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Abstract— In this note we study contractivity of monotone sys-
tems and exponential convergence of positive systems using non-
Euclidean norms. We first introduce the notion of conic matrix
measure as a framework to study stability of monotone and pos-
itive systems. We study properties of the conic matrix measures
and investigate their connection with weak pairings and standard
matrix measures. Using conic matrix measures and weak pairings,
we characterize contractivity and incremental stability of mono-
tone systems with respect to non-Euclidean norms. Moreover, we
use conic matrix measures to provide sufficient conditions for
exponential convergence of positive systems to their equilibria.
We show that our framework leads to novel results on (i) the
contractivity of excitatory Hopfield neural networks, and (ii) the
stability of interconnected systems using non-monotone positive
comparison systems.

Index Terms— contraction theory, monotone systems,
positive systems, stability theory, interconnected systems

I. INTRODUCTION

Problem description and motivation: A dynamical system is
monotone if its trajectories preserve a partial order of their initial
conditions and is positive if the non-negative orthant is a forward
invariant set. Monotonicity appears naturally in real world appli-
cations including biological systems [28], transportation and flow
networks [4], and epidemic networks [17], as well as in small-
gain analysis of large-scale interconnected systems [6], [26]. Positive
systems are also abundant in engineering and science, for instance, in
population dynamics [13] and queuing systems [9]. While the notions
of monotonicity and positivity are identical for linear systems, they
are distinct and lead to different transient and asymptotic behaviors
for nonlinear systems. Linear and nonlinear monotone systems have
been studied extensively in dynamical systems [27] and control
theory [25], [28]. Monotonicity of dynamical systems with respect to
arbitrary cones are studied in [12] and a theory of monotone systems
on partially ordered Banach spaces has been developed in [22].

Contraction theory is a classic framework [2], [3], [8], [18] aimed
at establishing rigorous nonlinear stability properties of dynamical
systems. A dynamical system is contracting if every two trajectories
converge exponentially to one another. Contracting systems exhibit
many desirable asymptotic properties: (i) their asymptotic behavior
is independent of their initial condition, (ii) when the vector field
is time-invariant every trajectory converges to a unique equilibrium
point, and (iii) when the vector field is periodic, every trajectory
converges to a unique periodic orbit. Contracting systems enjoy also
desirable transient behavior and robustness properties including input-
to-state stability in the presence of bounded unmodeled dynamics.

While classical approaches mostly focus on contraction with
respect to the `2-norm, recent works have shown that stability of
monotone and positive system can be studied more systematically
and efficiently using non-Euclidean norms. It is known that for a
monotone system satisfying a conservation law (resp. translational
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symmetry), contractivity naturally arises with respect to `1-norms
(resp. `∞-norms). Contraction of monotone systems with respect
to state-dependent non-Euclidean norms has been studied in [5].
Contraction of monotone systems with respect to `1-norm has been
studied for flow networks in [4], for traffic networks in [4], and for
gene translation systems in [20]. Another relevant topic for monotone
systems is the search for sum-separable and max-separable Lyapunov
functions [10]. Recent works have used contraction with respect
to non-Euclidean norms for monotone systems to find separable
Lyapunov functions [16], [19]. Despite all these works, a differential
and integral characterization of monotone and positive contracting
systems with respect to non-Euclidean norms is missing.

Contribution: In this note, we build on the framework proposed
in [7] and introduce the notion of conic matrix measure, characterize
its properties, and propose efficient methods for computing it. We
provide a complete characterization of contractive monotone systems
using the one-sided Lipschitz constant of their vector fields and the
conic matrix measure of their Jacobians. We also propose a sufficient
condition, based on the conic matrix measures, for exponential
convergence of positive systems to equilibrium points. As a first
application of our monotone contraction framework, we provide a
sufficient condition for contractivity of excitatory Hopfield neural
networks. We remark that strong contractivity of Hopfield neural net-
works automatically leads to their global stability for time-invariant
inputs, their entrainment to a unique periodic orbit for periodic inputs,
and their input-to-state stability for general time-varying inputs. As
a second application, we establish a novel framework for studying
input-to-state stability of interconnected systems. Our framework is
based on comparison with positive dynamical systems and can ac-
commodate both inhibitory and excitatory interconnections between
subsystems. By allowing the comparison system to be positive instead
of monotone, our framework generalizes the well-known Matrosov-
Bellman comparison lemma and unifies several existing small-gain
theorems and comparison lemmas in the literature.

II. NOTATION

Functions, norms and matrix measures: Let f : R≥0 → R≥0 be
a function. If f is differentiable, then we denote its derivative by f ′.
If f is continuous, we denote its upper Dini derivative by D+f . We
say f is of class K if it is strictly increasing and f(0) = 0. We say
f is of class K∞ if it belongs to class K and limx→+∞ f(x) =∞.
We say a continuous function g : [0, a) × [0,∞) → [0,∞) is of
class KL if, for each fixed y, the map x 7→ g(x, y) is of class
K and, for each fixed x, the map y 7→ g(x, y) is decreasing such
that limy→+∞ g(x, y) = 0. For vectors v, w ∈ Rn, the Hadamard
product of v and w is the vector v◦w ∈ Rn define by (v◦w)i = viwi,
for every i ∈ {1, . . . , n}. A matrix A ∈ Rn×n is non-negative
if Aij ≥ 0, for every (i, j) ∈ {1, . . . , n}, For every matrix A ∈
Rn×n, the positive part of A is the matrix [A]+ ∈ Rn×n≥0 defined by
[A]+ij = Aij if Aij ≥ 0 and [A]+ij = 0 if Aij < 0. Given x, y ∈ Rn,
x ≤ y if we have xi ≤ yi, for every i ∈ {1, . . . , n} and we define
[x, y] ⊂ Rn as the set of all z ∈ Rn such that x ≤ z ≤ y. For
a vector η ∈ Rn, the diagonal matrix [η] ∈ Rn×n is defined by
[η]ii = ηi, for every i ∈ {1, . . . , n}. Given A,B ∈ Rn×n, A � B
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if B − A is a positive semi-definite matrix. A norm ‖ · ‖ on Rn
is monotonic, if for every x, y ∈ Rn such that |x| ≤ |y|, we have
‖x‖ ≤ ‖y‖. For p ∈ [1,∞] and R ∈ Rn×n: if R is positive and
diagonal, the R-weighted `p-norm is a monotonic norm. Let ‖ · ‖ be
a norm on Rn, the induced matrix norm on Rn×n is again denoted
by ‖ · ‖. Given a matrix A ∈ Rn×n, the matrix measure of A with
respect to ‖ · ‖ is defined by µ(A) := limh→0+

‖In+hA‖−1
h .

Weak pairings: We briefly the notion of a weak pairing (WP) on
Rn from [7]. A WP on Rn is a map J·, ·K : Rn×Rn → R satisfying:

(i) (Sub-additivity and continuity of first argument) Jx1 + x2, yK ≤
Jx1, yK+ Jx2, yK, for all x1, x2, y ∈ Rn and J·, ·K is continuous
in its first argument,

(ii) (Weak homogeneity) Jαx, yK = Jx, αyK = α Jx, yK and
J−x,−yK = Jx, yK, for all x, y ∈ Rn, α ≥ 0,

(iii) (Positive definiteness) Jx, xK > 0, for all x 6= 0n,
(iv) (Cauchy-Schwarz inequality)
| Jx, yK | ≤ Jx, xK1/2 Jy, yK1/2, for all x, y ∈ Rn.

