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Abstract—Communication efficiency is a major bottleneck in the
applications of distributed networks. To address the problem, the problem
of quantized distributed optimization has attracted a lot of attention.
However, most of the existing quantized distributed optimization algo-
rithms can only converge sublinearly. To achieve linear convergence,
this paper proposes a novel quantized distributed gradient tracking
algorithm (Q-DGT) to minimize a finite sum of local objective functions
over directed networks. Moreover, we explicitly derive lower bounds for
the number of quantization levels, and prove that Q-DGT can converge
linearly even when the exchanged variables are respectively quantized
with 3 quantization levels. Numerical results also confirm the efficiency
of the proposed algorithm.

Index Terms—Quantized communication, distributed optimization,
gradient tracking algorithm, directed networks.

I. INTRODUCTION

RECENT years have witnessed tremendous progress in dis-
tributed optimization due to its wide applications in formation

control [1], distributed resource allocation [2], online optimization
[3], localization systems [4], game theory [5], to name a few.
They require a group of networked nodes to cooperatively optimize
the sum of their local cost functions via local communications. A
comprehensive review of this topic can be found in [6], [7].

Although distributed algorithms are capable of solving complex
tasks in a collaborative manner, limited communication capacity
is a major bottleneck in distributed networks, especially for large-
scale distributed machine learning. How to design communication-
efficient distributed algorithms has attracted an increasing attention
[8]–[10]. For instance, the encoding-decoding scheme in [11] has
been designed to distributedly solve linear equations [12], distributed
optimization problems [13], [14]. To further reduce the size of data
transmission, the recent work [15] showed that the sign of relative
state between neighbors is sufficient for achieving convergence. As
errors are inevitable for a finite-precision quantizer, the QDGD
algorithm proposed in [16] achieves vanishing consensus error even in
the presence of non-vanishing noise by modifying the contribution of
the received quantized information for each node. By incorporating
quantization scheme into the push-sum algorithm [17], the authors
of [18] proposed distributed algorithms over directed networks for
both convex and non-convex functions. Since the aforementioned
works are derived by the distributed gradient descent (DGD) [17],
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TABLE I: DISTRIBUTED OPTIMIZATION ALGORITHMS

References digraphs linear convergence 1-bit communication

[9], [13], [16] 7 7 7
[8], [14], [15] 7 7 3
[19]–[22], [31], [34] 7 3 7
[18], [23], [24] 3 7 7
[2], [25]–[27] 3 3 7
Our work 3 3 3

they can only achieve sublinear convergence even for the strongly
convex functions.

How to accelerate the convergence speed is fundamentally impor-
tant to reduce communication cost. Recently, a few significant efforts
have been devoted to designing quantized distributed algorithms with
linear convergence. For instance, ref. [19], [20] proposed DQOA
and LEAD, respectively, under the assumption that the random-
ized quantizer Q(·) is an unbiased and δ-contracted operator, i.e.
E[Q(x)] = x and E‖Q(x)− x‖2 ≤ δ‖x‖2 for all x ∈ Rm. Clearly,
this assumption excludes some important quantizers, e.g., the binary
quantizer. Ref. [21] proposed Q-NEXT by dynamically adjusting the
center of the quantization interval. Ref. [22] established a trade-
off between the convergence speed and the communication cost per
iteration so that linear convergence can be guaranteed. Although
the aforementioned quantized algorithms [19]–[22] converge linearly,
they are designated only for undirected networks. Note that extending
distributed algorithms from undirected networks to directed networks
is non-trivial [23]–[27]. In fact, if the directed network is unbalanced,
i.e., there exists at least a node that the sum of the weights of its
outgoing nodes is not equal to that of its incoming nodes (see e.g.,
[28], [29]), the DGD finally minimizes a weighted average of local
functions. Hence, an additional variable is usually exchanged between
nodes to eliminate the effects of the unbalancedness [24], [27].
To resolve the unbalancedness issue, the push-pull/AB algorithm
[25], [26] and its variant [2] leverage row-stochastic matrix and
column-stochastic matrix simultaneously and achieve exact linear
convergence for strongly convex and smooth functions. In sharp
contrast to the subgradient-based quantized algorithms in [13], [14],
[18] that only the decision variable needs to be quantized, the
quantizer cannot be directly incorporated into push-pull/AB as it
will result in an accumulation of quantization errors [30], thereby
the convergence cannot be guaranteed.

A question naturally arises: Whether it is possible to develop a
quantized distributed algorithm over directed networks that converges
linearly even for one-bit communication? In this paper, we give a
positive answer. A comparison of our work with the state-of-the-art
works is provided in Table I. The main contributions of this work
are summarized as follows:

1) We propose a novel quantized distributed algorithm Q-DGT
over directed networks. The Q-DGT is remarkably robust to
quantization errors, and achieves linear convergence.

2) We explicitly provide the lower bounds of the quantization lev-
els to resolve the saturation issue for the finite-level quantizers,
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which even supports the extreme 3-level quantization.

The remainder of this paper is organized as follows. We formulate
the problem in Section II. The Q-DGT is provided in Section III.
Section IV includes the convergence analysis. Simulation results are
presented in Section V. In Section VI, we conclude this paper.

Notation. We use xi to denote the i-th element of vector x; 1n(0n)
denotes a column vector with its all elements equaling to one(zero).
The notation f = O(h) means there exists a positive constant υ <∞
such that f ≤ υh. ∇F (x(k)) , (∇fT

1 (x1(k)), ...,∇fT
n(xn(k)))T.

For an arbitrary vector norm ‖ · ‖, the induced norm of a matrix
W = (w1, ..., wm) ∈ Rn×m is defined as ‖W‖ =

√∑m
i=1 ‖wi‖2.

Throughout, we slightly abuse the notation of vector norms and their
induced matrix norms for simplicity.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first introduce some basics of graph theory. In
what follows we formulate the problem of interest.

A. Basics of Graph Theory

Consider a digraph G(V, E), where V = {1, ..., n} denotes the set
of nodes, E ⊆ V×V represents the set of directed links, and (i, j) ∈ E
implies that node j can receive information from node i. We denote
N in
i = {j : (j, i) ∈ E} ∪ {i} and N out

i = {j : (i, j) ∈ E} ∪ {i} as
the in-neighbor set and out-neighbor set of node i, respectively. A
digraph is strongly connected if there exists a directed path between
any pair of distinct nodes, which is commonly used in the literature
[6].

Assumption 1: The digraph G(V, E) is strongly connected.

