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Robust Uncertainty Bounds in Reproducing Kernel Hilbert Spaces:
A Convex Optimization Approach

Paul Scharnhorst*, Emilio T. Maddalena®, Yuning Jiang, Colin N. Jones

Abstract—The problem of establishing out-of-sample bounds
for the values of an unkonwn ground-truth function is considered.
Kernels and their associated Hilbert spaces are the main formal-
ism employed herein along with an observational model where
outputs are corrupted by bounded measurement noise. The noise
can originate from any compactly supported distribution and no
independence assumptions are made on the available data. In this
setting, we show how computing tight, finite-sample uncertainty
bounds amounts to solving parametric quadratically constrained
linear programs. Next, properties of our approach are established
and its relationship with another methods is studied. Numerical
experiments are presented to exemplify how the theory can be
applied in a number of scenarios, and to contrast it with other
closed-form alternatives.

Index Terms—Uncertainty bounds, reproducing kernel Hilbert
space, robust guarantees.

I. INTRODUCTION

We consider the problem of quantifying the uncertainty
associated with point-evaluations of an unknown ground-truth
map given a dataset of observations and assumptions on its
nature. The analysis differs from widespread concentration
bounds found in the machine learning literature as no assump-
tions are made on the statistical independence of samples.
This agnosticism is central when dealing with systems that
incorporate memory such as physical plants that evolve in a
dynamical and hence strongly correlated fashion—see [1]] for
a thorough discussion about situations where the typical i.i.d.
premise is inadequate. In exchange, we pose conditions on
the ground-truth, requiring it to belong to a specific class of
functions [2]], and allow for observations to be scattered, not
necessarily being drawn from any specific distribution. This
is rather customary in the established field of approximation
theory [3]-[5]]. See also [[6] for a recent perspective on the
advantages offered by approximation-type bounds.

The setting in this paper is that of kernel learning, which
is among the most prominent modern frameworks for both
classification and regression. These non-parametric techniques
are usually more data-efficient than deep network architec-
tures, and recently intriguing connections between these two
methodologies were established [7]-[9]. Kernels can be re-
garded as similarity measures between examples in a certain
feature space [10]. This space is known as the reproduc-
ing kernel Hilbert space (RKHS) and is usually an infinite-
dimensional linear space of functions. Moreover, it is well
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known that the RKHS associated with certain kernel classes
is dense in the space of continuous functions on compact
domains [11]. By requiring the latent ground-truth to be
a member of the RKHS associated with a known kernel,
straightforward error-bounds can be established for models
that interpolate noise-free data-points (see for instance [12]).
Recently, these out-of-sample guarantees were extended to
regularized smoothing models in the presence of bounded
measurement noise [13]]. Nevertheless, the task of exactly
quantifying the associated uncertainty in the latter scenario
remained open, as well as understanding how much conser-
vativeness is introduced when centering the bounds around
pre-specified models.

Contributions: Herein we investigate the uncertainty quan-
tification problem in RKHSs and with datasets corrupted
by measurement noise. The sources of uncertainty are both
epistemic and aleatoric [14] as explained next. The first stems
from the ground-truth being an unknown fixed member of
our function class, and from which we derive information
indirectly through its samples. Secondly, the additive bounded
measurement noise, which could originate from any probabil-
ity measure, or even be a constant, fixed bias. In contrast with
the study in [13]], we carry out an algorithmic independent
analysis that is not centered around any specific model; this
is done by computing the highest and lowest possible point-
evaluations that are consistent with our knowledge. Our main
result is to show how this infinite-dimensional problem can
be translated into a finite convex quadratically constrained
linear program (QCLP) without any conservatism, which is
accomplished through a representer theorem. Next, properties
of this procedure are derived and connections with closed-form
sub-optimal bounds [[13] as well as classical noise-free bounds
[4] are established. Finally, efficient solution methods are
proposed through the dual optimization problem, which trade-
off computational time and precision. Numerical experiments
are reported to illustrate their use, as well as the influence of
the input distribution on the final results.

