
ar
X

iv
:2

01
1.

14
61

0v
2 

 [
ee

ss
.S

Y
] 

 1
 J

ul
 2

02
1

Output Feedback Consensus for Networked Heterogeneous Nonlinear

Negative-Imaginary Systems with Free Body Motion

Kanghong Shi, Ian R. Petersen, Fellow, IEEE, and Igor G. Vladimirov

Abstract—This paper provides a protocol to address the robust
output feedback consensus problem for networked heterogeneous
nonlinear negative-imaginary (NI) systems with free body dy-
namics. We extend the definition of nonlinear NI systems to
allow for systems with free body motion. A new stability result is
developed for the interconnection of a nonlinear NI system and a
nonlinear output strictly negative-imaginary (OSNI) system. Also,
a class of networked nonlinear OSNI controllers is proposed to
achieve output feedback consensus for heterogeneous networked
nonlinear NI systems. We show that in this control framework,
the system outputs converge to the same limit trajectory. This
consensus protocol is illustrated by a numerical example.

Index Terms—nonlinear Negative-Imaginary systems, free
body motion, heterogeneous systems, consensus, robust control.

I. INTRODUCTION

Negative-Imaginary (NI) systems theory was introduced by

Lanzon and Petersen in [1] and [2] to address a robust control

problem for flexible structures and has attracted much attention

among control theory researchers (see [3]–[9]). Typical NI

systems are systems with colocated force actuators and po-

sition sensors. Positive-Real (PR) systems theory [10] cannot

be applied to the control of such systems in general. An NI

system was initially defined in [1] to be a stable system with a

frequency response F (jω) satisfying j(F (jω)−F (jω)∗) ≥ 0
for all ω > 0. Examples of such systems arise in lightly

damped structures [11]–[13] and nano-positioning systems

[14]–[17]. The stability of an NI system with transfer function

matrix F (s) can be guaranteed by applying a strictly Negative-

Imaginary (SNI) controller with transfer function matrix G(s)
such that the DC gain condition λmax(F (0)G(0)) < 1 is

satisfied [1].

The definition of NI systems in [1], [2] was extended in

[9] to include systems with poles in the closed left half of

the complex plane except at the origin. The definition has

been extended again in [18] to include systems with poles

at the origin. Systems with free body motion such as single

integrators and double integrators were included in this new

definition and a new robust stability result for NI systems

in [18]. The original definition of NI systems has also been

recently extended to include nonlinear systems [19] and some

stability results were established for nonlinear NI systems in

[19] and [20]. However, systems with free body motion are

excluded in the nonlinear NI definition in [19].

Cooperative control for multi-agent systems has been a

highly active research area over the past two decades [21].
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This control paradigm enables multiple systems to perform

team missions and has been applied on autonomous vehi-

cles including mobile robots, unmanned air vehicles (UAVs),

autonomous underwater vehicles (AUVs) and other applica-

tions [22]. Consensus, that is convergence to an agreement

through information sharing among agents, is one of the

most important problems in the area of cooperative control

[23]. Consensus algorithms were first studied for first-order

dynamics (see [24]–[26], etc) and then extended to second-

order systems (see [27]–[30], etc).

As NI properties arise naturally in autonomous vehicles and

a wide variety of other applications [31], consensus problems

were investigated in [8] for heterogeneous NI systems. Using

NI systems theory, the consensus algorithms in [8] only

require outputs of the agents, and consensus is guaranteed

if a simple DC gain condition is satisfied. The theoretical

result presented in [8] has already been applied to real-world

cooperative control problems (see [32]–[36]). However, this

result is restricted to linear systems. Motivated by nonlinear NI

systems theory, the result of [8] has been recently extended in

[37], which provides a protocol that achieves output feedback

consensus for networked heterogeneous nonlinear NI systems.

However, [37] uses the definition of nonlinear NI systems from

[19], which excludes systems with free body motion such as

integrators.

In this work, we use an alternative definition for a class

of nonlinear NI systems to include systems with free body

motion. We obtain a stability result for the interconnection

of a nonlinear NI system and a nonlinear output strictly

negative-imaginary (OSNI) system (see also [38] and [39]

for linear OSNI systems), where nonlinear OSNI systems are

also redefined to allow direct feedthrough from the input to

the output. Then we consider the output feedback consensus

problem for multiple nonlinear NI systems with different

state-space models. We aim to find a control protocol such

that the difference between the outputs of any two agents

connected in a network converges to zero. We model the

communication between multiple nonlinear NI systems using

an undirected connected graph, where the nonlinear NI plants

and the nonlinear OSNI controllers correspond to the nodes

and the edges of the graph, respectively. Each controller takes

the difference between the outputs of the two plants connected

to it as input and feeds back its output to the plants. This

forms an augmented system whose stability is investigated

in order to achieve output consensus for the nonlinear NI

plants. We prove the networked nonlinear NI plants act as an

augmented nonlinear NI system and the networked nonlinear

OSNI controllers act as an augmented nonlinear OSNI system.