B. Problem Formulation

Consider the digraph G(V, E) where each node i ∈ V privately
processes a convex function fi : Rm → R. All nodes collaboratively
solve the following optimization problem1:

minimize
x∈Rm

f(x) =

n∑
i=1

fi(x). (1)

In such a problem, each node i maintains a local estimate xi(k) ∈
Rm of the decision vector x at each step k and can only share its own
information with a subset of nodes via the communication network.
We make the following assumptions on the local functions:

Assumption 2: Each fi is µ-strongly convex, i.e., there exists a
µ > 0, such that fi(y) ≥ fi(x) + ∇fi(x)T(y − x) + µ

2
‖x − y‖22,

∀x, y ∈ Rm.
Assumption 3: Each fi is L-smooth, i.e., ‖∇fi(x)−∇fi(y)‖2 ≤

L‖x− y‖2 for some L > 0, ∀x, y ∈ Rm.
Assumptions 2-3 are standard for the linear convergence in litera-

ture, see e.g. [31], [34]. Under Assumption 2, the problem (1) has a
unique optimal solution x? ∈ Rm.

The main objective of this paper is to design a distributed algorithm
where nodes are only allowed to communicate quantized variables
over G(V, E), with linear convergence to the exact optimal solution
x? of problem (1).

III. ALGORITHM DEVELOPMENT

In this section, we first explain why a quantizer cannot be directly
incorporated into the push-pull/AB Algorithm [25], [26]. Then, we
propose the Q-DGT and show that it is robust to quantization errors.
Finally, we introduce the quantization rule.

1For clarity of presentation, we only consider the scalar variable case, i.e.,
m = 1, as our algorithm and its analysis can be easily extended to the vector
case by using the Kronecker operator.

A. Push-pull/AB Algorithm with Naive Quantization Does Not Work

In the push-pull/AB algorithm [25], [26], each node i ∈ V
maintains two vectors xi(k) and yi(k) per step k ∈ N, and performs
the following updates:

xi(k + 1) =

n∑
j=1

aijxj(k)− ηyi(k), (2a)

yi(k + 1) =

n∑
j=1

bijyj(k) +∇fi(xi(k + 1)−∇fi(xi(k)), (2b)

where yi(0) = ∇fi(xi(0)), A = [aij ]n×n and B = [bij ]n×n are
weight matrices induced by G(V, E) satisfying: (1) aij > 0 for j ∈
N in
i , otherwise aij = 0, and

∑
j∈N in

i
aij = 1; (2) bij > 0 for i ∈

N out
j , otherwise bij = 0, and

∑
i∈N out

j
bij = 1. Naive quantization

means that xj(k) and yj(k) in (2) are replaced by their quantized
versions x̂j(k) and ŷj(k), respectively. That is, if xj(k) and yj(k)
in (2) are directly quantized as x̂j(k) and ŷj(k), respectively. Then,

xi(k + 1) =

n∑
j=1

aij x̂j(k)− ηyi(k), (3a)

yi(k + 1) =

n∑
j=1

bij ŷj(k) +∇fi(xi(k + 1)−∇fi(xi(k)), (3b)

where σxj (k) , x̂j(k) − xj(k) and σyj (k) , ŷj(k) − yj(k) are
the quantization errors. Note that if A = B, then (3) is exactly the
quantized algorithm in [32]. However, taking summation over i ∈ V ,
(3b) implies that

1T
ny(k + 1) = 1T

n∇F (x(k + 1)) +

k∑
l=0

1T
nσy(l). (4)

Thus the quantization errors are accumulated, i.e.,
∑k
l=0 1

T
nσy(l). No

matter whether σy(k) in (4) converges or not, 1T
ny(k) cannot exactly

track the global gradient 1T
n∇F (x(k)).

This observation was first pointed out in [30] and then the author
proposed a robust push-pull algorithm. However, the work [30]
does not involve the design of quantizer and simply assumes that
E[σx(k)] = E[σy(k)] = 0n, and E[‖σx(k)‖2] ≤ σx, E[‖σy(k)‖2] ≤
σy for some σx, σy > 0. This condition is clearly not satisfied for the
deterministic quantizers. In addition, the algorithm in [30] can only
converge to a neighborhood of the optimal solution in expectation.
All above motivates us to propose the Q-DGT.

B. The Q-DGT Algorithm

In this work, we design a dynamic encoding-decoding scheme for
quantized communication (see Fig. 1). At step k, each node j ∈ V
encodes xj(k) into rj(k) by using:

rj(k) = QKx

(
1

h(k)
(xj(k)− x̂j(k − 1))

)
, (5)

where x̂j(−1) = 0m and x̂j(k − 1) is an estimation of xj(k − 1),
h(k) is a decaying scaling function. Note that we quantize the scaled
“innovation”, i.e., 1

h(k)
(xj(k) − x̂j(k − 1)). The reason is that the

amplitude of the prediction error is usually smaller than that of the
state itself such that the scaled “innovation” can be quantized by
fewer bits. However, it brings challenge for the finite-level quantizer
to avoid saturation. We will show later that the value of xj(k) −
x̂j(k − 1) decays to zero at the speed of the same order of h(k),
and rigorously prove that the scaled “innovation” can always be upper
bounded by a finite constant. Then, node j broadcasts rj(k) to its out-
neighbors. Upon rj(k) is received by the out-neighbor node i ∈ N out

j ,
it decodes rj(k) as follows:

x̂j(k) = h(k)rj(k) + x̂j(k − 1). (6)



3

!"($)

!'"($ − 1)

+ −
- !."($)�

ℎ($)
!."($)

ℎ($)

*"($) Communication 
Channel

Encoder

ℎ($)

ℎ($)*"($)

!'"($ − 1)

+

Decoder

*"($) + !'"($)

Fig. 1: The encoding-decoding scheme.

Here h(k) plays a critical role in estimating the states of node
j. We highlight that all the out-neighbors of node j receive the
same information, so we do not distinguish the specific subscript.
The above encoding-decoding scheme is performed for yj(k) in the
same way, i.e., encode yj(k) into sj(k) and decode sj(k) to ŷj(k).
However, the deterministic quantization errors makes it infeasible to
apply the robust push-pull algorithm [30] directly in our setting (see
Section III-A). To resolve it, we design the updates of node i ∈ V
as follows:

xi(k + 1) = xi(k) + α
n∑
j=1

aij (x̂j(k)− x̂i(k))

− η (yi(k)− yi(k − 1)) , (7a)

yi(k + 1) = (1− β)yi(k) + β

n∑
j=1

bij ŷj(k)

+∇fi(xi(k + 1)), (7b)

where α, β ∈ (0, 1) are two positive constants, η ≥ 0 is a constant
step size that will be specified later. Although node i ∈ V can access
to its true values xi(k) and yi(k) at step k, the estimate x̂i(k) and
ŷi(k) are also used in our algorithm for error compensations, which
is of the similar spirit as in the quantized average consensus in [11].
We summarize the Q-DGT in Algorithm 1.