Relevance for automatic control: The use of the so-called
data-driven techniques to refine models, improve performance
on-line, or approximate controllers is becoming evermore
present in the field of automatic control [15]-[17]. In the
particular case of kernel surrogate models, a considerable body
of rigorous literature exists for linear dynamics [18]-[21],
linear parameter-varying dynamics [22]], [23], Hammerstein
and Wiener cascaded systems [24], [25], mainly adopting a
time-domain perspective of the identification problem. When
operational constraints are present, one has to pair these tools
with appropriate uncertainty quantification techniques to not
make unsafe decisions. Examples include system simulation
with guaranteed accuracy [26] and controller tuning algorithms



that avoid unreliable parameters [27], [28]. By establishing
our optimal, non-asymptotic uncertainty bounds, our work
aims at bridging non-parametric kernel learning and robust
analysis and control. Practical applications of the results
include predictive control schemes that explicitly incorporate
non-parametric uncertainties [29], [30]], and the certification
of machine learning-based algorithms [31], [32]], but in a
deterministic fashion. More generally, the provided tools could
also be employed in the domain of real-time optimization
under unknown constraints [33]]. Our motivation is similar in
essence to the ones found in non-linear set membership and
interval analysis works [34], [35]], but our study is focused on
kernel machines and their associated spaces.

Notation: N denotes the set of natural numbers and R?
is the d-dimensional Euclidean space. Let S; and S be
subspaces of S, then S7 @ .So = S indicates their vector direct
sum, i.e., Vs € S, Als; € 51,5”52 € Sy 18 = 81 + so.
We denote by Kxx the matrix of kernel evaluations at X,
i.e., the matrix containing k(z;,x;) at its i-th row and j-
th column, z;,z; € X. Let a query point x be specified,
then K x, represents the column vector-valued function z —
[k(z, 1) k(m,xd)]T € RY, whereas K,x denotes its
transpose. For a matrix A we denote its nullspace by N(A).

II. PRELIMINARY: KERNELS AND THEIR RKHSS

We start by briefly reviewing the formalism of kernel
learning, and define the main elements that will be later used
in our analysis. The reader is referred to [12]], [|36]] for further
details on this topic.

A kernel k Q x Q — R is any symmetric, real-
valued function defined on a non-empty input set £
k is said to be positive-definite if the weighted sum
Doy 2oy iak(xi,x) s strictly positive Vn € N,
Yag,...,a, € R\{0}, Va1,...,2, € Q. An example of a
commonly used continuous kernel that enjoys this property
is the squared-exponential, also known as the radial basis
function (RBF) kernel. Associated with each k, there is a
unique Hilbert space of maps H that is referred to as the
reproducing kernel Hilbert space (RKHS) of k. For compact
domains €, [I1] presents families of kernels whose H are
dense in the space of continuous functions, which can be
interpreted as a measure of richness of such a space. Let
R? = {f : Q - R} and L, : R® — R be the map
L, : f — f(z), also known as the evaluation functional
for a given x € 2. Formally, a RKHS is simply a Hilbert
space H C R% for which the L, maps are continuous
Vo € Q. It turns out that partially-evaluated kernels k(z, -)
belong to H, Vx € {2 and define evaluation functionals through
(f k(z, ) = f(x), Vf € H,Vx € Q. The latter is known
as the reproducing property. From a constructive viewpoint,
‘H is given as the closure (w.r.t. the topology induced by the
inner-product) of span ({k(x, ),z € Q}), encompassing thus
weighted sums of partial kernels and limit points of sequences
as well. It can be shown that this construction results in proper
functions and not in equivalence classes of them.

Let f € H with finite expansion f = Y"1, ak(z;, ), a; €
R, ; € Q, for all 4. Its induced norm || f||,, is then given by

1£115, = <Z aik(w, ), Y cik(wi, ')>
=1 1=1

H
nf 7lf (l)
:Z Zaiajk(xi,xj) =o' Kxxa
i=1 j=1

due to the reproducing property, with « being the vector of
scalar weights. If a member f € H is the limit of a sequence
[ =2, a;k(z;,-), then its norm is

n n
2 .
1712, = tim 37" avagh(e, ;).
i=1 j=1

As a last introductory step, we consider a finite subset X C )
and define the power function Px : {2 — R as

whenever clear from the context, the reference to X will be
omitted. Px(x) can be interpreted as a form of statistical
covariance, and evaluates to zero Vx € X.

