollary 4.3.2] is that s(A + BΣC) ≤
s(A + BΣ2C) < 0 — the last inequality following by

hypothesis. Therefore, A+BΣC is Hurwitz, and since Σ was

arbitrary, the proof is complete.

Statement (2) follows immediately from Fact 1.

Theorem 1 (Positive Aizerman). Consider the Lur’e sys-

tem (6) with B,C ≥ 0. If A+BΣ1C is Metzler and A+BΣ2C
is Hurwitz, then (6) is pGES for every Φ ∈ Sector[Σ1,Σ2].

The above theorem shows that the positive Aizerman Con-

jecture is true. Namely, for positive systems, the hypothe-

sis (H) — a necessary and sufficient condition for positivity

and global exponential stability (pGES) of the linear feedback

system (5) for all feedback gains Σ such that Σ1 ≤ Σ ≤ Σ2

— implies that the Lur’e system (6) is itself pGES for all Φ
in the same sector, that is, in the sense of (7). Note that A
itself is not required to be Metzler.

Before proving Theorem 1, further commentary is given.

Remark 1.

(a) In the SISO case, meaning m = p = 1, writing φ :=
Φ, σ1 := Σ1 ≤ Σ2 =: σ2 the sector condition (7) may be

rewritten in the more familiar form

σ1 ≤
φ(z, t)

z
≤ σ2 ∀ z > 0, ∀ t ∈ R+

The results proved here thus hold for the SISO case, but

actually hold for the (possibly non-square) MIMO case.

(b) Sign conventions. A positive feedback convention has

been adopted in this paper. However, no assumptions on the

sign(s) of the sector data Σ1 and Σ2 are made. Often Φ will

satisfy a so-called one-sided sector condition; that is Φ ∈
Sector[0,Σ2] for Σ2 ≥ 0, but negative feedback will be

used. This is actually equivalent to the current configuration

by taking Φ ∈ Sector[−Σ2, 0]; the positive feedback con-

vention does not limit generality. Furthermore, the nonlinear

feedback Φ is defined as a function of all real arguments,

but since (6) is required to be a positive system, the sector

condition (7) is only required for nonnegative arguments.

(c) If, in addition to the hypotheses of Theorem 1, the

matrix A+BΣ2C is assumed irreducible, then the exponential

rate of decay in the pGES estimate for (6) may be chosen

equal to s(A + BΣ2C), and this is the smallest decay rate

which “works” for all Φ satisfying the sector condition (7).

Recall that a square matrix M ∈ R
n×n is called irreducible if

it is not reducible. A matrix is reducible if it is similar, via a

permutation matrix, to an upper block triangular matrix with

non-zero (and non-trivial) block diagonal terms. �

Theorem 1 is proved with the aid of the following lemma,

which characterises when the Lur’e system (6) is positive.

Lemma 2. Consider the Lur’e system (6) with B,C ≥ 0.

Then (6) is a positive system for all Φ ∈ Sector[Σ1,Σ2] if,

and only if, A+BΣ1C is Metzler.

Proof. That A+ BΣ1C is Metzler is necessary for (6) to be

positive is clear from Fact 1 as the linear function Φ(z, t) =
Σ1z belongs to Sector[Σ1,Σ2].

For sufficiency, suppose that A+BΣ1C is Metzler, let Φ ∈
Sector[Σ1,Σ2] be fixed, and consider the i-th state equation

associated with the Lur’e system (6)

ẋi = Aiixi +

n
∑

i 6=j=1

Aijxj +
(

BΦ(Cx, t)
)

i

Since x(0) ∈ R
n
+, were some component xi of x the first

to become negative, then, by continuity of solutions, there

exists t1 ≥ 0 such that xi(t1) = 0, xj(t1) ≥ 0, and Cx(t) ≥ 0
on [0, t1]. From the sector condition (7) and the assumed

nonnegativity, it follows that

ẋi(t1) ≥ (A+BΣ1C)iixi(t1) +

n
∑

i 6=j=1

(A+BΣ1C)ijxj(t1)

=

n
∑

i 6=j=1

(A+BΣ1C)ijxj(t1)

However, by the Metzler property of A + BΣ1C and be-

cause xj(t1) ≥ 0, the above inequality implies that ẋi(t1) ≥ 0
and thus xi can, in fact, never become negative.