For every norm ‖ · ‖ on Rn, there exists a (possibly not unique)
associated WP J·, ·K such that ‖x‖2 = Jx, xK, for every x ∈
Rn. A WP J·, ·K satisfies Deimling’s inequality if Jx, yK ≤
‖y‖ limh→0+

‖y+hx‖−‖y‖
h , for every x, y ∈ Rn and satisfies the

curve norm derivative formula if, for every differentiable x : (a, b)→
Rn and for almost every t ∈ (a, b) we have ‖x(t)‖D+‖x(t)‖ =
Jẋ(t), x(t)K. For every p ∈ (1,∞) and invertible R ∈ Rn×n, we
define J·, ·Kp,R by

Jx, yKp,R = ‖y‖2−pp,R (Ry ◦ |Ry|p−2)TRx. (1)

For invertible R ∈ Rn×n, we define J·, ·K1,R and J·, ·K∞,R by

Jx, yK1,R = ‖Ry‖1sign(Ry)TRx, (2)

Jx, yK∞,R = max
i∈I∞(Ry)

(Ry)i(Rx)i, (3)

where I∞(x) = {i ∈ {1, . . . , n} | xi = maxi{|x|i}}. It can be
shown that, for every p ∈ [1,∞] and invertible matrix R ∈ Rn×n, we
have ‖x‖2p,R = Jx, xKp,R and J·, ·Kp,R satisfies Deimling’s inequality
and the curve norm derivative formula. We refer to [7] for a detailed
discussion on WPs.

Dynamical systems: Consider the dynamical system ẋ = f(t, x)
on Rn. Let φ(t, t0, x) denote the flow of f at time t starting at time t0
from x0. The vector field f is positive if Rn≥0 is a forward invariant
set. Let C be a convex forward invariant set for vector field f . The
vector field f is monotone on C, if for every x0, y0 ∈ C such that
x0 ≤ y0, we have φ(t, t0, x0) ≤ φ(t, t0, y0), for every t ≥ t0.
The Jacobian of f is denoted by Df(t, x). Let ‖ · ‖ be a norm with
associated WP J·, ·K.The vector field f is contracting with rate c > 0
if, for x, y ∈ Rn and every t0 ≤ t ∈ R≥0, we have

‖φ(t, t0, x)− φ(t, t0, y)‖ ≤ e−c(t−t0)‖x− y‖.

and it is incrementally exponentially stable with rate c > 0 if, there
exists M > 0 such that, for x, y ∈ Rn and every t0 ≤ t ∈ R≥0

‖φ(t, t0, x)− φ(t, t0, y)‖ ≤Me−c(t−t0)‖x− y‖.

III. CONIC MATRIX MEASURES

In classical contraction theory, the incremental stability of dy-
namical systems are ensured by imposing suitable conditions on
matrix measures of their Jacobian. Monotonicity or positivity of
dynamical systems induces a natural partial order structure on their
flows, something which can be used to relax the matrix measure
conditions for incremental stability. In this section, we introduce the
notion of conic matrix measures and show how it can be used to

prove incremental stability of monotone and exponential convergence
of positive systems.

Definition 3.1 (Conic matrix measure): Let ‖ · ‖ be a norm. The
conic matrix measure of A ∈ Rn×n, denoted by µ+(A), is

µ+(A) := lim
h→0+

sup
x≥0n,x 6=0n

‖(In + hA)x‖/‖x‖ − 1

h
.

Now we study properties of the conic matrix measure. We first state
the following useful lemma.

Lemma 3.2 (Monotonicity of J·, ·Kp,R): Let p ∈ [1,∞] and R ∈
Rn×n be an invertible non-negative matrix. Then

(i) for every x, y ≥ 0n, we have J−x, yKp,R ≤ 0.
(ii) for every x ≤ z and y ≥ 0n, we have Jx, yKp,R ≤ Jz, yKp,R.

Proof: Regarding part (i), since R is non-negative, then we
have Ry ≥ 0n and Rx ≥ 0n. The result then follows by using
formulas (1), (2), and (3). Regarding part (ii), note that since x ≤ z,
there exists w ≥ 0n such that x = z − w. Thus, using the
subadditivity of the WP, we get

Jx, yKp,R = Jz − w, yKp,R ≤ Jz, yKp,R + J−w, yKp,R ≤ Jz, yKp,R .

where the last inequality holds because of part (i).
Theorem 3.3 (Properties of the conic matrix measure): Let ‖ · ‖

be a norm with associated WP J·, ·K satisfying Deimling’s inequality.
For every A,B ∈ Rn×n and every a ∈ R,

(i) µ+(aA) = |a|µ+(sign(a)A);
(ii) µ+(A+B) ≤ µ+(A) + µ+(B);

(iii) µ+(A+ aIn) = µ+(A) + a;

(iv) µ+(A) = sup
x≥0n,x 6=0n

JAx, xK
‖x‖2

,

(v) µ+(A) ≤ µ(A);
(vi) if ‖ · ‖ is monotonic and A is Metzler then µ+(A) = µ(A);

(vii) if ‖ · ‖ = ‖ · ‖p,R for p ∈ [1,∞] and R ∈ Rn×n invertible and
non-negative, then µ+(A) ≤ µ+(A+∆) for every ∆ ∈ Rn×n≥0 .

Proof: Regarding parts (i) (ii), and (iii), the proofs are straight-
forward using definition of the conic matrix measure in Definition 3.1.

Regarding (iv), for every non-zero x ≥ 0n and h > 0,

‖(In − hA)x‖ ≥ 1

‖x‖ J(In − hA)x, xK ≥ (1− h JAx, xK
‖x‖2

)‖x‖

≥

(
1− h sup

x≥0n,x 6=0n

JAx, xK
‖x‖2

)
‖x‖, (4)

where first inequality holds by Cauchy-Schwarz, the second inequal-
ity is by subadditivity of WP and the fact that h > 0, and the third
inequality holds because h > 0. Now consider F (h) = (In−hA)−1.
By some simple algebraic manipulation, we get

F (h) = In + hA+ h2A2F (h). (5)

Note that for h = 0, we have F (0) = In and thus, for every non-zero
x ≥ 0, we have F (h)x = (In − hA)−1x = x ≥ 0n. Since Sn‖·‖ =

{x ∈ Rn | ‖x‖ = 1} is a compact set, using a continuity argument,
there exists small enough h∗ > 0 such that (In−hA)−1x ≥ 0n for
every x ∈ Sn‖·‖ and x ≥ 0n and every 0 ≤ h ≤ h∗. Thus, for every
0 ≤ h ≤ h∗ and every v ≥ 0n such that v 6= 0n, we have

‖F (h)v‖/‖v‖ =
‖x‖

‖(In − hA)x‖ ≤
1

(1− h sup‖x‖=1,x≥0n

JAx,xK
‖x‖2 )

,

h2‖A2(In − hA)−1v‖/‖v‖ ≤ h2‖A2(In − hA)−1‖,

where the first equality holds by the change of coordinate x = (In−
hA)−1v and the second inequality holds by (4). Therefore, for every
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0 ≤ h ≤ h∗, we have

µ+(A) = lim
h→0+

sup
‖v‖=1,v≥0n

‖(In + hA)v‖/‖v‖ − 1

h

≤ lim
h→0+

sup
‖v‖=1,v≥0n

‖F (h)v‖+ h2‖A2F (h)v‖ − ‖v‖
h‖v‖

= lim
h→0+

sup
‖v‖=1,v≥0n

‖F (h)v‖ − ‖v‖
h‖v‖

≤ lim
h→0+

1

h

( 1

1− h sup‖x‖=1,x≥0n

JAx,xK
‖x‖2

− 1
)

= sup
‖x‖=1,x≥0n

JAx, xK
‖x‖2

= sup
x≥0n,x 6=0n

JAx, xK
‖x‖2

,

where the first equality holds by definition, the second inequality
holds by applying triangle inequality to the algebraic equation (5),
and the fourth inequality holds by (4). This means that µ+(A) ≤
supx6=0n,x≥0n

JAx,xK
‖x‖2 . Additionally, using Deimling’s inequality,

JAx, xK ≤ ‖x‖ lim
h→0+

‖x+ hAx‖ − ‖x‖
h

≤ ‖x‖2 lim
h→0+

sup
x≥0n,x 6=0n

‖x+ hAx‖/‖x‖ − 1

h
= ‖x‖2µ+(A).