Therefore, the entire networked control system can be regarded

as the interconnection of a nonlinear NI system and a nonlinear
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OSNI system. Similarly to the stability result mentioned above,

an extended stability result is established for the networked

control system that guarantees output consensus. This shows

that for networked heterogeneous nonlinear NI systems sat-

isfying certain assumptions, output feedback consensus can

be achieved by using suitable nonlinear OSNI controllers in

the proposed control framework. The control framework is

robust with respect to bounded perturbations in the system

models for both the nonlinear NI plants and the nonlinear

OSNI controllers.

This paper contributes an output feedback consensus pro-

tocol for networked heterogeneous nonlinear NI systems with

free body motion. This work differs from the related previous

results in the following aspects: [19] defines nonlinear NI

systems but does not allow for systems with free body motion

while this work does; [20] only considers consensus for agents

with the same model while this work allows agents to have

different state-space models; [20] and [37] only deal with

consensus problems for nonlinear NI systems without free

body motion while this restriction is lifted in this work. This

work can also be regarded as an extension of the papers [18]

and [8] to nonlinear systems.

Notation: The notation in this paper is standard. R and C

denote the fields of real and complex numbers, respectively.

Rm×n and Cm×n denote the spaces of real and complex

matrices of dimension m×n, respectively. AT and A∗ denote

the transpose and complex conjugate transpose of a matrix

A, respectively. λmax(·) denotes the maximum eigenvalue of

a matrix with only real eigenvalues. A⊗ B denotes the Kro-

necker product of matrices A and B. ·̄ denotes a constant value

for a given vector or scalar signal. ‖ · ‖ denotes the Euclidean

norm of a vector. In is the n×n identity matrix. For a nonlinear

dynamical system H with input u and output y, y = H(u)
describes its input-output relationship. diag{a1, a2, · · · , al}
represents a diagonal matrix with the values a1, a2, · · · , al on

its diagonal.

Graph Theory Preliminaries: G = (V , E), where V =
{v1, v2, · · · , vN} and E = {e1, e2, · · · , el} ⊆ V×V , describes

an undirected graph with N nodes and l edges. The corre-

sponding symmetric adjacency matrix A = [aij ] ∈ RN×N is

defined so that aii = 0, and ∀i 6= j, aij = 1 if (vi, vj) ∈ E and

aij = 0 otherwise. A sequence of unrepeated edges in E that

joins a sequence of nodes in V defines a path. An undirected

graph is connected if there is a path between every pair of

nodes. Given an undirected graph G, a corresponding directed

graph can be obtained by defining a direction for each edge

of G. The incidence matrix Q = [qev] ∈ Rl×N of a directed

graph is defined so that the elements in Q are given by

qev :=











1 if v is the initial vertex of edge e,

−1 if v is the terminal vertex of edge e,

0 if v does not belong to edge e.

In this paper, the initial and terminal vertices of an edge in a

directed graph can both send information to each other via the

corresponding controller. For an undirected graph G, the choice

of a corresponding directed graph is not unique. However, the

Laplacian matrix LN of G has the following relationship with

the incidence matrix Q of any directed graph corresponding

to G: LN = QTQ.

II. AN INITIAL STABILITY RESULT

In this section, new definitions of nonlinear NI and nonlinear

OSNI systems are provided and a new stability result is

established for the interconnection of a single nonlinear NI

system and a single nonlinear OSNI system. The new stability

result is applicable to nonlinear NI systems with free body

motion, which are excluded in the previous stability result

given in [20].

Consider the following general nonlinear system:

ẋ(t) = f(x(t), u(t)), (1)

y(t) = h(x(t)) +Du(t), (2)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the input, and

y(t) ∈ Rm is the output, f : Rn × Rm → Rn is a Lipschitz

continuous function, h : Rn → Rm is a class C1 function and

D ∈ R
m×m is a symmetric matrix; i.e., D = DT .

Definition 1: The system (1), (2) is said to be a nonlin-

ear negative-imaginary (NI) system if there exists a positive

semidefinite storage function V : Rn → R of class C1 such

that

V̇ (x(t)) ≤ u(t)T ˙̃y(t), (3)

for all t ≥ 0, where

ỹ(t) = h(x(t)). (4)

In contrast to Definition 3 in [19], which excludes linear

NI systems with poles at the origin, Definition 1 now includes

all linear NI systems satisfying the definition given in [18]

by allowing the storage function of the system to be positive

semidefinite instead of positive definite.

Definition 2: The system (1), (2) is said to be a nonlinear

output strictly negative-imaginary (OSNI) system if there

exists a positive semidefinite storage function V : Rn → R of

class C1 and a scalar ǫ > 0 such that

V̇ (x(t)) ≤ u(t)T ˙̃y(t)− ǫ
∥

∥ ˙̃y(t)
∥

∥

2

, (5)

for all t ≥ 0, where ỹ(t) is as defined in (4). In this case, we

also say that system (1), (2) is nonlinear OSNI with degree of

output strictness ǫ.