Remark 2. An alternative proof to the above lemma is obtained

by using a differential inequality. For brevity, we only sketch

the details, by noting that the solution v of v̇ = f(v) :=
Av + BΣ1Cv from x0 ∈ R

n
+ is nonnegative by Fact 1 and

as A + BΣ1C is assumed Metzler. The function f is quasi-

monotone increasing, see [25, p.94]. It can be shown that the

solution of x of (6) satisfies ẋ ≥ f(x) and the desired claim

that x ≥ v ≥ 0 follows from [25, Theorem VIa, p.96]. �
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Proof of Theorem 1. Let x(0) ∈ R
n
+ be given and let Φ ∈

Sector[Σ1,Σ2]. By Lemma 2, it follows that x(t) ≥ 0 for

all t ≥ 0. Therefore, we may rewrite and estimate (6) as

ẋ = (A+BΣ2C)x+B(Φ(Cx, t)− Σ2Cx) ≤ Mx (8)

where M := A + BΣ2C is Metzler and Hurwitz. Thus, by

Fact 1, there exist v ∈ R
n
+, v ≫ 0, and ε > 0 such that

vTM ≤ −εvT (9)

Since v is strictly positive, we have

vm‖z‖ ≤ vT z ≤ vM‖z‖ ∀ z ∈ R
n
+ (10)

Routine calculations invoking (8) and (9) give that

d

dt
eεtvTx(t) = εeεtvTx(t) + eεtvT ẋ(t) ≤ eεt(εvT + vTM)

≤ 0 almost all t ≥ 0

Since t 7→ eεtvTx(t) is nonnegative valued, (10) gives

eεtvm‖x(t)‖ ≤ eεtvTx(t) ≤ vTx(0) ≤ vM‖x(0)‖ ∀ t ≥ 0

from which pGES follows.

If A + BΣ2C is assumed irreducible then by, for exam-

ple, [13, Theorem 3.4] there exists v ∈ R
n
+, v ≫ 0 such that

vT (A+BΣ2C) = s(A+BΣ2C)vT

In short, one has a direct estimate of the convergence rate.

The following loop-shifting corollary is an immediate con-

sequence of Theorem 1, and follows by replacing A and Φ
by A+BKC and (z, t) 7→ Φ(z, t)−Kz, respectively.

Corollary 1. Consider the Lur’e system (6) with B,C ≥ 0.

Let K ∈ R
m×p be such that A + BKC is Metzler. If A +

B(K+Σ1)C is Metzler and A+B(K+Σ2)C is Hurwitz, then

for every Φ such that (z, t) 7→ Φ(z, t)−Kz ∈ Sector[Σ1,Σ2]
the Lur’e system (6) is pGES.

C. An exponential ISS result

Consider the system in Figure 1, where r1 : R+ → R
p

and r2 : R+ → R
n are piecewise continuous signals modelling

exogenous inputs. This leads to the Lur’e system

ẋ = Ax+BΦ(Cx+ r1, t) + r2 (11)

In this section it will be shown that, roughly, the hypotheses

of Theorem 1 are sufficient for the stronger stability notion

of exponential input-to-state stability (ISS) of (11), provided

that the state x is nonnegative. For this purpose, the following

lemma is useful.

Lemma 3. Consider the Lur’e system (11) with B,C ≥ 0.

If A+BΣ1C is Metzler, Φ ∈ Sector[Σ1,Σ2], x(0) ≥ 0, r1 ≥ 0
and BΣ1r1 + r2 ≥ 0, then x(t) ≥ 0 for all t ≥ 0.

Proof. The proof is similar to that of Lemma 2, or alternatively

by arguing as in Remark 2.

