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DC-DistADMM:ADMM Algorithm for Constrained
Optimization over Directed Graphs

Vivek Khatana' and Murti V. Salapaka'

Abstract—This article reports an algorithm for multi-agent
distributed optimization problems with a common decision
variable, local linear equality and inequality constraints and set
constraints with convergence rate guarantees. The algorithm
accrues all the benefits of the Alternating Direction Method of
Multipliers (ADMM) approach. It also overcomes the limitations
of existing methods on convex optimization problems with linear
inequality, equality and set constraints by allowing directed
communication topologies. Moreover, the algorithm can be
synthesized distributively. The developed algorithm has: (i) a
O(1/k) rate of convergence, where k is the iteration counter,
when individual functions are convex but not-necessarily
differentiable, and (ii) a geometric rate of convergence to any
arbitrary small neighborhood of the optimal solution, when
the objective functions are smooth and restricted strongly
convex at the optimal solution. The efficacy of the algorithm
is evaluated by a comparison with state-of-the-art constrained
optimization algorithms in solving a constrained distributed
{,-regularized logistic regression problem, and unconstrained
optimization algorithms in solving a /;-regularized Huber
loss minimization problem. Additionally, a comparison of the
algorithm’s performance with other algorithms in the literature
that utilize multiple communication steps is provided.

keywords: Distributed optimization, constrained optimization,
alternating direction method of multipliers (ADMM), directed
graphs, multi-agent networks, finite-time consensus.

I. INTRODUCTION

Consider a group of n agents connected through a directed
graph, G(V, &), where V and & are the set of vertices and
directed edges respectively. Each agent can transmit informa-
tion to other agents restricted by the directed graph G(V, £); an
agent ¢ can transmit to agent j if a directed link ¢ — j exists
in £. The agents focus on solving the following distributed
optimization problem:

mi;lei%})ize f(i) =>r, ﬁ(j) (D

n
subject to C;Z =¢;, D;z <d;, VieV, z€ (| &,
i=1
where, x € RP? is a global optimization variable. fi:RF 5 R
is the local objective function of agent :. X; is a con-
vex constraint set associated with the variables of agent <.
C;T = ¢; with C; € R™*P ¢, € R™ and D;x < d; with
D; € R™2*P_d, € R™2 are the local equality and inequality
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constraints of agent ¢. Many problems in various engineering
fields such as wireless systems, multi-agent coordination and
control [1], and machine learning [2] can be posed in the
form of problem (IJ). Unlike a class of distributed optimization
problems that involve global coupling constraints (see for
example [3]-[5]), in problem (E]) agents seeks to determine
a common solution z that is required to be known by each
agent.

Early works on the distributed optimization problem can
be found in seminal papers [6], [7]. Current approaches for
solving optimization problems can be broadly classified as: (i)
primal methods, that update the agent estimates of the solution
by utilizing a step-size rule based on the gradient information
(at the current estimate) of the objective function to steer
towards the optimal solution, and (ii) dual based optimization
methods that employ Lagrange multipliers. For optimization
problems that are unconstrained (with no equality, inequality
and set constraints in problem @)), examples [8]-[|12] (and ref-
erences therein) take a primal based approach, whereas [13]]—
[20] take a dual based approach. Articles [[14]|—[20] motivated
by the advantages of parallelizability and good convergence
results, (see [21]]) adopt the Alternating Direction Method of
Multipliers (ADMM) dual based approach; reference [14] pro-
posed ADMM based algorithm for convex objective functions
with an O(1/k) rate of convergence, [15], [16] established
linear rate of convergence with globally strongly convex ob-
jective functions, [[18] is based on minimizing a proximal first-
order approximation of smooth and globally strongly convex
functions and [[19]] provides a linear rate of convergence for a
twice continuously differentiable and locally strongly convex
functions. In contrast to the dual based approaches [|13[]—[20]]
for unconstrained problems, this article provides an algorithm
with provable convergence guarantees which is not restricted
by assumption of bi-directional (or undirected) communication
topologies and does not need centralized information for
designing the algorithm.

The works in [22]]-[36]] consider constrained distributed
optimization problems similar to (I). For solving constrained
convex optimization problems of the form (I} distributively,
many of the existing state-of-the-art algorithms [22[]—[33]]
utilize primal algorithms based on projections onto the con-
straint set and the (sub)-gradient information of the individual
objective functions. Here, [27]-[29], [31], [34]-[36] focus only
on set constraints; equality constraints are considered in [26],
[30] while inequality constraints are the focus in [22]-[26],
[32]], [33]]. To establish convergence, the article [25]] assumes
the differentiability of the individual objective functions. The
assumption of individual functions being Lipschitz continuous



and convex quadratic over the constraint set is required in
[28]]. Articles [29] and [32] require the assumption of the
set on which gradient of the individual functions is zero to
be bounded and a compact optimal solution set respectively.
Twice continuous differentiability and bounded Hessian matrix
for the individual functions is assumed in [30]]. The articles
[31], [33]], require bounded (sub)-gradients. In contrast to the
assumptions above in the primal based approaches in [22]-
[33], the method reported in this article does not require
differentiability nor does it require bounded (sub)gradients.
Articles [22[]-[33] establish convergence to an optimal solu-
tion; however, unlike the focus of this article, no convergence
rate/iteration complexity estimates are determined. Moreover,
this article is based on ADMM and thus accrues its advantages;
ADMM is shown to have better empirical performance than
the primal (projected) sub-gradient methods [[13]].

References [34]-[36] utilize a primal-dual approach for
constrained problems. Here, [35] requires bounded (sub)-
gradients to establish an O(k~1/%) rate of convergence for
the objective function residual and [36] does not establish
rate of convergence in the presence of constraints. As alluded
to earlier, ADMM based approach (which is a Lagrangian
dual based approach) has several advantages ([13]]); however,
results on distributed constrained optimization problems using
ADMM are sparse. Here [34] which considers dual ADMM-
like method does not provide a convergence rate/iteration
complexity analysis.

Note that most existing constrained optimization schemes
[22]-[32]], [34]-[36] are designed using centralized informa-
tion and work under the assumption of bi-directional (or undi-
rected) communication networks. Moreover, the algorithms
in [22], [23], [25]-128], [33], [35], [36] are continuous-
time algorithms that pose the need for further analysis under
discretization schemes needed for implementation. Compared
to these our proposed algorithm is based on discrete-time iter-
ations which can be easily implemented in a practical setting.
However, unlike some existing work in the literature [23]], [24]],
in the current work we do not consider nonlinear inequality
constraints and time-varying graphs. We now summarize the
discussion above to delineate the main contribution of the
article as follows.

The main contribution of the article is an ADMM based algo-
rithm called Directed Constrained-Distributed Alternating
Direction Method of Multipliers (DC-DistADMM) that
solves problem (I). The novel features of the algorithm
for unconstrained and constrained optimization problems are
summarized below:

(i) With respect to unconstrained optimization problems,
DC-DistADMM is a Lagrangian dual based algorithm:
1. that accommodates directed graphs allowing for non
symmetric communication topologies. This feature con-
siderably widens the applicability as in most application
scenarios, agents do not have the same range of com-
munication.
2. that is amenable to distributed synthesis scenarios and
extends the applicability of ADMM method to applica-
tions where a plug and play operation is required [37],

[38] (distributed synthesis is detailed in Appendix [A).
The DC-DistADMM algorithm has column stochastic
updates and does not require the agents to know global
network interconnection information.
(i) With respect to the constrained optimization problems,
DC-DistADMM algorithm:
1. is a Lagrangian dual based algorithm for con-
strained optimization problems that accommodates di-
rected graphs and allows for distributed synthesis.
2. to the best of the authors’ knowledge DC-DistADMM
has the best convergence rates in the constrained opti-
mization literature. Most works [22]-[34]], [36] do not
provide convergence rate guarantees while the article
[35] provides a worse one. The DC-DistADMM algo-
rithm converges to an optimal solution of problem (TJ
under mild assumptions (Theorem 3. The algorithm has
a O(1/k) rate of convergence, where k is the iteration
counter, when the individual functions f; are convex
but not-necessarily differentiable. It has a geometric
rate of convergence to any arbitrary neighborhood of
the optimal solution when the objective functions are
smooth and restricted strongly convex at the optimal
solution of problem (I). DC-DistADMM does not re-
quire the individual functions f; to be differentiable
for convergence to an optimal solution neither bounded
sub-gradients and globally strongly convex or twice
continuously differentiable is assumed for the derivation
of convergence rate estimates unlike existing analysis in
the literature (see [11]], [15], [16], [19], [25], [28]-[33],
1350, 139D).
ADMM based approaches and more generally La-
grangian dual based approaches for distributed con-
strained problems involve in each iteration an informa-
tion mixing step among agents and a step that improves
the objective. An important technical contribution of the
article is that it transforms the original problem to
an equivalent problem (see (7)) that allows for carrying
out almost complete mixing via any consensus strategy
for the information mixing step to be followed by the
objective improvement step. This reformulation with its
advantages is being employed by other groups including
works in articles [40]-[42] and [43] with consensus
strategies other than the one employed in this article.
The total number of communication steps for
DC-DistADMM by the k'" iterate is within a factor of
log k of the optimal lower bound in obtaining a O(1/k)
rate of convergence. Empirical data corroborates that
DC-DistADMM, with respect to the computational
performance, outperforms other distributed constrained
and unconstrained optimization approaches.

(iii)

(iv)

The authors have introduced a preliminary version [44] of the
method developed here termed as D-DistADMM. The current
work presents a significant generalization, DC—DistADMM,
where a constrained distributed optimization problem is con-
sidered. The constrained optimization problem poses signif-
icant technical challenges over the unconstrained case; here,
stronger and more comprehensive results under less restrictive



assumptions are established. In contrast to [44] this article
provides the convergence rate guarantees, establishes upper
bounds on the total communication steps required for achiev-
ing the convergence rate estimates (remarks [2] and [5), and
validation of the DC-DistADMM algorithm’s applicability
using detailed numerical tests and comparison with other state-
of-the-art algorithms is provided.

The rest of the article is organized as follows. In Section [I]
the problem under consideration is discussed in detail and
some basic definitions and notations used in the article are
presented. Section [lII| presents the DC—DistADMM algorithm
along with the finite-time e-consensus protocol in detail; and
provide supporting analysis for the e-consensus protocol. The
convergence analysis of the proposed algorithm is provided
in Section In Section numerical simulations compar-
ing the existing state-of-the-art methods and DC—DistADMM
algorithm in solving: (i) a ¢; regularized distributed logistic
regression problem and (ii) a ¢; regularized distributed Huber
loss minimization problem, are provided. The comparison
results verify theoretical claims and provide a discussion on
the effectiveness and suitability of the proposed algorithm.
Section provides the concluding remarks and discusses
some future work.