Now, we demonstrate why the Q-DGT is robust to quantization
errors. Let Aα , (1−α)In +αA and Bβ , (1−β)In +βB. Then,
(7) can be rewritten as the following compact form:

x(k + 1) = Aαx(k) + α(A− In)σx(k)

− η(y(k)− y(k − 1)), (8a)

y(k + 1) = Bβy(k) +∇F (x(k + 1)) + εy(k), (8b)

where εyi(k) , β
∑n
j=1 bijσyj (k).

Let z(k) , y(k)− y(k − 1). Then,

x(k + 1) = Aαx(k) + α(A− In)σx(k)− ηz(k), (9a)

z(k + 1) = Bβz(k) + (∇F (x(k + 1)) + εy(k))

− (∇F (x(k)) + εy(k − 1)) . (9b)

Assumption 1 implies that A has a unique nonnegative left eigenvec-
tor πA such that πT

A1n = 1 and πT
AA = πT

A, and B has a unique
nonnegative right eigenvector πB such that πT

B1n = 1 and BπB = πB
[2]. Define x̄(k) , πT

Ax(k) and z̄(k) , 1T
nz(k), we obtain

x̄(k + 1) = x̄(k)− ηπT
Az(k), (10a)

z̄(k + 1) = z̄(k) + 1T
n (∇F (x(k + 1)) + εy(k))

− 1T
n (∇F (x(k)) + εy(k − 1)) . (10b)

Conducting mathematical induction for (10b) yields that

z̄(k + 1) = 1T
n (∇F (x(k + 1)) + εy(k)) . (11)

Notably, the accumulated error
∑k
l=0 1

T
nσy(l) in (4) disappears in

(11). If 1T
nεy(k) tends to zero, then z̄(k+1) tends to the exact global

gradient 1T
n∇F (x(k + 1)). In contrast to [30], we do not make any

Algorithm 1 The Q-DGT —from the view of node i

1: Initialization: randomly initialize xi,0, and yi,0 for each i ∈ V .
2: for k = 0, 1, 2, ... do
3: Encoder: calculate ri(k) and si(k).
4: Communication: broadcast ri(k) and si(k) to its out-

neighbors, and receive rj(k) and sj(k) from its in-neighbors
j ∈ N in

i .
5: Decoder: calculate x̂j(k) and ŷj(k).
6: Updation: update xi(k + 1) and yi(k + 1) via (7).
7: end for
8: Return: {xi(k)}.

assumption on the error εy(k). This requires to design the Q-DGT
(7) carefully and handle the joint effects of quantization errors on
x(k) and z(k). Specifically, our algorithm can converge linearly and
even support 3-level quantization.

C. The Quantization Rule

The uniform quantizer QK(·) for a vector u = (u1, ..., um)T is
defined as QK(u) = (q(u1), ..., q(um))T with

q(ui) =


0, −1/2 < ui ≤ 1/2

k, 2k−1
2

< ui ≤ 2k+1
2

, k = 1, ...,K

K, ui >
2K+1

2

−q(−ui), ui 6 −1/2

for i = 1, ...,m. The quantizer q(·) maps a real number to a finite set
S = {0,±k; k = 1, 2, ...,K} with K ∈ N+. The quantization level
of q(·) is 2K+1. If ‖u‖∞ ≤ K+1/2, the quantizer is not saturated,
and the quantization error is bounded, i.e., ‖u−QK(u)‖∞ 6 1/2.

IV. CONVERGENCE ANALYSIS

In this section, we first establish lower bounds for the quantization
levels to solve the saturation issue. Then, the linear convergence of Q-
DGT under finite-level quantization is rigorously proved. Finally, we
show that Q-DGT converges linearly even with 3-level quantization.

A. Design of Finite Quantization Levels to Avoid Saturation

Note that the joint effect of quantization on the evolutions of x(k)
and z(k) brings challenges to design the finite quantization levels. To
solve this issue, we first derive the upper bound of the feasible step
size, and then obtain the lower bounds for the quantization levels.

Lemma 1 ( [2], [25]): Suppose Assumption 1 holds. There exists
matrix norms ‖ · ‖A and ‖ · ‖B such that σA , ‖Aα−1nπ

T
A‖A < 1

and σB , ‖Bβ−πB1T
n‖B < 1. Moreover, there exists positive scalars

δA2, δB2, δAB and δBA such that for any X ∈ Rn×p, we have
δ−1
BA‖X‖B ≤ ‖X‖A ≤ δAB‖X‖B, ‖X‖2 ≤ ‖X‖B ≤ δB2‖X‖2,

and δ−1
A2‖X‖A ≤ ‖X‖2 ≤ ‖X‖A.

Define

Θ(k) , (‖x̄(k)− x?‖2, ‖x(k)− 1nx̄(k)‖A, ‖z(k)− πBz̄(k)‖B)
T
.

(12)
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To facilitate the subsequent analysis, we further define: κ1 , ‖In −
1nπ

T
A‖A, κ2 , ‖πB‖A, κ3 , ‖In − πB1T

n‖B, κ4 , ‖Aα − In‖2.
The following lemma provides a linear matrix inequality, which will
be instrumental in establishing the lower bound for quantization level.

Lemma 2: Suppose Assumptions 1-3 hold. If the step size η ≤
1

(µ+L)πT
AπB

, then

Θ(k + 1) � GΘ(k) + ς(k), (13)

where Θ(k) is defined in (12), the notation � means element-wise
less than or equal to, G ∈ R3×3 and ς(k) ∈ R3×1 are given by (25)
and (26), respectively.

Proof: See Appendix A. �
In Lemma 2, the presence of ς(k) is due to quantization errors. If

ς(k) linearly converges to 03, then we can prove that Θ(k) linearly
converges to 03 provided that the spectral radius ρ(G) < 1. After
that, the linear convergence of Q-DGT can be proved. We first provide
a sufficient condition in terms of the step size η to guarantee ρ(G) <
1.

Lemma 3: Suppose Assumptions 1-3 hold. If the step size η
satisfies

η ≤ min

{
1

(µ+ L)πT
AπB

,
1− σA

2
√
nκ1κ2LδA2

,
1− σB

2δB2κ3L
,

2Γ3

Γ2 +
√

Γ2
2 + 4Γ1Γ3

}
, (14)

where Γi, i = 1, 2, 3, are constants given by (28). Then, ρ(G) < 1.
Proof: See Appendix B. �
Remark 1: Note that the network information is required to

calculate the upper bound of step size. If A and B are known, then
the parameters κ1-κ4, the step size η, and the spectral radius ρ(G)
can be obtained. Typically, this requirement is necessary even for
unquantized push-pull/AB algorithms [25], [26], [30].