This means that supx≥0n,x 6=0n

JAx,xK
‖x‖2 ≤ µ+(A) and completes

the proof of (iv). Regarding (v), the proof is straightforward us-
ing the definitions. Regarding part (vi), we show that, if ‖ · ‖
is monotonic, then, for small enough h > 0, supx≥0n

‖(In +
hA)x‖/‖x‖ = supx 6=0n

‖(In+hA)x‖/‖x‖. First note that, by defi-
nition, supx≥0n

‖(In+hA)x‖/‖x‖ ≤ supx6=0n
‖(In+hA)x‖/‖x‖.

Our goal in this part is to show the other side of the inequality. Since
A is Metzler, for small enough h > 0, the matrix In + hA is non-
negative. By triangle inequality, this implies that |(In + hA)x| ≤
(In + hA)|x|, for every x ∈ Rn and for small enough h > 0. Since
‖ · ‖ is a monotonic norm, for every x ∈ Rn such that x 6= 0n,

‖(In + hA)x‖/‖x‖ ≤ ‖(In + hA)|x|‖/‖|x|‖.

and thus, for every x 6= 0n and every small enough h > 0, we have
‖(In+hA)x‖/‖x‖−1

h ≤ ‖(In+hA)|x|‖/‖|x|‖−1
h .

Since |x| ≥ 0n, we can define y = |x| and take the sup of both sides
of the above inequality over x 6= 0n,

µ(A) = lim
h→0+

sup
x 6=0n

‖(In + hA)x‖/‖x‖ − 1

h

≤ lim
h→0+

sup
y≥0n,y 6=0n

‖(In + hA)y‖/‖y‖ − 1

h
= µ+(A).

Regarding part (vii), by Lemma 3.2(ii), we have

µ+p,R(A) = sup
x≥0n,x 6=0n

JAx, xKp,R
‖x‖2p,R

≤ sup
x≥0n,x 6=0n

J(A+ ∆)x, xKp,R
‖x‖2p,R

= µ+p,R(A+ ∆).

Next, we provide formulas for some useful conic matrix measures.
Theorem 3.4 (Computing conic matrix measure): Let A ∈ Rn×n

be a matrix, ‖ · ‖ be a norm with the conic matrix measure µ+,
R ∈ Rn×n be an invertible non-negative matrix, and η ∈ Rn>0.
Then

(i) µ+R(A) ≤ µ+(RAR−1);
(ii) µ+

[η]
(A) = µ+([η]A[η]−1);

(iii) µ+2 (A) = p∗ − |µ2(A)|, where p∗ is the optimal value of fol-
lowing Quadratically Constrained Quadratic Program (QCQP):

p∗ = max xT( 12 (A+AT) + |µ2(A)|In)x

xTx ≤ 1, x ≥ 0n. (6)

(iv) µ+1 (A) = maxj{ajj +
∑
i 6=j [aij ]

+};
(v) µ+∞(A) = maxi{aii +

∑
j 6=i[aij ]

+}.
Moreover, if A is Metzler, then the following statements hold:
(vi) µ+

1,[η]
(A) = µ1,[η](A) = min{c ∈ R | ηTA ≤ cηT};

(vii) µ+∞,[η]−1(A) = µ∞,[η]−1(A) = min{c ∈ R | Aη ≤ cη};
(viii) µ+

2,[η]
(A) = µ2,[η](A) = min{c ∈ R | [η]A+AT[η] � 2c[η]}.

Proof: Regarding part (i), we compute

µ+R(A) = lim
h→0+

sup
x≥0n,x6=0n

‖(R+hRA)x‖/‖Rx‖−1
h

≤ lim
h→0+

sup
y≥0n

‖(In+hRAR−1)y‖/‖y‖−1
h = µ+(RAR−1), (7)

where the second inequality holds by setting y = Rx and noting that
if x ≥ 0n, then y = Rx ≥ 0n. Regarding part (ii), if R = [η], then
in equation (7), we have supx≥0n,x 6=0n

‖(R + hRA)x‖/‖Rx‖ =

supy≥0n,y 6=0n
‖(In+hRAR−1)y‖/‖y‖, since x ≥ 0n if and only

if y ≥ 0n. Thus, all the relations in equation (7) are equality and
the result follows. Regarding part (iii), for a symmetric matrix M ∈
Rn×n, we denote the the largest eigenvalue of M by λmax(M) and
we define B = 1

2 (A+AT) + |µ2(A)|In. Therefore,

λmax(B) = λmax( 12 (A+AT) + |µ2(A)|In)

= µ2(A) + |µ2(A)| ≥ 0

where the first equality holds by the formula µ2(A) = λmax( 12 (A+

AT)) and last inequality holds because µ2(A) ≤ |µ2(A)|. As a
result, the matrix B is positive semi-definite. Using Theorem 3.3(iv),

µ+2 (A) = sup
x≥0n,x 6=0n

xTAx
‖x‖22

= sup
y≥0n,‖y‖2=1

yTAy,

where the last equality holds by the change of variable y = x
‖x‖2

.
This implies that,

µ+2 (A) = µ+2 ( 12 (A+AT)) = µ+2 (B − |µ2(A)|In)

= µ+2 (B)− |µ2(A)|,

where the last equality holds by Theorem 3.3(iii). Moreover,

µ+2 (B) = max
y≥0n,‖y‖2=1

yTBy = max
y≥0n,‖y‖2≤1

yTBy

where the last equality holds because B is positive semi-definite
and thus x 7→ xTBx is convex. Regarding part (iv), using Theo-
rem 3.3(iv),

µ+1 (A) = sup
x≥0n,x 6=0n

sign(x)TAx
‖x‖1

= sup
‖y‖1=1,y≥0n

sign(y)TAy

= sup
‖y‖1=1,y≥0n

yTATsign(y),

where the second equality holds by the change of variable y = x
‖x‖

and the last equality holds because sign(y)TAy = yTATsign(y).
Note that, for every i ∈ {1, . . . , n} such that yi 6= 0, we have
[ATsign(y)]i ≤ aii +

∑
k 6=i[aki]

+. This implies that

sup
‖y‖1=1,y≥0n

yTATsign(y) ≤ sup
‖y‖1=1,y≥0n

n∑
i=1

yi(aii +
∑

i6=k
[aki]

+)

≤ max
j
{ajj +

∑
i6=j

[aij ]
+}.
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Now we show the converse inequality, Assume that k ∈ {1, . . . , n}
is such that

akk +
∑

i 6=k
[aik]+ = max

j
{ajj +

∑
i6=j

[aij ]
+}

For every ε ∈ (0, 1), we define z(ε) ∈ Rn≥0 as follows:

[z(ε)]i =


1− ε i = k,

ε aik > 0,

0 aik = 0

Then by setting y(ε) =
z(ε)
‖z(ε)‖1

, we get

sup
‖y‖1=1,y≥0n

yATsign(y) ≥ lim
ε→0+

y(ε)TATsign(y(ε))

= lim
ε→0+

y(ε)k(akk+
∑

i 6=k
[aik]+)+ lim

ε→0+

∑
i 6=k

y(ε)i[A
Tsign(y)]i

= akk +
∑

i 6=k
[aik]+,

where the last equality holds because limε→0+ y(ε)i = 1 and
limε→0+ y(ε)k = 0, for every k 6= i. This conclude the proof of
part (iv). Regarding part (v), using Theorem 3.3(iv),

µ+∞(A) = sup
x≥0n,x 6=0n

max
i∈I∞(x)

(Ax)i
xi

= sup
y≥0n,‖y‖∞=1

max
i∈I∞(y)

(Ay)i

= sup
y≥0n,‖y‖∞=1

max
i∈I∞(y)

n∑
j=1

aijyj

≤ max
i
{aii +

∑
j 6=i

[aij ]
+}.