III. OPTIMAL BOUNDS IN RKHSS

This section introduces the main technical results of this
work. First, an infinite-dimensional variational problem is
formulated to bound the ground-truth values at unseen loca-
tions, and its equivalence to a finite-dimensional problem is
shown. Then, we discuss properties of the derived bounds and
a closed-form alternative that does not involve solving any
optimization problem.

Herein we consider a positive-definite kernel k£ : QxQ — R
along with its corresponding RKHS H < R®. Our input
space is taken to be a compact subset of the Euclidean
space Q@ C R™. A dataset {(z;,y;)}%, is given to us,
being composed of inputs z; € €2 and outputs y;, € R™,
yi = [yia ymif that contain n; scalar samples
collected at the same input location xz;. The dataset carries
information about an underlying ground-truth map f* € H
according to

Yij = [ (xi) + 6i 5 3)

where 0; ; represents an additive measurement noise that is
assumed to be uniformly bounded as stated next.

Assumption 1. The magnitude of each noise realization ; j
is bounded by a known scalar quantity 0, i.e. |6; ;| < 9,1, j.

Assumption 2. An estimate I' > || f*||,, for the ground-truth
norm is known.

For notational convenience, we define the quantities X :=
{z — [yT 71T :

1,-..,2q} and y = [yl yd] , which represent
respectively the collection of inputs and the available outputs.

The aim is to quantify the uncertainty associated with values
of the latent function f* in the output space R. We note



that, from the reproducing property and the Cauchy—Schwarz
inequality, one can readily establish

|f (@) = [{f, k() (4a)
< Ml -G, )4 (4b)
= [[flly Vk(z,2) < o0 (4¢)

Vf € H, including the ground-truth f*. If the kernel £ is
translation-invariant, then k(z, ) is constant Vz € 2 and
constitutes a uniform trivial bound for the unknown function.
A reason for this inequality to be rather loose is that it does
not incorporate any information provided by the outputs y or
by the quantity §, which we exploit next.

To upper bound the ground-truth values, we consider the
following infinite-dimensional variational problem PO, with
the query point « € ) as a parameter

F(z) = sup {f(2) : [l ST llfx =yl <6} (5
e

where fx = A[f(z1) f(:rd)]T is the vector of
evaluations at the input locations, which are repeated when-
ever multiple outputs are available at a given input. This
is accomplished through A as defined in Appendix We
highlight that the supremum is guaranteed to exist thanks to
(). Given a query location z, PO yields the tightest upper
bound for f(x) over all members f € H of our hypothesis
space that are consistent with our dataset, as well as our
knowledge on the ground-truth complexity || f||,, < I'. Note
how linking the function evaluations fx and the outputs y
plays a role analogous to conditioning stochastic processes on
past observations in statistical frameworks.

Consider now the convex parametric quadratically-
constrained linear program P1
C(z) = max Ca (62)
ceR c, €R
1 [K K e
. XX Xa 2
. <
subj. to [CJ |:K$X k(a:,x)} [CJ <T
(6b)
IAc =yl < 6 (6¢)

for any z € Q\{X}, and extend its value function to points
from the dataset © = x; € X with the solution of P1’ :
Clr) = maxeepa{es|e Kyke < T2, [Ac—y. < 3},
where ¢; is the i-th component of c. This can be thought
of as finding a map that interpolates the points {(z;,¢;)}%_,
and maximizes its value c, at the input location x. The two
cases P1 and IP1’ are distinguished due to the matrix in (6b)
becoming singular for any x € X, and since it allows for
one decision variable to be eliminated. Finally, the connection
between (3) and (6) is stated next.

Theorem 1. (Finite-dimensional equivalence): The objective
in PO attains its supremum in H and F(x) = C(x) for any
x €

The derivation of the result, which is given in Ap-
pendix follows lines similar to classical representer theo-
rem ones, i.e., showing that the optimizer necessarily lies in a
finite-dimensional subspace of the RKHS. Nevertheless, note

that the objective IP1 is not regularized, nor is = necessarily
an input of our dataset. Moreover, the proof also establishes
the attainment property in H, which helps in understanding
the nature of the constraints.

