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Efficiently solving the harmonic model predictive
control formulation

Pablo Krupa†, Daniel Limon†, Alberto Bemporad∗, Teodoro Alamo†

Abstract—Harmonic model predictive control (HMPC) is a
model predictive control (MPC) formulation which displays
several benefits over other MPC formulations, especially when
using a small prediction horizon. These benefits, however, come
at the expense of an optimization problem that is no longer
the typical quadratic programming problem derived from most
linear MPC formulations due to the inclusion of a particular class
of second order cone constraints. This article presents a method
for efficiently dealing with these constraints in operator splitting
methods, leading to a computation time for solving HMPC in line
with state of the art solvers for linear MPC. We show how to
apply this result to the alternating direction method of multipliers
algorithm, presenting a solver which we compare against other
solvers from the literature, including solvers for other linear
MPC formulations. The results show that the proposed solver,
and by extension the HMPC formulation, is suitable for its
implementation in embedded systems.

Index Terms—predictive control, harmonic model predictive
control, convex optimization, embedded systems, ADMM.

I. INTRODUCTION

In the recent publication [1] (originally presented in [2]),
the authors proposed a novel model predictive control (MPC)
[3] formulation labeled harmonic model predictive control
(HMPC), which has several advantages over other MPC for-
mulations, such as guaranteed asymptotic stability, recursive
feasibility even in the event of a sudden reference change,
an increased domain of attraction with respect to other MPC
formulations, does not require a positive invariant set of the
system, and displays an improved performance of the closed-
loop system when using a small prediction horizon, especially
for systems with integrator states or slew-rate constraints.

These advantages, which are highlighted and discussed in
detail in [1], [2], indicate that HMPC is an ideal candidate for
its use as an embedded controller, i.e., for its implementation
in devices with low computation and memory resources. The
main drawback, however, is that its optimization problem is
not the typical quadratic programming (QP) problem derived
from most linear MPC formulations. This is due to the
inclusion of several constraints that can be imposed as second-
order cone (SOC) constraints.
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This article shows that in spite of this drawback, the HMPC
formulation can be solved in a computation time comparable
to that of MPC formulations whose control law is derived from
QP problems using state of the art solvers.

We show how to efficiently deal with the SOC-like con-
straints of the HMPC formulation by grouping them in pairs
and considering their intersection. We prove an explicit so-
lution to the Euclidean projection onto this intersection of
pairs of SOC-like constraints; a fact that can be exploited by
several first-order methods. In particular, the operator splitting
methods considered in solvers such as [4], [5] or [6] can
make good use of this, since the pairing (along with the
explicit solution of the projection operator) leads to a reduction
of the number of decision variables and dimensions of the
matrices involved in the solver, leading to a reduction of
the computation time when compared to simply solving the
original problem by considering SOC constraints.

To show how to solve the resulting optimization prob-
lem, we present a solver based on the alternating direction
method of multipliers (ADMM) algorithm [7] using ideas
and approaches taken from state of the art solvers [4], [5],
[8]. The resulting solver, which is available in the SPCIES
toolbox [9], is well suited for its implementation in embedded
systems, especially considering that the HMPC formulation is
particularly suited for its use with small prediction horizons.

The remainder of this article is structured as follows. In
Section II we describe the SOC-like sets that we deal with
in subsequent sections and present explicit solutions for the
Euclidean projection onto them. We briefly recall the HMPC
formulation in Section III. Section IV presents the ADMM
algorithm and its particularization to HMPC. Numerical results
are presented in Section V. Concluding remarks and a discus-
sion of the computational results are provided in Section VI.

Notation: Given two integers i and j with j ≥ i, Zji
denotes the set of integer numbers from i to j, i.e.
Zji

.
= {i, i+ 1, . . . , j − 1, j}. We denote by Sn++ (Dn++) the

set of (diagonal) positive definite matrices in Rn×n. Given
a set X ⊆ Rn, we denote by IX its indicator function,
i.e., IX (x) = 0 if x ∈ X and IX (x) = +∞ if x 6∈ X .
For vectors x1 to xN , (x1, x2, . . . , xN ) denotes the column
vector formed by their concatenation. Given a vector x ∈ Rn,
we denote its i-th component using a parenthesized subindex
x(i). Given two vectors x ∈ Rn and y ∈ Rn, their standard
inner product is denoted by 〈x, y〉 .

=
∑n
i=1 x(i)y(i). For

x ∈ Rn and A ∈ Sn++, ‖x‖ .
=
√
〈x, x〉, ‖x‖A

.
=
√
〈x,Ax〉,

‖x‖∞
.
= maxi=1...n |x(i)|. The Euclidean projection of a

vector x ∈ Rn onto a set X ⊆ Rn is denoted by PX (x),
i.e., PX (x) = argminv∈X ‖v − x‖2.

©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

ar
X

iv
:2

20
2.

06
62

9v
2 

 [
m

at
h.

O
C

] 
 1

5 
N

ov
 2

02
2



This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author’s version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3220555 2

II. SHIFTED SECOND ORDER CONES

This section describes a class of closed convex sets, which
we denote by shifted second order cones (shifted-SOCs). We
prove an explicit solution for the Euclidean projection onto
them and onto the intersection of two “opposed” shifted-SOCs.
The results and definitions of this section will play a major
role in subsequent developments.