Proposition 1. Imposing the notation and assumptions of

Theorem 1, there exist Γ, γ > 0 such that, for all x(0) ≥ 0,

all (r1, r2) with r1, BΣ1r1 + r2 ≥ 0 for all t ≥ 0, the

solution x of (11) satisfies x(t) ≥ 0 and

‖x(t)‖ ≤ Γ
(

e−γt‖x(0)‖+ ‖(r1, r2)‖L∞(0,t)

)

∀ t ≥ 0 (12)

If A+BΣ2C is irreducible, then γ above may be chosen equal

to −s(A+BΣ2C) > 0.

Proof. Let x(0) ∈ R
n
+, r1, r2 and Φ ∈ Sector[Σ1,Σ2] be

as in the statement of the result. By Lemma 3, it follows

that x(t) ≥ 0 for all t ≥ 0. Equation (11) can be re-written as

ẋ = (A+BΣ2C)x+BΣ2r1 + r2

+B
(

Φ(Cx+ r1, t)− Σ2(Cx+ r1)
)

(13)

Note that the final term on the right hand side of (13) is

nonpositive, and hence the variation of parameters formula

entails that x admits the estimate, for all t ≥ 0:

0 ≤ x(t) ≤ eMtx(0) +

∫ t

0

eM(t−τ)r(τ) dτ

where M := A + BΣ2C and r := BΣ2r1 + r2. Let v ∈
R

n
+, v ≫ 0 and ε > 0 be as in (9). Applying vT to both sides

of the above, and invoking (10), yields that

vm‖x(t)‖ ≤ vTx(t) ≤ e−εtvTx(0) +

∫ t

0

e−ε(t−τ)vT r(τ) dτ

≤ e−εtvM‖x(0)‖+
1

ε
‖vT r‖L∞(0,t)

for all t ≥ 0, from which the estimate (12) follows.

D. Stability in the large and global asymptotic stability

Theorem 1 provides sufficient conditions for positivity and

global exponential stability of the Lur’e system (6). Since (6)

includes linear systems as a special case, global exponential

stability is qualitatively the best expected in general.

A necessary condition to avoid linear instability is evidently

that s(A + BΣ2C) ≤ 0, and the situation wherein s(A +
BΣ2C) < 0 has been considered in Theorem 1. Here it is

demonstrated that other (weaker) stability notions are guaran-

teed, under certain assumptions, when s(A + BΣ2C) = 0.

Even in the linear setting, as the situation with nontrivial

Jordan blocks indicates, for instance
(

ẋ1

ẋ2

)

=

(

0 1
0 0

)(

x1

x2

)

so that

(

x1(t)
x2(t)

)

=

(

1 t
0 1

)(

x1(0)
x2(0)

)

∀ t ≥ 0

global stability notions cannot be expected without suitable

additional assumptions. The additional assumption presently

imposed is that A+BΣ2C is irreducible, see Remark 1 (c)1.

Proposition 2. Consider the Lur’e system (6) with B,C ≥ 0.

Assume further that A + BΣ1C is Metzler, that A + BΣ2C
is irreducible, and that s(A + BΣ2C) = 0. The following

statements hold.

1The square matrix appearing in the first equation above is not irreducible.
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(1) For every Φ ∈ Sector[Σ1,Σ2] the Lur’e system (6) is

positively stable in the large, meaning that it is a positive

system and there exists Γ > 0 such that

‖x(t)‖ ≤ Γ‖x(0)‖ ∀ t ≥ 0 ∀ x(0) ∈ R
n
+

(2) Assume that A + BΣ1C is Hurwitz. For every Φ ∈
Sector[Σ1,Σ2] such that

• supt∈R+
Φ(z, t) < Σ2z for all z ∈ R

p
+, z 6= 0, and;

• z 7→ supt∈R+
vTBΨ(z, t) is bounded from above

by a continuous function which is zero at zero and

negative for nonzero arguments. Here v ≫ 0 is such

that vT (A+BΣ2C) = 0 and Ψ(z, t) := Φ(z, t)−Σ2z;

the solution x of (6) satisfies x(t) → 0 as t → ∞ for

every x(0) ∈ R
n
+.