It is known that if ρ(G) < 1, then there exist a matrix norm ‖ · ‖C
and a constant τ such that ‖Gk‖2 ≤ τ ρ̂k for an arbitrarily small
constant $ > 0 [33], where

ρ̂ , ρ(G) +$ < 1. (15)

Now, we are in a position to provide conditions on the quantization
levels, under which the saturation issue can be solved.

Theorem 1: Suppose Assumptions 1-3 hold. Let h(k) = Cξk,
where C is a known positive constant, and ξ ∈ (ρ̂, 1). The step size
η is chosen according to (14). Then the quantizers will never saturate
provided that Kx and Ky satisfy the following conditions:

Kx ≥ max

{
v1

C
− 1

2
,

√
3ϕ1‖Θ(0)‖2

Cξ
+

2αn+ 1

2ξ
− 1

2
,

√
3ϕ1τ‖Θ(0)‖2

Cξ
Ῡ +

2αn+ 1

2ξ
+
nηβ

2ξ2
− 1

2

}
,

Ky ≥ max

{
v2

C
− 1

2
,

√
3ϕ2τ‖Θ(0)‖2

C
Ῡ +

nβ + 1

2ξ
− 1

2

}
,(16)

where v1 , maxi∈V ‖xi(0)‖∞, v2 , maxi∈V ‖yi(0)‖∞, ϕ1 and
ϕ2 are given in (33), Ῡ , 1 + ς̃ρ̂

ξ(ξ−ρ̂)‖Θ(0)‖2
+ ς̃

ξτ‖Θ(0)‖2
with the

constant ς̃ given by (36).
Proof: See Appendix D. �
Remark 2: Theorem 1 provides a sufficient condition to guarantee

that the quantizers will never saturate. Note that all the terms on
the right sides of (16) are finite constants, which implies that the
quantizers will never saturate as long as Kx and Ky are positive
integers larger than the lower bounds in (16). In addition, (16)
depends on the initial states of nodes, which is common in literature

[13], [14]. When executing the proposed algorithm in practice, we
can choose α and β from (0, 1) arbitrarily, let ξ be in close proximity
to 1, and select a large enough constant and a small enough constant
as the quantization level and the step size, respectively.

B. Linear Convergence under Finite Quantization Levels

Building upon the conditions on the quantization levels in Theorem
1, the following theorem shows that the Q-DGT can linearly converge
to the optimal solution at the rate of O(ξk) with ξ ∈ (ρ̂, 1).

Theorem 2: Suppose the conditions in Theorem 1 are satisfied. Let
{xi(k)}, i ∈ V , be the sequence generated by Algorithm 1. If the
quantization levels satisfy (16), then Q-DGT can linearly converge to
x? at the rate of O(ξk), i.e., ‖xi(k)− x?‖2 = O(ξk) for all i ∈ V .

Proof: Recalling (13) and (36), we can straightly obtain

‖Θ(k)‖2 ≤ ‖Gk‖2‖Θ(0)‖2 + ς̃

k−1∑
l=0

‖Gk−1−l‖2ξl

≤ τ ρ̂k‖Θ(0)‖2 + ς̃τ

k−1∑
l=0

ρ̂k−1−lξl

Note that
∑k−1
l=0 ρ̂

k−1−lξl = ξk−1∑k−1
l=0

(
ρ̂
ξ

)k−1−l
≤ ξk

ξ−ρ̂ . Hence,

‖Θ(k)‖2 ≤ τd0ρ̂
k +

ς̃τ

ξ − ρ̂ ξ
k,

which implies that ‖Θ(k)‖2 converges to 0 at the rate of O(ξk).
Therefore, ‖x̄(k)−x?‖2, ‖x(k)−1nx̄(k)‖A and ‖z(k)−πBz̄(k)‖B
all linearly converge to 0 at the same rate. Note that

‖xi(k)− x?‖2 ≤ ‖xi(k)− x̄(k)‖2 + ‖x̄(k)− x?‖2
≤ ‖x(k)− 1nx̄(k)‖2 + ‖x̄(k)− x?‖2,

which implies that ‖xi(k)−x?‖2 = O(ξk) for all i ∈ V by recalling
the fact that ‖x(k)− 1nx̄(k)‖2 ≤ ‖x(k)− 1nx̄(k)‖A. �

C. 3-Level Quantization is Enough for Linear Convergence

As shown in Theorem 1, the lower bounds in (16) are finite.
This inspires us to consider whether there exists a minimum number
of quantization level that can preserve the linear convergence? The
following theorem gives a positive answer and reveals that we can
set Kx = Ky = 1 by appropriately tuning the associated parameters.
In such an extreme scenario, each node i ∈ V can solve problem (1)
with 3-level quantization.

Theorem 3: Suppose the conditions in Theorem 1 are satisfied. If
α and β are sufficiently small, then there exists C > 0 and ξ ∈
(ρ̂, 1) such that Kx = Ky = 1 is sufficient to guarantee the linear
convergence of Q-DGT.

Proof: To prove the result, our strategy is minimizing the lower
bounds obtained in (16). Particularly, if we can choose the associated
parameters appropriately such that all the lower bounds in (16) can
be upper bounded by 1, then it can be concluded that the quantizers
will never saturate even when Kx = Ky = 1. In this case, Theorem
3 can be proved by recalling Theorem 2.

Now, we consider the last term of each inequality in (16). Recalling
Ῡ , 1+ ς̃ρ̂

ξ(ξ−ρ̂)‖Θ(0)‖2
+ ς̃
ξτ‖Θ(0)‖2

in Theorem 1 and the expression
of ς̃ in (36). If α and β both tend to 0, then ς̃ tends to 0. Since
‖Θ(0)‖2, ρ̂ and τ are all some positive constants, and ξ is a
constant chosen in the interval (ρ̂, 1), we can obtain that Ῡ tends
to 1. Therefore, the last term of each inequality in (16) can be
upper bounded by

√
3ϕ1τ‖Θ(0)‖2

Cξ
+ 1

2ξ
and

√
3ϕ2τ‖Θ(0)‖2

C
+ 1

2ξ
,

respectively. Note that ϕ1 and ϕ2 are constants given in (33).
If we choose the constant ξ ∈ (max{0.5, ρ̂}, 1), and set C >

max
{

2
√

3ϕ1τ‖Θ(0)‖2
2ξ−1

, 2
√

3ϕ2ξτ‖Θ(0)‖2
2ξ−1

}
, then the last term of each
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𝒢 Fig. 2: The directed graph.