Definition 1 (Shifted second order cone). A shifted second
order cone (shifted-SOC) Kα(c) ⊂ Rn is a set given by

Kα(c) = {z = (z0, z1) ∈ R×Rn−1 : ‖z1‖ ≤ α(z0−c)}, (1)

where α ∈ {1,−1} and c ∈ R. For convenience, let us denote
by K−(c)

.
= K−1(c) and K+(c)

.
= K1(c), where we may drop

the “(c)” if it is clear from the context.

The following theorem provides an explicit solution for the
Euclidean projection onto Kα(c). Its proof is heavily inspired
by the proof of [10, Theorem 3.3.6], which proves an explicit
solution onto (1) for c = 0 and α > 0.

Theorem 1. Let z = (z0, z1) ∈ R × Rn−1 and Kα(c) ⊂ Rn
be given by Definition 1 for some α ∈ {1,−1} and c ∈ R.
The Euclidean projection of z onto K .

= Kα(c) is given by

PK(z) =


z if ‖z1‖ ≤ α(z0 − c) (2a)
(c, 0) if ‖z1‖ ≤ −α(z0 − c) (2b)(
τα+ c,

τz1
‖z1‖

)
otherwise, (2c)

where τ =
1

2
(α(z0 − c) + ‖z1‖).

Proof. See Appendix A.

We are now interested in the following set, obtained from
the intersection of two “opposed” shifted-SOCs. Let us denote
by D(z, z) ⊂ Rn, where z, z ∈ R, the set given by

D(z, z) .= {z ∈ Rn : z ∈ K−(z) ∩ K+(z)}. (3)

Once again, we may drop the “(z, z)” if it is clear from the
context. Set D is closed and convex, since it is the intersection
of two closed convex sets [11, Prop. 1.1.1(a)], [11, Prop.
A.2.4(b)]. Additionally, it is non-empty if z ≤ z, as we state
in the following lemma.

Lemma 1. Let D(z, z) ⊂ Rn be given by (3) for some z, z ∈
R. Then, D is non-empty iff z ≤ z.

Proof. First, assume that D is non-empty and take any z ∈
D. Then, from z ∈ K−(z) and z ∈ K+(z) we have that
‖z1‖ ≤ z − z0 and ‖z1‖ ≤ z0 − z, which leads to z − z ≥
2‖z1‖ ≥ 0. Next, assume that z ≤ z and consider the vector
z = ((z+z)/2, 0) ∈ R×Rn−1. It is easy to verify that z ∈ K−
and z ∈ K+, thus z ∈ D. �

The projection onto set D could be performed using one
of many methods from the literature for projecting onto the
intersections of convex sets [12], [13]. These methods typically
consider the Euclidean projection of a vector onto a non-empty
closed convex set C = C1∩C2∩· · ·∩Cr, where r > 0 is finite,
and it is assumed that the sets Ci are closed and convex and

Algorithm 1: Dykstra’s algorithm for C = C1 ∩ C2.
Input: z ∈ Rn

1 w0 ← z, p0 ← 0n, q0 ← 0n
2 foreach k ≥ 1 do
3 vk ← PC1(wk−1 + pk−1)
4 pk ← wk−1 + pk−1 − vk
5 wk ← PC2(vk + qk−1)
6 qk ← vk + qk−1 − wk

that PCi has a known solution for i ∈ Zr1. They are employed
because, in general, the projection onto the intersection of
convex sets is not guaranteed to be the result of projecting
onto each set Ci in order, even if r = 2.

However, we will show that this is not the case for the
projection onto set D, which can be obtained by first pro-
jecting onto K+ and then projecting the resulting vector onto
K−, both of which have simple explicit solutions given by
Theorem 1. This result will allow us to directly use sets D
in future developments without having to result to an iterative
method to compute the projection onto them, which would be
computationally expensive, especially if a good approximation
of the projection is required.

The following theorem states a direct solution of the projec-
tion onto a non-empty set D. Its proof is based on making use
of the following lemma, which states the condition for the con-
vergence after a single iteration of Algorithm 1, obtained from
[14, §3], which is a particularization of Dykstra’s algorithm
[12] to finding the projection of z ∈ Rn onto C = C1 ∩ C2.
It generates iterates vk and wk satisfying ‖vk − PC(z)‖ → 0
and ‖wk − PC(z)‖ → 0 as k → +∞ [12, Theorem 2].

Lemma 2. Let C = C1 ∩C2 be a non-empty closed convex set
and C1, C2 ⊆ Rn be closed convex sets. Consider Algorithm 1
for finding PC(z) for z ∈ Rn. Then, v2 = w1 ⇒ w1 = PC(z).

Proof. The first iterate of Algorithm 1 satisfies

v1 = PC1(z), p1 = z−v1, w1 = PC2(v1), q1 = v1−w1.

Then, if v2 = w1, we have that

v2 = PC1(w1 + p1) = w1, p2 = w1 + p1 − w1 = p1,

w2 = PC2(v2 + v1 − w1) = PC2(v1) = w1,

q2 = v2 + q1 − w2 = q1.

Therefore, iterations k > 2 will return the same results as
k = 2, meaning we have reached a fixed point of the algorithm,
and thus w2 = w1 = PC(z) [12, Theorem 2]. �

Theorem 2. Let z = (z0, z1) ∈ R× Rn−1 and D(z, z) be the
set given by (3) for some z, z ∈ R satisfying z ≤ z. Then, the
projection of z onto D is given by PD(z) = PK−

(
PK+

(z)
)
.