Now we show the converse inequality. Let k ∈ {1, . . . , n} be such
that

akk +
∑

i 6=k
[aki]

+ = max
i
{aii +

∑
j 6=i

[aij ]
+}.

We define z ∈ Rn≥0 as follows:

zi =

{
1 i = k or aki > 0,

0 aki ≤ 0,

Then it is easy to see that

sup
y≥0n,‖y‖∞=1

max
i∈I∞(y)

(Ay)i ≥ max
i∈I∞(z)

(Az)i

≥ (Az)k = akk +
∑

i 6=k
[aki]

+

= max
i
{aii +

∑
j 6=i

[aij ]
+}.

This completes the proof of part (v). Regarding (vi), the fact that
µ+
1,[η]

(A) = µ1,[η](A) follows from Theorem 3.3(vi). Let b ∈ R be

such that µ+
1,[η]

(A) ≤ c. By part (iv),

max(ηTA[η]−1) = max(1T
n[η]A[η]−1) = µ+1,[η](A) ≤ c,

which is also equivalent to ηTA ≤ ηTc. Therefore µ+
1,[η]

(A) ≤ c is

equivalent to ηTA ≤ ηTc and the proof is complete by taking the
min over c. The proof of parts (vii) and (viii) are similar.

Remark 3.5: The following remarks are in order.

(i) (Computing conic matrix measures) Theorem 3.4(iii) presents a
QCQP optimization problem for computing the `2-norm conic
matrix measure. Note that, while the QCQP (6) is not in general

convex, one can find the following convex relaxation of (6) based
on semidefinite programming [30, Equation (16)]:

min
X∈Rn×n,x∈Rn

tr(−( 12 (A+AT) + |µ2(A)|In)X)

tr(X) ≤ 1, −x ≤ 0n,

[
X x

xT 1

]
� 0,

(8)

where tr is the trace operator. The semidefinite programming (8)
can be solved using CVX [11]. Moreover, the semidefinite
program (8) provides an upper bound for the optimal solution
of (6).

(ii) (Spectral abscissa and conic matrix measures) As is shown
in Theorem 3.3, the conic matrix measure shares several nice
features with the matrix measure including, positive homogene-
ity, subadditivity, and translation properties. Remarkably, unlike
the matrix measure, the conic matrix measure is sometimes
smaller than the spectral abscissa. For instance, consider the
matrix A =

[
−1 − 1

2
−1 −2

]
with eigenvalues λ1(A) = −0.6340 and

λ2(A) = −2.3660. Using the formula in Theorem 3.4(v),

µ+∞(A) = −1 < max
i

Re(λi(A)) < µ∞(A) = −0.5.

Finally, we establish a generalized version of Coppel’s inequality.
Theorem 3.6 (Conic Coppel’s inequality): Let ‖ ·‖ be a norm and

t 7→ A(t) be a continuous map. Consider the dynamical system

ẋ = A(t)x (9)

If A(t) is Metzler for all t ≥ 0 and x(0) ≥ 0n, then

‖x(t)‖ ≤ exp
(∫ t

0
µ+(A(τ))dτ

)
‖x(0)‖, for all t ≥ 0.

Proof: Note that

x(t+ h) = x(t) + hA(t)x(t) +O(h2) = (In + hA(t))x(t) +O(h2)

and, in turn, D+‖x(t)‖ = limh→0+
‖(In+hA(t))x(t)‖−‖x(t)‖

h .
Since A(t) is Metzler for every t ≥ 0 and x(0) ≥ 0n, it is well
known that x(t) ≥ 0n, for every t ≥ 0. Therefore, for every t ∈ R≥0,
we obtain

lim
h→0+

‖(In + hA(t))x(t)‖ − ‖x(t)‖
h

≤ µ+(A(t))‖x(t)‖.

The result then follows from Grönwall–Bellman Lemma.

IV. CONTRACTING MONOTONE AND POSITIVE SYSTEMS

In this section, we use the notions of conic matrix measure and
WP to study contractive monotone systems and converging positive
systems. Our first result presents a characterization of contracting
monotone systems using conic matrix measures and WPs.

Theorem 4.1 (Contracting monotone systems): Let ẋ = f(t, x) be
a monotone dynamical system with a convex forward invariant set
C ⊆ Rn and ‖ · ‖ be a norm with associated WP J·, ·K satisfying
Deimling’s inequality. If ‖ · ‖ is monotonic, then the following
statements are equivalent for b ∈ R:

(i) µ+(Df(t, x)) ≤ b, for every (t, x) ∈ R≥0 × C;
(ii) Jf(t, x)− f(t, y), x− yK ≤ b‖x−y‖2, for every (t, x), (t, y) ∈

R≥0 × C such that x ≥ y;
(iii) ‖φ(t, t0, x0) − φ(t, t0, y0)‖ ≤ eb(t−s)‖φ(s, t0, x0) −

φ(s, t0, y0)‖, for every t0 ≤ s ≤ t and every x0, y0 ∈ C.

Instead, if ‖·‖ is not monotonic, then conditions (i), (ii) are equivalent
and, with C = [xmin, xmax] for some xmin < xmax, they imply
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(iv) there exists M > 0 such that, for every x0, y0 ∈ [xmin, xmax]
and every t0 ≤ s ≤ t,

‖φ(t, t0, x0)− φ(t, t0, y0)‖

≤Meb(t−s)‖φ(s, t0, x0)− φ(s, t0, y0)‖.

Proof: Regarding (i) =⇒ (ii), compute

Jf(t, x)− f(t, y), x− yK

=

t(∫ 1

0
Df(t, τx+ (1− τ)y)dτ

)
(x− y), x− y

|

≤
∫ 1

0
JDf(t, τx+ (1− τ)y)(x− y), x− yK dτ

≤ µ+(Df(t, τx+ (1− τ)y))‖x− y‖2 ≤ b‖x− y‖2,

where the first equality is by the Mean Value Theorem, the second
inequality is by the subadditivity of the WP and the third inequality
holds by Theorem 3.3(iv) and the fact that x − y ≥ 0n. Regard-
ing (ii) =⇒ (i), pick x = y + hv, for v ∈ Rn≥0 and h > 0. Thus,

Jf(t, x)− f(t, y), x− yK = Jf(t, y + hv)− f(t, y), hvK

= h2
r
f(t,y+hv)−f(t,y)

h , v
z
≤ b‖x− y‖2 = bh2‖v‖2.