inequality in (16) both can be upper bounded by 1. In addition, the
other terms on the right side of (16) can be upper bounded by 1

directly if we set C > max{ 2
3
v1,

2
3
v2,

2
√

3ϕ1‖Θ(0)‖2
2ξ−1

}. In summary,
there exists constants ξ ∈ (max{0.5, ρ̂}, 1), and

C > max

{
2

3
v1,

2

3
v2,

2
√

3ϕ1‖Θ(0)‖2
2ξ − 1

,
2
√

3ϕ1τ‖Θ(0)‖2
2ξ − 1

,

2
√

3ϕ2ξτ‖Θ(0)‖2
2ξ − 1

}
(17)

such that Kx = Ky = 1 is sufficient to guarantee the linear
convergence of Q-DGT. �

Remark 3: Quantized distributed algorithms with 3-level quantiza-
tion have also been studied in [11], [12], [14], [15] to improve the
communication efficiency. In contrast to the distributed optimization
algorithms in [12], [14], [15], the proposed Q-DGT can achieve
linear convergence. Though the quantizer has only 3 quantization
levels, each node i can still estimate the values of its in-neighbors
j ∈ N in

i iteratively via the decoding scheme (6). This can be
observed from the facts that x̂j(k) − xj(k) = h(k)exj (k) and
ŷj(k)−yj(k) = h(k)eyj (k). If the quantizers never saturate, then the
diminishing h(k) guarantees that x̂j(k) and ŷj(k) tend to xj(k) and
yj(k), respectively, as k tends to infinity. That is why our algorithm
can converge to the true solution even with 3-level quantization.

V. NUMERICAL EXAMPLES

In this section, we apply our algorithm to the sensor fusion problem
in directed networks, which has been widely adopted in the literature
[25], [31]. In this problem, all sensors collectively solve the following
optimization problem over the digraph decipted in Fig. 2:

minimize
x∈Rm

f(x) =

n∑
i=1

(
‖Mix− ζi‖2 +

λ

2n
‖x‖2

)
,

where Mi ∈ Rs×m and ζi ∈ Rs denote the measurement matrix
and the noise observation of sensor i, respectively, λ > 0 is the
regularization parameter.

In our simulations, Mi ∈ R2×2 and ζi ∈ R2 are generated
randomly for each i ∈ V . We set λ = 0.05. A and B are designed
according to the rules in Remark 2 of [25]. We first compare the
convergence performance of Q-DGT with push-pull algorithm [25]
under different stepsizes. The simulation results are depicted in Fig.
3(a). We can find that Q-DGT converges slower than the push-pull
algorithm, which is reasonable as the performance inevitably affected
by the loss of information. Despite this, the Q-DGT still maintains
linear convergence, which is consistent with our theoretical results.
We further compare the total cost of communicated bits between
the two algorithms with η = 0.008. As shown in Fig. 3(b), the
proposed Q-DGT requires less communicated bits for achieving the
equal accuracy. Then, we make comparisons with the subgradient-
based quantized distributed algorithms in [14] and [18]. For fair
comparison, we neglect the directionality in Fig. 2 and adopt (16)
for Q-DGT. The results are depicted in Fig. 4(a). It can be seen that

the convergence rate of Q-DGT outperforms that of the quantized
algorithms in [14] and [18]. Finally, we verify the effectiveness of
Q-DGT under different fixed numbers of quantization levels. The
related parameters are chosen heuristically to meet the requirements
in Theorem 3. As we can see in Fig. 4(b), the Q-DGT can still
achieve linear convergence, even when the exchanged variables are
respectively quantized with 3 quantization levels. In addition, a
larger quantization level leads to faster convergence. This result is
also reasonable since a larger quantization level implies a smaller
quantization error.
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Fig. 3: (a) Comparison with push-pull in [25] under different step
sizes; (b) The total communication cost of Q-DGT and push-pull.
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Fig. 4: (a) Comparisons with the quantized algorithms in [14] and
[18]; (b) Performances of Q-DGT under different quantization levels.

VI. CONCLUSION

In this paper, we have studied the distributed optimization problem
over directed networks with quantized communications. To cope with
this problem, a novel quantized distributed algorithm Q-DGT has
been proposed. The lower bounds for the number of quantization
levels have been explicitly derived. We have rigorously shown that Q-
DGT is robust to quantization errors, and achieves linear convergence
even when the exchanged variables are respectively quantized with 3
quantization levels. Future works can focus on extending the proposed
algorithm to time-varying directed networks. It is also of interest to
relax the conditions that preserves the convergence performance.

APPENDIX

A. Proof of Lemma 2.

For the clarity of presentation, we define g(k) , 1T
n∇F (x(k))

and ḡ(k) , 1T
n∇F (1nx̄(k)). To prove this lemma, we first provide

the following intermediate result.
Lemma 4: Suppose Assumptions 2-3 hold. We have ‖g(k) −

ḡ(k)‖2 ≤
√
nL‖x(k) − 1nx̄(k)‖2, ‖z̄(k) − g(k)‖2 ≤ ‖1T

nεy(k −
1)‖2, and ‖ḡ(k)‖2 ≤ nL‖x̄(k)− x?‖2. If η ≤ 1

(µ+L)πT
AπB

, then

‖x̄(k)− ηπT
AπBḡ(k)− x?‖2 ≤ (1− ηπT

AπBµ)‖x̄(k)− x?‖2.



6

The first and third inequalities in Lemma 4 follow from As-
sumption 3 and the fact that ‖ḡ(k)‖2 = ‖1T

n∇F (1nx̄(k)) −
1T
n∇F (1nx

?)‖2, while the second inequality can be obtained directly
by applying (11). The last statement can be verified by following
the similar line of Lemma 10 in [34]. Now, we begin to prove
Lemma 2 by establishing the upper bounds of ‖x̄(k + 1) − x?‖2,
‖x(k+1)−1nx̄(k+1)‖A and ‖z(k+1)−vz̄(k+1)‖B, respectively.

(i) In view of (10a), we have

x̄(k + 1) = x̄(k)− ηπT
AπBz̄(k)− ηπT

A(z(k)− πBz̄(k))

= x̄(k)− ηπT
AπBḡ(k)− ηπT

AπB(z̄(k)− g(k))

−ηπT
AπB(g(k)− ḡ(k))− ηπT

A(z(k)− πBz̄(k))

= x̄(k)− ηπT
AπBḡ(k)− ηπT

AπB(g(k)− ḡ(k))

−ηπT
A(z(k)− πBz̄(k))− ηπT

AπB1
T
nεy(k − 1).