II. DEFINITIONS, PROBLEM FORMULATION AND
ASSUMPTIONS

A. Definition, Notations and Assumptions

In this section, definitions and notations that are used later
in the analysis are presented. Detailed description of most of
these notions can be found in [45]-[47].

Definition 1. (Directed Graph) A directed graph G is a pair
(V,E) where V is a set of vertices (or nodes) and € is a set
of edges, which are ordered subsets of two distinct elements
of V. If an edge from j € V to i € V exists then it is denoted
as (i,5) € €.

Definition 2. (Strongly Connected Graph) A directed graph
is strongly connected if for any pair (i,7), i # j, there is a
directed path from node i to node j.

Definition 3. (Column-Stochastic Matrix) A matrix M =
[mi;] € R™ "™ is called a column-stochastic matrix if 0 <
mi; <land Y . miy;=1foralll1<ij<n.

Definition 4. (Diameter of a Graph) The diameter of a
directed graph G(V,E) is the longest shortest directed path
between any two nodes in the the graph.

Definition 5. (In-Neighborhood) The set of in-neighbors of
node i € V is called the in-neighborhood of node © and is
denoted by N~ = {j | (i,j) € €} not including the node 1.

Definition 6. (Out-Neighborhood) The set of out-neighbors of
node i € V is called the out-neighborhood of node i and is
denoted by N;" = {j | (j,i) € €} not including the node i.

Definition 7. (Lipschitz Differentiability) A differentiable func-
tion f : RP — R is called Lipschitz differentiable with

constant L > 0, if the following inequality holds:
IVf(x) = Vi)l < Lllz—yll, Vz,y € R

Definition 8. (Restricted Strongly Convex Function [48]])
Given, T € RP,C C RP, a differentiable convex function
f : RP — R is called restricted strongly convex with respect
to T on C with parameter o > 0, if the following inequality
holds:

(Vf(x) =V @),z —2)>olz—7Z|? Vel

Definition 9. (Diameter of a set) For a norm || - || and a set
K C RP define the diameter of K with respect to the norm
[ -1, diamy. (K) := sup [lz—yll.

r,ye K

Definition 10. (Affine hull of a set) The affine hull Aff(X) of
a set X is the set of all affine combinations of elements of X,

AfF(X) = {zle Oizi | k>0, € X,0, e R, 0, = 1} .

Definition 11. (Relative interior of a set) Let X C R™. A
point x € X is in the relative interior of X, if X contains
the intersection of a small enough ball centered at x with the
Aff(X), that is, there exists v > 0 such that

B, (¢) N A(X) = {y | y € AF(X), |y — ]| <1} C X.

The set of all relative interior points of X is called its relative
interior denoted by relint(X).

Throughout the article, vectors are assumed to be column
vectors unless stated otherwise. Each agent ¢ € )V maintains
two local primal variables ¥ € R(™+P) yF ¢ R(M+P)
and two dual variables \¥ € RM*P) k¢ R™ at all
iterations k& > 0 of the DC-DistADMM algorithm. x* =
R A S O 7 S VAl =
Rr(m+p) Ak = [\ET AET O \ET|T ¢ RoOmH) | and gk =
[u’fT u’QCT .. .,uf:]T € R™™ respectively. D denotes an upper
bound on the diameter of the graph G(V,&). R, denotes
the non-negative sub-space of R™, ||.|| denotes the 2-norm
of the vector input unless stated otherwise and [.] denotes
the least integer function or the ceiling function, defined as:
given z € R, [z] = min{m € Z|m > z}, where Z is the set
of integers. Given a set S, the indicator function of set S is

defined as:
0 ifres
Is(z) = { )
+oo otherwise.

B. Problem Formulation

Consider the slack variable Z, and re-write the inequality
constraint D,z < d; as,

[D; 1] [“”] =d;, B, = 0, Vi€V,

Ts

where, I is the identity matrix of appropriate dimension.
Let z = [#" #]]T € ROU™P), Using the notation and the



definition of the indicator function of R, problem (I) can be
rewritten as:

minimize Y7 [fi(%) + Iry, (%)) 2)

TERP

subject to A;x =b;, VieV, € (| X,

=1

where, A; := [C; + D; I}[ﬂ, b; := ¢; + d;. Problem is
recast by creating local copies x; for all ¢ € V, of the global
variable  and imposing the agreement of the solutions of all
the agents via consensus constraint. This leads to an equivalent
formulation of () as described below:

minimize 334 [fi(F:) + Trz, (7,)] 3)
subject to A;x; = by, T; € Xy, Vi€V,
x; = x5, Vi,j €V,
The constraints z; € X; can be integrated into the objective
function using the indicator functions of the sets A, as:

minimize Y., fi(x;) 4)

subject to A;x; = b;, Vi €V,

x; =xj, Vi,j €V,
where, fi(z;) := fi(&;) + Irm (&s,) + Lx, (&) and Ly, is the

indicator function of set X;. ~
Let, Cp:={y =[y] ...y, )" € R""™P) such that

lyi =yl <2m,1<ij<n}, (5
to be a set of vectors y € R™™*P) such that the norm of the
difference between any two (m + p) dimensional sub-vectors

of y is less than 7. Using definition of set C,, @) is equivalent
to:

minimize >0, fi(x;) (6)
subject to A;x; = by, Vi €V,
T.T T

x=[rjzg ...2,]" , x=y, y € Co.

Problem (0) can be reformulated as:
minimize 21;1 filxs) + Iy (y) @)
subject to A;x; =b;, Vi €V,

T,.T mr

X:[xllé"'xn y X=Y,

where, Z¢, is the indicator function of the set Cy.

C. Standard ADMM Method
Here a brief review of the standard ADMM method [13]]
utilized to solve optimization problems of the following form:
L 3
minimize (@) +9(y) (8)
subject to Sz + Ty = ¢,

where, S € R"*P T € R"*¢, and ¢ € R" is provided. Con-
sider, the augmented Lagrangian with the Lagrange multiplier
A and positive scalar -,

Ly(z,y, ) = f(z) + g(y) + AT (Sz + Ty — ¢)
+ 2|Sz + Ty —c|®. (9

Iwithout loss of generality here we assume m; = mz = m.

The primal and dual variable updates in ADMM are given as:
starting with the initial guess (2°,4°, \?), at each iteration,

zF = argminﬁv(:ﬂ,yk, AF) (10)

y" ! = argmin £, (zF 11y, AF) (11)
y

)\k+1 — )\k + ,Y(Skarl + Tyk+1 _ c). (12)

III. THE PROPOSED DC-D1sTADMM METHOD
Define F(x) := > i, fi(2:), A:==1I® A;;i=1,...,n,€
RrmXn(m+p) where Iis n X n identity matrix and ® denote
the matrix Kronecker product, and b := [b] ...b!]T € R"™,
The Lagrangian function £ for problem is given by:

L(x,y, A1) = F(x) + e, (y) + AT (x —y)
+ 41" (Ax—b). (13)
Note that the standard augmented Lagrangian associated
with (7) at any iteration % is:
Lo (xM, P N i) = LR,y N i) + 3 1xE = )2
+ Z[|Ax — b|2. (14)
Based on ADMM iterations (I0)-(I2) the primal and dual
updates corresponding to augmented Lagrangian (I4) are:

x**1 = argmin {F(x) + M (x—y*) + T (Ax — b)

+ 3lx = y*I? + 3l Ax - b|12 . (15)

Note that the above x**! update can be obtained in a
decentralized manner by computation at each agent as follows:

2t —argmin { filws) + M (2 — oF) + b (Aias - by)

Zi

+ Fllz — gH1P + Fll A — bil2} v e V. (16)

The update for the primal variable y is given as:

— . T
y* ! = argmin {Ico (y) + \F (M —y) + %kaﬂ - Y||2}
y

—argmin {Te, (y) + %1~y + LAk,
Yy

a7

The ¥**! update in l) is the projection of x**1 + L)\F on
the set Cp. It can be verified (see Appendix B) that

= [yk“T . .@kHT]T € R™"™+P) where,
- k
g = %Z?:l[xiJrl + %/\f]a

is the solution of the update (I7). However, obtaining the
optimal solution (the exact average of the local variables)
in a distributive manner over a directed network where each
agent only has access to its own local information is a
challenge. Hence, the exact consensus constraint is relaxed to
a requirement of a 7y 1-closeness among the variables of all
the agents, i.e., the solution y’erl is allowed to lie in the set
Cip,, and satisfy [jyft — y;.”lH < 2np11,Yi,5 € V. The
parameter 7,41 can be interpreted as a specified tolerance
on the quality of consensus among the agent variables and

yk%l»l (18)



can be chosen appropriately to find a corresponding near
optimal solution of (T7). A distributed finite-time terminated
approximate consensus protocol is employed to find an inexact
solution of (17)), such that the obtained solution y*+! € C. ;.
The "approximate" consensus protocol is discussed in detail
in the next section (section [[II-A).

After the primal variables, each agent updates the dual vari-
ables in the following manner:

A= N (@t =yt Vie y, (19)
Pt = b (A — b)), Vi e V. (20)
~k+1 . —k+1
Define \;  based on the solution y
Xf“ =\ (T gt i e V. (21)

Next, the e-consensus protocol is described.

A. Finite-time e-consensus protocol

Here, a finite-time "approximate" consensus protocol called
the e-consensus protocol is presented. The protocol was first
proposed in an earlier work [49] by the authors. Consider,
a set of n agents connected via a directed graph G(V,¢&).
Every agent i has a vector u{ € RF. Let u = + >  u?
denote the average of the vectors. The objective is to design a
distributed protocol such that the agents are able to compute
an approximate estimate of u in finite-time. This approximate
estimate is parametrized by a tolerance ¢ that can be chosen
arbitrarily small to make the estimate as precise as needed. To
this end, the agents maintain state variables uf € RP,vF € R
that undergo the following update: for k£ > 0,

k

’Uf"”l — p“’l)f: + Z]’E/\/'z_ ngvf (23)
wit = ru™, (24)

i

where, w = uf, v =1 forall i € V and N~ denotes the set
of in-neighbors of agent i. The updates (22))-(24) are based on
the push-sum (or ratio consensus) updates (see [S0|] or [51]]).
The following assumption on the graph G(V,€) and weight
matrix P is made:

Assumption 1. The directed graph G(V,E) is strongly-
connected. Let the weighted adjacency matrix P = [p;j],
associated with the digraph G(V, &), be column-stochastic.

Note that P being a column stochastic matrix allows for a
distributed synthesis of the consensus protocol. The variable
wk € RP is an estimate of & with each agent i at any iteration
k. Tt is established in prior work that the vector estimates w’

converge to the average u asymptotically.