In the limit as h→ 0+, for every y ∈ Rn and every v ∈ Rn≥0,

JDf(t, y)v, vK = lim
h→0+

r
f(t,y+hv)−f(t,y)

h , v
z
≤ b‖v‖2.

where the first equality holds by the continuity of WP in the first
argument. As a result, by Theorem 3.3(iv), µ+(Df(t, x)) ≤ b, for
every t ∈ R≥0 and every x ∈ C. Regarding (i) =⇒ (iii),since
f is monotone, Df(t, x) is Metzler for every (t, x) ∈ R≥0 × C.
Since ‖ · ‖ is monotonic, Theorem 3.3(vi) implies µ+(Df(t, x)) =
µ(Df(t, x)), for every x ∈ C and every t ≥ 0. These conclusions
then follow from [7, Theorem 29]. Regarding (iii) =⇒ (ii), note that
‖φ(t+h, t0, x0)−φ(t+h, t0, y0)‖ ≤ ebh‖φ(t, t0, x0)−φ(t, t0, y0)‖,
for every h > 0. As a result

lim
h→0+

‖φ(t+h,t0,x0)−φ(t+h,t0,y0)‖−‖φ(t,t0,x0)−φ(t,t0,y0)‖
h

≤ lim
h→0+

ebh − 1

h
‖φ(t, t0, x0)− φ(t, t0, y0)‖

= b‖φ(t, t0, x0)− φ(t, t0, y0)‖.

Thus, by Deimling’s inequality, for every x0, y0 ∈ C,

Jf(t, φ(t, t0, x0))− f(t, φ(t, t0, y0)), φ(t, t0, x0)− φ(t, t0, y0)K

≤ b‖φ(t, t0, x0)− φ(t, t0, y0)‖2.

This concludes the proof of (iii) =⇒ (ii). Regarding (iv), first
we show that, for x0 ≥ y0, ‖φ(t, t0, x0) − φ(t, t0, y0)‖ ≤
eb(t−s)‖φ(s, t0, x0)−φ(s, t0, y0)‖. For α ∈ [0, 1], define ψ(t, α) =
φ
(
t, s, αφ(s, t0, x0) + (1 − α)φ(s, t0, y0)

)
and note ψ(t0, α) =

αφ(s, t0, x0) + (1 − α)φ(s, t0, y0) and ∂ψ
∂α (s, α) = φ(s, t0, x0) −

φ(s, t0, y0). We then compute:

∂

∂t

∂

∂α
ψ(t, α) =

∂

∂α

∂

∂t
ψ(t, α) =

∂

∂α
f(t, ψ(t, α))

=
∂f

∂x
(t, ψ(t, α))

∂

∂α
ψ(t, α).

Therefore, ∂ψ∂α (t, α) satisfies the linear time-varying differential equa-
tion ∂

∂t
∂ψ
∂α = Df(t, ψ)∂ψ∂α . Moreover, x0 − y0 ≥ 0 and Df(t, x) is

Metzler, for every (t, x) ∈ R≥0×C. Therefore, Theorem 3.6 implies∥∥∥∂ψ∂α (t, α)
∥∥∥ ≤ ∥∥∥∂ψ∂α (s, α)

∥∥∥ exp
(∫ t

s
µ+
(
Df(t, ψ(τ, α))

)
dτ
)

≤ eb(t−s) ‖φ(s, t0, x0)− φ(s, t0, y0)‖ , (10)

where we used µ+(Df(t, x)) ≤ b, for every t ∈ R≥0 and x ∈ Rn.
In turn, inequality (10) implies

‖φ(t, t0, x0)− φ(t, t0, y0)‖ = ‖ψ(t, 1)− ψ(t, 0)‖

=

∥∥∥∥∥
∫ 1

0

∂ψ(t,α)
∂α dα

∥∥∥∥∥ ≤
∫ 1

0

∥∥∥∂ψ(t,α)∂α

∥∥∥ dα
≤ eb(t−s) ‖φ(s, x0)− φ(s, y0)‖ .

Now assume that x0 6≥ y0. We define ξ, η ∈ Rn by

ξi = max{(x0)i, (y0)i}, ηi = min{(x0)i, (y0)i}, i ∈ {1, . . . , n}

Then ξ, η ∈ [xmin, xmax] and it is clear that η ≤ x ≤ ξ and η ≤
y ≤ ξ. Moreover, since all the norms are equivalent in Rn, there
exists M1,M2 > 0 such that M1‖v‖ ≤ ‖v‖∞ ≤ M2‖v‖. As a
result, we get ‖η − ξ‖ ≤ M−11 ‖η − ξ‖∞ = M−11 ‖x0 − y0‖∞ ≤
M−11 M2‖x0 − y0‖. We set M

1
2 = M−11 M2 > 0. Since the vector

field f is monotone, for every t ≥ t0,

φ(t, t0, η) ≤ φ(t, t0, x) ≤ φ(t, t0, ξ),

φ(t, t0, η) ≤ φ(t, t0, y) ≤ φ(t, t0, ξ).

This means that

‖φ(t, t0, x)− φ(t, t0, y)‖ ≤M−11 ‖φ(t, t0, x)− φ(t, t0, y)‖∞
≤M−11 ‖φ(t, t0, ξ)− φ(t, t0, η)‖∞
≤M−11 M2‖φ(t, t0, ξ)− φ(t, t0, η)‖

= M
1
2 ‖φ(t, t0, ξ)− φ(t, t0, η)‖.

However, we know that η ≤ ξ, thus by the above argument we
get ‖φ(t, t0, η)− φ(t, t0, ξ)‖ ≤ eb(t−s) ‖φ(s, t0, η)− φ(s, t0, ξ)‖.
Therefore,

‖φ(t, t0, x0)− φ(t, t0, y0)‖ ≤M
1
2 ‖φ(t, t0, η)− φ(t, t0, ξ)‖

≤M
1
2 eb(t−s)‖φ(s, t0, η)− φ(s, t0, ξ)‖

= Meb(t−s)‖φ(s, t0, x0)− φ(s, t0, y0)‖.

Remark 4.2: For monotonic norms, using Theorem 3.3(vi), the
notion of conic matrix measure coincides with the standard matrix
measure on Metzler matrices. Therefore, Theorem 4.1 can be com-
pletely recovered from [7, Theorem 31]. However, for non-monotonic
norms, Theorem 4.1 provides a conic matrix measure condition for
incremental exponential stability of the system. The next example
elaborates this point in more detail.

Example 4.3: Consider the class of dynamical system on R2

ẋ1 = −x1 + αx2 − γg(x1),

ẋ2 = βx1 − x2, (11)

where α, β, γ ≥ 0 and g : R→ R≥0 is differentiable with g(0) = 0
and 0 ≤ g′(x) ≤ G, for every x ∈ R. It is easy to see that, since
α, β ≥ 0, the dynamical system (11) is monotone. For α = 1

2 ,
β = 1.2, γ = 1, and G = 0.1, we have

Df(x1, x2) =

[
−1− g′(x1) 1

2
1.2 −1

]
For monotonic norm ‖ · ‖∞, we have µ+∞(Df(x1, x2)) =
µ∞(Df(x1, x2)) = 0.2. Therefore the dynamical system (11) is not
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contracting with respect to `∞-norm. For the non-monotonic norm

‖ · ‖∞,R with R =

[
−1 1
1 1

]
, we can compute

µ+∞,R(Df(x1, x2)) = µ+∞(RDf(x1, x2)R−1)

= µ+∞

([
−1.85− g′(x1)

2 0.35 +
g′(x1)

2

−0.35 +
g′(x1)

2 −0.15− g′(x1)
2

])
= −0.15− g′(x)

2 ≤ −0.15 (12)

Therefore, using Theorem 4.1 and inequality (12), the dynamical
system (11) is incrementally exponentially stable with respect to the
non-monotonic norm ‖ · ‖∞,R. As a consequence, 02 is the globally
exponentially stable equilibrium point of the dynamical system (11).
On the other hand, we have

µ∞,R(Df(x1, x2)) = µ∞(RDf(x1, x2)R−1)

= µ∞

([
−1.85− g′(x1)

2 0.35 +
g′(x1)

2

−0.35 +
g′(x1)

2 −0.15− g′(x1)
2

])
≥ 0.2− g′(x1) ≥ 0.1. (13)

However, using [7, Theorem 31] and inequality (13), the dynamical
system (11) is not contracting with respect to ‖ · ‖∞,R.