Proof. See Appendix B.

III. HARMONIC MODEL PREDICTIVE CONTROL

The HMPC formulation [1], [2], considers a controllable
linear time-invariant system described by the discrete state
space model

x(t+ 1) = Ax(t) +Bu(t), (4)

©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
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where x(t) ∈ Rnx and u(t) ∈ Rnu are the state and control
input at the discrete time instant t, respectively, subject to

y ≤ Ex(t) + Fu(t) ≤ y, (5)

where we assume that the bounds y, y ∈ Rny satisfy y < y.
The HMPC formulation is inspired by the MPC for tracking

(MPCT) formulation [15], [16], whose difference with classi-
cal MPC formulations is that it includes an artificial reference,
which is forced to be a steady-state of (4) satisfying (5), as
decision variables in the optimization problem

The idea behind HMPC is to substitute this steady-state
artificial reference by one in the form of the periodic signals
xjh, ujh, called the artificial harmonic reference, whose value
at each discrete time instant j ∈ Z is given by

xjh = xe + xs sin(w(j−N)) + xc cos(w(j−N)), (6a)

ujh = ue + us sin(w(j−N)) + uc cos(w(j−N)), (6b)

i.e., to use a harmonic signal, thus the name of the formulation,
with base frequency w ≥ 0 parameterized by xe, xs, xc ∈ Rnx

and ue, us, uc ∈ Rnu . Let us introduce the following notation
to simplify future developments:

xH
.
= (xe, xs, xc) ∈ Rnx × Rnx × Rnx ,

uH
.
= (ue, us, uc) ∈ Rnu × Rnu × Rnu ,

ye = Exe + Fue, ys = Exs + Fus, yc = Exc + Fuc.

For a given prediction horizon N > 0 and base frequency
w ≥ 0, the HMPC control law for a given state x(t) ∈ Rnx

and reference (xr, ur) ∈ Rnx × Rnu is derived from

min
x,u,

xH ,uH

N−1∑
j=0

`h(x
j , uj , xjh, u

j
h) + Vh(xH ,uH ;xr, ur) (7a)

s.t. x0 = x(t) (7b)

xj+1 = Axj +Buj , j ∈ ZN−10 (7c)

y ≤ Exj + Fuj ≤ y, j ∈ ZN−10 (7d)

AxN−1 +BuN−1 = xe + xc (7e)
xe = Axe +Bue (7f)
xs cos(w)− xc sin(w) = Axs +Bus (7g)
xs sin(w) + xc cos(w) = Axc +Buc (7h)
(ye(i), ys(i), yc(i)) ∈ D(y(i), y(i)), i ∈ Zny

1 , (7i)

where x = (x0, . . . , xN−1), u = (u0, . . . , uN−1), and the two
terms of the cost function are given by the stage cost function

`h(x, u, xh, uh) = ‖x− xh‖2Q + ‖u− uh‖2R,

where Q ∈ Snx
++ and R ∈ Snu

++; and the offset cost function

Vh(·) = ‖xe − xr‖2Te
+ ‖ue − ur‖2Se

+ ‖xs‖2Th
+ ‖xc‖2Th

+ ‖us‖2Sh
+ ‖uc‖2Sh

,

where Te ∈ Snx
++, Th ∈ Dnx

++, Se ∈ Snu
++, and Sh ∈ Dnu

++.
Note that constraint (7i) is imposing ny constraints onto sets
D ⊂ R3 defined in (3).

As is typical in MPC, the summation of the stage cost
function `h is penalizing the discrepancy between the predicted
states xj and inputs uj with the reference, although in this

case the discrepancy is with respect to the artificial reference
at prediction time j, i.e., xjh and ujh, respectively. The offset
cost function is penalizing two conceptually different things:
• The distances ‖xe−xr‖2Te

and ‖ue−ur‖2Se
. This penal-

ization will make the “center” of the artificial harmonic
reference signal move towards the reference, eventually
reaching it if is an admissible steady-state of the system.

• The magnitude of xs, xc, us and uc. This will force
the artificial harmonic reference signal to converge to the
steady-state (xe, ue) as k → +∞, since it will converge
towards xs = xc = 0 and us = uc = 0 as k →∞.

The result of this, as stated and proven in [1, Theorem 3],
is that the closed-loop system will asymptotically converge
to (xr, ur) if it is an admissible steady-state of the system,
or to the admissible steady-state (xt, ut) that minimizes the
distance ‖xt − xr‖2Te

+ ‖ut − ur‖2Se
otherwise. In both cases,

the closed-loop system will satisfy the constraints (5) under
nominal conditions.