Therefore, by invoking Lemma 1 and Lemma 4, we further obtain

‖x̄(k + 1)− x?‖2
≤ (1− ηπT

AπBµ)‖x̄(k)− x?‖2 + ηπT
AπB‖g(k)− ḡ(k))‖2

+ η‖πT
A(z(k)− πBz̄(k))‖2 + ηπT

AπB

∥∥∥1T
nεy(k − 1)

∥∥∥
2

≤ (1− ηπT
AπBµ)‖x̄(k)− x?‖2 +

√
nηπT

AπB‖x(k)− 1nx̄(k)‖A
+ η‖z(k)− πBz̄(k)‖B + ηπT

AπB‖1T
nεy(k − 1)‖2. (18)

where the fact that ‖πA‖2 ≤ 1 has been used to obtain the last
inequality.

(ii) From (9a) and (10a), along with Aα1n = 1n, we obtain

x(k + 1)− 1nx̄(k + 1)

= Aα(x(k)− 1nx̄(k))− η(In − 1nπ
T
A)z(k)

+ α(A− In)σx(k)

= (Aα − 1nπ
T
A)(x(k)− 1nx̄(k))− η(In − 1nπ

T
A)z(k)

+ α(A− In)σx(k)

= (Aα − 1nπ
T
A)(x(k)− 1nx̄(k))− η(In − 1nπ

T
A)πBz̄(k)

− η(In − 1nπ
T
A)(z(k)− πBz̄(k)) + α(A− In)σx(k),

where the fact that 1nπT
A(x(k)− 1nx̄(k)) = 0n has been exploited

to obtain the second equality. By employing Lemma 1, we obtain

‖x(k + 1)− 1nx̄(k + 1)‖A
≤ σA‖x(k)− 1nx̄(k)‖A + α‖(A− In)σx(k)‖A

+ ηκ1‖z(k)− πBz̄(k)‖A + ηκ1κ2δA2‖z̄(k)‖2. (19)

Now, it remains to establish an upper bound for ‖z̄(k)‖2. Note that

‖z̄(k)‖2 ≤ ‖z̄(k)− g(k)‖2 + ‖g(k)− ḡ(k)‖2 + ‖ḡ(k)‖2
≤ ‖1T

nεy(k − 1)‖2 +
√
nL‖x(k)− 1nx̄(k)‖A

+nL‖x̄(k)− x?‖2. (20)

By substituting (20) into (19), we obtain

‖x(k + 1)− 1nx̄(k + 1)‖A
≤
(
σA +

√
nηLκ1κ2δA2

)
‖x(k)− 1nx̄(k)‖A

+ ηδABκ1‖z(k)− πBz̄(k)‖B + nηLκ1κ2δA2‖x̄(k)− x?‖2
+ ηκ1κ2δA2‖1T

nεy(k − 1)‖2 + α‖(A− In)σx(k)‖A. (21)

(iii) In light of relations (9b) and (10b), we have

z(k + 1)− πBz̄(k + 1)

= (Bβ − πB1T
n) (z(k)− πBz̄(k))

+ (In − πB1T
n)(∇F (x(k + 1))−∇F (x(k)))

+ (In − πB1T
n)(εy(k)− εy(k − 1)),

where the equality follows from the definition of Bβ and the fact that
πB1

T
nπB = πB. Hence, we obtain

‖z(k + 1)− πBz̄(k + 1)‖B
≤ δB2‖In − πB1T

n‖B‖∇F (x(k + 1))−∇F (x(k))‖2
+ ‖In − πB1T

n‖B‖εy(k)− εy(k − 1)‖B
+ σB‖z(k)− πBz̄(k)‖B, (22)

where Lemma 1 has been utilized to obtain the above inequality.
Now, it remains to bound ‖∇F (x(k+ 1))−∇F (x(k))‖2. Note that

‖∇F (x(k + 1))−∇F (x(k))‖2
≤ L‖x(k + 1)− x(k)‖2
= L‖Aαx(k)− x(k) + α(A− In)σx(k)− ηz(k)‖2
≤ L‖Aα − In‖2‖x(k)− 1nx̄(k)‖2 + ηL‖z(k)− πBz̄(k)‖2

+ ηL‖z̄(k)‖2 + αL‖(A− In)σx(k)‖2. (23)

where the fact that ‖πB‖2 ≤ 1 has been used to obtain the last
inequality. Then, by substituting (20) and (23) into (22), we can obtain

‖z(k + 1)− πBz̄(k + 1)‖B
≤ δB2κ3

(
Lκ4 +

√
nηL2) ‖x(k)− 1nx̄(k)‖A

+ δB2αLκ3‖(A− In)σx(k)‖2 + δB2ηLκ3‖1T
nεy(k − 1)‖2

+ κ3‖εy(k)− εy(k − 1)‖B + δB2nηL
2κ3‖x̄(k)− x?‖2

+ (σB + δB2ηLκ3)‖z(k)− πBz̄(k)‖B. (24)

Combining (18), (21) and (24), we can obtain (13) with

G =

 1− ηπT
AπBµ

√
nηπT

AπB η
nηLκ1κ2δA2 σA +

√
nηLκ1κ2δA2 ηκ1δAB

nηL2κ3δB2 κ3(Lκ4 +
√
nηL2)δB2 σB + ηLκ3δB2


(25)

and ς(k) = (ς1(k), ς2(k), ς3(k))T given by

ς1(k) = ηπT
AπB‖1T

nεy(k − 1)‖2,
ς2(k) = ηκ1κ2δA2‖1T

nεy(k − 1)‖2 + α‖(A− In)σx(k)‖A,
ς3(k) = κ3‖εy(k)− εy(k − 1)‖B + ηLκ3δB2‖1T

nεy(k − 1)‖2
+αLκ3δB2‖(A− In)σx(k)‖2, (26)

which completes the proof. �

B. Proof of Lemma 3.

To achieve this goal, we need to provide a sufficient condition
under which Gii < 1 and det(I − G) > 0 can be guaranteed [25].
We first ensure that Gii < 1 hold for i = 1, 2, 3. Clearly, if we
set η ≤ 1

(µ+L)πT
AπB

, then 0 < G11 < 1. We can also verify that

if η ≤ min{ 1−σA
2
√
nLκ1κ2δA2

, 1−σB
2Lκ3δB2

}, then G22 < 1 and G33 < 1

both hold. Now we turn our attention to det(I3 −G). Note that

det(I3 −G)

= ηπT
AπBµ[1− (σA +

√
nηLκ1κ2δA2)][1− (σB + ηLκ3δB2)]

− ηπT
AπBµ(ηκ1δAB)[κ3(Lκ4 +

√
nηL2)δB2]

−
√
nηπT

AπB(nηLκ1κ2δA2)[1− (σB + ηLκ3δB2)]

−
√
nηπT

AπB(ηκ1δAB)(nηL2κ3δB2)

− η(nηLκ1κ2δA2)[κ3(Lκ4 +
√
nηL2)δB2]

− η[1− (σA +
√
nηLκ1κ2δA2)](nηL2κ3δB2).