Complementing (5), one could also be interested in the
infimum inf; e {f(2) : [/l < Dlfx -yl < 0}
bounding the lowest attainable value at x. In this case, a result
analogous to Theorem [I] could be established, showing its
equivalence to

B = i - 7
(@) = ati g © 7
T -1
. c Kxx Kxq c 2
<
subj. to [J |:K:13X k(a:,m)} [CJ <T
(7b)
Ihc—yl, <3 (70)
for any z € Q\X, and extended to B(z;) =

mingcpa{c; | ¢ Kyke <T? [[Ac—y| <8} forz=um; €
X. As a result of this subsection, for any point in the domain
x € (, the solutions to the two convex programs (6) and
define an uncertainty envelope that confines the ground-truth
to its interior B(x) < f*(z) < C(x).

Remark 1. (On the necessity of I'): Data alone are not suffi-
cient to compute any out-of-sample bounds when considering
functions f € H, regardless of the number of samples d < oo
that one has. Given any tentative bound ¢ at x ¢ X, there
exists f, € H consistent with the dataset that will violate the
bound, that is, f,(z) > € + p, for any pre-specified violation
level p > 0. This is simply due to the existence of maps
that can interpolate any finite set of samples. Restricting the
search to the I'-ball in H limits the flexibility of the considered
functions, thus allowing for guarantees to be established. An
analogous argument can be made in the space of Lipschitz
functions. If no bound is posed on the Lipschitz constant of the
ground-truth, assuming Lipschitz continuity per se becomes
vacuous.

Remark 2. (On the noise assumption): Assumption [l is
central to the robust control literature and requires a careful
handling in practice. Quantities J estimated from historical
data could be invalidated by newly obtained samples, poten-
tially rendering IP1 infeasible. In such a case, § would need
to be augmented to accommodate the new samples (similar
issues are discussed in [37} Section 3]). Certainly, dataset pre-
processing and outlier detection are essential to the success of
data-driven methods, including the present one, in practice.

Remark 3. (On having loose ' and §): As formulated in
(3, the bound F(z) depends on the quality of the available
I' and 6. The looser these two quantities are, the larger the
resulting bounds—see a numerical example in Section [VI] A
straightforward method is presented in Appendix [A]to compute
RKHS norm lower estimates purely based on data, which are
refined the more samples one has. The methodology can help
users to arrive at upper bounds I' through augmentation.



A. Width and width shrinkage

Given our knowledge on the noise influence J, it is natural to
ask what the limits of the uncertainty quantification technique
considered herein are. For example, is the width of the
envelope C(z) — B(z) restricted to a certain minimum value
that cannot be reduced even with the addition of new data?
From (6c)), it is clear that at any input location x; € X, C(z;)
and B(x;) cannot be more than 24 apart. In addition to that, the
presence of the complexity constraint can bring the two
values closer to each other. Depending on how restrictive this
latter constraint is for a given x;, the corresponding output y;
might lie outside the interval between C(z;) and B(z;). In this
case, the resulting width is considerably reduced as illustrated
in Figure [T] (left).

Proposition 1. (Width smaller than the noise bound): If
Jyi such that y; ; > C(z;) or y; j < B(x;) for some j, then

Proof. Follows from C(xz;) > B(x;), C(x;) < ;; + 6 and
B(z;) >y, —6foranyi=1,...,dandany j=1,...,n
O

Suppose now one has sampled (z;,y;) with y; =
[i1 yz‘,2]T, yix = f*(w) +0 and y;0 = f*(x) — 0.
Then there is no uncertainty whatsoever about f* at x; since
f*(xi) = (yi1+vyi,2)/2 is the only possible value attainable by
the ground-truth. This illustrates that the possibility of having
multiple outputs at the same location allows for the uncertainty
interval to shrink past the § width, and eventually even reduce
to a singleton as shown in Figure [T] (right). Notwithstanding,
the addition of a new datum to an existing dataset—be it
in the form of a new output at an already sampled location
or a completely new input-output pair—can only reduce the
uncertainty.

Proposition 2. (Decreasing uncertainty): Let C(x ) denote
the solution of P1 with a dataset Dy = {(v;,y:)}L,, and
Cy(x) the solution with Dy = D1 U {(24+1,Ya+1)}. Then
Cy(x) < Cy(z) for any x € QL.