Constraints (7b)-(7d) impose the typical MPC constraints:
current system state, system dynamics and system constraints,
respectively. Constraint (7e) forces the terminal state xN to
reach the artificial harmonic reference, i.e., xN = xNh , and
(7f) that (xe, ue) must be a steady-state of the system. The
satisfaction of (7g)-(7h) along with (7f) results in an artificial
harmonic reference (6) that satisfies the system dynamics (4),
i.e., it satisfies xj+1

h = Axjh +Bujh, ∀j (see [1, Property 2]).
Finally, the constraints (7i) enforce that the artificial harmonic
reference satisfies the system constraints (5) (see [1, Property
3]). The reason for imposing the system constraints on the
artificial harmonic reference this way is that the satisfaction of
(7i) implies the feasibility of xjh and ujh for all j. Therefore,
the system constraints (5) can be imposed on the artificial
reference by only ny constraints. A more naive approach
would have resulted in a number of constraints that depends
on the values of N and w. The downside, however, is that we
add constraints on the intersection of shifted-SOC constraints,
leading to an optimization problem that is no longer the typical
QP obtained from most linear MPC formulations.

For a more detailed description and discussion of this
formulation and its advantages we refer the reader to [1], [2].

Remark 1. The HMPC formulation (7) can be posed as a
SOC programming problem by first separating each constraint
(7i) into two constraints, one on K+ and one on K−. In
this case, problem (7) can be solved using SOC programming
solvers such as [6]. However, by doing so, we have 2ny SOC
constraints instead of the ny constraints (7i). Our use of the
sets D leads to a smaller number of constraints, which can
have a major impact on the computation time of the solver
when ny is large or when using certain operator splitting
approaches such as the one used in [4], [5], [6].

IV. ADMM SOLVER FOR HMPC

This section shows how the HMPC formulation can be
solved taking into account the sets and projection theorems
from Section II by presenting a solver based on the ADMM
algorithm [7].
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A. Alternating direction method of multipliers

Let us consider the optimization problem

min
z,s

1

2
z>Hz + q>z (8a)

s.t. Gz = b, s ∈ S (8b)
Cz + s = d, (8c)

where z ∈ Rn are the primal decision variables, s ∈ Rm are
the primal slack variables, H ∈ Sn++, q ∈ Rn, G ∈ Rneq×n,
b ∈ Rneq , C ∈ Rm×n, d ∈ Rm and S is a Cartesian product
of the form S = S1×S2×· · ·×Sp, where Si ⊆ Rmi , i ∈ Zp1,
with

∑p
i=1mi = m, are non-empty closed convex sets, i.e.,

we consider a partition of s given by s = (s1, s2, . . . , sp),
where each si ∈ Rmi , i ∈ Zp1, must belong to Si.

Problem (8) can be solved by considering (8c) as the
linear constraint relating the two separable decision variables
z and s, and including (8b) as indicator functions in the
objective function. That is, to consider the classical ADMM
optimization problem

min
z,s

f(z) + g(s)

s.t. Cz + s = d,

where f(z) = 1
2z
>Hz + q>z + I(G,b)(z), g(s) = IS(s), and

I(G,b) is the indicator functions of set {z ∈ Rn : Gz = b}.
This leads to the Lagrangian function

L(z, s, λ) = f(z) + g(s) +
ρ

2
‖Cz + s− d+ 1

ρ
λ‖2,

where λ ∈ Rm are the dual variables for constraint (8c) and
ρ > 0 is the penalty parameter.

Starting at an initial point (z0, s0, λ0), the iterations of
ADMM consist of the following steps [7]:

zk+1 = argmin
z
L(z, sk, λk) (9a)

sk+1 = argmin
s
L(zk+1, s, λk) (9b)

λk+1 = λk + ρ(Czk+1 + sk+1 − d), (9c)

where k ≥ 0 is the iteration counter. Step (9a) solves

zk+1 = argmin
z

{
1

2
z>Ĥz + (q̂k)>z, s.t. Gz = b

}
, (10)

where Ĥ = H + ρC>C and q̂k = q + C>
(
ρ(sk − d) + λk

)
.

Step (9b) solves

sk+1 = argmin
s∈S

ρ

2
‖Czk+1 + s− d+ 1

ρ
λk‖2,

which is the Euclidean projection of (−Czk+1 + d − 1
ρλ

k)
onto S , that considering its separability, can be solved for
each subset sk+1

i , i ∈ Zp1.

B. Particularization to the HMPC’s optimization problem

Problem (7) can be recast as (8) by taking s = (sb, sc)

z = (u0, x1, u1, . . . , xN−1, uN−1, xe, xs, xc, ue, us, uc),

where sb = (sb,0, sb,1, . . . sb,N−1) with sb,i ∈ Rny , i ∈ ZN−10 ,
and sc = (sc,1, sc,2, . . . , sc,ny

) with sc,i ∈ R3, i ∈ Zny

1 .

That is, sb,i accounts for the constraints (7d) and sc,i for the
constraints (7i). Therefore, set S in (8b) is given by

S = C × C × · · · × C︸ ︷︷ ︸
N

×D1 ×D2 × · · · × Dny
,

where Di
.
= D(y(i), y(i)) ⊂ R3, i ∈ Zny

1 , as defined in (3),
and C .

= {y ∈ Rny : y ≤ y ≤ y}. Ingredients G and b account
for the equality constraints (7b), (7c), (7e), (7f), (7g) and (7h);
C and d for the relationship between z and s; and H and q
for the cost function (7a).

Remark 2. We note that x0 does not appear in the above defi-
nition of z because equation (7b) can be implicitly considered
in the optimization problem, i.e., taking the first equation of
(7c) as x1 = Ax(t) +Bu0, as is typical in MPC solvers.