Theorem 1. Let Assumption |I| hold. Let {w¥}>o be the

sequence generated by at each agent i € V. Then wf

asymptotically converges to 1 = + Z?:l ul foralli €V, ie.,
lim wf =230 W, forallieV.

k—o0

Proof. Refer [49], [50] for the proof. O

The e-consensus protocol is a distributed algorithm to deter-
mine when the agent states w¥, for all i € V are e-close to
each other and hence from Theorem [I} e-close to u. To this
end, each agent maintains a scalar Value R; termed as the
radius of agent . The motivation behind maintaining such a
radius variable is as follows: consider an open ball at iteration
k that encloses all the agent states, w¥, for all i € V, with
a minimal radius (the existence of such a ball can be shown
due to bounded nature of the updates (22| see Lemma
4.2 in [52]). Theoreml guarantees that all the agent states w’
converge to a single vector, which implies that the minimal ball
enclosing all the states will also shrink with iteration k£ and
eventually the radius will become zero. The radius variable R;
is designed to track the radius of this minimal ball. Starting
at an iteration s, the radius R¥(s) is updated to R¥*1(s) as
follows: for all kK =0,1,2..., with R?(s) =0,

R{TH(s) = max;c - {[Jwi ™ —wi ™| + Ri(s)}, (25)
for all i € V. Denote, B(w;** RF(s)) as the ball of ra-
dius RF(s) centered at wi™". It is established in [49] that,
after D number of iterations of the update (23) the ball
B(w;™, RP(s)) encloses the states w; of all the agents
teV.

Lemma 1. Let {wF},>o be the sequence generated by
at each agent i € V. Given, s > 0, let Rf(s) be updated as
in ([23) for all k > 0 and i € V. Under Assumption

ws € B(w;**,RP(s)), forall j,i€ V.
Proof. See Appendix C. O

m=0,1,2,..., (26)

where, RF(s) follows the update rule for any s > 0.
The next result establishes the fact that the sequence of radii
{RP(mD)} >0, for i € V converges to zero as m — oo.

Let, R := RP(mD),

Theorem 2. Let {w!} >0, {R7"} >0 be the sequences gen-
erated by (24) and (26) respectively. Under Assumption [I)

lim,, 00 R =0, foralli e V.

Further, lgnOO R =0 if and only lf hm max; jey |[wiP
wp) <.

Proof. See Appendix D. O

Theorem [2] gives a criterion for termination of the consensus
iterations (22)-(24) by utilizing the radius updates at each
agent ¢ € )V given by (23). In particular, by tracking the radii
R, m =0,1,2... each agent can determine an estimate of
the radius of the minimal ball enclosing all the agent states
(Lemma distributively. Further, monitoring the value of the
R™ m =0,1,2... each agent can have the knowledge of the
state of consensus among all the agents. A protocol to deter-
mine e-consensus among the agents is given in Algorithm [T}
Algorithm E] is initialized with w? = u{,vY =1 and RO = 0
respectively for all 7 € V. Each agent follows rules
and to update its state and radius variables respectively.
RF is reset at each iteration of the form k& = mD,m =



Algorithm 1: Finite-time e-consensus protocol at each
node 7 € V [49]
Input:
Pre-specified tolerance € > 0O;
Diameter upper bound D;

Initialize:
0 0..0 _ 1. 1p0 _ 0.
wi =ug; v; =1; Ry =0;

m:=1
Repeat for £k =0,1,2,...
/* consensus updates () —() */
’U;f‘i’l = p”'LLiC + Z]’E/\[f pjlu‘l;

k+1 k k
U, = DiiV; + Z]‘EM_ Pjivj
k+1 k+1 ‘
wi+ = ﬁui+
/* radius update (25]) x/
BRI = max { [l —wl) + R}
JENT
if K = mD — 1 then
Rm 1 Rk+1
if Rm ! < ¢ then
‘ break // e-consensus achieved
else

‘ R = 0;
m=m+1;

end

1,2,... to have a value equal to 0. The sequence of radii
{R ”}m>0 is determined by setting the value Rm ! equal to
R} for all iterations of the form k = mD,m =1,2,...,
i€, Rm L R:-”D for all m > 1. From Lemma , the ball
B(wZ;”D, R™ 1) will contain all estimates w!™ " This ball
is the estimate of the minimal ball enclosing all agent states
wgmfl)p. Therefore, as a method to detect e-consensus, at
every iteration of the form mD, for m = 1,2,. Rm L

compared to the parameter e, if Rm ! < ¢ then all the agent
states wf P were e-close to @ (from Theorem (1) and the
iterations (22)-(24) are terminated. Proposition [I] establishes
that the e-consensus converges in finite number of iterations.

Proposition 1. Under the Assumption [I| e-consensus is
achieved in finite number of iterations at each agent i € V.

Proof. Note, R’” - 0 as m — oo. Thus, glven e>0,ieV
there exists finite k such that for m > k Rm <e. O

Note, that the radius estimates ]%;” can be different for some
of the agents. Thus, the detection of e-consensus can happen at
different iterations for some nodes. In order to, have a global
detection, each agent can generate "converged flag" indicating
its own detection. Such a flag signal can then be combined by
means of a distributed one-bit consensus updates (see [49]),
thus allowing the agents to achieve global e-consensus.

B. 'y variable updates in DC-DistADMM

The finite-time e-consensus protocol discussed above is
utilized to determine an inexact solution to the update (I7).
At any iteration k£ > 0 of the DC-DistADMM algorithm, each
agent 7 € V runs an e-consensus protocol with the tolerance
€ = ni+1 and the following initialization:

0 _ I’;CJrl + % )\f:’

Us

v? =1, and w? = 0. 27

K2

From Proposition |1} there exists finite ¢; such that Vi,j € V,
(28)

lw* =

ko

Wit || <, and fwt =G| <y,

LYt 4+ )\k] The variable y’“t+1
k

where, 7*t!
of agent 7 is then set equal to the consensus variable w;

Le. ka = w Therefore, the obtained vector y*+! =
T ] ] )
[yt 7~ . ,yk'H T € R™™+P) is an inexact solution to the

update 7) (see Appendix E). Further, y**! is \/nny1-close
to the exact solution yk“, ie.,

yk—i-l :yk’—&-l + €k+1’ with ||ek+1|| < \/ﬁnk-i—l-

The DC-DistADMM algorithm is presented in Algorithm [2]

(29)

IV. CONVERGENCE RESULTS FOR DC-D1 s TADMM

In this section, convergence result for the proposed
DC-DistADMM algorithm is presented. Let X := A} x --- X
X,,"RZ, = R7) x --- x RZ) and z* € RU™P) denote an

ti
optimal solution of Ii)r(;?;’lsem (T). Throughout the rest of the
paper the following assumptions hold:

Assumption 2. Each X; is a closed bounded convex set with
diameter diam.(X;) = M.

Note that Assumption [2] can be relaxed if the set of optimal
solutions of the original distributed problem (I) is bounded
(see [53]]); in this case the existence of a bound on the local
variables can be inferred from the bound on optimal solutions.
Here this route is not taken, as in many multi-agent distributed
optimization applications the variables are required to remain
within specified bounds. Assumption [2] is motivated by the
constraint set requirement in many practical applications.

Assumption 3. The function f;,i € {1,...,n}, is a proper
closed convex function, which is not necessarily differentiable.

Assumption 4. There exists a saddle point (x*,y*, \*, u*) for

the Lagrangian function L defined in , ie, forall (x,y) €

R(m+p) o Rr(m+p) (\p) € R(m+P)  R"™ ywhere,
L7, y", A p) < L5 y7, A7, 17) < L(x,y, A7, 1).

Note that since (/) is a convex optimization problem, the
existence of dual optimal solutions is guaranteed if a constraint

Algorithm 2: DC-DistADMM Algorithm

Input:
| choose v > 0, {nx}r>0

Initialize:

z) € R g0 € R A0 = 0,04, € ROP) 1) €
R™,VieV

Repeat for £k =0,1,2,...

for i = 1,2,...n, (In parallel) do

>
zi ! = argmin {fi(ﬂﬁz‘) +AF (@ —yl) +
z;
i
yellP + uf (Aizi = b)) + 3| Asws — biHQ},
consensus protocol
MNk+1 - P ( k+1 + %)\f)

)\Z-‘rl — )\k _"_’y( k+l yfz-’—l
U (A b))

gl =

k+1

end
until a stopping criterion is met




qualification condition like Slater’s CQ holds for problem

[47]. Note that the indicator function of a set is a convex

but not differentiable function. For further analysis of the

DC-DistADMM algorithm consider the following relation: for
T1,T2,T3, T4 € RP

(21— x2) " (z3 — 34) = 5 (lz1 — za4])® = ||21 — 23]?)

+ 2 (llz2 — 23] = lz2 — 24)?).  (30)

Under Assumption [3 the first-order optimality and primal
feasibility conditions for are:

— AiTpr € 0fi(xy), i=1,2,...,m, 31)
N € 0Zc, (y*), (32)
=y, i=1,2,...,n, (33)

At —b;=0,i=1,2,....,n (34)

where, Of;(z) and 0Z¢,(y*) are the set of all the sub-
gradients of f; at =}, and Z¢, at y* respectively. Similarly, for
the DC-DistADMM updates (16), and by the first-order

optimality condition t follows that, for all ¢ € {1,...,n}:
= O+ A T (2 =) AT (AT = b))
€ofix™), (39

=W @ ) + AT € 0fi@), (36)
(M -y +A’f € 0Z¢, (Y1)
'€ 0Te, (M), (37

where, 0Z¢, (¥ ’”‘1) is the set of all sub- gradlents of Z¢, at
y**1. The relation (36) results from combining (35) with the

update (I9), and in (37] . 9) is employed.

Lemma 2. Let {x*}i>1, {y*} es1, {Nhis1, and {pF i1,
be the sequences generated by Algorithm@ Let {ny}r>1 be the
sequence of tolerances in Algorithm [2} Under assumptions [I|
and |2} there exists Q, independent of k, such that,

INF|| < kQ, for all k.
Proof. See Appendix F. O

=>>\

Lemma 3 (Iteration complexity of the y**! update ).
Under assumptions [I|and 2] at iteration k of Algorithm 2] after
. log (ﬁ) log (UM 1=t vmQ/) )
k= —log«

+ iterations of

—log«

the consensus protocol (updates (22)-([24)) with the initial
condition, u) = xk‘H 1)\;“, W =1, forall i €V and

1
€ = Ngy1 it follows that:

lyf =T < s, ViE V.

Here, M := maxi<j<n M;, Ni41 denotes the inaccuracy
introduced in solving relaxed version of problem ([7), Q
is a finite constant as given in Lemma and f > 0,
a € (0 1) are parameters of the graph G(V,&) satisfying
B> La<(1-25).

Proof. See Appendix G. O

Let the sequence of accuracy tolerances {ny}r>1 in Algo-
rithm 2] be such that

for all k > 0,151 < iy Yoy ki < 00. (38)

Some examples of sequences that satisfy (38) include:

. . e k
D)k = 2, q > 0, i) me = p¥, p € (0,1), i) ny = 4.