Proof. Denote by IP1; the problem solved with D; and
decision variables [c cw]. Similarly, P15 is associated with
the dataset Dy and the decision variables [¢ ¢, c.], where
¢, are due to the additional input in Ds. Since D5 contains all
members of Dy, the co-norm constraint of P15 can be recast
as that of IP1; and an additional constraint for ¢, and the new

Fig. 1. (Left) A sample lying outside of the uncertainty envelope, implying
that the width is smaller than ¢ at x;. (Right) Redundant information is used to
shrink the uncertainty envelope. In this scenario, we recover the ground-truth
value at z; as C(z;) = B(z;) = f*(xi).

-
outputs. Let X := X U {a}, ¢:=[c'¢;] and 2z :=z441 be
shorthand variables to ease notation. The complexity constraint
of P15 is then

T —1

c Kxx Kx. c 2

o) ) 1= s
. 2
W e Rgle+ PLY( {KXXKXZ} H <T? (8b)

Z
Gy [e]' [K K c i
17 XX Xz
@] [ M -] )
+ P3(2) (6 Kk Kx. —c.)” < T2

where the matrix identity found in Appendlx@]was used in (7)
and PZ(z) = k(z, 2) — K,x Kxx Kx.- In (ii), the definitions
of ¢ and X were used. Thanks to Px(z) > 0,Vz and the
quadratic term multiplying it, we conclude that for any choice
of the decision variable c,, is a tightened version of the
complexity constraint of IP1;, which is @]) As a result, the
maximum of P15 is lower or equal than that of P1;. O

Let us take a closer look at the tightened constraint (8c)). The
term ¢' Ky Kx. =: s(z) represents an interpolating model
passing through the output values ¢, that is, ¢ and c, (see
e.g. the discussion in Section 3.1 of [13]]). If the difference
s(z) — ¢, can be made small, then the tightening will also be
reduced, whereas it will be significant if the difference is large.
The result is of course dictated by the oco-norm constraint,
since ¢, cannot be more than & away from all the outputs y
available at z. Therefore, a new datum will cause significant
shrinkage of the envelope at a point z € {2 when the new
output causes s(z) — ¢, to be large, which intuitively can
be seen as a measure of gained information through the new
sample. Finally, this process is weighted by the inverse of the
power function sz(z), which does not depend on any output,
but only on the input locations. For more practical guidelines
and a visual representation of how new data can contribute to
reducing the ground-truth uncertainty, the reader is referred to
Examples 1 and 2 from Section

Remark 4. Recovering the ground-truth as shown in Figure 1]
(right) requires the noise realizations to match § and —d; it
is thus necessary to have tight noise bounds for it to happen.
On the other hand, Proposition 2| guarantees the decreasing
uncertainty property regardless of how accurate 0 is. Although
not explicitly stated, a completely analogous result holds for
the lower part of the envelope B(z).

B. A sub-optimal closed-form alternative

The discussion in this subsection assumes that only one

sample is present at each input location, i.e., y; = y; for ¢ =
.,d, so that y = y.

In order to alleviate the computational complexity of having
to solve two optimization problems at each query point,
closed-form expressions can be employed instead. These sur-
rogates yield sub-optimal bounds around any pre-specified
kernel model of the form s(x) = o' Kx,, for some a € R?.



Proposition 3. Let s(x) = o Kx,, for a given a € R%. Then,
for any x € Q, the ground-truth is bounded by s(x) — S(z) <
f(x) < s(z) + S(x) with

S(x) = Px(z) VT2 + A+ | Kxk Kxa|, + 5(x) — s(z)]

©)
where §(x) = yTK)_(kKXw, and the constant A
is the minimum of the unconstrained convex problem
min,cge {2 T Kxxv+vTy+d|v|,}.

Proof. See Appendix

The map 3(z) = y' KyxKx, is an interpolant for the
available outputs y. Note also that none of the terms in (@)
depend on the model weights o with the exception of the
last term |5(x) — s(x)|. Therefore, the width S(x) will be
minimized when s(z) = 3(z) = a =y K. Since such
a model would severely overfit, a balance between smoothing
the data and not diverging too much from §(x) has to be
found. In our previous work [13], we have illustrated how
kernel ridge regression and minimum norm models are good
candidate techniques to accomplish this goal.