In light of η ≤ min{ 1−σA
2
√
nLκ1κ2δA2

, 1−σB
2Lκ3δB2

}, we have 1−σA
2
≤ 1−

(σA+
√
nηLκ1κ2δA2) ≤ 1−σA and 1−σB

2
≤ 1−(σB+δB2ηLκ3) ≤

1− σB. Therefore, a sufficient condition for det(I −G) > 0 is

1

4
ηπT
AπBµ(1− σA)(1− σB)− η(1− σA)(nηL2κ3δB2)
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−ηπT
AπBµ(ηκ1δAB)[κ3(Lκ4 +

√
nηL2)δB2]

−
√
nηπT

AπB(nηLκ1κ2δA2)(1− σB)

−
√
nηπT

AπB(ηκ1δAB)(nηL2κ3δB2)

−η(nηLκ1κ2δA2)[κ3(Lκ4 +
√
nηL2)δB2] > 0. (27)

Now, the inequality (27) can be rewritten as Γ1η
2 + Γ2η − Γ3 < 0

with Γi, i = 1, 2, 3, given by

Γ1 =
√
nκ1κ3L

2δB2[(n+ µ)πT
AπBδAB + nκ2LδA2],

Γ2 = κ1Lπ
T
AπB[n

3
2 κ2δA2(1− σB) + µκ3κ4δABδB2]

+nκ3L
2δB2[1− σA + κ1κ2κ4δA2],

Γ3 =
1

4
µπT
AπB(1− σA)(1− σB), (28)

Therefore, it can be derived that η ≤ 2Γ3

Γ2+
√

Γ2
2+4Γ1Γ3

, which

completes the proof. �

C. Proof of Theorem 1.

To ensure that the finite-level quantizers never saturate, the scaled
“innovation” 1

h(k)
(xj(k)− x̂j(k− 1)) and 1

h(k)
(yj(k)− ŷj(k− 1))

must lie in a bounded region. To achieve the goal, we first establish
the upper bounds for 1

h(k)
‖xi(k)− x̂i(k − 1)‖∞ and 1

h(k)
‖yi(k)−

ŷi(k − 1)‖∞, respectively. Then, the obtained upper bounds lead us
to propose an update rule of the quantization levels, under which
we prove the unsaturation of quantizers by mathematical induction.
Finaly, we show that (16) suffices for the given update rule.
Step 1: Bound ‖xi(k)− x̂i(k − 1)‖∞ and ‖yi(k)− ŷi(k − 1)‖∞.

Let exi(k) , QKx(xi(k)−x̂i(k−1)
h(k)

)− xi(k)−x̂i(k−1)
h(k)

and eyi(k) ,

QKy ( yi(k)−ŷi(k−1)
h(k)

)− yi(k)−ŷi(k−1)
h(k)

. Recalling (5) and (6), we can
obtain x̂j(k) = xj(k) + h(k)exj (k). Then

‖xi(k)− x̂i(k − 1)‖∞
≤ ‖xi(k)− xi(k − 1)‖∞ + h(k − 1) ‖exi(k − 1)‖∞ .(29)

The first term on the right side of (29) can be further calculated as

‖xi(k)− xi(k − 1)‖∞ ≤ α
n∑
j=1

‖xi(k − 1)− xj(k − 1)‖∞

+η‖zi(k − 1)‖∞ + α

n∑
j=1

‖σxi(k − 1)− σxj (k − 1)‖∞,(30)

where the inequality follows from (9a), the definition of Aα, and the
row stochasticity of A. In the following, we will establish the upper
bounds for the three terms on the right side of (30), respectively.

For the first term, it can be calculated as follows
n∑
j=1

‖xi(k − 1)− xj(k − 1)‖∞ ≤
√

2(n+
1

2
)Θ2(k − 1),(31)

where the Jensen’s inequality and the facts that ‖xi(k−1)−xj(k−
1)‖2∞ ≤ 2‖xi(k − 1)− x̄(k − 1)‖2∞ + 2‖x̄(k − 1)− xj(k − 1)‖2∞
and ‖xi(k−1)− x̄(k−1)‖2∞ ≤ ‖xi(k−1)− x̄(k−1)‖22 have been
exploited to obtain the above inequality.

For the second term on the right side of (30), we have

‖zi(k − 1)‖∞
≤ ‖z(k − 1)− πBz̄(k − 1)‖∞ + ‖πB‖∞ ‖ḡ(k − 1)‖∞

+ ‖πB‖∞ ‖z̄(k − 1)− g(k − 1)‖∞
+ ‖πB‖∞ ‖g(k − 1)− ḡ(k − 1)‖∞

≤ Θ3(k − 1) +
√
nLΘ2(k − 1) + nLΘ1(k − 1)

+ nβh(k − 2) max
i∈V
‖eyi(k − 2)‖∞, (32)

where Lemma 1 and Lemma 4 have been employed to obtain the
above inequality.

It only remains to bound the last term in (30). By using the fact
that x̂j(k) = xj(k) + h(k)exj (k) again, we obtain

∑n
j=1 ‖σxi(k−

1)− σxj (k − 1)‖∞ ≤ 2nh(k − 1) maxi∈V ‖exi(k − 1)‖∞.
Define

ϕ1 , max

{√
2(n+

1

2
)α+ η

√
nL, η, ηnL

}
,

ϕ2 , max
{

1,
√
nL, nL

}
. (33)

Combining the above inequalities, we can obtain

‖xi(k)− x̂i(k − 1)‖∞ ≤
√

3ϕ1‖Θ(k − 1)‖2
+ (2αn+ 1)h(k − 1) max

i∈V
‖exi(k − 1)‖∞

+ nηβh(k − 2) max
i∈V
‖eyi(k − 2)‖∞. (34)

From (34), we can observe that if the quantizers never saturate, then
xj(k)− x̂j(k− 1) will decay to zero at the speed of the same order
of h(k) since h(k−1) = C

ξ
ξk. Following the similar line above, we

can further obtain

‖yi(k)− ŷi(k − 1)‖∞ ≤
√

3ϕ2‖Θ(k)‖2
+ (nβ + 1)h(k − 1) max

i∈V
‖eyi(k − 1)‖∞.