In this paper, nonlinear OSNI systems defined as in Defini-

tion 2 are applied as controllers to achieve the robust output

feedback consensus for networked heterogeneous nonlinear NI

systems defined as in Definition 1. First, we provide a stability

result for a single feedback interconnection of nonlinear NI

systems.

Consider a multiple-input multiple-output (MIMO) nonlin-

ear NI system H1 with the following state-space model:

H1 : ẋ1(t) = f1(x1(t), u1(t)), (6)

y1(t) = h1(x1(t)), (7)

where x1(t) ∈ Rn is the state, u1(t) ∈ Rm is the input, and

y1(t) ∈ Rm is the output, f1 : Rn ×Rm → Rn is a Lipschitz

continuous function and h1 : Rn → Rm is a class C1 function.



For the system H1 with the state-space model (6), (7), we

suppose the following assumption is satisfied.

Assumption I: When the system H1 is in steady state; i.e.,

u1(t) ≡ ū1, x1(t) ≡ x̄1 and y1(t) ≡ ȳ1, we have ūT
1 ȳ1 ≥ 0.

For nonlinear NI systems, Assumption I corresponds to the

property of linear NI systems stated in Lemma 2 in [1].

Consider a MIMO nonlinear OSNI system H2 with the

following state-space model:

H2 : ẋ2(t) = f2(x2(t), u2(t)), (8)

y2(t) = h2(x2(t)) +D2u2(t), (9)

where x2(t) ∈ Rn is the state, u2(t) ∈ Rm is the input, and

y2(t) ∈ Rm is the output, f2 : Rn ×Rm → Rn is a Lipschitz

continuous function, h2 : Rn → Rm is a class C1 function

and D2 ∈ Rm×m is a symmetric matrix; i.e., D2 = DT
2 .

For the system H2 with the state-space model (8), (9), we

suppose that the following assumption is satisfied.

Assumption II: When the system H2 is in steady state;

i.e., u2(t) ≡ ū2, x2(t) ≡ x̄2 and y2(t) ≡ ȳ2, we have ūT
2
ȳ2 ≤

−γ‖ū2‖
2 with γ > 0.

It might be observed that as nonlinear OSNI systems belong

to a subclass of nonlinear NI systems, Assumption II seems

to have a conflicting relationship with Assumption I. In fact,

Assumption II can be satisfied because of the term D2u2(t)
in the output equation (9) and it corresponds to the inequality

(61) for linear NI systems in [18].

In addition, both of the systems H1 and H2 are assumed

to satisfy the following assumptions. For the system H1

with input u1(t), state x1(t) and output y1(t) = h1(x1(t))
described by the state-space model (6), (7) and the system

H2 with input u2(t), state x2(t) and the auxiliary output

ỹ2(t) = h2(x2(t)) described by the state-space model (8),

(9), we suppose for i = 1 and 2, the following conditions are

satisfied.

Assumption III: Over any time interval [ta, tb] where tb >

ta, hi(xi(t)) remains constant if and only if xi(t) remains

constant; i.e., ḣi(xi(t)) ≡ 0 ⇐⇒ ẋi(t) ≡ 0. Moreover,

hi(xi(t)) ≡ 0 ⇐⇒ xi(t) ≡ 0.

Assumption IV: Over any time interval [ta, tb] where tb >

ta, xi(t) remains constant only if ui(t) remains constant; i.e.,

xi(t) ≡ x̄i =⇒ ui(t) ≡ ūi. Moreover, xi(t) ≡ 0 =⇒
ui(t) ≡ 0.

In the case of linear systems, Assumption III corresponds to

observability and Assumption IV corresponds to the B matrix

in the realisation (A,B,C,D) of the linear system having full

column rank.

+

PSfrag replacements

H1

w = 0 y1

u2y2

u1

H2

Fig. 1. Closed-loop interconnection of a MIMO nonlinear NI system H1 and
a MIMO nonlinear OSNI system H2.

Theorem 1: Consider the closed-loop positive feedback

interconnection of the system H1 with state-space model (6),

(7) and H2 with state-space model (8), (9), as shown in Fig. 1.

Suppose that Assumptions I-IV are satisfied, and the storage

function, defined as

W (x1, x2) := V1(x1) + V2(x2)− h1(x1)
Th2(x2)

−
1

2
h1(x1)

TD2h1(x1), (10)

is positive definite, where V1(x1) and V2(x2) are positive

semidefinite storage functions that satisfy (3) for the system

H1 and (5) for the system H2, respectively. Then, the closed-

loop interconnection of the systems H1 and H2 is asymptoti-

cally stable.