In the following, the global convergence of the proposed
DC-DistADMM algorithm to a solution of problem is
established.

Theorem 3 (Convergence of iterates generated by
DC-DistADMM algorithm to an optimal solution). Let
{xk}k>1, {yk}k>1, {)\k}k>1, {u¥ }i>1, be the sequences gen-
erated by Algorithm [2] Let the consensus tolerance sequence
{nk }e>1 satisfy @) Under assumptlons xF, yk AR )
converges to a solution (x>, y® A® u ) of (@ ie.,
F(x>®) =F(x*),y™ € Cp, x> =y, and Ax>* = b.

Proof. See Appendix O

Next two estimates of rate of convergence for the proposed
DC-DistADMM algorithm are provided.

A. Sub-linear Rate of Convergence

Here, the convergence of the proposed DC-DistADMM
algorithm for the case when individual functions f; are convex
but not necessarily differentiable is analyzed.

Theorem 4 (Sub-linear rate of convergence). Let {x"};>1,
{y*}is1, {N}es1, and {pF}i>1, be the sequences generated
by Algorithm@ Let ny, = k%ﬂ, q € (0,1). Let assumptions
hold, then for all k > 1,

F(x) - F(x*) = O(1/k), %" —5"||=0(1/k),
and, ||AX* —b| = O(1/k).
where, X¥ := %Zi x5t gk =1 ZS Syt
Proof. See Appendix O

Theorem [ establishes that the objective function evaluated at
the ergodic average of the optimization variables obtained by
the proposed DC—-DistADMM algorithm converges to the opti-
mal value. In particular, the objective function value evaluated
at the ergodic average converges to the optimal value at a rate
of O(1/k).

Remark 1. Let, & = kzs cxs and §F =
denote the ergodtc averages of the variables T

ch:sOlg

and yF.

Since, — ¥*|Il = O(1/k) it implies that for all i €
V, |2k - ny = O(1/k). Further, since, for all k > 0
and i,j € V,|lyF — ny < N (see ) it implies that
~k k—1 s _ 8| < 1 -1 < ((2+q)
|97 y] Al < kZ —o lu; yg” < p2sols S 25
Thus, ||jF — ¥; k|| = O(1/k). Therefore, for all i,5 €V,
|2 —mkH = O(1/k) and lim ||z¥ —jcfH =0.
k— oo

Thus, in practice, the DC—-DistADMM algorithm can be im-
plemented with an additional variable &% tracking the ergodic
average of x¥ at each agent i € V to achieve a consensual
solution at the O(1/k) rate of convergence given in TheoremH|
in a fully distributed manner. Note, that the variable &% is
computed locally by each agent without any additional cost of
communication and a minor addition in cost of computation.



Remark 2. By Lemma|3|the total number of communication it-
erations performed until iteration k of the DC-DistADMM al-
gorithm in Theorem H is upper bounded by K := 25:1 ty =
O(klogk). The communication complexity is within a factor
of log k of the optimal lower bound O(k).

B. Geometric rate of Convergence

Here, a geometric rate of convergence for the proposed
DC-DistADMM algorithm under the following assumption is
established:

Assumption 5. Each function ﬁ is Lipschitz differentiable
with constant Ly, and restricted strongly convex with respect
to the optimal solution x* on X; with parameter o; > 0.

Remark 3. Under Assumption | the problem (1)) has a unique
optimal solution. However, Assumption [3] is less restrictive
than the standard global strong convexity assumption and
makes the analysis presented here applicable to a bigger
class of functions [54)]. For example, the widely used logistic
regression objective function is restricted strongly convex but
not globally strongly convex [55]].

Theorem 5 (Geometric rate of convergence). Let {x"};>1,
{y*}is1, {N}e>1, and {u*}i>1, be the sequences generated
by Algorithm 2 Let assumptions [I|2J4) and [5] hold. Let A :=
(1—3) min{1, vmin (AAT)} forany § € (1, 1+L§Lﬁwg] , where
L := maxi<ij<p Ly, 0 := mini<i<y 05, and Venin(AAT) is
the minimum eigenvalue of AA". Let n, = p¥*, where, p €
[ﬁ, 1). Let x} € relint(X; x RY,), Vi € V, k > 0. Then the
agent solution residual sj, := % |x* —x*||? + % | AE—A*]|2 +
%Hﬂk — p*||? has the following relation: for any K > 0 and
e >0,

s < TpK 4+ 0(e),

where, T is a finite constant defined in (63).
Proof. See Appendix [J| O

Remark 4. Although, Theorem[3|provides a tight bound on the
requirement of p, in practice the tolerance sequence parameter
p can be chosen from the interval [%, 1) which does not require
the knowledge of the restricted strong convexity parameter o;
of the individual functions and the optimal solution x*. We
explain this below:

From the definition of A we have, A < (1 —1/6). Using the
condition on § in Theorem |5 we get,

L? 242
| <o< Lty H 20y
L2+72
1 L2 2
1>,2i
0~ L2+ ~%2+ 20y
1 L2 2
_1<_,§_$
1) L2 +~2 + 207
1 207y 1 1
0<1—-—=X< = < -,
0T L2 +20y LT 72

where, the last inequality follows from the AM-GM inequality

and the fact that L > o. Thus, for ﬁ = (1 + (1 — %))71
2 1

—< 1.
3SA+1 S

Note that the p € [ﬁ,l). Thus, p € [%,1). We have
utilized p = 0.75 (and hence, n,, = 0.75%) in the numerical
simulations presented in the article (see Section [V). The
simulation results demonstrate the theory’s applicability and
show good performance for the DC—DistADMM algorithm

with p=0.75 € [2,1).

Remark 5. By Lemma[3|the total number of communication it-
erations performed until iteration k of the DC—DistADMM al-
gorithm in Theorem 5| is upper bounded by K := Zle ts =
O(Kk?). Thus, compared to Theorem M| the improved rate of
convergence leads to an increase in the number of communica-
tion iterations (Remark [2). Moreover, compared to algorithms
utilizing multiple communication steps in the literature [12)],
[56|]-[62)] the DC-DistADMM algorithm has the same com-
munication complexity. In particular, methods in [56|]]-[58]
have communication complexity, O(k?), in getting a geometric
rate. Schemes proposed in [12]], [59]-[62|]] have the same,
O(klogk), communication complexity in getting a O(1/k)
rate of convergence.

Remark 6. The geometric rate of convergence for
DC-DistADMM algorithm does not follow from the existing
centralized results (see [63], [|64|]]) as problem ([Z) does not
satisfy the assumptions used in these works. In particular, the
Sfunction I, (y) is not differentiable and does not meet the
requirements of being global Lipschitz diffferentiable, twice
continuously differentiable and strongly convex used in [63)],
[l64)]. Further, unlike [63], [64)], the y variable update in the
ADMM scheme of DC-DistADMM algorithm in an inexact
manner is solved via the e-consensus protocol that adds
additional complexities in the analysis. These reasons have
motivated us to present the analysis of the DC—-DistADMM
given in Theorem [3

V. NUMERICAL SIMULATIONS

In this section, three simulation studies are presented for
the proposed DC—-DistADMM algorithm. First, a performance
comparison of the DC-DistADMM algorithm with two ex-
isting algorithms in the literature for solving constrained
distributed optimization problems, [30] and [24], in solving
a distributed ¢; regularized logistic regression with a local
linear equality and set (norm-ball) constraints is presented.

Second, a performance comparison of the DC—DistADMM
algorithm is provided for solving an unconstrained ¢; regular-
ized Huber loss minimization problem with the existing state-
of-the art unconstrained distributed optimization algorithms
on directed graphs. The algorithms used for comparison with
the proposed DC—-DistADMM algorithm are the following: (i)
EXTRAPush [[10], (ii) PushPull [11]], (iii) PushDIGing [65],
and (v) the subgradientPush [8|] algorithm.

Third, a comparison between DC-DistADMM algorithm
and two existing algorithms utilizing multiple communication



steps, [56] and [61] in solving the unconstrained distributed
least squares problem is presented.

A network of 100 agents connected via: (i) an undirected
graph generated using an Erdos-Renyi model [[66] with a
connectivity probability of 0.3 in simulation studies one and
three and (ii) a directed graph generated using an Erdos-Renyi
model with a connectivity probability of 0.2 in the simulation
study two is considered. The weight matrices for the various
algorithms are chosen using the equal neighbor model [67].
To provide a comparison, solution residual plots against the
total (computation + communication) iteration counts for all
the algorithms unless stated otherwise are presented. Further,
a comparison based on the CPU time (the amount of time
required by a computer (processor) to execute the instructions)
between DC—-DistADMM and the other algorithms is provided.

All the numerical examples in this section are implemented
in MATLAB, and run on a desktop computer with 16 GB
RAM and an Intel Core i7 processor running at 1.90 GHz. The
parameters used in the simulations for all the algorithms are
reported in Table[l] In choosing the step-sizes of the algorithms
in Table [[] we followed the approach of hand-optimizing the
hyper-parameters that produce good performance for these
algorithms while maintaining the stability of the algorithmic
estimates for the class of problems under consideration.

A. Performance on constrained optimization problem

Consider a ¢; regularized distributed logistic regression with
linear equality constraint and local inequality constraints:

minimize Y7 3707, log (14 exp( — yij(a5z))) + 0l|z(lx
subject to H;x = h;, «'x <r;, foralli eV, (39)

where, each agent i € V has n; data samples {(aij, yi;)};L;,
with, a;; € R being the feature vector and y;; € {—1,+1}
is the binary outcome (or class label) of the feature vector a;;.
The objective is to learn the weight vector z € R%° based on
the available data {(a;j,:;)}jZ,,4 € V such that x is sparse.
The parameter 6 enforces the sparsity in x. Further, the solu-
tion satisfy the linear equality constraints H;x = h;, where,
H; € R%90%3%0 Denote H := I ® H;,h = [h],...,h]]T.
Each agent i € V also has a local set constraint ="z < r;.
For our simulation we generate an instance of problem (39)
where each agent has n; = 10 data samples. Each feature
vector a;; € R0 and the ‘true’ weight vector Ty € R
are generated to have approximately 40% zero entries. The
non-zero entries of a;; and x4, are sampled independently
from the standard normal distribution. The class labels y;;
are generated using the equation: y;; = sign(a;;mtrue + di5),
where J;; is a normal random variable with zero mean and
variance 0.1. The parameter € is set to 0.16,,x, where 6, is
the critical value above which the solution z* = 0 (see [13]
section 11.2 for the calculation of 6,.¢). The value of r; in
the constraints is chosen as follows: the unconstrained version
of (B9) with a centralized solver and denote the solution as
ak. The constraint r; is set as r; = (1 + &;)z¥, where &;
is drawn from a uniform distribution on [0,1]. A value of
v = 10 is used for the Augmented Lagrangian. The entries of
each H; are sampled independently from the standard normal