We can also simplify Theorem 4.1 for diagonally-weighted norms.
Corollary 4.4 (Diagonally-weighted norms): Let ẋ = f(t, x) be

a monotone dynamical system and η ∈ Rn>0. Then the following
statements about [η]-weighted `1-norm are equivalent:

(i) µ1,[η](Df(t, x)) ≤ b, for every (t, x) ∈ R≥0 × Rn;
(ii) ηT(f(t, x)− f(t, y)) ≤ bηT(x− y), for every x ≥ y and every

t ∈ R≥0;
(iii) ‖φ(t, t0, x0) − φ(t, t0, y0)‖1,[η] ≤ eb(t−s)‖φ(s, t0, x0) −

φ(s, t0, y0)‖1,[η], for every x0, y0 ∈ Rn and every t0 ≤ t ≤ s.

Similarly, the following statements about [η]−1-weighted `∞-norm
are equivalent:

(iv) µ∞,[η]−1(Df(t, x)) ≤ b, for every (t, x) ∈ R≥0 × Rn;
(v) f(t, x) − f(t, y) ≤ b(x − y), for every t ∈ R≥0 and every

x = y + cη with c > 0;
(vi) ‖φ(t, t0, x0) − φ(t, t0, y0)‖∞,[η]−1 ≤ eb(t−s)‖φ(s, t0x0) −

φ(s, t0, y0)‖∞,[η]−1 , for every x0, y0 ∈ Rn and t0 ≤ s ≤ t.

Proof: Note that ‖·‖1,[η] is a monotonic norm and its associated
WP is given by (2) with R = [η]. Similarly, ‖ · ‖∞,[η]−1 is a
monotonic norm and its associated WP is given by (3) with R =
[η]−1. Regarding (i) =⇒ (ii),

ηT(f(t, x)− f(t, y)) = ηT
(∫ 1

0
Df(t, τx+ (1− τ)y)dτ

)
(x− y)

=

∫ 1

0
ηTDf(t, τx+ (1− τ)y)(x− y)dτ ≤ bηT(x− y),

where the first equality is by the Mean Value Theorem and the last
inequality holds by Theorem 3.4(vi) and using the fact that x− y ≥
0n. Regarding (ii) =⇒ (i), pick x = y+hv, for v ∈ Rn≥0 and h > 0.
Thus, we get

ηT(f(t, x)− f(t, y)) = ηT(f(t, y + hv)− f(t, y)) ≤ bhηTv.

By taking the limit as h→ 0+, for every y ∈ Rn and every v ∈ Rn≥0,

ηTDf(t, y)v = lim
h→0+

ηT
f(t,y+hv)−f(t,y)

h ≤ bηTv.

The result then follows by Theorem 3.4(vi).

Regarding (iv) =⇒ (v), note that, for every c > 0 such that
x = y + cη, we have

f(t, x)− f(t, y) =

∫ 1

0
Df(t, (1− τ)y + τx)(x− y)dτ

=

∫ 1

0
Df(t, y + τcη)(cη)dτ ≤ b(x− y)

where the inequality follows from Theorem 3.4(vii). For (v) =⇒ (iv),

Df(t, x)η = lim
h→0+

f(t, x+ hη)− f(t, x)

h
≤ bη.

The result follows by Theorem 3.4(vii). The rest of the proof follows
from Theorem 4.1.

Next, we use the notion of conic matrix measure and weak
pairing to study exponential convergence of positive systems to their
equilibrium points.

Theorem 4.5 (Converging positive systems): Let ẋ = f(t, x) be
a positive system with equilibrium point 0n, ‖ · ‖ be a norm with
associated WP J·, ·K satisfying Deimling’s inequality and the curve
norm derivative formula, and b ∈ R. Consider

(A1) Jf(t, x), xK ≤ b‖x‖2, for every (t, x) ∈ R≥0 × Rn≥0;
(A2) ‖φ(t, t0, x0)‖ ≤ eb(t−s)‖φ(s, t0, x0)‖, for every t0 ≤ s ≤ t

and every x0 ∈ Rn≥0.
(A3) µ+(B(t, x)) ≤ b, for every x ≥ 0n and every t ∈ R≥0 where

B(t, x) is such that f(t, x) = B(t, x)x.
Then the following statements hold:

(i) (A1) and (A2) are equivalent;
(ii) (A3) implies (A1) and (A2).

Proof: Regarding (A1) ⇐⇒ (A2), the proof is similar to [7,
Theorem 33] and we omit it.

Regarding (A3) =⇒ (A2), for every x ≥ 0, we have

Jf(t, x), xK = JB(t, x)x, xK ≤ µ+(B(t, x))‖x‖2 ≤ b‖x‖2.

where the second inequality holds by Theorem 3.3(iv).
In the next example, we investigate the role of conic matrix

measures in the sufficient condition for exponential stability of
positive systems in Theorem 4.5.

Example 4.6: Consider the following dynamical system on R2:

ẋ1 = −2x1 + x2 := f1(x1, x2),

ẋ2 = −x1α(x2)− x2 := f2(x1, x2), (14)

where α : R→ R≥0 is a non-negative non-decreasing function. First
note that, Df(x1, x2) =

[
−2 1

−α(x2) −x1α′(x2)−1

]
. Thus, the vector

field f is not monotone on R2
≥0 because −α(r) ≤ 0 for every r ∈ R.

However, the dynamical system (14) is positive with an equilibrium
point at 02 ∈ R2

≥0. Moreover,

f(x1, x2) =

[
−2 1
−α(x2) −1

] [
x1
x2

]
:= B(x1, x2)

[
x1
x2

]
.

Using Theorem 3.4(v), for every (x1, x2) ∈ R2
≥0,

µ+∞(B(x1, x2)) = −1 ≤ µ∞(B(x1, x2)) = −1 + α(x2). (15)

By Theorem 4.5(ii), every trajectory t 7→ [x1(t), x2(t)]T of the
positive system (14) starting at [x1(0), x2(0)]T ∈ R2

≥0 satisfies

‖[x1(t), x2(t)]T‖∞ ≤ e−t‖[x1(0), x2(0)]T‖∞.

It is worth mentioning that, by equation (15), the `∞-matrix measure
of B(x1, x2) might not be bounded and cannot be used to deduce
convergence of trajectories of (14) to 02.
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V. APPLICATIONS

In this section, we present two applications for our non-Euclidean
contraction framework for monotone and positive systems. As a first
application, we show that a Hopfield neural network with excitatory
interactions between its neurons is monotone but non-positive. We
then use our framework to analyze stability and robustness of excita-
tory Hopfield neural networks. As a second application, we develop
a framework for stability analysis of networks of interconnected
systems using positive but non-monotone comparison systems.

A. Excitatory Hopfield neural networks
Hopfield model is a class of recurrent neural networks that can

serve as an associative memory system [14]. There has been a
recent growing interest in the machine learning community to use
variations of Hopfield neural networks to store information or to learn
prototypes [24]. However, neural networks are notoriously vulnerable
to adversarial perturbations of their input; small changes in their
input can cause a large change in their output [29]. In this section,
we study stability and input-output robustness of Hopfield neural
network with excitatory neuron interactions and provide explicit
adversarial robustness guarantees for this class of learning algorithms.
The dynamics of the Hopfield neural network is given by

ẋ = −Λx+ Tg(x) + I(t) := FH(x), (16)

where x ∈ Rn is the state of neurons, Λ ∈ Rn×n is the diagonal
positive-definite matrix of dissipation rates, T ∈ Rn×n is the
interaction matrix, and I : R≥0 → Rn≥0 is a time-varying input.
Assume g(x) = (g1(x1), . . . , gn(xn))T, where the ith activation
function gi is Lipschitz continuous, monotonic non-decreasing with
gi(0) = 0 and with the finite sector property:

0 ≤ gi(x)−gi(y)
x−y := Gi(x, y) ≤ Gi,

where G = (G1, . . . , Gn)T ∈ Rn>0. We study excitatory Hopfield
networks, i.e., neural networks with Metzler interaction matrix T .