Proof: According to the nonlinear NI property (3) for the

system H1, the nonlinear OSNI property (5) for the system

H2 and the system setting u1(t) ≡ y2(t) and u2(t) ≡ y1(t) in

Fig. 1, we have

V̇1(x1) ≤ uT
1 ẏ1

= yT2 ẏ1

=[h2(x2) +D2u2]
T ḣ1(x1)

=[h2(x2) +D2y1]
T ḣ1(x1)

=[h2(x2) +D2h1(x1)]
T ḣ1(x1), (11)

and

V̇2(x2) ≤ uT
2
˙̃y2 − ǫ‖ ˙̃y2‖

2

= yT1
˙̃y2 − ǫ‖ ˙̃y2‖

2

= h1(x1)
T ḣ2(x2)− ǫ‖ḣ2(x2)‖

2, (12)

where the above equalities also use (7) and (9). We obtain

the time derivative of the storage function W (x1, x2) in (10)

using (11) and (12):

Ẇ (x1, x2) = V̇1(x1) + V̇2(x2)− ḣ1(x1)
Th2(x2)

− h1(x1)
T ḣ2(x2)− h1(x1)

TD2ḣ1(x1)

≤ [h2(x2) +D2h1(x1)]
T
ḣ1(x1)

+ h1(x1)
T ḣ2(x2)− ǫ‖ḣ2(x2)‖

2

− ḣ1(x1)
Th2(x2)− h1(x1)

T ḣ2(x2)

− h1(x1)
TD2ḣ1(x1)

=− ǫ‖ḣ2(x2)‖
2

≤ 0. (13)

From this it follows that Ẇ (x1, x2) = 0 is only possible when

ḣ2(x2) = 0. Hence, Ẇ (x1, x2) can remain zero only if ḣ2(x2)
remains zero; i.e., Ẇ (x1, x2) ≡ 0 =⇒ ḣ2(x2(t)) ≡ 0.

According to Assumptions III and IV, ḣ2(x2(t)) ≡ 0 =⇒
ẋ2(t) ≡ 0 =⇒ u2(t) ≡ ū2. Hence, the system H2 is in

steady-state. According to the system setting in Fig. 1, y1(t) ≡
u2(t). Hence, using Assumptions III and IV, ẏ1(t) ≡ 0 =⇒
ẋ1(t) ≡ 0 =⇒ u1(t) ≡ ū1. Thus, the system H1 is also in

steady-state. Then, according to Assumption II, we have

ūT
2
ȳ2 ≤ −γ‖ū2‖

2.

If ū2 = 0, then ūT
2
ȳ2 = 0. According to Assumptions III and

IV, and the system setting in Fig. 1, ū2 = 0 =⇒ ȳ1 = 0 =⇒



x̄1 = 0 =⇒ ū1 = 0 =⇒ ȳ2 = 0 =⇒ x̄2 = 0. Hence, in

this case, the system is in equilibrium. Otherwise, if ū2 6= 0,

we have

ūT
2 ȳ2 < 0. (14)

Also, according to Assumption I, we have

ūT
1
ȳ1 ≥ 0. (15)

According to the system setting in Fig. 1, we have ū1 = ȳ2
and ȳ1 = ū2. Hence, (15) can be rewritten as

ūT
2 ȳ2 ≥ 0,

which contradicts (14). Thus, we can conclude that Ẇ (x1, x2)
cannot remain zero unless x1 = x2 = 0. Thus, according to

LaSalle’s invariance principle, W (x1, x2) will keep decreasing

until W (x1, x2) = 0. Hence, the equilibrium at (x1, x2) =
(0, 0) of the closed-loop interconnection is asymptotically

stable.

III. OUTPUT FEEDBACK CONSENSUS

Consider N heterogeneous nonlinear plants Hpi (i =
1, 2, · · · , N) described as

Hpi : ẋpi(t) = fpi(xpi(t), upi(t)), (16)

ypi(t) = hpi(xpi(t)), (17)

where xpi(t) ∈ R
n is the state, upi(t) ∈ R

m is the input,

and ypi(t) ∈ Rm is the output, fpi : Rn × Rm → Rn are

Lipschitz continuous functions and hpi : R
n → Rm are class

C1 functions. These systems operate independently in parallel

and each of them has its own input upi ∈ Rm and output

ypi ∈ Rm, (i = 1, 2, · · · , N ), which is shown in Fig. 2. The

subscript “p” indicates that this system will play the role of

a plant in what follows. We combine the inputs and outputs

respectively as the vectors Up = [uT
p1, u

T
p2, · · · , u

T
pN ]T ∈

R
Nm×1 and Yp = [yTp1, y

T
p2, · · · , y

T
pN ]T =

[hp1(xp1)
T , hp2(xp2)

T , · · · , hpN (xpN )T ]T ∈ R
Nm×1,

respectively.
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Fig. 2. A plant Hp consisting of N independent and heterogeneous nonlinear
NI systems Hpi (i = 1, 2, · · · , N) in (16) and (17), with independent inputs
and outputs combined as the input and output of the networked system Hp.

Let us consider the networked plants connected according

to the graph network topology Ĥp as shown in Fig. 3, where

Q is the incidence matrix of a directed graph that represents

the communication links between the heterogeneous nonlinear

NI plants.

For the system Ĥp shown in Fig. 3, we have the following

lemma:

PSfrag replacements
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Fig. 3. Heterogeneous nonlinear NI plants connected according to the directed
graph network topology.