By defining z and, in particular, s in this way, we have that
the update of sk+1 requires two types of projections: the first
is a projection onto C, which is a simple projection onto a
box, and the second is a projection onto Di for each i ∈ Zny

1 ,
whose explicit solution is provided in Theorem 2.

Finally, we must find a way of solving the equality con-
strained QP (10), corresponding to step (9a) of the ADMM
algorithm. There are multiple ways to do this [17]. A popular
approach in sparse QP solvers is the one presented in [5,
§3.1], in which its KKT conditions are expressed as a linear
system of equations whose solution can be sparsely computed
using matrix decompositions such as the QR [18] or LDL>

factorizations [4, §2], [5, §3.1]. Other approaches make use
of the Cholesky decomposition [8], leading to very sparse
and simple matrices thanks to the simple structure of G in
linear MPC. However, in the case of HMPC, we find that the
straightforward explicit solution from [19, §10.1.1] provides
the best computational results. After some simple algebraic
manipulations, this approach leads to

zk+1 =Mq q̂
k +Mbb, (11)

where Mq and Mb are the matrices given by

Mq = Ĥ−1G>(GĤ−1G>)−1GĤ−1 − Ĥ−1,
Mb = Ĥ−1G>(GĤ−1G>)−1.

Although matrices Mq and Mb are generally dense, we find
this approach is often favorable compared to sparse approaches
due to the fact that HMPC is of particular interest when
using a small prediction horizon, leading to relatively small-
dimensional matrices, where the advantages of the sparse
approaches are no longer meaningful. We also note that only
the first nx columns of Mb are required, since all the elements
of b are always zero with the exception of the first nx.

Algorithm 2 shows the particularization of ADMM to the
HMPC formulation (7), where we take the same partition
of vectors c and λ that we took for s (see the beginning
of this subsection) in steps 8 and 11, i.e., c = (cb, cc)
and λ = (λb, λc). We note that step 11 is making use of
Theorem 1. The algorithm returns a suboptimal solution (z̃, s̃),
where the level of suboptimality is determined by the choice
of the exit tolerances εp > 0 and εd > 0 [7, §3.3].

©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
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Algorithm 2: ADMM for solving HMPC
Require: x(k) ∈ Rnx , (xr, ur) ∈ Rnx × Rnu ,

z0 ∈ Rn, s0 ∈ Rm, λ0 ∈ Rm, εp > 0, εd > 0
1 k ← 0
2 Update q with xr and ur and b with x(t)
3 repeat
4 q̂k ← q + C>

(
ρ(sk − d) + λk

)
5 zk+1 ← Solution of (10) for q̂k

6 c← Czk+1 − d
7 for i ∈ ZN−10 do
8 sk+1

b,i ← max(min(−cb,i − 1
ρλ

k
b,i, y), y)

9 end for
10 for i ∈ Zny

1 do
11 sk+1

c,i ← PK−(y(i))

(
PK+(y

(i)
)(−cc,i − 1

ρλ
k
c,i)
)

12 end for
13 c← c+ sk+1

14 λk+1 ← λk + ρc
15 k ← k + 1
16 until ‖c‖∞ ≤ εp and ‖sk − sk−1‖∞ ≤ εd

Output: z̃ ← zk, s̃← sk

Vector c is used to store the values of Czk+1 − d and
Czk+1 + s − d. We use it to reduce to one the number of
times the operation Czk+1 is performed in each iteration of
the algorithm. Even though C is sparse and the multiplication
operations in steps 4 and 6 in which it is involved are
performed sparsely by storing the matrix using the compressed
sparse row representation, this reduction can have a significant
impact on the computation time of the algorithm, especially
if E and F are dense and/or ny is large.

Remark 3. The key point of Algorithm 2 is that we are able to
project directly onto the sets D(y(i), y(i)) thanks to the explicit
solution provided by Theorem 2. Otherwise, we would have
had to consider the sets K+(y(i)) and K−(y(i)) separately
for each i ∈ Zny

1 , which would have increased the dimension
of s and therefore the computational complexity of the solver.

V. NUMERICAL RESULTS

This section shows two case studies evaluating the perfor-
mance of the proposed HMPC solver. The first one compares
it against other solvers and MPC formulations from the
literature. The second one highlights the benefits obtained by
considering the sets D instead of SOC constraints.

A. Application of HMPC to a ball and plate system

In this section we solve the problem from the case study of
the original HMPC article [1] using the results obtained in the
previous sections as well as with the SCS solver [6]. We also
apply state-of-the-art solvers for the MPC for tracking (MPCT)
formulation [15] and for the standard MPC formulation with
a terminal equality constraint (equMPC) described in [8, Eq.
(9)], which are the MPC formulations used to highlight the
benefits of HMPC in [1] and [2].

The system under consideration, described in detail in [1,
§V.A], is a ball and plate system where the control objective
is to steer the position of the ball to a given point by acting
on the tilt of the plate through two motors on its main axes
whose acceleration we can manipulate.

We maintain the same parameters, constraints and setup
from [1, §V], including the prediction horizon N = 5 and
base frequency w = 0.3254 (which is selected according to the
criteria presented in [1, §VI]) for the HMPC formulation, with
two exceptions. First, to improve the numerical conditioning
of the resulting optimization problems, we scale the states cor-
responding to the position of the ball on each axis by a factor
of 0.1. Second, due to the previous change, we reduced Th
and Sh by a factor of 10 to maintain nearly indistinguishable
closed-loop trajectories from the ones presented in [1, §V].
This resulted in an improvement on the number of iterations of
the solvers by up to two orders of magnitude while maintaining
the original results.