Step 2: Demonstrate the unsaturation.
In this part, we first consider the following update rule of the

quantization levels instead

Kx(0) ≥ v1

C
− 1

2
, Ky(0) ≥ v2

C
− 1

2

Kx(1) ≥
√

3ϕ1‖Θ(0)‖2
Cξ

+
2αn+ 1

2ξ
− 1

2

Kx(k) ≥
√

3ϕ1τ‖Θ(0)‖2
Cξ

Υ1(k) +
2αn+ 1

2ξ
+
nηβ

2ξ2
− 1

2
, k ≥ 2

Ky(k) ≥
√

3ϕ2τ‖Θ(0)‖2
C

Υ2(k) +
nβ + 1

2ξ
− 1

2
, k ≥ 1 (35)

where Υ1(k) = ( ρ̂
ξ
)k−1 + ς̃

ξ‖Θ(0)‖2

∑k−3
l=0 ( ρ̂

ξ
)k−2−l+ ς̃

ξτ‖Θ(0)‖2
and

Υ2(k) = ( ρ̂
ξ
)k + ς̃

ξ‖Θ(0)‖2

∑k−2
l=0 ( ρ̂

ξ
)k−1−l + ς̃

ξτ‖Θ(0)‖2
.

Now, we show the unsaturation of the quantizers under the rule
(35) by mathematical induction. Considering the case k = 0,
we have ‖xi(k)−x̂i(k−1)‖∞

h(k)
≤ ‖xi(0)‖∞

C
≤ Kx(0) + 1

2
and

‖yi(k)−ŷi(k−1)‖∞
h(k)

≤ ‖yi(0)‖∞
C

≤ Ky(0) + 1
2

, which indicates
that the quantizers are not saturated for k = 0. Therefore,
maxi∈V ‖exi(0)‖∞ ≤ 1

2
and maxi∈V ‖eyi(0)‖∞ ≤ 1

2
both hold,

which further can be exploited to calculate the upper bounds of ςi(0)
via (26), denoted by ς̄i(0), for i = 1, 2, 3. Define ς̂(0) , ‖ς̄(0)‖2
with ς̄(0) = (ς̄1(0), ς̄2(0), ς̄3(0))T. Recalling (13), we can obtain
‖Θ(1)‖2 ≤ τ ρ̂‖Θ(0)‖2 + ς̂(0).

Now, considering the case k = 1. From (34), we can obtain
‖xi(1)−x̂i(0)‖∞

h(1)
≤
√

3ϕ1
Cξ
‖Θ(0)‖2 + 2αn+1

ξ
maxi∈V ‖exi(0)‖∞ ≤

√
3ϕ1
Cξ
‖Θ(0)‖2 + 2αn+1

2ξ
≤ Kx(1) + 1

2
. Similarly, it can be easily

verified that ‖yi(1)−ŷi(0)‖∞
h(1)

≤ Ky(1) + 1
2

. These two inequalities
imply that the quantizers are not saturated at k = 1 as well. Then,
we have maxi∈V ‖exi(ν)‖∞ ≤ 1

2
and maxi∈V ‖eyi(ν)‖∞ ≤ 1

2
for

ν ∈ {0, 1}, which further can be utilized to compute ς̂(1). Hence,
we can obtain ‖Θ(2)‖2 ≤ τ‖Θ(0)‖2ρ̂2 + τ ρ̂ς̂(0) + ς̂(1).

From the above observations, it can be seen that our basic
idea is to exploit the non-saturation property at each step, i.e.,
maxi∈V ‖exi(ν)‖∞ ≤ 1

2
and maxi∈V ‖eyj (ν)‖∞ ≤ 1

2
for ν ∈

{0, 1, ..., k−1}, then we can derive the upper bounds of ‖ς(ν)‖2. In
this way, the upper bounds of ‖Θ(ν + 1)‖2 can be obtained, which
further helps us to derive the non-saturation condition at step k. In
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other words, if the quantizers are not saturated for all k ≤ k′, we
can obtain ς̂(1), ..., ς̂(k′) with

ς̂(l) = ‖(ς̄1(l), ς̄2(l), ς̄3(l))T‖2, l ≤ k′,

where ς̄(l) = ξlς̄ and the elements of the vector ς̄ ∈ R3 is
given by: ς̄1 = 1

2ξ
ηπT
AπBn

√
mβC, ς̄2 = 1

2ξ
ηκ1κ2δA2n

√
mβC +

α
2

√
mnδA2κ4C, ς̄3 = 1

2ξ
δB2κ3n

√
mβC(1 + ξ + ηL) +

1
2
αδB2κ3κ4L

√
mnC. Note that each element of the vector ς̄ is a

finite constant. We further define the constant ς̃ by:

ς̃ , ‖(ς̄1, ς̄2, ς̄3)T‖2. (36)

Then, we obtain that ‖Θ(ι)‖2 ≤ ‖G‖ι2‖Θ(0)‖2 +
ς̃
∑ι−1
l=0 ‖G‖

ι−1−l
2 ξl ≤ τ‖Θ(0)‖2ρ̂ι + ς̃τ

∑ι−2
l=0 ρ̂

ι−1−lξl + ς̃ξι−1

holds, for ι ∈ {2, 3..., k′ + 1}.
Considering the case k = k′ + 1 (k′ ≥ 2). From (34), we have

‖xi(k)− x̂i(k − 1)‖∞
h(k)

≤
√

3ϕ1

Cξk

(
τ‖Θ(0)‖2ρ̂k−1 + ς̃τ

k−3∑
l=0

ρ̂k−2−lξl + ς̃ξk−2

)
+

2αn+ 1

2ξ
+
nηβ

2ξ2
≤ Kx(k) +

1

2
. (37)

Similarly, with some tedious calculations, it can also be concluded
that ‖yi(k)−ŷi(k−1)‖∞

h(k−1)
≤ Ky(k) + 1

2
. In summary, the quantizers

will never saturate under the rule (35). Recalling Υ1(k) and Υ2(k)
in (35), it can be verified that they both can be upper bounded by

Ῡ = 1 +
ς̃ ρ̂

ξ(ξ − ρ̂)‖Θ(0)‖2
+

ς̃

ξτ‖Θ(0)‖2
. (38)

Note that ‖Θ(0)‖2, ρ̂ and τ are all some positive constants, ς̃ is
a positive constant given in (36), and ξ is a constant chosen in the
interval (ρ̂, 1). Hence, Ῡ is a constant, and (16) suffices for the update
rule (35), which completes the proof. �
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