Lemma 1: If the plants Hpi are nonlinear NI systems for

all i = 1, 2, · · · , N , then the networked plant Ĥp is also a

nonlinear NI system.

Proof: According to Definition 1, each nonlinear NI sys-

tem Hpi (i = 1, 2, · · · , N ) must have a corresponding positive

semidefinite storage function Vpi(xpi) such that V̇pi(xpi) ≤
uT
piẏpi, where xpi is the state of the system Hpi. We define the

storage function for the system Ĥp as V̂p =
∑N

i=1
Vpi(xpi),

which is positive semidefinite. Then

˙̂
Vp =

N
∑

i=1

V̇pi(xpi) ≤

N
∑

i=1

uT
piẏpi = UT

p Ẏp. (18)

Let Ûp and Ŷp denote the input and output of the system Ĥp,

respectively. According to the system setting in Fig. 3, we

have

Up = (QT ⊗ Im)Ûp, and Ŷp = (Q⊗ Im)Yp.

Therefore, we have

UT
p Yp = [(QT ⊗ Im)Ûp)]

TYp = ÛT
p (Q⊗ Im)Yp = ÛT

p Ŷp.

(19)

According to (18) and (19), we obtain the nonlinear NI

inequality for the system Ĥp:

˙̂
Vp ≤ ÛT

p
˙̂
Yp. (20)

Therefore, Ĥp is a nonlinear NI system.

Now we give a definition of output feedback consensus for

a network of systems as shown in Fig. 2.

Definition 3: A distributed output feedback control law

achieves output feedback consensus for a network of systems

if |ypi(t)− ypj(t)| → 0 as t → +∞, ∀i, j ∈ {1, 2, · · · , N}.

Consider a series of heterogeneous nonlinear OSNI con-

trollers Hck (k = 1, 2, · · · , l) applied at the edges in the

network. The OSNI controllers have the following state-space

models:

Hck : ẋck(t) = fck(xck(t), uck(t)), (21)

yck(t) = hck(xck(t)) +Dckuck(t), (22)

where xck(t) ∈ Rq is the state, uck(t) ∈ Rm is the input,

and yck(t) ∈ R
m is the output, fck : Rq × R

m → R
q are

Lipschitz continuous functions, hck : Rq → Rm are class

C1 functions and Dck ∈ Rm×m are symmetric matrices.

These systems operate independently in parallel and each

of them has its own input uck ∈ R and output yck ∈ R,

k = 1, 2, · · · , l, which is shown in Fig. 4. The subscript “c”



indicates that this system will play the role of a controller in

what follows. We combine the inputs and outputs respectively

as the vectors Uc = [uT
c1, u

T
c2, · · · , u

T
cl]

T ∈ Rlm×1 and

Yc = [yTc1, y
T
c2, · · · , y

T
cl]

T = Πc +DcUc ∈ Rlm×1, where

Πc =











hc1(xc1)
hc2(xc2)

...

hcl(xcl)











∈ R
lm×1, (23)

and

Dc = diag{Dc1, Dc2, · · · , Dcl} ∈ R
lm×lm. (24)
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Fig. 4. A controller Hc consisting of l independent and heterogeneous
nonlinear OSNI systems Hck (k = 1, 2, · · · , l) in (21) and (22), with
independent inputs and outputs combined as the input and output of the
networked system Hc.

Lemma 2: If the controllers Hck are nonlinear OSNI systems

for all k = 1, 2, · · · , l, then the networked controller Hc is also

a nonlinear OSNI system.

Proof: For every nonlinear OSNI system Hck, we have a

positive semidefinite storage function Vck(xck) and a constant

ǫk > 0 such that

V̇ck(xck) ≤ uT
ck

˙̃yck − ǫk‖ ˙̃yck‖
2, (25)

where ỹck = hck(xck) and ǫk is the level of output strictness

of the system Hck. For the system Hc, we define its storage

function Vc as the sum of the storage functions of all the

networked controllers; i.e.,Vc :=
∑l

k=1
Vck(xck), which is

positive semidefinite. The time derivative of Vc is:

V̇c =

l
∑

k=1

V̇ck(xck)

≤

l
∑

k=1

uT
ck

˙̃yck −

l
∑

k=1

ǫk‖ ˙̃yck‖
2

≤

l
∑

k=1

uT
ck

˙̃yck − ǫmin

l
∑

k=1

‖ ˙̃yck‖
2

= UT
c Π̇c − ǫmin‖Π̇c‖

2, (26)

where ǫmin = min{ǫ1, ǫ2, · · · , ǫl}. Hence, the system Hc

satisfies the definition of a nonlinear OSNI system and ǫmin

quantifies a level of output strictness of the system. This

completes the proof.