Although statement (1) guarantees that the zero equilibrium

of (6) enjoys certain stability properties, the hypotheses on A+
BΣ2C ensure that there is a strictly positive w ∈ R

n
+ such

that (A+BΣ2C)w = 0. In particular, w is another equilibrium

of (6) when Φ(z) = Σ2z. The simplest situation wherein the

bullet-pointed hypotheses on Φ are satisfied is when B has no

zero columns, Φ = Φ(z) is independent of t, is continuous

in z, and satisfies Φ(z) < Σ2z for all nonzero z. For time-

varying Φ, note that the supremum in the first bullet-point

above is understood componentwise

Proof. Let Φ ∈ Sector[Σ1,Σ2]. It follows from Lemma 2

that x(t) ≥ 0 for all t ≥ 0. A consequence of A + BΣ2C
being Metzler, irreducible and having zero spectral abscissa is

that there exists vT ≫ 0 with vT (A+BΣ2C) = 0 and so

vT e(A+BΣ2C)t = vT ∀ t ≥ 0 (14)

Statement (1): It remains to prove the bound for ‖x(t)‖. The

proof is the same as that of Theorem 1 but taking ε = 0 in (9).

Statement (2): The following proof draws inspiration

from [5, proof of Theorem 5]. Since statement (1) holds,

for every x(0) ∈ R
n
+, the solution x of (6) is bounded by

some ρ > 0. To show the claimed convergence, we prove that

lim sup
t→∞

‖Cx(t)‖ = 0 (15)

which implies that x(t) → 0 as t → ∞, in light of

ẋ(t) = (A+BΣ1C)x(t) +B(Φ(Cx(t), t)− Σ1Cx(t))

as A + BΣ1C is assumed Hurwitz and the hypotheses

on Φ. Seeking a contradiction, suppose that (15) fails. Thus,

there exists a strictly increasing, unbounded sequence (tk)k∈N

and ε ∈ (0, ‖C‖ρ/2) such that ‖Cx(tk)‖ ≥ 2ε > 0 for

all k ∈ N. Since x is bounded, it follows from (6) and (7)

that ẋ is bounded, and hence x is uniformly continuous.

Therefore, there exists δ > 0 such that

‖Cx(t)‖ ≥ ε ∀ t ∈ [tk, tk + δ] ∀ k ∈ N

Passing to a subsequence if needed, we may assume

that tk+1 ≥ tk + δ for all k ∈ N. Set M := {z ∈ R
p :

ε ≤ ‖z‖ ≤ ‖C‖ρ}, which is non-empty and compact. Recall

the notation Ψ(z, t) := Φ(z, t)− Σ2z.

By hypothesis the function z 7→ supt∈R+
vTBΨ(z, t) is

bounded from above by a continuous, real-valued function

which is negative for non-zero arguments, denoted g, say.

Hence, there exists η > 0 such that

sup
z∈M,t∈R+

vTBΨ(z, t) ≤ sup
z∈M

g(z) = −η < 0 (16)

Now applying vT to both sides of the variation of parameters

formula for x between tk and tk+1 for k ∈ N, and invok-

ing (14), that Cx(τ) ∈ M for s ∈ [tk, tk + δ] and (16), gives

vTx(tk+1) = vTx(tk) +

∫ tk+1

tk

vTBΨ(Cx(τ), τ) dτ

≤ vTx(tk) +

∫ tk+δ

tk

vTBΨ(Cx(τ), τ) dτ

≤ vTx(tk)− δη ∀ k ∈ N

The above inequality, for sufficiently large k, contradicts the

nonnegativity of vTx(t). The proof is complete.