distribution. The vector h;,¢ € V is calculated as h; = H;Zye.-
To solve (@]} using the DC-DistADMM algorithm, the fast
iterative shrinkage thresholding algorithm (FISTA) [68]] is used
for the updates (I6) at each agent i. A proximal residue
(difference between the output of the proximal minimization
step and the base-point of the proximal term) [68] is utilized
as a stopping criterion for FISTA. The FISTA iterations are
terminated when the proximal residue becomes less than
10~*. A fixed accuracy for FISTA is used at all iterations
of DC-DistADMM algorithm. For the updates the e-
consensus protocol with the tolerance ¢ set equal to a desired
level of inaccuracy 7 in the solution of is employed.
The results for three choices of the sequence {ng}r>1: (1)
e = 0.01, (i) nx = 1/k>1 and (iii) n = 0.75%, where, k is
the iteration counter are presented for Algorithm 2] Note, that
sequences (ii) and (iii) satisfy condition (38) and are utilized
to derive explicit rate of convergence for the DC—DistADMM
algorithm in theorems (4] and [5] Two existing algorithms
[30] and [24] (termed as Constrained Distributed Algorithm
1 (CDAI) and CDA?2 respectively for reference) for solving
constrained distributed optimization problems are compared
with the DC—DistADMM algorithm. Fig. [I] shows the plots of
consensus constraint residual (||x* — y*|| for DC-Dist ADMM
algorithm and ||x* — "7 | 2¥/n|| for CDA1 and CDA2) and
the equality constraint residual for the three algorithms with
respect to the total iterations. The DC—DistADMM performs
well as seen in Fig. [[(a). The consensus residual under
DC-DistADMM decreases to a value less than 10~% within
200 iterations for the choice 1, = 0.75F. Note, that the
constant 7, sequence also have good performance with a value
less than 102 within 200 iterations. The plots in Fig. b)
demonstrate the decrease in the equality constraint residual
|HX* —h||. Fig. 2| presents the trajectory of solution residuals
% with respect to the total iterations and the CPU
time (secs) for each algorithm. The proposed DC—DistADMM
algorithm outperforms the other two algorithms. The solution
residual for DC—DistADMM is lesser than CDA1 and CDA2
for all the three choices of the tolerance sequence 7 with
significant improvement with the choice 7, = 0.75"%. Note that
both CDA1 and CDA?2 cannot handle directed communication
topologies and need centralized synthesis for problem (39)
whereas DC-DistADMM does not.
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Fig. 1: (a) Comparison of consensus constraint residuals against total iterations
(including communication steps) between DC—DistADMM and constrained
optimization algorithms (b) Comparison of equality constraint residuals
against total iterations between DC—DistADMM and constrained optimization
algorithms. n* = 0.75% gives the best performance for the DC-DistADMM
algorithm in terms of the equality constraint residual. The DC-DistADMM
algorithm is second best in terms of the consensus constraints.
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Fig. 2: (a) Comparison of solution residuals against total iterations between
DC-DistADMM and constrained optimization algorithms (b) Comparison of
solution residuals against CPU time between DC—DistADMM and constrained
optimization algorithms. DC-DistADMM algorithm with n* = 0.75% has the
best decrease in the solution residual.

B. Performance on unconstrained optimization problem

In the second part of the numerical simulation study a
comparison of the proposed DC-DistADMM algorithm is
presented with some state-of-the art distributed optimization
algorithms for solving unconstrained optimization problems.
Consider the following ¢; regularized Huber loss minimization
problem:

minimize Y ., ®;(x) + 0|21, (40)

where, ®;(z) for all 7 is the standard Huber loss given by:

Bi(x) = $IDiz — di||?,  if |Diz — dyf| <1,
Each agent i € V has a measured data vector d; € R
and a scaling matrix D; € R199%25 The objective is to
estimate the unknown signal € R2?5. The entries of the
matrices D;,7 € )V and the observed data d; are sampled
independently from the standard normal distribution. The
true solution vector * has 70% non-zero entries which are
sampled from a standard normal distribution. A value of

0 = 3 is chosen for the regularization parameter. Here,
TABLE I: Algorithm parameters
ALGORITHM Parameter
DC-DistADMM tolerance n = 0.01, 1/lc2'1, 0.75%, v =10
CDAL [30] step-size o = 0.01
CDA2 [24] step-size a(k) = 1/k'2

EXTRAPush [10]
PushPull [11]
PushDIGing [65]
subgradientPush [8]
FDGD [61]
nearDGD [56]]

step-size o = 0.0009

step-size o = 0.05

step-size a = 0.001

step-size o = 0.005
step-size a = 0.01, B8(k) = k/(k + 3)

step-size a = 0.01
FISTA is employed to solve the sub-problem (I6) with the
same stopping criterion (proximal residue < 10~%) as in
the logistic regression problem. The update (I7) is solved
using e-consensus protocol with the tolerance 7, = 1/k?L.
The progression of the solution residual with respect to the
total iterations and the CPU time is presented in Fig. 3] In
Fig. B(a) plot of the solution residual with respect to the
algorithm iteration k (first curve) for the DC—-DistADMM
algorithm is also provided. The rationale for this is to provide
a comparison between DC—DistADMM and other algorithm
both with respect to algorithm iterations and total iterations.
It can be seen that the proposed DC-DistADMM algorithm

has a significantly better performance compared to other al-
gorithms with respect to the algorithm iterations. In particular,
solution residual decreases to a value of 10~% in less than 50
algorithm iterations of DC-DistADMM algorithm whereas the
second best method PushDIGing takes around 100 iterations
to reach the same solution residual. In terms of total iterations
the DC-DistADMM algorithm has acceptable performance.
The e-consensus protocol utilized at each iteration of the

107 = 10°
DC-DistADMM, Alg,. iter
DC-DistADMM, Total iter.| DC-DistADMM
o |—EXTRAPush |—EXTRAPush
0 |~ PushPull 107! |—PushPull
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‘* :1072 |~ subgradient Push S | subgradientPush
B I
< |= T T
LAY -
102 HIE
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(a) Iteration count (b) CPU Time(s)

Fig. 3: (a) Comparison of solution residuals against total iterations between
DC-DistADMM and unconstrained optimization algorithms (b) Comparison
of solution residuals against CPU time between DC—-DistADMM and uncon-
strained optimization algorithms. DC—-DistADMM algorithm performs the best
in terms of the CPU time while has acceptable performance with respect to
total iterations. DC—DistADMM has the best decrease in solution residual with
respect to algorithm iterations.

DC-DistADMM algorithm incurs additional consensus related
steps, however, the information mixing steps (22)-(23) have a
low computational footprint and do not significantly increase
the overall run time of the DC-DistADMM algorithm. This
is illustrated by the comparison between the algorithms based
on the required CPU time shown in Fig. [3{b). The residual
plots illustrate that DC—DistADMM algorithm performs better
in terms of the CPU time requirement compared to the other
methods to reach the same level of residual value.

C. Comparison with algorithms utilizing multiple communi-
cation steps

Here, a comparison with two unconstrained distributed
optimization algorithms that utilize multiple communication
steps, nearDGD [56] and the algorithm in [[61] (referred here
as Fast-DGD (FDGD)) is provided; the reader is directed to
[56], [61] for the motivations for multiple consensus steps. We
consider an unconstrained distributed least squares problem,

minimize % S 1D — di|2. 41

Here, each agent i € V has a measured data vector d; € R0
and a scaling matrix H; € R'09%25 The objective is to
estimate the unknown signal z € R?°. The entries of the
matrices D;,2 € )V and the observed data d; are sampled
independently from a standard normal distribution A(0,1).
The true signal z* also have entries that are sampled from
an i.i.d standard normal distribution. In this case, the sub-
problem (I6) takes a closed form solution which can be
readily computed by the first order optimality condition of
the unconstrained problem. The solution residuals obtained
while solving (@I using the three algorithms are presented
with respect to the total iterations and CPU time in Fig. [4] It
can be seen that the DC-DistADMM algorithm has the fastest
decrease in the solution residual. Fig. [5] presents the number
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Fig. 4: (a) Comparison of solution residuals against total iterations between
DC-DistADMM and algorithms utilizing multiple communication steps (b)
Comparison of solution residuals against CPU time between DC—-DistADMM
and algorithms utilizing multiple communication steps. 7, = 0.75* has
the best decrease in solution residual with respect to total iterations.
DC-DistADMM with a constant tolerance performs the best with respect to
CPU time.

of communication iterations utilized by the DC-DistADMM
algorithm while solving (@I) for the three error sequences
and the FDGD and nearDGD algorithms. The trend suggested
by Lemma [3] can be seen in the plots in Fig. [5] where the
number of communication iterations for the DC—DistADMM
algorithm increase as we tighten the accuracy. Note, the
sequence 7, = 1/k*! with convergence rate guarantees
provided by Lemma [] results in logarithmic increase in the
number of communication iterations and is a suitable choice
for getting good performance. The DC-DistADMM algorithm
with tolerance 1, = 0.01 and 7 = 1/k?! has lesser commu-
nication cost compared to the FDGD and nearDGD algorithms
while the FDGD has better communication complexity than
the DC-DistADMM algorithm with the tolerance 1, = 0.75"
as the number of iterations increase. Summarizing, the simu-
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Fig. 5: Comparison of the number of communication iterations performed by
DC-DistADMM algorithm for the three choices of 73 and the FDGD and
nearDGD algorithms. DC-DistADMM with 7, = 0.01 and 7, = 1/k%'1 has
lesser communication cost compared to the FDGD and nearDGD algorithms
while the FDGD has better communication complexity than DC-DistADMM
with 77, = 0.75% as the number of iterations increase.

lation results indicate that with respect to the state-of-the-art
constrained optimization problems DC-DistADMM provides
better performance while encompassing a large class of dis-
tributed optimization scenarios with linear equality, inequality
and set constraints. Even with respect to the state-of-the-
art unconstrained optimization frameworks, DC-DistADMM
algorithm provides better performance with respect to com-
putations (CPU time) and remains acceptable with respect to
total communication steps.