Now consider the closed-loop positive feedback intercon-

nection of the networked plants shown in Fig. 3 and the

networked controllers shown in Fig. 4, which is depicted in

Fig. 5. In this paper, robust output consensus of heterogeneous

nonlinear NI plants is achieved by constructing a control

system with the block diagram shown in Fig. 5 and choosing

suitable controllers that satisfy certain conditions. Detailed

description of the control framework in Fig. 5 can be found

in [37], which uses a similar control framework.
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Ûp Ŷp
QT ⊗ Im Q⊗ Im

Fig. 5. Positive feedback interconnection of heterogeneous nonlinear NI
plants and nonlinear OSNI controllers according to the directed graph network
topology.

As is shown in Fig. 5, the control input for the networked

plant Hp is

Up = (QT ⊗ Im)Hc ((Q⊗ Im)Yp) , (27)

where Q is the incidence matrix of the directed graph that

represents the communication links between the heterogeneous

nonlinear NI plants. Equivalently, the distributed control pro-

tocol for the plant Hi (i = 1, 2, · · · , N) is defined by the

equations

ẋck(t) = fck



xck(t),
N
∑

j=1

qkjypj



 , (28)

yck(t) = hck(xck(t)) +Dck

N
∑

j=1

qkjypj , (29)

upi =

l
∑

k=1

qkiyck, (30)

where qkj and qki are the j-th and i-th elements in the k-th row

of the incidence matrix Q, respectively. Here,
∑N

j=1
qkjypj

represents the difference between the outputs of the two plants

connected by the edge ek.

Before we present the main result, let us make another

assumption. For the system Ĥp with input Ûp(t) and output

Ŷp(t), we suppose the following assumption is satisfied.

Assumption V: Given a constant input Ûp(t) ≡
¯̂
Up to the

system Ĥp, if its output is also constant; i.e., Ŷp(t) ≡
¯̂
Yp, then

¯̂
Up and

¯̂
Yp satisfy

¯̂
UT
p
¯̂
Yp ≥ 0.

In fact, Assumption I implies Assumption V in the case

that all the plants Hpi are in steady state. This is because

when all the plants satisfy Assumption I and are in steady

state, we have ŪT
p Ȳp ≥ 0 and according to the system



setting in Fig. 5 we have ŪT
p Ȳp = [(QT ⊗ Im)T

¯̂
Up]

T Ȳp =
¯̂
UT
p (Q⊗ Im)Ȳp =

¯̂
UT
p
¯̂
Yp similarly to (19). Hence

¯̂
UT
p
¯̂
Yp ≥ 0.

However, Assumption V is assumed for the networked plants

Ĥp in the following theorem instead of assuming Assumption

I for each individual plant because Assumption V also allows

for the situation in which the input and output of the system

Ĥp are constant, but the individual plants Hpi are not all

in steady state. This situation is possible because the matrix

Q⊗Im takes the difference between the outputs of the plants.

Under constant inputs, if the plants oscillate with a constant

difference between their outputs, then this situation is allowed

under Assumption V.

Theorem 2: Consider an undirected connected graph G that

models the communication links for a network of heteroge-

neous nonlinear NI systems Hpi (i = 1, 2, · · · , N) as shown

in Fig. 2, and any directed graph corresponding to G with

the incidence matrix Q. Also, consider the heterogeneous

nonlinear OSNI control laws Hck (k = 1, 2, · · · , l) for all

of the edges. Suppose Assumptions III and IV are satisfied

for the plants Hpi, Assumptions II, III and IV are satisfied for

the controllers Hck (with γ = γk for the controller Hck in

Assumption II) and Assumption V is satisfied by the system

Ĥp. Also, suppose the storage function, defined as

Ŵ := V̂p + Vc − Ŷ T
p Πc −

1

2
Ŷ T
p DcŶp,

is positive definite, where V̂p and Vc are positive semidefinite

storage functions that satisfy (20) for the system Ĥp and (26)

for the system Ĥc, respectively. Here, Ŷp is the output of the

system Ĥp. Πc and Dc are terms in the output Yc of the

system H and are defined in (23) and (24). Then robust output

feedback consensus can be achieved via the protocol (27), or

equivalently (28)-(30) in a distributed manner for each plant

pi, as shown in Fig. 5.

Proof: According to (20), (26) and the system setting

Ûp ≡ Yc and Uc ≡ Ŷp shown in Fig. 5, we have

˙̂
Vp ≤ ÛT

p
˙̂
Yp = Y T

c
˙̂
Yp =

˙̂
Y T
p [Πc +DcUc] =

˙̂
Y T
p [Πc +DcŶp],

(31)

and

V̇c ≤ UT
c Π̇c − ǫmin‖Π̇c‖

2 = Ŷ T
p Π̇c − ǫmin‖Π̇c‖

2. (32)

According to (31), (32) and the symmetry of Dc in (24),

the time derivative of the storage function Ŵ satisfies the

following inequality:

˙̂
W =

˙̂
Vp + V̇c −

˙̂
Y T
p Πc − Ŷ T

p Π̇c −
1

2
˙̂
Y T
p (Dc +DT

c )Ŷp

≤
˙̂
Y T
p [Πc +DcŶp] + Ŷ T

p Π̇c − ǫmin‖Π̇c‖
2 −

˙̂
Y T
p Πc

− Ŷ T
p Π̇c −

˙̂
Y T
p DcŶp

≤ ǫmin‖Π̇c‖
2

≤ 0. (33)

Hence, the closed-loop system is at least Lyapunov stable.