E. Maximal elements for sectors

Here a key assumption of the present work is considered

in more depth, namely the linear positivity and stabilisability

assumption (H). Observe that the sectors Sector[Σ1,Σ2] are

nested, in the sense that if Σ0 ≤ Σ1 and Σ2 ≤ Σ3,

then Sector[Σ1,Σ2] ⊆ Sector[Σ0,Σ3]. Hence, a natural ques-

tion is what is the “biggest” sector possible under which (H)

holds? The stability aspect of this question can be addressed

by appealing to the well-known concept of the stability radius,

dating back to [26], and [27] for positive systems.

For simplicity, assume that A is Metzler and Hurwitz and

that the transfer function G associated with (5) is nonzero. In

particular, if B,C ≥ 0, then [27, Theorem 5] yields that A+
B∆C is Hurwitz for all ∆ ∈ R

m×p with ‖∆‖ < 1/‖G(0)‖.

This estimate is sharp as the next lemma demonstrates.

Lemma 4. Consider (5) with A Metzler and Hurwitz,

and B,C ≥ 0. If G(0) 6= 0, then there exists rank-

one ∆ ∈ R
m×p
+ such that ‖∆‖ = 1/‖G(0)‖ and zero is an

eigenvalue of A+B∆C.

Proof. Let v ∈ R
m be such that ‖v‖ = 1 and ‖G(0)v‖ =

‖G(0)‖. It follows that v ∈ R
m
+ as G(0) = C(−A)−1B ≥ 0.

Note that (−A)−1Bv 6= 0. Define

∆ :=
1

‖G(0)‖2
v(G(0)v)T

which is evidently real, nonnegative and rank one. It is routine

to verify that ‖∆‖ = 1/‖G(0)‖, that w := (−A)−1Bv 6= 0,

and, finally, that zero is an eigenvalue of A+B∆C as

(A+B∆C)w = −Bv +B∆G(0)v = 0

Although Lemma 4 provides an explicit definition of ∆, it

requires finding v ∈ R
m
+ such that ‖G(0)‖ = ‖G(0)v‖. In the

SISO case, ∆ is simply given by ∆ = 1/G(0).
To use Lemma 4 as a design tool requires a relation-

ship between spectral abscissas and componentwise orderings.

These objects interact nicely with one another, in the sense

that for Metzler M1,M2, it follows that if M1 ≤ M2,

then s(M1) ≤ s(M2). However, some care needs to be taken

when seeking to infer the strict inequality that M1 < M2
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implies s(M1) < s(M2), which is false in general as upper

triangular matrices show, but is true if M1 is irreducible; see,

for example [16, Corollary 4.3.2].

Thus, in light of Lemma 4, A + BΣC is Hurwitz for

all Σ < ∆ such that A + BΣC is Metzler and irreducible.

The hypothesis (H) cannot hold with Σ2 ≥ ∆ and, further,

if A + B∆C is irreducible, then s(A + BΣC) > 0 for

all Σ > ∆. In the MIMO case, these considerations cannot be

applied to determine the stability of A+BΣC for Σ ∈ R
m×p

which satisfy Σ 6≤ ∆ and Σ 6≥ ∆.

III. CONNECTIONS TO OTHER WORK

The Aizerman Conjecture is known to be false in general

but various papers have identified particular classes of systems

where it holds true. This section compares the new conditions

derived in this paper to those already available in the literature,

with summarising observations given in Table I.

A. A real Aizerman conjecture

There is overlap between Theorem 1 and [11, Theorem 1],

which also presents a real Aizerman Conjecture for positive

Lur’e systems. The work [11] only considers the case of di-

agonal nonlinearities, essentially meaning Φi(z, t) = φi(zi, t)
for all 1 ≤ i ≤ m and z ∈ R

m with components zi, and only

concludes positive global asymptotic stability, but the ideas

are otherwise similar to those used presently. The work [11]

is brief, and does not consider the other facets considered here

— exponential ISS in in Proposition 1 or the other stability

considerations in Proposition 2.