By reformulating the optimal bounds, we uncover their
relation with the suboptimal estimates given in Proposition [3]
First, consider IP1 and optimize over the decision variable
0 = c¢ — y rather than over c. Next, apply a quadratic
decomposition identical to the one used in to the com-
plexity constraint (6b) and solve for c,. After recalling that
5(x) = y" Ky Kx. and ||§||§_L =y Ky, one obtains

cr < P@)\/T2 — 53, — 0T K5 ko +2yT Ko
+3(z) + 0" Kxk Kxq
Instead of maximizing c,, the right-hand side of can be

directly considered as the objective function equivalently. As
a result, we obtain

(10)

max_ 5(x) + P(a) /T2 — 8, — 67 Kx k6 — 2yT K

6loc <8
+ 0 Ky Kxo

Now, relax the problem by allowing ¢ to attain different values

inside and outside the square-root

max_5(z) + Pa)y/T? — |52 — 67 K31 + 2T K50
51,52€IR,d

+ 0y KxxKxa
101l <6, [102]loc <0

(11a)

subj. to (11b)

Note that the objective is separable and that A is the dual
solution of maxs, cga § —0; Ky x 01 + 2y K01 — ||§||§_L}
Also, max(;ﬁmd{(g[(;(kf(xx 62l ., < o} =
5 ||K;(§(K Xw||1 since these norms are duals of each other.
Remember that the objective (11a) is a conservative upper
bound for f*(x), having 5(z) as the reference model. Given
any smoother s(x), the triangle inequality |f(z) — s(z)| <
|f(z)—5(x)|+|5(x) —s(x)| can be used to bound the distance
between its predictions and the ground-truth values, arriving
thus at the same expressions presented in Proposition
From (I0), the noise variable ¢ is seen to increase the
maximum in two distinct ways: through the inner product

5TK§§K Xz, and via a norm augmentation corresponding
to A. One source of conservativeness in Proposition [3| is
taking into account the worst-possible inner-product and norm
increase jointly. Despite this fact, they yield competitive results
for moderate noise-levels as shown numerically in Section
We moreover note that in the noise-free scenario, (10) and
(ITa) are the same, and Proposition [3| simplifies to the classical
bounds in the interpolation case (see for instance [38]]).

Remark 5. The sub-optimal bounds presented in this sub-
section feature a nominal model at their center, which is
desirable in many practical situations. In the optimal scenario,
the minimum norm regressor s*(z) = o*' Kx,, a* =
arg min, cpa{a' Kxxa : |[Kxxa—y|l,, < 4} can be
used as a nominal model. This choice is guaranteed to lie
completely within C(z) and B(x)—although not necessarily
in the middle—since the map s* belongs to # and is a feasible
solution for IPO.

IV. EFFICIENT COMPUTATION AND OUTER
APPROXIMATIONS

One of the fundamental sources of computational complex-
ity in kernel learning lies in the inverse term K;(ﬁ(. Scaling
these techniques to large datasets in a principled manner is
still a topic of active research [39], [40]. Notice that K)_é(
is explicitly present in P1, thus limiting its applicability to
small and medium-sized problems due to the cubic time com-
plexity associated with the inverse operation. In this section
we discuss alternative formulations that can be solved more
efficiently.

A. The dual problem

Following a standard dualization procedure, which can be
found in Appendix [C-C| a Lagrangian dual for P1 in (6) can
be the convex problem D1

min

1
fl/TAKX)(ATl/ + (y -
verd A>0 4A

1 T
AKXI> 174

- 1
- T2
+dlv|1 + 4/\]6(.%‘,1‘) + A

for any query point z € 2\ X. In our notation the dimension
d= Z?:I n; is the total number of outputs, that is, the size of
y. As detailed in Appendix under the assumption of the
complexity constraint not being active, the dual of IP1’ is also
D1, meaning that the formulation @]) could be used Vz € Q.

Remarkably, D1 only involves the kernel matrix itself and
not its inverse, avoiding thus the aforementioned adversity.
Furthermore, the query point x enters ID1 through the terms
Kx, and k(z, z). The former measures the similarity between
the query point x and each of the inputs in X; the latter is
simply a constant term for translation-invariant kernels, and
evaluates always to 1 in the specific case of the squared-
exponential kernel.