VI. CONCLUSION AND FUTURE WORK

In this article, a novel Directed-Distributed Alternating Di-
rection Method of Multipliers (DC—DistADMM) algorithm is

presented to solve constrained multi-agent optimization prob-
lems with local linear equality, inequality and set constraints
over general directed graphs. Moreover, the algorithm is suited
for distributed synthesis. The proposed algorithm, to the best
of authors’ knowledge, is the first ADMM based algorithm
to solve (un)constrained distributed optimization problems
over directed graphs. The DC—DistADMM algorithm combines
techniques used in Lagrangian dual based optimization meth-
ods along with the ideas in the average consensus literature.
In the DC-DistADMM algorithm, each agent solves a local
constrained convex optimization problem and utilizes a finite-
time e-consensus algorithm to update its estimate of the opti-
mal solution. The proposed DC—DistADMM algorithm enjoys
provable rate of convergence guarantees: (i) a O(1/k) rate of
convergence when the individual functions are convex but not-
necessarily differentiable, (ii) a geometric decrease to arbitrary
small neighborhood of the optimal solution when the objective
functions are smooth and restricted strongly convex at the
optimal solution. The proposed DC-DistADMM algorithm
eliminates the optimization step involving a primal variable
in the standard ADMM setup and replaces it with a less
computation intensive e-consensus protocol which makes it
more suitable for distributed multi-agent systems. To show the
efficacy of the DC-DistADMM algorithm numerical simula-
tion results comparing the performance of the DC—DistADMM
algorithm with the existing state-of-the-art algorithms in the
literature of solving constrained and unconstrained distributed
optimization problems are presented. A comparison of the
DC-DistADMM algorithm and two existing algorithms in the
literature utilizing multiple consensus steps is also provided.
Extension of the DC-DistADMM algorithmic framework to
networks with time-delays in communication [|69] between the
agents and time-varying connectivity among the agents [70]]
is a future work of this article.

APPENDIX

A. Distributed Synthesis

To explain the concept of distributed synthesis a simple
example in the context of distributed consensus/optimization
is presented here. Consider the undirected and directed graphs
with four nodes (agents) as shown in Fig.[6(a) and (b). Assume
that each agent ¢ = 1,...,4 updates its estimate 1); by taking
a weighted combination of its own prior estimate and the
information v; received from its neighbors j

: +
Le., 1/}1 - p“z/J’L + Zj:neighbors pZJz/]]

The update protocol {@2)) is called amenable to distributed
synthesis if the weights p;; can be decided by the agents
locally and independently without any coordination among

O O
00 00

Fig. 6: Example directed network

(42)



them. Let P = [p;;],4,7 € {1,...,4} be the weight matrix
with entries p;;,4,5 € {1,...,4} # 0 if and only if there
is an undirected (or a directed) edge between ¢ and j in
Fig. Eka) (or (b)). Hence, due to the structure of the weight
matrix P whether an update scheme of the form (@2) is
amenable to distributed synthesis or not can be inferred by
the constraints imposed on the entries of P. In particular, if
Zle pij =1= Z?zl Dij, 1.e. the matrix is double stochastic
then one agent cannot decide the weight it assigns to the
information received from its neighbor independently (by only
using its local neighborhood information). The constraint of
sum of the entries of all rows and columns being equal to one
necessitates the need for coordination among all the agents
(knowledge of global network information). It is established
in the literature that generating a double stochastic P matrix is
computationally intractable on general directed graphs without
any global knowledge and coordination [71]]. This renders the
algorithms using a double stochastic update matrix on directed
graphs unsuitable for distributed synthesis. However, a matrix
P with only column (or row) stochasticity constraint can
be generated easily with only the local information available
at each agent. The out-degree based equal neighbor weights
rule [67] is a common choice of weights that results in
a distributed synthesis based column stochastic P matrix.
Note that distributed synthesis is a property of an algorithm
(update (@2) in our example), and has no direct relation to the
underlying communication topology of the agent graph.

B. Claim: [7k+ kaT ?kH I € R, where, 7 =
1 Z 2} ktl )\k] is the solution to
1= 1

Proof. Consider, the update (17)
v+ —argmin { g, () + 3 x* — y + ¥},
y

Using definition of the set Cy update can be written as:

k+1 _y+%)\k”2

y"*! = argmin Z|x**t!
y

subject to y; = y;, Vi, 7 € V.

Let y; = y; = u,Vi,j € V. As the objective is in a block
separable form we have the following equivalent problem,

k+1 1yk
|2+ SN

miniumize Iy, — ul)%.

As the above problem is an unconstrained convex optimization
problem we can differentiate the objective and set it equal to
zero to get the optimal solution. In particular, 3" [zF 1 +
2AF—u] = 0 which implies u = + 377, [#7! + LAF]. There-

k+1 T T]T

fore Yy =y; =u,Vi,j € V. Hencey =[u ...u is

the solution to (17).

C. Proof of Lemmal |

Define, d; ; to be length of the shortest path connecting node
i to node j. To prove the claim we use an induction argument
on d; ;. Base case: d; ; = 1, Given, s > 0 for all i € V,
1
Ri(s) = max {llws ™ = wil| + RY(s) }.

JEN;

Therefore, for all j € N, w} € B(w; sT1 RI(s)). Assume the
claim holds for d; ; = k, that is for all J such that d; ; < k,
w; € B(w; stk Rk( )). For any node ¢ € N, on the path
between node i and j with d; ; < k41, we have dg ; < k. By
the induction hypothesis, w; € B(wy sk , RE(s)). Tt implies,
Jwi ™ — w3 < RE(s). From we have,

REF(s) > M40 — ) + R Gs).

Using, the triangle inequality,

o — i < T = wp (et = ws
< i — w4+ Ri(s)
< RFFL(s).

Therefore, for any j on the path with d; ; < k + 1, wj» S
B(ws T+ REF1(5)). Therefore, induction holds. When k =
D, we get the desired result.

D. Proof of Theorem [2]

Define the element-wise maximum w* and minimum w* state
variable of the network over all the agents as

Wk = Lr%aé(n{w”]]} . 1rgja<xn{w ]]}}
= [13131271{1”1[3]} : 12?2”{“] J]}:|

entry of wk It is proven in [[72], [49]
that lim,,,_yoo W~ = hmm_>OO wrP =g =1 ZZ 1 uf. Tt
implies lim,, o [|[W™? —w"P|| = 0. Proceedmg in the same
manner as in [49], Theorem 4.2, we get R < D||w"? —

wP|. Taking lim,;, .~ both sides we conclude for all i € V,
lim,, o0 R- = 0. This gives the first result. From Lemma
max; jey ||wZ —w'P|| < 2R™. Letting m — oo, gives the
second claim.

k .
where, (G thCD]

E. Claim: y**1 is an inexact solution to

Proof. As shown in Appendix [B] the solution to (I7) is

- k
vl = [u' ... u"]", where, u := L1377 [zFT! 1)\k]

Recall from (28) that the e-consensus algorithm (updates (22)-
(24)) at iteration k of the DC-DistADMM algorithm, with the
initial condition u? = x*™ 4 ,1y)\f, v = 1,Vi € V and
€ = Nk41 yields a solution of the form [uTu® ... u )" +eF L,
where ||t < \/nnpi1. Therefore, the consensus step
yields an inexact solution of of the form y*+! =
[t er™) Tt es™) T (ut et )T, where [l <

Vi1 O

F. Proof of Lemma 2]
Note that from the initialization in Algorithm 2| A; = 0,V7 €
V. From (18), (19), 1), and, (29), for all i € V,
)\k+1 — )\k +,>/( k+1 7gk,‘+l) ’Y€k+1
—'st o(; - S+1) 'st 0 et
= 'YZs =0 [ - 1 = 1( o3+ )‘S)} 723 0 15+1
125 OZ] 1 j+725 0[S+1 1Zj 1 ;+1:|
- ’Yzb 0 :+1



k+1 1 1
Let If71 =y S0 o [t = L300 s — g 08 st
Therefore,
k+1 k+1
>\i+ “n s= 027 1)\3 li+
Similarly,

k
)\i:*%Z Z]l nglk
Taking the difference of the above two equations we get,
k+1 k+1
n:r )‘f + 7[$i+ - % Z?:r ‘rj+ ]

k+1 k+1 _ 1 k41 k+1 :
Let r;*h = gzt — ZJ 1 J+ | = ve; . Taking z-
transform both 51des of the above equation we get,

k+1 _ ©k 1 k-‘rl
)\i — )\Z - ’Ye

ZA1 = )\1 — %Z?:l S\j —+ 7:1',

where, (A) denotes the z-transform of the corresponding
time-domain signal. Let A AT A ... AT]T and 7

[f] 79 ...7 ]T. Writing, the above n equations compactly
we get,
c-1+4ML, i, ... iy
11, (z—14+ 41, ... i1, .
) A=T
11, 11, (z—1+ 1)1,
T(2)

where I, is the p-dimensional identity matrix. Note, that the
matrix T'(z) has eigenvalues z with algebraic multiplicity p
and (z — 1) with algebraic multiplicity (n — 1)p. Therefore,
there exists a (constant) matrix () such that

L OlzIXp 0pxp
O ST 0 |
A=T"7"=Q ) ) . ) Qr.

Opxp  wlp - 5L

Let QA = ¢ = [§G)...¢)]", and QF = { =
[f] 7y ...7]]T. Therefore,

Ql:%fl, G = 1, fori=2,3,.

Taking inverse z-transform on both sides of the above equa-
tions we get,

qlf'H —t’c qf“ qz’»€+tf, for:=2,3,...,n
Therefore,
G =th =0+ 8, fori=2,3,.
Let Q; € R" denote the i*" row of Q. Note, that ||t3|| =
[Qir*|l = IIEM[[ ”11 w2y = gy =TT e -
DTl < V\WIIQ [((M + ns41) <

AVlIQ(M+10), Vi € V. Let, [|Qllmax == maxi <ic, | Qi
Therefore, [|A*[| = [Q~'¢" || < Envy[|Q || Qllmax(M +1m0).
Note, that here

Q = ny[|Q7 [ Qllmax (M + 170) < o0,
I <kQ.