We show results using the following solvers (formulations):
• SCS v3.0.0 (HMPC) [6]. This state-of-the-art operator

splitting solver can be applied to HMPC by imposing
constraints (7i) using SOC constraints. In particular, two
SOC constraints are required for each constraints in (7i).

• SPCIES v0.3.7 (HMPC) [9]. This solver implements the
ADMM algorithm described in Section IV. We also show
the results of a version in which we do not make use of
the results presented in Section II, i.e., in which we impose
constraints (7i) using SOC constraints as in the SCS solver.
Step 5 is solved using the dense method (11), since it
provided better computational results.

• SPCIES v0.3.7 (MPCT and equMPC) [9]. The MPCT
formulation is solved using the extended ADMM algorithm
presented in [20]. The equMPC formulation is solved using
the ADMM algorithm presented in [8] (see [21, §5.4.2] for
a more in-depth explanation). The MPCT formulation uses
the same parameters as the ones from [1, §V], including
the prediction horizon N = 15, which is the smallest one
for which the closed-loop performance of the system is
similar to the one obtained using HMPC with N = 5. The
prediction horizon of the equMPC formulation is taken as
N = 30 for this very same reason. We take its Q and R
ingredients as the ones used by the other two formulations.
The options of the solvers where left at their default values

except for the scaling option of the SCS solver, which was set
to 1 since it significantly improved its performance, and the
exit tolerances, which were set to 10−5.

Figure 1 shows the closed-loop results of the linear system
with the three MPC formulations. We refer the reader to [1,
§V.B] for some results on the application of HMPC to the
nonlinear system. Figure 1a shows the position of the ball
on axis 1, which converges to its reference 1.8, and Figure
1b shows the control action on axis 1, whose reference is 0.
Figures 1c and 1d show the computation times and number
of iterations of each solver, with Table I showing relevant
information about them. It also shows the penalty parameters
used for the solvers from the SPCIES toolbox. The tests are
performed on an Intel Core i5-8250U operating at 1.60GHz
in Matlab using the C-MEX interface of the solvers.
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Fig. 1: Closed-loop results on the ball and plate system.

Computation time [ms] Number of iterations

Average Median Maximum Minimum Average Median Maximum Minimum Avrg. [µs/iters.] Penalty parameters

HMPC, ADMM, D 0.83 0.82 2.09 0.30 154.6 158.0 389 60 5.36 ρ = 15
HMPC, ADMM, SOC 0.87 0.83 2.23 0.33 153.8 152.5 390 64 5.77 ρ = 15

HMPC, SCS 0.91 0.26 7.56 0.24 78.8 25.0 675 25 11.5 -
MPCT 2.61 1.94 6.29 1.43 789.8 577.0 1969 496 3.31 ρ1 = 3000, ρ2 = 100

equMPC 3.14 3.05 5.84 1.83 567.5 535.0 1112 363 5.54 ρ = 45

Penalty parameter ρ1 is for the constraints listed in [20, Remark 4], and ρ2 for the rest.

TABLE I: Comparison between the different solvers during the simulation shown in Figure 1.
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Fig. 2: Comparison of using the D or SOC constraints. Lines show
averages when using the SOC constraints divided by averages when
using the D constraints for increasing values of l. Solid blue line
represents the total computation time, dashed red the number of
iterations and dotted green the computation time per iteration.

B. Benefits of considering the sets D

The results from the previous subsection seem to indicate
that there is little benefit to using the sets D over the alternative
of the SOC constraints. However, this is due to the small
dimension and sparsity of matrices E and F in the previous
example, which are simply imposing box constraints on four
of the states and the two control inputs.

However, for larger dimensions of E and F the advantage
of using the sets D becomes more pronounced. To show this,
we take the exact same setup as in the previous subsection,

but we include constraints on the position of the ball on the
plate in the form of a regular l-sided polygon centered at
the origin whose vertices are at a distance of 2 decimeters
from the origin. Note that each side of the polygon adds an
additional row to the matrices E and F containing two non-
zero elements, thus increasing ny by one.

Figure 2 shows a comparison between the ADMM algo-
rithm using the D constraints and the SOC constraints for
increasing values of l starting from l = 5. As can be seen,
the average total computation time using the SOC constraints
becomes over twice as long as using the D constraints when
ny becomes sufficiently large.

There are two factors at play that produce these results.
On one hand, increasing ny increases the dimension of s,
and thus C. When using the D constraints this dimension
is given by Nny + 3ny , whereas using the SOC constraints
the dimension is given by Nny + 6ny . For small values of
N , where the HMPC formulation excels, this difference can
become significant, becoming more prominent the larger the
value of ny and the larger the number of non-zero elements
in E and F , since the cost of the multiplications by C
becomes the main computational burden of the algorithm in
this scenario. This reduction of the computational cost per
iteration leads to the result presented by the dotted green line
of Figure 2.
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Remark 4. We note that the above discussion applies when
the multiplications involving C are performed without taking
advantage of its structure, since if sets D are not used, then
the rows of C related to the SOC constraints are (nearly)
duplicated. This can be used to reduce the computational
burden of performing the operation Czk+1 in Step 6 of
Algorithm 2. However, the same cannot be done in Step 4.
Thus, our approach still provides a computational reduction
even if the particular structure of C is exploited.