Moreover,
˙̂
W = 0 can hold only if Π̇c = 0. In other words,

˙̂
W can remain zero only if ḣck(xck(t)) remains zero for

all k = 1, 2, · · · , l. According to Assumptions III and IV,

ḣck(xck(t)) ≡ 0 =⇒ ẋck(t) ≡ 0 =⇒ uck(t) ≡ ūck.

Hence, Hck is in steady-state for all k = 1, 2, · · · , l. We have

Uc(t) ≡ Ūc and Yc(t) ≡ Ȳc. According to the system setting

in Fig. 5 that Ûp(t) ≡ Yc(t) and Uc(t) ≡ Ŷp(t), we also have

Ûp(t) ≡
¯̂
Up and Ŷp(t) ≡

¯̂
Yp. According to Assumption V, we

have
¯̂
UT
p
¯̂
Yp ≥ 0. (34)

According to Assumption II, we have

ŪT
c Ȳc =

l
∑

k=1

ūT
ckȳck ≤ −

l
∑

k=1

γk‖ūck‖
2 ≤ −γmin‖Ūc‖

2,

where γmin = min{γ1, γ2 · · · , γl}. In the case that Ūc 6= 0,

we have

ŪT
c Ȳc < 0 (35)

which contradicts (34) because ŪT
c Ȳc =

¯̂
UT
p
¯̂
Yp. In the case

that Ūc = 0, all connected plants have the difference between

their system outputs being zero. Hence, output consensus has

already been achieved. Otherwise,
˙̂
W cannot remain zero.

According to LaSalle’s invariance principle, Ŵ will keep

decreasing until either Ūc = 0 or Ŵ = 0. Thus, output

consensus is achieved in both cases. This completes the proof.

IV. ILLUSTRATIVE EXAMPLEPSfrag replacements

v1 v2 v3

v4

e1 e2

e3 e4

Fig. 6. An undirected and connected graph consisting of four nodes.

Consider four nonlinear NI plants Hpi at the vertices vi
of the graph in Fig. 6. We choose directions of the edges as

e1 = (v1, v2), e2 = (v2, v3), e3 = (v2, v4) and e4 = (v3, v4).
Then the incidence matrix of the directed graph corresponding

to G is

Q =









1 −1 0 0
0 1 −1 0
0 1 0 −1
0 0 1 −1









.

The plants are nonlinear single integrators which have the

following state-space models:

Hpi : ẋpi(t) = µiu
3

pi(t),

ypi(t) = xpi(t), i = 1, 2, · · · , 4,

where µ1 = 10, µ2 = 30, µ3 = 25 and µ4 = 5 are constant

coefficients. The storage functions for these four plants are all

Vpi(xpi) = 0. The states xp1, xp2, xp3 and xp4 of these four

plants have initial values 30, 15, −5 and −10, respectively.

We aim to synchronise the outputs of these four plants to the



same limit trajectory by using nonlinear OSNI controllers Hck

at the edges ek of the graph in Fig.6.

Hck : ẋck(t) =− αkxck(t)− βkx
3

ck(t) + uck(t),

yck(t) = xck(t)− uck(t), k = 1, 2, · · · , 4,

where αk and βk are constant coefficients. α1 = 5, α2 = 8,

α3 = 7, α4 = 3; β1 = 3, β2 = 2, β3 = 5 and β4 = 2,

respectively.

The storage functions of Controllers 1, 2, 3 and 4 are Vc1 =
5

2
x2

c1 + 3

4
x4

c1, Vc2 = 4x2

c2 + 1

2
x4

c2, Vc3 = 7

2
x2

c3 + 5

4
x4

c3 and

Vc4 = 3

2
x2

c4 +
1

2
x4

c4, respectively.

The networked plant system Ĥp in this example is given by

the equations:

˙̂x1 = 10û3

1
+ 30(û1 − û2 − û3)

3,

˙̂x2 = 30(−û1 + û2 + û3)
3 + 25(û2 − û4)

3,

˙̂x3 = 30(−û1 + û2 + û3)
3 + 5(û3 + û4)

3,

˙̂x4 = 25(−û2 + û4)
3 + 5(û3 + û4)

3,

ŷ1 = x̂1, ŷ2 = x̂2, ŷ3 = x̂3, ŷ4 = x̂4.