(43)

G. Proof of Lemma 3]

To begin, we will present a modification of an existing result
(Lemma 1 [8]). The result in Lemma 1 [8]], with the perturba-
tion term being zero, reduces to a convergence result for the
push-sum protocol. Using this property, we conclude that the
updates (22)-(24) converges at a geometric rate to the average
of the initial values. Note that the DC—DistADMM algorithm
at every iteration k utilizes e-consensus protocol (updates (22))-
(24)) with the initial values ka AlyAk Therefore, we
- conclude,

gt < BB gk vie

ll; (44)

where zF = xFl 4 1/\k and, 3 > 0, € (0,1) satisfy: 8 >
nn o< (1 - n—) Here the variables « and 3 are parameters
of the graph G(V,&). The parameter o measures the speed
at which the graph G(V, &) diffuses the information among
the agents over time. Further, the parameter, 5 measures the

imbalance of influences in G(V, ) [8]. Under Assumptron

using the result in Lemma |25 < (M +|120)) + k;
If Sf/"f;jk = ||lz*|| < vR(M + ||2°) + k? it implies that,

k418 <
B((M-+20)n+k52) —

k. Therefore, we have,

8((M+]|z°|)n+k>22)
g ( )] :

B = .

tk' log « [log (Uk+1) + lo

Therefore, at the k'” iteration of Algorrthml 2| after f;, number
of iterations of the consensus protocol we have, k+1 —
TP < mpya, for all i € V. O

H. Proof of Theorem [3]
From (1), (36),

0< [xFH—

— [XkJrl

x| [dF (") — dF(x*)]

— X T — (! —yF) -
A+ AT
X*]T[A* _ Ak-‘rl] 4 [Xk+l _
k+1

AT‘LLIC+1

_ [Xk+1 _ X*}TAT[/L* _ Mk+1]

— [ = x* Ty -y

Since, Z¢, is convex,

Tey(y1) > Tey (y2) +d' (y2)(y1 = ¥2),

where, d(y>) is any sub-gradient of Z, at y,. Using and
yi=y" and ys =y,

~k+1T N
X -y >0 45)
Similarly, for y; = y*+!, y5 = y* and using (32),
T
N (F —yH) >o0. (46)



Therefore, using (@3) and (@6) gives,

0< [Xk-i-l _ X*]T[/\* _ )\k+1] + [X/H-l _
— Al T M T X -y

_ [ch+1 o X*]TP\* _ )\k+1] 4 [xEH - X*}TAT[M* _ Mk+1]
_ V[Xk-&-l _ X*}T[yk-i-l _ yk] + [)\k-i-l _ )\*}T[yk-&-l _—
+ 76k+1T [yk+1 —y - ek+1T [/\k+1 — ']

= [\ — )\k+1]T[Xk+1 _ yk+1] + [Xk+1 _ X*]TAT[M*
+yfx* Xk+1]T[yk+1 _ yk] +7€k+1T[yk+1 —y]
_ ek+17[)\k+1 — 1]

— %[)\k-&-l _ )\*}T[)\k _ )\k+1] + %[M* _ uk“]T[uk“ _ ,uk]
+y[x* Xk+1}T[yk+1 _ yk] +,yek+1T[yk+1 _—
_ €k+17[/\k+1 — N7,

where, the first equahty used @) and the last equality uti-

llzed l and (20). Usmg l 0) for )\’““ N TNE — \E+1])
k+1 k+1 and 7 k+1] [ k+1 _ xk]
y1elds
By R
S S 1 R N =l [T T R C )]
R e
T — * T *
+’y€k+1 [yk+1 —y ]_ ek+1 [)\k-&-l —A ]
Let Ry := ye’““T[y’““—y*] _ ,y(yk+1_ek+1_y*)'rek+1 _
;
yyF L ebtl | ef |2 — yy* Tek L Therefore, ||Ry| <
<

VY + Ally* [ [[e¥+1|. Using, Lemma P || Ry |
ny (M + (2" [Nikr1 + 2v/nQ(k + Dngga +9v/nlly ™ [|ms+1-
and —eF+1T [A\F+1 — \*]. Let Ry := k“T[)\k“ A =
—eh 1T \k+1 ok 1T X% Therefore, using, Lemma | Ra|l <
IS A< VAQUeA1) g1+ A 17541
Let R := ny(M+|z*||) +vv/n|ly*||+[|A*||. Therefore, using
the upper bounds on R; and Ra,

ag+1 < ag + Rypr1 +3vnQ(k + 1)npya (43)
<ao+RIZ0ns +3vVnQ Y2, sns, (49)
where, aj, := 3 [ly* — x*[|2 + ||>\]C A*[|2+ ||H — w7

The condition @) implies that ay, is bounded. Therefore by
the boundedness of ay @ there exists sub-sequence a,
such that, limy_, ap, < oo exists. Therefore, using (@7),
[[xFett — yke|| — 0,]|pktt — pk|| — 0. Note that, due
to @9 [ly*+! - Vil = 0,1 — x| = ket —

yROT oyl — gk pyke - || < xRt =y ket
[y e+t —y*e|| + [[y* — x| — 0. Further, [ A"+ — k|| =
|fhet — y R 0 and [Jxhert — RO < et —

Yy P =y < ey Ry — 0.

Therefore, there exists a sub-sequence (x*¢, y*, \F¢ /%) that
converges to a limit point (x*°,y°°, A>°, u>°). Next, we show
that the limit point (x°°,y >, A>°, u>°) satisfy the constraints
in problem and the objective function value F(x*°) =
F(x*). To this end, we will utilize the following Lemma.

Lemma 4. Let ¢ : RP — R be a convex function. Given,

z € RP and a positive number v > 0, if Z is a proximal

minimization point, i.e., 2 ;= argmin ¢(z) + %Hz —Z||%, then
z

* * p
x ]TAT[/J _ uk-s-l] we have, for any z € R

27(¢(2) = d(2)) < |2 — 2l = 12— 21 = |12 - 2>

Proof: Let ®(z) := ¢(2) + Z||2. Since, ¢ is convex
it follows that ®(z) is strongly convex with modulus % By
the definition of the proximal minimization step, we have 0 €

(50)

Lz -

as O®(2). Therefore,

B(z) >®(2)+ Lz —2|* =
27(¢(2) = d(2)) S |2 =2l = |2 = 2I> = |2 - 2. O
Using Lemma [] for the updates @;D and (I7) with 2 =
xFt1 2 = yk, 2 = x and 2 = 'L 2 = k“, 2=y
we obtain,
%(ﬁ(xk+1,yk7)\k,uk) 4 %HAX]H'I _ sz _ ﬂ()gyk, )\k7uk)
— 3 Ax = b|?) < [ly* —x|]* — []x"+! = x||* — [ — y*|?
2(LOFTL YN ) = LMy, AR, i)
e 4l A 4 [l AR S o
Adding the above two inequalities we obtain,
2L )+ T AT = b2 - L(x,y, AF, b
= 3IAx = b|P?) < [ly* —x|* + [ — y|? — [Ix*F — x|
=9 =yl =R xR

Taking limit over the appropriate sub-sequences on both sides
of the above inequality, we get,
L(x%,y%, 3%, 1) < L(x,y, X%, 1) + F[|Ax — b||* (51)
Note that the updates (20) and (ZI) can be written as the
following minimization updates: Vi € V,

pitt = argmin{ =AY (@ — i) -l (AT b))
Hi
+ g5l — wf 117}, (52)
= i+ (AT = b)),
X = angmin{ AT (eH -7+ - AP 63)
= M aat =g,

Applying Lemma [4 l to the updates (5 and with 2 =
hL = d /\ = /\ o

kTt 2 w,? = p* and 2 L= 05 =

respectlvely and adding the two inequalities result in,

k41 k41 yRHL
YA

” k+1

2y(£( A )~
< | - MH2 + [IAF -
k+1

L(x 1)
AlI* =

k+1
= A2 =

Y

— pl?

k+1
Ay Tl [ [ = A2,

Taking limit over the appropriate sub-sequences on both sides
of the above inequality, we get,

L(x>,y%, A, 1) < L(xZ, 5%, A%, 1%). (54)



Using with x = x*,y = y*, (34) with A\ = \*, = p*,
the saddle point relation in Assumption ] and (34), we get,

E(X*7y*’A*7M*) S L(Xooﬂyoo7)\*7u*) S E(XOO7yOO’AOO7
p) S LXK y" A%, p>) S LTy, AT pb).
Therefore, L(x*,y*, A", u*) = L(x>, 5, A%, u™).

This implies that F(x*°) + Z¢, (y™) + AT (x> — y>) +
p° T (Ax>® —b) = F(x*) < oco. Therefore, y*> € Cy. Further,
since, x*° = y* as |[\F*1 — \¥|| — 0 and Ax> = b since,
|pF+t — p¥|| — 0. Thus, F(x>°) = F(x*). To complete the
proof, we show that the (x*,y"* A* u*) has a unique limit
point; we utilize the same argument as in [73[], Theorem 1. Let
r1= (X7, ¥7%, AP, pi°) and ro = (x5°,y5°, A3°, pu5°) be any
two limit points of (x*,y"*, A*¥, u*). As shown above, both r;
and 7o are saddle points of £(x,y, A, 1). Then, from for

appropriate sub-sequences we have limy, . [|[x** — x2°||2 +

(55)

It = 224 A X e = 7 < 0, for
7 = 1,2. Consider,
[xF = x3°012 + [ly* = y5° 12 + IIA" = A°|1% + |pF — p3 ||

— IxF = x 1 = [ly* =yl — [N = A2 = |p* — u3||?
= [|r1]|? = |ral* = 2(r1 — 7o) T (x* T, yFT AT T,

Taking the limit both sides for each limit point we obtain,

=y = [[ra]|® = |lrel?
—2(x°T (%7 —x5°) +y i (v - yo)
FATTOAF = A3°) 4 5T (15® — p3°))
= —|jry —72|?, and,
=y = [ra]|® = |lrel?
—2(x°T (%7 —x5°) + ¥y (¥ — yo)
FASTTAR =A%) 4 s T (5 — p5®)) = [y — 72>

Therefore, we must have |r; — r2] = 0 and hence,
(x°°,y°°, A% 11*°) is unique. This completes the proof. [

L. Proof of Theorem
From (36) we have, for i =1,...,n,

dfi () + AT AT (T — ) =0,

where, df;(z¥11) is a sub-gradient of f; at z¥ . Writing the
above n inequalities compactly,

dF(Xk+1) + )\kJrl 4 ATILLk+1 +,Y(yk+1 _ yk) _ 0,

where, dF(x**1) is a vector with subgradlents df;(2F )
stacked together respectively. Further, using (37) d(¥**!) +
PR = 0, where d(¥**1) is a sub-gradient of Z, at y***.
Noticing that F and Z¢, are convex functions and using (2T

we have,

F(x*) = F(x*) +Ze, (7"") = Ze, (v7)
< — [ * k+1}TdF( Ic+1) o [y* yk+l]Td( Ic+1)
< [ k+1] [)\k-i-l +AT/Lk+1 +v(yk+1 _yk)}

Iy — yk+1]Txk+1

Note that Z¢, (y*+1) =

Ze, (y*) = 0. Using and ,

F(x"*) - F(x")
< [X* xk-i—l]'l'[/\k-i-l + ATMk-i-l +v(yk+1 _ yk)}

Iy =TIV A - )]

w k1 Ty k+1 T, k+1 k+1 _ k

S =X A T 4 (y yo)l

— [y = FEHTARL ekt 1T (Rt ey
— [X* _ Xk+1]T[/\k+1 + ATlukJrl +'Y( k+1 _ yk)}

T

Lyt — R TARL k1T (AR (gL oy
_ [yk+1 _ Xk+1]T)\k+l + ’Y[X* Xk+1] [yk+1 _ yk]
+ [x* — Xk-&-l]TATuk-&-l + ek+1T(_)\k+1 + ,y(yk—i-l —y).
Therefore, for any A and i, using (34) we have
F(Xk+1) _ F(X*) + )\T(Xk+1 _ yk+1) + MT(AXk+1 _ b) S
M= ATy = M g = X Ty — y R

T *
[ — " TAGI = b) 4 F T (AR oy (3 - y).