The optimization problem above is convex since it is a
quadratic-over-linear function with AKxxAT > 0 and A
restricted to the positive reals. The objective can moreover
be decomposed into a differentiable part and a single non-
differentiable term ||v||;, with v unconstrained. This class




of problems has long been studied and mature numerical
algorithms exist to solve them, notably different flavors of
splitting methods such as the alternating direction method of
multipliers (ADMM) [41} Section 6]. Alternatively, a standard
linear reformulation could be employed to substitute |||, by
ZZ. n;, with additional constraints —v < 7, v < 7. The result
is a completely differentiable objective, but with extra decision
variables and linear constraints. Next, a mild condition is
given ensuring a zero duality gap between the primal and dual
problems.

Proposition 4. (Strong duality): If § > &, ;,Vi,j and T >
| f*]l,, then no duality gap exists, i.e., maxP1 = min D1.

Proof. Consider the primal problem IP1 and select ¢ = f%
and ¢, = f*(x). Let X := X U {z} and Kxx denote the
kernel matrix associated with X. Thanks to the optimal re-
covery property [4, Theorem 13.2], [¢" ¢, ] Kxx [¢” cl.]T
< | f*||3_L, which in turn is strictly smaller than T2
by assumption. Also ||Ac—y|| = [Afx =yl =
H[61’1 021 .. H . Therefore, the ground-
truth values constitute a f?eoamble solution that lies in the
interior of the primal problem feasible set. As a result, Slater’s
condition is met and, since the primal is convex, there is no
duality gap. (]

B. An alternating optimization procedure

Solving the dual problem to any accuracy leads to an
over bound on C(z) thanks to duality. In other words, any
feasible sub-optimal solution of D1 establishes a conservative
uncertainty estimate. This motivates the study of light methods
that could trade-off computational time and accuracy. In what
follows we describe a block coordinate minimization scheme
to tackle the problem, which is later shown to yield reasonable
results after only a small number of iterations.

Whenever X is fixed to a particular positive value \* >
0, the problem (I2) simplifies to an unconstrained quadratic
program (QP) in v of the form minyeRg C‘I()\*,u). On the
other hand, if v is fixed to v* € R, the dual objective takes
the form

in C,(\,v*) = R 13
B, G0 = e S redtes 13
with the constants
. 1 AT TK ATy
VI | R T (14)
=I?, es=y v +0|v*,
and Kxx >~ 0. We have M = )\2 + co which gives

the candidate solution \* = \/ 01 /e for (13). We have ¢z > 0
and ¢; > 0 for any = € 2, and ¢; >0f0rany:E€Q\X
Furthermore, A\* is indeed a minimizer of (@]) forz € Q\ X

3*C,(\* v

since its curvature is posmve, ie., 3V 2 > 0. In closed-

form, A* takes the following form.

= \/Z/*TAKX)(ATV* - Q(AKXI)TZ/* + k‘(x,x)

2T (15)

1 is in the nullspace

of matrix Kxx, which is only possible if z € X. In this case,
after fixing A* = 0, the problem to solve for v reduces to

N . o [ATYE
Note that \* = 0 is only possible if |~

. T < ATI/
min y' v+0|v|; st 1 € Null(Kxx) -

We formulate the alternating optimization algorithm for a
maximum number of iterations L and a termination threshold
€ in the following way.

Algorithm 1: Alternating minimization

Result: Upper bound C(z) of the ground-truth at

point x
Input: z, Ao, L, €
A5 = Ao
k=0
do 3
v* = arg min, i Cr (A}, V)

% \/1/*TAI(XXA—r —2(AKx.)Tv*+k(z,x)
/\k+1 - 2T
k=Fk+

while & < L and A=A > e
Ca) = GV ")

Remark 6 (Numerical properties). Recall the convex dual
objective function (I2). Since the non-differentiable term ||v/||,
is separable and the remainder of the objective is differentiable,
a tuple (v*,\*) that simultaneously minimizes both sub-
problems also necessarily minimizes the whole objective (12).
For non-asymptotic sublinear convergence rates of alternating
minimization algorithms applied to convex programs, the
reader is referred to the work [42].

V. ON THE CONNECTIONS WITH GAUSSIAN PROCESSES

Before proceeding to a first numerical example, we con-
trast our uncertainty quantification technique with Gaussian
processes (GPs). By putting them into perspective, we hope
to improve the understanding of the theory developed herein.