The storage function of the closed-loop system provided by

Theorem 2 takes the form

Ŵ =
5

2
x2

c1 +
3

4
x4

c1 + 4x2

c2 +
1

2
x4

c2 +
7

2
x2

c3 +
5

4
x4

c3 +
3

2
x2

c4

+
1

2
x4

c4 − x̂1xc1 − x̂2xc2 − x̂3xc3 − x̂4xc4 +
1

2
x̂2

1

+
1

2
x̂2

2 +
1

2
x̂2

3 +
1

2
x̂2

4

=
[

x̂1 xc1

]

[

1

2
− 1

2

− 1

2

5

2

] [

x̂1

xc1

]

+
3

4
x4

c1

+
[

x̂2 xc2

]

[

1

2
− 1

2

− 1

2
4

] [

x̂2

xc2

]

+
1

2
x4

c2

+
[

x̂3 xc3

]

[

1

2
− 1

2

− 1

2

7

2

] [

x̂3

xc3

]

+
5

4
x4

c3

+
[

x̂4 xc4

]

[

1

2
− 1

2

− 1

2

3

2

] [

x̂4

xc4

]

+
1

2
x4

c4,

which is positive definite. Assumptions II-V in Sections II

and III are satisfied. Output feedback consensus is achieved,

as shown in Fig. 7. Because of the cubic nonlinearity in the

plants and the controllers, their outputs have different rates of

convergence in the domains where the states are far and close

to the limit values. Therefore, a log scale is used for the time

axis in the plot shown in Fig. 7.

V. CONCLUSION

This paper provides a control framework to achieve ro-

bust output feedback consensus for networked heterogeneous

nonlinear NI systems including systems with free body mo-

tion, using nonlinear OSNI controllers. New definitions for

nonlinear NI systems and nonlinear OSNI systems are given

and a stability result is established for the simple feedback

interconnection of a nonlinear NI plant and a nonlinear OSNI

controller. A networked control framework is then considered

by modelling the communication topology between systems

as a connected graph, where the plants are nodes and the
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Fig. 7. Output feedback consensus for four nonlinear single integrator plants
with different system models. Starting from different initial conditions, the
outputs of the plants converge to the same limit trajectory under the effect of
the proposed control framework of Section III.

controllers are edges. The network of nonlinear NI plants and

the network of OSNI controllers are proved to be a nonlinear

NI system and a nonlinear OSNI system, respectively. Under

reasonable assumptions, output feedback consensus is estab-

lished for the networked heterogeneous nonlinear NI systems,

and the result is robust against variations in the system models

of both the plants and controllers provided that the relevant

nonlinear NI and nonlinear OSNI properties are preserved.

Finally, an example is given to demonstrate the proposed

result on a consensus problem to which earlier results are not

applicable.
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gains design for consensus in multi-agent systems with second-order
nonlinear dynamics,” Automatica, vol. 49, no. 7, pp. 2107–2115, 2013.

[30] H. Su, G. Chen, X. Wang, and Z. Lin, “Adaptive second-order consensus
of networked mobile agents with nonlinear dynamics,” Automatica,
vol. 47, no. 2, pp. 368–375, 2011.

[31] I. R. Petersen, “Negative imaginary systems theory and applications,”
Annual Reviews in Control, vol. 42, pp. 309–318, 2016.

[32] V. P. Tran, M. Garratt, and I. R. Petersen, “Formation control of multi-
uavs using negative-imaginary systems theory,” in 2017 11th Asian

Control Conference (ASCC). IEEE, 2017, pp. 2031–2036.

[33] Y. Qi, J. Wang, Q. Jia, and J. Shan, “Cooperative assembling using mul-
tiple robotic manipulators,” in 2016 35th Chinese Control Conference

(CCC). IEEE, 2016, pp. 7973–7978.

[34] J. Hu, P. Bhowmick, and A. Lanzon, “Distributed adaptive time-varying
group formation tracking for multiagent systems with multiple leaders
on directed graphs,” IEEE Transactions on Control of Network Systems,
vol. 7, no. 1, pp. 140–150, 2019.

[35] J. Peng, J. Wang, and J. Shan, “Robust cooperative tracking of multiple
p-order power integrators,” in 2016 Chinese Control and Decision

Conference (CCDC). IEEE, 2016, pp. 951–956.

[36] O. Skeik, J. Hu, F. Arvin, and A. Lanzon, “Cooperative control of
integrator negative imaginary systems with application to rendezvous

multiple mobile robots,” in 2019 12th International Workshop on Robot

Motion and Control (RoMoCo). IEEE, 2019, pp. 15–20.
[37] K. Shi, I. G. Vladimirov, and I. R. Petersen, “Robust output feedback

consensus for networked heterogeneous nonlinear negative-imaginary
systems,” in 2020 Australian and New Zealand Control Conference

(ANZCC), 2020, pp. 214–219.
[38] P. Bhowmick and S. Patra, “On LTI output strictly negative-imaginary

systems,” Systems & Control Letters, vol. 100, pp. 32–42, 2017.
[39] P. Bhowmick and A. Lanzon, “Output strictly negative imaginary

systems and its connections to dissipativity theory,” in 2019 IEEE 58th

Conference on Decision and Control (CDC). IEEE, 2019, pp. 6754–
6759.


	I INTRODUCTION
	II AN INITIAL STABILITY RESULT
	III OUTPUT FEEDBACK CONSENSUS
	IV ILLUSTRATIVE EXAMPLE
	V CONCLUSION
	References