B. Externally positive systems

Significant work on the Aizerman Conjecture for externally

positive systems (recall, meaning the impulse response is non-

negative valued) has been undertaken by Gil’, dating back to

the 1980s, see [12, Chapter 6] and the references therein. The

result [12, Theorem 6.3.1] shows that, for given Q ∈ R
m×m
+ ,

the Lur’e system (6) is GES for all Φ such that

−Q|z| ≤ Φ(z, t) ≤ Q|z| ∀ z ∈ R
m, ∀ t ≥ 0 (17)

if, and only if, det(P (s) − L(s)Q) is a Hurwitz polynomial,

where G(s) = P−1(s)L(s). The result [12, Theorem 6.3.1]

is different to the situation considered here, as [12, Theorem

6.3.1] does not require the Lur’e system (6) to be positive

(which makes it more general), but does not address when (6)

is positive — a natural requirement in many applied settings.

C. Nonegative Lur’e systems

There is some overlap with the results proved here and those

in [13]. The paper [13] considers stability, in various senses, of

the forced positive (there called nonnegative) Lur’e systems,

in the SISO case. Although stability of the zero equilibrium is

considered [13], so that there is overlap between Theorem 1

and Proposition 2, and [13, Theorem 4.4]; the emphasis of that

work is on the existence and stability of a nonzero equilibrium,

which arises naturally in many ecological and biochemical

contexts. Indeed, in that sense the work [13] is more in

the spirit of positive dynamical systems, and considers so-

called trichotomies of stability as in [28]. Another difference

is that [13] considers positive feedback connections (only),

meaning the nonlinear term maps R+ → R+.

D. Stability radii and the real supremum value property

One approach to the Aizerman Conjecture is to first consider

additive, structured perturbations

ẋ = Ax+BΓ[Cx] (18)

of the unperturbed or nominal differential equation ẋ = Ax.

Here Γ[·] in (18) is a placeholder for a number of different

classes of perturbation, from matrix multiplication to a nonlin-

ear function Γ[Cz] = Φ(Cz). In this light, it is clear that (18)

encompasses the Lur’e system (6). So-called stability radii are

a tool for determining local robustness, that is, determining the

maximal bound for which all perturbations “within that bound”

will preserve some property, in this case, stability. (For brevity

in this discussion we are not precise with what is meant by

stability.) Hinrichsen and Pritchard introduced stability radii

for a number of perturbation classes (see [30, Section 6]),

and a key finding is, unsurprisingly, that different perturbation

classes have different stability radii in general.

In this perspective, the real and complex Aizerman Con-

jectures, roughly, ask when does stability for all perturbations

of a certain linear type ensure stability for all perturbations

of a corresponding nonlinear type? Thus, in the language of

stability radii, the real Aizerman Conjecture is that the so-

called “real static nonlinear stability radius”, denoted rR,φ,

equals the “real linear stability radius”, denoted rR. Note

that rR,φ ≤ rR always holds, since a linear perturbation can

be viewed as a nonlinear perturbation, but not conversely.

The analysis in [4, Example 4.1] of a counterexample to

the real Aizerman Conjecture proposed in [9] shows that

the ratio rR/rR,φ can be arbitrarily large, so that the real

Aizerman Conjecture can fail “dramatically”. In other words,

whilst (18) may be stable for some fixed A, B and C and

“large” linear, real perturbations Γ1[·], there are arbitrarily

small real, nonlinear perturbations Γ2[·] which destabilise (18).

As stated in the Introduction, the complex Aizerman con-

jecture is true and, in the current perspective, is true because

the complex linear stability radius rC satisfies the (nontrivial)

inequality rC ≤ rR,φ. Put differently, if every complex feed-

back gain in a (complex) ball of feedback gains is stabilising,

then all nonlinear feedbacks in the same “ball” are stabilising.

However, the strict inequality rC < rR,φ is possible and, in

this case, the complex Aizerman conjecture is conservative.