Using (I9) and (20), we get,

F(x'1) — F(x*) + AT (x5 =y 4 1T (AxFH — D)
< L] = ATV — X6 4 — T[T — ]
+ 5[ — T = ]
+ (A (3 -y, (56)
Using the identity (30) for any s > 0 we get,
ST = ] = (A = a0 (57)
=X = AT — A =A%),
V[X* o XS+1]T[yS+1 _ ys] _ %(”Xs-f—l _ ys+1||2
e [ o e [ e A ALY
AT i e Tl e (T Tl [ [V Tl
M = E?). (59)
Note_that from Lemma [ ([9) and @29), under Assump-
tion [2| e+’ (=L oy (FFEFL — ) = k1T \RHL

AT YR o Ty < R 4

Yy ]+ ||6’““||Hy*|| < (B + DQVnmi1 +
(yn(M + [[27]]) + 2(k + 1)v/nQ)nk11 + vrlly™[[mer1- Let

M = yn(M + [lz*])) + v/ally*|. From (56), (57), (58)
and (59) for any A, and s > 0 we get,

k+1||2 _

F(Xs+1) _ F(X*) 4 )\T(Xs-l-l _ ys+1) + /LT(AXk+1 _ b)
< g (I =X = 1A = X+ 12) + F([1x* — y°?
= lx* =y 1) + 55 (e = pl? = = p= )

+ 2% +3vnQ(s + 1) rriyeea-
Summing from s =0 to k£ — 1 and dividing by

%25;5 [F(XSH) —F(x*) + /\T(Xs+1 o ys+l)

s x*—vO02 A—NO(2 _ 002
ﬂT(AX +1 —b)] < 2l 2ky Il + Il 27kH + Huzwuk Il
3v/nQ Zf;(}(é*l)w

k

gives,

k—1 1
+ M s=0 s2+q

k

)



y*T1. Since,
1) > F(x").

oy s+1 Sk
Let XF := kzs 0x , and yF :
F is a convex function we have, ¥ Z
Therefore,

1 k—1
Elzs O
—o F(xF

F(x") - F(x

X" =yOl? | IA=A
2k 2vk

DA E -+

12

JT(ARF —b) < (60)
MC(2+q)+?;€\/ﬁQC(1+q)

lle—=pl1?
+ 0k +

where, ((.) is the Riemann zeta function. Let ;1 = 0, A = 0,
therefore, we get,

=N N 0|2
F(xF) - F(x*) < ol Y = 4
+ MC@+q)+3vnQc(A+g) _

k

IA12 + (1)
2~k

O(1/k).

Define, §k = %Zf 3?5“, where, ¥°T1 is as defined
in (18). Since, (x*,y*,\*,u*) is a saddle point we have,
~p =k ~
Lx*y*, \u) < LE&EF, ¥ ,\*,u*). Therefore, F(x*) —
ko~ «T k=K % ~

F(x*)+ M7 (@ =)+ 0T (3" =y ) + 47T (AR" —b) > 0.
Let A = \* + ﬁ and p = p*. Therefore,

%F - ¥*(| < F(x") -

F(X*) A*T (ﬁk

-+

WT(ARE —b) + AT (FF - F) + [R5 - 3 < A
LA N2 i —n®)? | MC(2+q)+3vRQC(1+)
+ ~k + Hgfyl]: + 1 k = .
N TG -5,
~ =~k
Note ta, W77 = 3O < INIES b -
y Il = 'zs o b v =5 zf e+ <
D fn LR Y g s = L (24).
Therefore
gk ok < 2l =yOUP L LN e )
X" =y*l < 55 Tk
= ¥ Y
I (M+\/7LH)\*I\)C(QZQ)+3\/77QC(1+Q) = 0(1/k).

Alternatively, let, u = p* + Hfgzi:tb»\l and A = \*, we get,

|AX" —b| < F(x") = F(x*) + T (X* - §")+
1T (AR —b) + T (G - F ) + ARE - b|| < 20
SR ES T A PEVT g Ve N
< ’YHX*Q—kyon ”/\02_72*”2 + 1+Hl;7€u°\|2
L (MR DCGH0 3R — (1 /). -

J. Proof of Theorem

From the definition of F and Assumption [3] it follows that F
is Lipschitz differentiable with constant L := maxi<;<n Ly,
for all X € relint(X),x, € relint("RY,) and restricted
strongly convex with respect to the optimal solution x* on the
set X with parameter ¢ := min;<;<, 0;. For sub-gradients

dF(x*+1) € OF(x*t1) and dF(x*) € OF(x*), using
and (36) under Assumption [3]

ol — 2 < [ — x| T[dF(xH) - dF ()]
T T AR (R k) AT
A+ AT

— [xF = TN = AR o — x] T iR -y
4P TAT [ — )

— [P = TN = AR [P TAT [ —
oyt — xPHT [+ h]
F[x = xFTYT[RAR — AR\,

Using, (@3) and (@#6) we get,

— X
y*]T[)\k+1 _
)\kJrl o

X =]

X*]TAT[ILL _ /JJkJrl] + [ykJrl _
_ [ykJrl _ y*]T)\kJrl + [X* . Xk+1]'l'[2)\lc .
* )\k‘—‘,—l]—l—[xk‘—'rl _ k‘-‘,—l] +,y[ * Xk+1]'|'[xk+1
*]TAT[ k+1] [y k+1 _
)\ )\k+1]T k+1 +[ k+1] [2)\/67 )\kfl]
%[)\ _ )\k—&-l] [)\k-',-l _ )\k] +,y[ k+1]T[XI~c+1 _Xk]
+ %[’u* _ ,uk-&-l}'l'[uk—i-l _ Mk] _ [yk+1

+ [)\* _ )\k+1]Tek+1 + [X* _ Xk-',—l]T[Q)\k _

/\k—i—l] [ Xk+1]T[Xk+1 k]

A
)\krfl]
]

<
_|_[ k+1 _

— X

S v T AR

/\k+1 o

_ y*]TAk“

)\k-‘rl _ )\k—l]7

where, in the second equality we used (29), and in the

last equality we used (19) and . Let ¢, := 2\ —
ARFL — NF=1 Using (30) for 2[A* — AFFIT[ARFL — ZF],
%[‘u* _ ‘uk+1]T[M}c+1 — L and ’y[x* Xk+1]T[Xk+1 _ Xk],
ol — x| = x| 4 g AR = AR

< (3l =712 4 LA = X2 4 Ll - )] o)

= [t a2 N g — ]

_ [ykJrl _ y*]TAkJrl + [)\* _ >\k+1]T€k+1 + [X* _ XkJrl]Ttk.
Observe from , , VF(xF1) — VF(x*) = -\ —
,Y(yk+1 _ yk) _ ATukJrl + 2* + AT#* — 7/\Ic+1 + N —

ATMkJrl +AT/~"* +>\k+1 _’_)\kfl —92)\k _'V(Xk+1 _ch)’ where
we used (19) to get a relation between y**+! and y*. Therefore,
v(xk*+1 —x*) is the summation of the terms q; := VF(x*) —
VE(x*1) and rq := A" = AP AT s — AT oL AR
AF=1 — 2)\F Therefore, for any § > 1, we can apply the
inequality las + ] + (6 — Dl > (1~ 3|,

P P 4 (5 - D[ VE () - VR () P

> (1 _ %)”)\* — \k+1 JrATIu* _ ATluk+1 *tk”z

> (1= DI = N2+ v (AAT) 4 — 2
el = 2N X AT - AT gy

2|t ATt — AT,



where, Vmin(AAT) > 0. By Lipschitz differentiablility of F,

(65— 1)L

1||Xk+1 _ XkHQ ||Xk+1 _ X*HQ (62)
> (1 ||)\k+1 )\*HQ + Vmin(AAT)”'ukH — w2
= 2N A AT = AT |
— 2ty AT — ATt .
Similarly, A\F+1 — AP = y(xFHL — g1y = ~(xFF1 - x*) +

y(y* — y**1). Therefore, \**! — \F is the summation of
q2 = y(x**! —x*) and ry := y(y* — y**1). Therefore, for
any § > 1, we can apply the inequality ||qz + rof|? + (6 —
Dlqz|l* > (1 — §)]lr2||?, and obtain,

||)\k+1 o )\kH2 +,)/2(5 o 1)||Xk+1 . X*”Q
> (1= ) =yl
= (L= DINH =N — et =)

> (1= DI =M 22—
= 2y A N =] 63)
Therefore, using (62) and (63) we get,

k+1 _ (6— 1)( +'y)|| k1

3l |2 +
> (1= LI = A2 + i+ x*H2
n umm(AA )”Mk-}-l _ M*||2]

— (1—71/5) [”)\k—&-l OA|[[JAT = AT R — gy

Xk||2 + %”)\k“rl _

Rl AT = AT A= R - ]
Let A := (1 — ) min{l, vmin(AAT)} and s, := Z[IxF —
x*||? + i||/\k — A2 + i||/ﬂ€+1 — p*||%. Therefore, for § €
(1,14 L2 2} we have,
U”XkJrl _ X*||2 + %ka}Jrl _ Xk”? + %”)\kﬂ _ >\k||2 (64)
> A5k+1 _ %[H)\lﬂrl _ )\*||||AT,u* _ ATMkJrl *tk”
[l AT " = AT A AR = N = x].

Therefore, from (61) and (64), we have

s < ()i + () (I = A€+ (65)
I =y IS e = x|

+ LI = AT = AT —

Il AT = AT L = AR x| ]).

Using (@9),

I =Nl < 200+ 2+ BER) =2 (66)
Let S; = [AF! — A*IIIIG’““H,Sz = |yt -
VIR, Sy o= [l — xE Y [tg]], Sy o= G| AR+ —
NIAT @ — ATpEY — 4y, S5 = 1;/5 It ll[[ AT —
ATpEY and Sg = (1 — 1/8)[|AFHL — NF|||IxFHE — x*||.

Note S; = [[A*FL — X*||||le**L|| < /nEp**L. Further, from
Theorem [3] there exist C < oo and S* with lim;_,oo SF =0

*||2

such that Sy + S5+ S+ S5+ S < CS*. Therefore, from
and using the fact pF+1 < pk Vi

skt < (3x)8e +VnE(g)e" + Clgs)S".
By repeated substitution for £k =0,1,...,

SK<(

(67)
K we get,
5) 50+ VIE X o) P!
+ CZt:o(ﬁ)K_tHSt

= (35) “s0 + P VIE XL (35) !

+CZt o5 1A)K tHigt

K(so+ VA=Y (735)'0 )
+ cz£0<ﬁ>K-t+ISt.

Given, € > 0, let K’ be such that S < ¢ for all k& >
(Theorem (3 I guarantees existence of such K'). Let S =
maxo<t< K’ St, therefore,

SK SPK(SOJ'_\/EEZf(:l(IJiA)t T+ COSYL Op )

+€ (C PO pK_tH)
K VAEp(1+4A) | CS(p K1 p?)
<p (SO + p(1+A)—1 + 1—p ) te (1 p)
=Tp" + O(e).
where, T := so + % (68)
This completes the proof. O
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