The second factor that leads to an increase of the total
computation time is the fact that the algorithm requires more
iterations to satisfy the exit condition for larger values of s.
This is due to the fact that there are more primal and dual
variables which must converge to a vicinity of their optimal
values. Thus, by using the sets D we reduce these variables
and thus the expected number of iterations of the algorithm.
This effect can be seen in the dashed red line of Figure 2.
Additionally, the use of sets D may also lead to a reduction of
the number of active constraints, which typically also reduces
the number of ADMM iterations.

Remark 5. The use of sets D is motivated by our consid-
eration of the system constraints (5). In systems that do not
have upper and lower bounds, but instead only have one of
the two, the proposed approach is meaningless, since this case
would not result in pairs of opposed SOC constraints. We note,
however, that (5) is a very common constraint in MPC and
that our approach also applies to the case of box constraints
on states and inputs.

VI. DISCUSSION AND CONCLUSIONS

This paper discusses how to efficiently solve the HMPC
formulation by imposing its SOC-like constraints by using
the sets D defined in (3). The main conclusion is that the
HMPC formulation is suitable candidate for its implementation
in embedded systems, since we obtain computational results
that are in line (or even better) than the ones obtained for
other linear MPC formulations. In particular, we derive a few
interesting conclusions from the numerical results:
• A comparison between the solvers for HMPC and the ones

for MPCT and equMPC shows that a solution of HMPC
can be obtained in computation times comparable to the
ones for MPC formulations whose optimization problem is a
QP using state-of-the-art solvers when comparing prediction
horizons for which the closed-loop performances are similar.

• A comparison between the ADMM solvers using the D or
SOC constraints shows that the use of the sets D can have
a significant impact on the computation times, especially
for dense matrices E and F and sufficiently large values of
ny . For large prediction horizons, the reduction obtained on
matrix C when using sets D may not be so noticeable, but
in the case of HMPC, which is designed to be used with
small prediction horizons, it can have a noticeable impact.

• The results using the SCS solver indicate that lower com-
putation times may be obtained if additional aspects, such
as numerical preconditioning, adaptation of the penalty
parameter, etc., were to be included in the algorithm.

We also note that the results of this paper could be very
useful in other optimization settings involving constraints D.
An interesting future research line is to extend the solver to
be able to deal with the complications that arise in a practical
setting due to linearization errors or external disturbances. In
particular, the extension of HMPC to the robust case may be
a viable and interesting topic for further future research.

APPENDIX

A. Proof of Theorem 1

This proof makes use of the following well known projec-
tion theorem (see [11, Prop. 1.1.9]).

Theorem 3 (Projection Theorem). Let C be a nonempty closed
convex subset of Rn, and let z be a vector in Rn. There exists
a unique vector that minimizes ‖v − z‖ over v ∈ C, called
the projection of z on C. Furthermore, a vector v∗ ∈ C is the
projection of z on C if and only if 〈v−v∗, z−v∗〉 ≤ 0, ∀v ∈ C.

The first case is obvious: if z = (z0, z1) ∈ K, then z =
PK(z). To prove the second case, i.e., ‖z1‖ ≤ −α(z0 − c),
we note that (c, 0) ∈ K. We now use Theorem 3 to prove that
(c, 0) = PK(z). We have that, for any y = (y0, y1) ∈ K,

〈(y0, y1)− (c, 0), (z0, z1)− (c, 0)〉
= 〈(y0 − c, y1), (z0 − c, z1)〉 = 〈y1, z1〉+ (y0 − c)(z0 − c)
(∗)
≤ ‖y1‖‖z1‖+ (y0 − c)(z0 − c)

(∗∗)
≤ −α2(y0 − c)(z0 − c) + (y0 − c)(z0 − c) = 0,

where (∗) is due to the Cauchy-Schwarz inequality and (∗∗)
holds because ‖z1|| ≤ −α(z0 − c) and ‖y1‖ ≤ α(y0 − c).
Next, we prove the third case. Let us introduce the notation

ẑ0
.
= ατ, z̃

.
=

z1
‖z1‖

, ẑ1
.
= αẑ0z̃,

where we recall that τ = 0.5(α(z0− c) + ‖z1‖) and note that
z̃ is well defined because ‖z1‖ 6= 0 due to the non-satisfaction
of the conditions in (2a) and (2b). We start by proving that
(ẑ0 + c, ẑ1) ∈ K when (i) ‖z1‖ > α(z0 − c) and (ii) ‖z1‖ >
−α(z0 − c), i.e., that ‖ẑ1‖ ≤ α(ẑ0 + c− c) = αẑ0. Indeed,

‖ẑ1‖ =
∥∥τ z1
‖z1‖

∥∥ = |τ | (ii)
= τ, αẑ0 = τ.