Therefore, in light of the known bounds rC ≤ rR,φ ≤ rR,

one approach to the real Aizerman Conjecture is to establish

situations wherein rC = rR. In this case, the hypotheses of

the real conjecture imply that the hypotheses of the complex

conjecture hold which is true. A sufficient condition for rR =
rC is the so-called real supremum value property, namely, that

‖G‖∞ = ‖G(jω)‖ and G(jω) ∈ R
p×m (19)

for some ω ∈ R. The real supremum value property is

satisfied for certain classes of systems, such as those listed

in [29, Example 3.7] — including internally positive and
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Class of system
Class of
Nonlinearity

Stability properties guaranteed Positivity guaranteed Details

Internally positive Norm bounded
Exponential, input-to-state, asymptotic
[4], [29].

× (no assumptions on sign of feedback) Section III-D

Externally positive
Sector
bounded (17)

Exponential [12, Theorem 6.3.2]. × (no assumptions on internal properties) Section III-B

Internally positive Sector bounded Exponential, input-to-state, asymptotic
√ Theorem 1,

Proposition 1,
Proposition 2

TABLE I: Comparable real Aizerman Conjecture-type results for multivariate (MIMO) Lur’e systems.

externally positive, as in both cases (19) holds with ω = 0,

see [17, Proposition 2]. The real supremum value property is

at the heart of [31, Corollary 3.7], which provides sufficient

conditions in terms of a real Aizerman Conjecture for input-

to-state stability of a MIMO Lur’e system with positive linear

data (up to loop-shifting, as in Corollary 1). The overlap with

the present work is minimal as [31] imposes norm conditions,

rather than the sector condition (7). The difference between

these specific assumptions is discussed in the next section.

E. The complex Aizerman conjecture

Here we demonstrate how the stability assumptions of

Theorem 1 are equivalent to those of the complex Aizerman

Conjecture in the SISO case, but not in the MIMO case,

where our conditions are more general. Note that the complex

Aizerman Conjecture only ensures stability, and does not

address positivity, of (6).

For simplicity, assume that Φ is independent of t. To make

the connection, we need to centre the sector conditions. For

which purpose, set M := (Σ2+Σ1)/2, D := (Σ2−Σ1)/2 ≥ 0.

The stability component of hypothesis (H) is equivalent to

A+BΣC is Hurwitz for all −D ≤ Σ−M ≤ D (20)

Similarly, it follows that Φ ∈ Sector[Σ1,Σ2] if, and only if,

−Dy ≤ Φ(y)−My ≤ Dy ∀ y ∈ R
p
+ (21)

The inequalities in (21) may be extended to all y ∈ R
p

by (re)defining Φ(y) = My for y ∈ R
p, y 6≥ 0. This

is unproblematic when the Lur’e system (6) is positive, as

nonnegative solutions are independent of how Φ is defined for

nonpositive arguments.

To invoke complex Aizerman Conjectures requires norm

conditions. In particular, by [29, Theorem 5.1], the hypothesis

A+BΣC is Hurwitz for all ‖Σ−M‖ ≤ ‖D‖ (22)

(which is a natural generalisation of (20)) guarantees that the

Lur’e system (6) is GES for all Φ such that

‖Φ(y)−My‖ ≤ ‖D‖‖y‖ ∀ y ∈ R
p (23)

(Note that it is, in fact, required that (22) holds for all

complex Σ, but this can be relaxed to all real Σ under the

usual assumption that A + BΣ1C is Metzler and B,C ≥ 0
by the real supremum value property.)

In the SISO (m = p = 1) case the quantities M , D, Σ,

and Σi are all scalar, and the conditions (20) and (22) are

both equivalent to A+BΣC being Hurwitz for every real Σ
in the interval [M − D,M + D]. Moreover, here both (21)

and (23) are equivalent to |Φ(y)−My| ≤ D|y| for all y ∈ R.