Proposition 5.1 (Contracting Hopfield neural networks):
Consider the Hopfield neural network (16) with an irreducible
non-negative interaction matrix T . Assume the Metzler matrix
−Λ +TG is Hurwitz with (−c, v) and (−c, w) its left and the right
Perron eigenpair, respectively. For any p ∈ [1,∞], define q ∈ [1,∞]
by 1

p + 1
q = 1 (with convention 1/∞ = 0) and η ∈ Rn>0 by

η =
(
v

1
p
1 /w

1
q
1 , . . . , v

1
p
n /w

1
q
n

)T
.

Then the following statements hold for any p ∈ [1,∞]:
(i) the Hopfield neural network (16) is monotone and contracting

with respect to the norm ‖ · ‖p,[η] with rate c;
(ii) if I(t) = I∗ is constant, then the Hopfield neural network (16)

has a unique globally exponentially stable equilibrium point x∗I
with the Lyapunov functions ‖x− x∗I‖p,[η] and ‖FH(x)‖p,[η];

(iii) if t 7→ xI(t) and t 7→ xJ (t) are solutions of the Hopfield
neural network (16) for input signals t 7→ I(t) and t 7→ J(t)
respectively, then, for every t ∈ R≥0,

‖xI(t)− xJ (t)‖p,[η] ≤ e
−ct‖xI(0)− xJ (0)‖p,[η]

+

∫ t

0
e−c(t−s)‖I(s)− J(s)‖p,[η]ds.

Proof: Let i ∈ {1, . . . , n} and consider x ≤ y such that xi =
yi. For every i 6= j, by the finite sector property of gi, we have
gi(xi) ≤ gi(yj), and thus

[FH(x)]i = −γixi +
∑n

j=1
Tijgj(xj) + I(t)

≤ −γiyi +
∑n

j=1
Tijg(yj) + I(t) = [FH(y)]i,

where the inequality holds because the matrix T is Metzler. This
means that the Hopfield neural network (16) is monotone. Moreover,
for every x ≥ y ≥ 0n,

‖x− y‖p,[η]D
+‖x− y‖p,[η]

= J−Λ(x− y) + T (g(x)− g(y)), x− yKp,[η]
≤

q
(−Λ + TG)(x− y), x− y

y
p,[η]

≤ µp,[η](−Λ + TG)‖x− y‖2p,[η] = −c‖x− y‖2p,[η],

where the first equality is the curve norm derivative formula. Since g
is non-decreasing and T is non-negative, we get the bound T (g(x)−
g(y)) ≤ TG(x− y) for every x ≥ y ≥ 0n. Lemma 3.2(ii) and this
bound give us the second inequality. The third inequality holds by
definition of µp,[η] and the fourth equality holds by [1] using the
fact that −Λ + TG is Metzler, irreducible, and Hurwitz with Perron
eigenvalue −c and left and right Perron eigenvectors v and w. Then,
parts (i) and (ii) follow from Theorem 4.1. Regarding part (iii),

‖xI−xJ‖p,[η]D
+‖xI − xJ‖p,[η]

= JFH(xI)− FH(xJ ) + I(t)− J(t), xI − xJ Kp,[η]
≤ JFH(xI)− FH(xJ ), xI − xJ Kp,[η]

+ JI(t)− J(t), xI(t)− xJ (t)Kp,[η]
≤ −c‖xI − xJ‖2p,[η] + ‖xI − xJ‖p,[η]‖I(t)− J(t)‖p,[η],

where the first equality holds by the curve norm derivative formula,
the second inequality holds by subadditive property of WPs, and
the third inequality holds by contractivity of FH and the Cauchy-
Schwarz inequality. This implies that D+‖xI(t) − xJ (t)‖p,[η] ≤
−c‖xI(t) − xJ (t)‖p,[η] + ‖I(t) − J(t)‖p,[η], for every t ∈ R≥0.
The result follows by Grönwall–Bellman inequality [7, Lemma 11].

Remark 5.2 (Comparison with the literature): We refer to [31] for
a review of stability properties of Hopfield neural networks; e.g.,
it is known that Hurwitzness of −Λ + TG (as we assume in
Proposition 5.1) implies global exponential stability. To the best of
our knowledge, the strong contractivity (with respect to appropriately
weighted p-norms) in part (i) and the Lyapunov functions in part (ii)
are novel. Recall that, as reviewed in the Introduction, strong con-
tractivity is a stronger property than global exponential stability. To
the best of our knowledge, the input-to-output stability in part (iii)
is novel and is directly applicable to obtain adversarial robustness
guarantees of Hopfield neural networks. 4

B. Non-monotone comparison systems

Comparison principles are well-established techniques in dynam-
ical system theory to infer stability of a dynamical system using
properties of a simpler comparison systems. In most of the existing
comparison frameworks in the literature, monotonicity of the compar-
ison system plays a crucial role [21], [23]. In this subsection, we de-
velop a novel comparison principle for stability analysis of networks
of interconnected systems. Unlike the existing comparison results
in the literature, our framework uses positive comparison systems
which are not necessarily monotone. Consider the interconnection of
n subsystems:

ẋi = fi(x, ui), i ∈ {1, . . . , n}. (17)

where xi ∈ RNi is the state and ui ∈ RMi is the exogenous input for
the ith subsystem. We define N =

∑n
i=1Ni and M =

∑n
i=1Mi

and x = (x1, . . . , xn)T ∈ RN . We assume that, for every i ∈
{1, . . . , n}, we have fi(0N ,0Mi

) = 0Ni
and the ith subsystem is

equipped with the norm ‖ · ‖i on RNi . We assume that, for every
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i ∈ {1, . . . , n}, the ith subsystem has a storage function Vi : RNi →
R≥0 such that

(B1) there exists class K∞ functions αi and αi such that
αi(‖xi‖i) ≤ Vi(xi) ≤ αi(‖xi‖i);

(B2) for every x ∈ RN , u ∈ RM , the inequality

LfiVi(xi) ≤ −αi(Vi(xi)) + gi(V (x)) + γi(u). (18)

holds for some function gi : RN≥0 → R with gi(0N ) = 0 and
for some class K∞ functions αi and γi.

We define the maps Γ : RN≥0 → Rn and A : RN≥0 → Rn by:

Γ(x) = (g1(x), . . . , gn(x))T, A(x) = (α1(x1), . . . , αn(xn))T

One can also define the non-monotone comparison system by

v̇i = −Ai(vi) + Γi(v) + γi(u), i ∈ {1, . . . , n}. (19)

Using the inequality (18), one can show that, for u = 0M , the
comparison system (19) is a positive dynamical system. However,
since gi can be any arbitrary function, the comparison system (19)
is not necessarily monotone.

Remark 5.3 (Input-to-state stability): The inequality (18) can be
considered as a generalization of component-wise input-to-state sta-
bility (ISS). An interconnected system is component-wise ISS if each
of its subsystems is ISS when interconnections between subsystems
are considered as the input. In other words, the interconnected
system (17) is component-wise ISS if, for every i ∈ {1, . . . , n},
the storage function Vi satisfies

LfiVi(xi) ≤ −αi(Vi(xi)) +
∑

j 6=i
γij(Vj(xj)) + γiu(ui)

for class K∞ function αi and class K functions γij and γiu.
Indeed, if the interconnected system is component-wise ISS, then
the associated comparison system (19) is monotone.