Finally, we show that PK(z) = (ẑ0 + c, ẑ1). Pick an arbitrary
y = (y0, y1) ∈ K and fix z = (z0, z1) satisfying (i) and (ii).
The proof follows from the equation displayed at the bottom of
the next page, where the steps marked with (∗) hold because

‖z1‖ − αẑ0 =
1

2
(‖z1‖ − α(z0 − c))

(i)
> 0. �

B. Proof of Theorem 2

Since we assume that z ≤ z, we have from Lemma 1 that
D is non-empty. Thus, the projection of z onto D exists and
is unique, since it is a closed convex set. Moreover, since it
is the intersection of two closed convex sets, the iterates of
Algorithm 1 will converge to the projection of z onto D [12,
Theorem 2]. We will now show that, in fact, Algorithm 1
will converge after a single iteration. That is, taking first the
projection onto K+ and then onto K−, we show that v2 = w1,
which along with Lemma 2 proves the claim.
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Let us denote vk = (vk0 , v
k
1 ) ∈ R × Rn−1 and wk =

(wk0 , w
k
1 ) ∈ R×Rn−1. We divide the proof into several cases.

Case 1: z ∈ K− and z ∈ K+. This case is trivial, since z ∈ D.
Case 2: z ∈ K+ and PK−(v

1) is obtained from (2b). Then,
v1 = z, p1 = 0, w1 = (z, 0). Since z ≥ z, it is easy to see that
(z, 0) ∈ K+. Therefore, v2 = PK+

((z, 0)+p1) = (z, 0) = w1.
Case 3: z ∈ K+ and PK−(v

1) is obtained from (2c). Then,
v1 = z, p1 = 0,

w1 =
1

2
(z − z0 + ‖z1‖)

(
−1, z1
‖z1‖

)
+ (z, 0) ,

and v2 = PK+
(w1 + p1) = PK+

(w1). All that remains is to
show that w1 ∈ K+, which we prove by contradiction. Assume
that w1 6∈ K+, i.e., ‖w1

1‖ > w1
0−z, which can be expressed as∣∣∣∣12(z − z0 + ‖z1‖)

∣∣∣∣ > 1

2
(z0 − z − ‖z1‖) + z − z. (12)

If 1
2 (z − z0 + ‖z1‖) > 0, then (12) leads to the contradiction

||z1‖ > z0 − z, since we assume that z ∈ K+. If it is smaller
of equal to 0, then (12) leads to the contradiction z > z.
Case 4: PK+(z) is obtained from (2b). Then, v1 = (z, 0),
p1 = z−(z, 0). Since z ≤ z, it is easy to see that (z, 0) ∈ K−.
Therefore, w1 = PK−(v

1) = (z, 0), which leads to

v2 = PK+
(w1 + p1) = PK+

((z, 0) + z − (z, 0))

= PK+
(z) = (z, 0) = w1.

Case 5: PK+(z) is obtained from (2c). Then,

v1 =
1

2
(z0 − z + ‖z1‖)

(
1,

z1
‖z1‖

)
+ (z, 0) , (13)

and p1 = z − v1. We now distinguish between two subcases.
(i) v1 ∈ K−. Then, w1 = v1, which leads to, v2 = PK+

(v1+
z − v1) = PK+

(z) = v1 = w1.
(ii) v1 /∈ K−. From (13), the use of simple algebra leads to
‖v11‖ = v10 − z. If z > z this implies that ‖v11‖ > v10 − z,
and thus w1 is computed using (2c), i.e.,

w1 =
1

2
(z − v10 + v10 − z)

(
−1, v11
‖v11‖

)
+ (z, 0)

=
1

2

(
z + z,

z − z
‖v11‖

v11

)
,

which along the use of simple algebra leads to ‖w1
1‖ =

w1
0−z. If, on the other hand, z = z, then w1 is computed

using (2b), i.e., w1 = (z, 0) = (z, 0). In both cases it is
easy to see that w1 ∈ K+ and thus v2 = PK+

(w1) = w1.
These cases cover all the possibilities for projecting first onto
K+ and then onto K−. �
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〈(y0, y1)− (ẑ0 + c, ẑ1), (z0, z1)− (ẑ0 + c, ẑ1)〉 = 〈(y0 − ẑ0 − c, y1 − αẑ0z̃), (z0 − ẑ0 − c, (‖z1‖ − αẑ0)z̃)〉
= 〈y1 − αẑ0z̃, (‖z1‖ − αẑ0)z̃〉+ (y0 − ẑ0 − c)(z0 − ẑ0 − c)
= (‖z1‖ − αẑ0)〈y1, z̃〉+ αẑ0(αẑ0 − ‖z1‖)〈z̃, z̃〉+ (y0 − ẑ0 − c)(z0 − ẑ0 − c)
(∗)
≤ (‖z1‖ − αẑ0)‖y1‖‖z̃‖+ αẑ0(αẑ0 − ‖z1‖)‖z̃‖2 + (y0 − ẑ0 − c)(z0 − ẑ0 − c)
(∗)
≤ (‖z1‖ − αẑ0)α(y0 − c) + αẑ0(αẑ0 − ‖z1‖) + (y0 − ẑ0 − c)(z0 − ẑ0 − c)
= α(‖z1‖ − αẑ0)(y0 − ẑ0 − c) + (y0 − ẑ0 − c)(z0 − ẑ0 − c)
= (y0 − ẑ0 − c) (α(‖z1‖ − αẑ0) + z0 − ẑ0 − c)
= (y0 − ẑ0 − c)(z0 − c+ α‖z1‖ − 2ẑ0) = (y0 − ẑ0 − c)(2ατ − 2ατ) = 0
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