However, in the MIMO (m, p > 1) case, it is routine

to verify that (22) implies (20), and that (23) implies (21),

and that in both cases the converse is false. In particular,

the complex Aizerman Conjecture results listed above are not

applicable when only (20) and (21) are assumed. Intuitively,

the condition (20) requires stability for all Σ − M only

in the “directions” determined by −D ≤ and ≤ D. The

condition (22) requires stability for all Σ−M in all directions,

as determined by a norm — a stronger requirement.

F. Comparison to Zames-Falb multipliers

Zames-Falb multipliers may be used to predict stability of

the Lur’e system in Figure 1 when the the nonlinearity Φ
satisfies the stronger requirement that it is time-invariant and

slope restricted. In the SISO case, this is equivalent to

α ≤
φ(z1)− φ(z2)

z1 − z2
≤ β ∀ z1, z2 ∈ R, z1 6= z2 (24)

for some α < β. It appears ([32], [33]) that Zames-Falb

multipliers are the least conservative method for guaranteeing

stability of a Lur’e system under the assumption (24). Fur-

thermore, in the MIMO case, when m = p and assuming a

“repeated scalar” structure for Φ, that is

Φ(z) = [φ(z1), φ(z2), . . . , φ(zm)]′ ∀ z ∈ R
m (25)

where φ satisfies (24), similar results can be obtained as

for the SISO case [34], [35]. However, the success of the

Zames-Falb approach hinges on a search over Zames-Falb

multipliers which can be complex and time-consuming [35],

[36]. Furthermore, Zames-Falb results are rather difficult to

use for controller synthesis.

The work in this paper provides an alternative to Zames-

Falb multipliers when the linear systems G(s) are internally

positive, and enables both pGES and positivity to be estab-

lished. Table II lists some example MIMO systems which are

all internally positive and, by Lemma 2, will result in positivity

when connected in the manner depicted in Figure 1 - hence

Theorem 1 applies. It is assumed that Φ is such that it belongs

to Sector[0, σ2Im] (where p = m for simplicity), or satisfies

the slope conditions (24) and (25) with α = 0 and β = σ2.

Table III gives the maximum σ2 for which stability can

be ascertained using various approaches: the standard Circle

Criterion, the Lyapunov-based approach of Park [37], and

also that of Zames-Falb. Here the Zames-Falb multipliers are

computed using the MIMO method of [38] (approaches such

as [35] could equally be used). Some observations are in order:

• The Circle Criterion, as expected, provides the most con-

servative results, but the class of nonlinearities for which it
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Example Source/State-space matrices

1 [39, Example 1], with sign of B matrix reversed
2 A = diag(−1,−10,−30,−60,−100) + 0.115×5,

B = I5, C = I5 − 15×5

3 A = diag(−1,−10,−100) + 0.0113×3,

B = I3, C =
(

0 1 1

0 0 1

0 0 1

)

TABLE II: Linear data for example MIMO Lur’e systems.

caters (sector bounded, time-varying) is more general than

those of Park or Zames-Falb (slope-restricted, time-invariant).

• Theorem 1 given here provides, essentially, no higher value

in σ2 than either Park or Zames-Falb, but it has the same

generality of the Circle Criterion. Moreover, since Theorem 1

only requires eigenvalue computation, rather than the solution

to a semi-definite program, it will scale to larger problems

far better than its competitors.

Example
Maximum σ2

Circle Criterion Park Zames-Falb Theorem 1

1 0.9158 0.9236 0.9236 0.9236
2 0.7997 2.0220 2.0221 2.0221
3 19.2764 89.8987 89.8987 89.8999

TABLE III: Maximum value of σ2 for which stability can be numerically
verified, according to various different approaches.

IV. CONCLUSION

This paper has shown that a suite of Aizerman Conjectures

hold for a class of multivariate, positive nonlinear control

systems; essentially ensuring positivity and various nonlinear

stability notions depending on positivity and stability assump-

tions on the plant and a linear sector of matrices. In its simplest

form, global exponential stability is guaranteed if two matrices

at the extremes of the sector are both Hurwitz and Metzler.

The contribution of the current work to other related literature

was also discussed.
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