Proposition 5.4 (Stability of interconnection of systems):
Consider the interconnected system (17) and suppose that every
subsystem satisfies conditions (B1) and (B2) above. Let p ∈ [1,∞]
and R ∈ Rn×n be an invertible non-negative matrix. Suppose that
there exists c > 0 such that, for every v ≥ 0n,

− J−A(v), vKp,R ≥ JΓ(v), vKp,R + c‖v‖2p,R (C1)

Then, the following statements hold:

(i) the comparison system (19) converges exponentially to 0n
(ii) for u(t) = 0M , every trajectory of the interconnected sys-

tem (17) converges to 0N .
(iii) the system (17) is input-to-state stable in the sense that, for every

i ∈ {1, . . . , n} and t ≥ 0, there exists Li > 0, such that

‖xi(t)‖i ≤ α−1i
(
Lie
−ct‖V (x(0))‖p,R+

Li(1−e−ct)
c max

τ∈[0,t]
‖γ(u(τ))‖p,R

)
. (20)

Alternatively, if v 7→ −A(v) + Γ(v) is continuously differentiable,
then (i), (ii), and (iii) still holds by replacing condition (C1) with the
following stronger condition:

µ+p,R(B(v)) ≤ −c (C2)

where B(v) ∈ Rn×n satisfies B(v)v = −A(v)+Γ(v), for v ∈ Rn≥0.

Proof: Regarding part (i), for u = 0M , we have

J−A(v) + Γ(v), vKp,R ≤ J−A(v), vKp,R + JΓ(v), vKp,R ≤ −c‖v‖
2
p,R

for every v ∈ Rn≥0. Since the comparison system is positive, the
result follows from Theorem 4.5(i). Regarding part (ii), by setting
V (x(t)) = V (t), we get

‖V (t)‖D+‖V (t)‖p,R =
r
V̇ (t), V (t)

z

p,R

≤ J−A(V (t)) + Γ(V (t)) + γ(u), V (t)Kp,R
≤ J−A(V (t)), V (t))Kp,R + JΓ(V (t)), V (t)Kp,R

+ Jγ(u), V (t)Kp,R
≤ −c‖V (t)‖2p,R + ‖γ(u)‖‖V (t)‖p,R.

where the first equality holds by the curve norm derivative formula,
the second inequality holds by Lemma 3.2(ii), the third inequality
holds by subadditivity of the WPs, and the fourth inequality holds
by the Cauchy-Schwarz inequality. This implies that

‖V (t)‖p,R ≤ e−ct‖V (0)‖p,R + 1−e−ct

c max
τ∈[0,t]

‖γ(u(τ))‖p,R.

Therefore, for u = 0M , we have t 7→ V (t) converges exponentially
to 0n and thus limt→∞ x(t) = 0N . Regarding part (iii), since R is
non-negative and invertible, there exists Li > 0 such that Vi(xi) ≤
Li‖V (x)‖p,R, for every i ∈ {1, . . . , n}. Moreover, we know that
αi(‖xi‖i) ≤ Vi(xi), for every i ∈ {1, . . . , n}. The result then easily
follows. Finally, for continuously differentiable v 7→ −A(v) + Γ(v),
condition (C2) implies condition (C1) by Theorem 4.5(ii).

Remark 5.5 (Small-gain interpretation): (i) For condition (C1)
the term − J−A(v), vKp,R captures the incremental dissipation
gains of the subsystems while the term JΓ(v), vKp,R cap-
tures the incremental interconnection gains between subsystems.
Therefore, one can interpret the condition (C1) as a small-
gain condition requiring the dissipation gains to dominate the
interconnection gains.

(ii) For monotone vector field Γ, one can choose p = 1 and R =
[η] ∈ Rn×n for some η ∈ Rn>0 and using Corollary 4.4 to write
condition (C1) as:

ηTA(v) ≥ ηTΓ(v) + cηTv,

for every v ≥ 0n. This result is similar to the small-gain theorem
developed in [6], [26].

(iii) Compared to the classical comparison results (see [21], [23],
[26]), Proposition 5.4 does not require monotonicity of the com-
parison system. Instead Proposition 5.4 is based on comparing
the interconnected system with a positive comparison system. As
a result, contrary to the existing small-gain theorems (see [6],
[26]), Proposition 5.4 can take into account both the inhibitory
and excitatory nature of the interactions between the subsystems.
The next example illustrates this point in more detail. 4

Example 5.6: Consider the following system on R2:

ẋ1 = −x1 + β(x2)x1x
5
2 − 2x31x

4
2

ẋ2 = −x2 + x61x2 − x41x32, (21)

where β : R → R is such that |β(r)| ≤ |r|, for every r ∈ R. We
choose the storage functions Vi(xi) = x2i for i ∈ {1, 2}. One can
construct a monotone comparison system for the dynamics (21) as
follows:

V̇1 = −2V1 + 2β(x2)x52V1 − 4V 2
1 V

2
2 ≤ −2V1 + 2V 3

2 V1,

V̇2 = −2V2 + 2V 3
1 V2 − 2V 2

1 V
2
2 ≤ −2V2 + 2V 3

1 V2.

Therefore, the comparison system has the form v̇ = h(v) with

h(v) =

[
−2v1 + 2v32v1
−2v2 + 2v31v2

]
. Since the Jacobian of h is Metzler on

R2
≥0, the comparison system h is monotone on R2

≥0. However, this
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comparison system has two equilibrium points v1 = v2 = 0 and
v1 = v2 = 1. Therefore, it is not possible to use comparison
system h to deduce global stability of 02 for the original dynamical
system (21). On the other hand, one can construct a positive non-
monotone comparison system for the dynamics (21) as follows:

V̇1 = −2V1 + 2β(x2)x52V1 − 4V 2
1 V

2
2 ≤ −2V1 + 2V1V

3
2 − 4V 2

1 V
2
2 ,

V̇2 = −2V2 + 2V 3
1 V2 − 2V 2

1 V
2
2 ≤ −2V2 + 2V2V

3
1 − 2V 2

1 V
2
2 .

Therefore, the comparison system has the from v̇ = A(v)+Γ(v) with

A(v1, v2) =

[
−2v1
−2v2

]
and Γ(v1, v2) =

[
2v1v

3
2 − 4v21v

2
2

2v2v
3
1 − 2v21v

2
2

]
. We can

also define B(v1, v2) = 2

[
−1 v1v

2
2 − 2v2v

2
1

v2v
2
1 − v1v22 −1

]
where

B(v)v = −A(v) + Γ(v). Moreover, we get

µ+2 (B(v1, v2)) = sup
x≥02

xTBx

‖x‖22
= 2 sup

x≥02

xT
[
−1 −v21v2
0 −1

]
x

‖x‖22

= 2 sup
x≥02

−x21 − x22 − v21v2x1x2
‖x‖22

≤ −2,

where the first equality holds by Theorem 3.3(iv) and the second
equality holds by the fact that xTBx = 1

2x
T(B+BT)x. Therefore,

condition (C2) holds and, by Proposition 5.4, every trajectory of the
system (21) converges to 0n.

VI. CONCLUSION

In this paper, we used conic matrix measures and weak pairings to
characterize contracting monotone systems and to provided sufficient
conditions for exponential convergence of positive systems to their
equilibriums. As applications, we used our monotone contraction
results to study contractivity and robustness of Hopfield neural
networks. We also used our positive contraction results to established
a novel and less-conservative framework for studying stability of
interconnected networks. Future work includes extension of this
framework to study monotone and positive systems which are weak-
or semi-contracting [15] and to characterize contractivity of systems
that are monotone with respect to arbitrary cones.
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