In the Bayesian framework of GPs, kernels are used to
parametrize the covariance between random variables in the
input space €) [43]]. Deeper links also exist between the Hilbert
space associated with such stochastic processes and the RKHS
‘H corresponding to their kernels [44], in that there exists an
isometric isomorphism connecting both spaces. Moreover, it is
known that even though the mean function of a GP does belong
to H, its sample paths almost surely do not if dim(#H) = oo.
Nonetheless, the same paths can belong to another RKHS—not
necessarily the one associated with their kernel—with prob-
ability one (see [45] for a comprehensive discussion on the
topic). The latter phenomenon is known as Driscoll’s zero-
one law. Although they unveil fundamental properties of the
GP framework, deriving practical guidelines from these results
requires care as intuition might lead to wrong conclusions
when examining infinite-dimensional spaces.

The variance of a Gaussian process is a form of uncertainty
quantification against outputs y drawn from the distribution



conditioned on a query input x. Some other GP works are
more aligned with our setting and consider a ground-truth
map, either assumed to be a GP sample path [46] or to
belong to the corresponding kernel RKHS [47], [48]. The
latter works bound the difference between the GP mean
and the ground-truth values, making use of the GP standard
deviation times a uniform scaling term. As for noise models,
or marginal likelihood in statistical terms, the most widely
adopted forms are the Gaussian or sub-Gaussian formats. The
primary motivation behind this choice is analytical tractability
since the GP variance does not admit a closed-form expression
and has to be numerically approximated in case other noise
models are used (e.g. heteroscedastic Gaussian, log-Gaussian,
Bernoulli) [43, Chapter 9].

Whether one should opt for the theory developed herein or
for Gaussian processes-based techniques is truly a question
of model selection. If used to analyze kernel models of
dynamical systems, our approach would allow for the use
of robust analysis and control tools since worst-case effects
and distances can be computed. On the other hand, carrying
out modeling through Gaussian processes requires users to
use stochastic control theory [49]. As a result, the final
yield should also be taken into account when choosing a
technique. Do probabilistic inequalities suffice or does my
application require deterministic certification? In our view,
the deterministic and the stochastic frameworks have their
own merits and the user should judge which of them is more
adequate to tackle the problem at hand. Despite the differences
between the standing assumptions of the methods, we provide
the reader with a comparison between the bounds developed
herein and a popular GP alternative in Section

VI. NUMERICAL EXAMPLES

The methods developed in the previous sections are now
employed in three distinct scenarios: a function bounding task,
an optimization problem with an unknown constraint, and a
control certification procedure]l|

Example 1: Consider the function below, which represents
the first component update map of a Hénon chaotic attractor
with an additional sinusoidal forcing term

f*(z1,22) =1 —az} + 25 + bsin(c zp) (16)
The parameters are a = 0.8, b = 8 and ¢ = 0.8, and
its domain is the box Q2 = [—10 10] X [—10 10}. A
squared-exponential kernel k(x,2’) = exp (%) with

Tr = [zl 22] was chosen for our experiments with lengthscale
I = 5, which was empirically estimated by gridding the search-
space and performing posterior validation. I' was obtained
through the procedure described in Appendix |A| with a final
value of I' = 1200. d = 100 samples were collected using
two strategies: inputs lying in an equidistant grid, and inputs
being drawn randomly from a uniform distribution. Noise was
sampled uniformly throughout the tests with § = 1 and § = 5.

The obtained optimal upper bound C(z) is displayed in
Figure [2|along with the ground-truth function f*. Consider the

'The code to reproduce our results is available at https://github.
com/PREDICT-EPFL/opt-rkhs-bounds.|

scenarios where 0 = 1. Whereas the C(x) surface is overall
tight for the grid-based dataset, with an average distance
of 3.01 to the latent function, randomized data yielded a
less regular bound with an average distance of 8.02. These
numbers were increased respectively to 9.57 and 18.97 when
the noise levels were risen to 6 = 5. The plots illustrate
the disadvantages of relying on completely randomized input
locations, which degraded especially the borders of C(x). An
equidistant grid of points is highly favorable since it not only
fills the domain well, but also ensures a minimum separation
distance so that no two inputs are too close to cause numerical
problems when handling the kernel matrix Kxx.

The f*(z1,22) map was then sliced at z; = —3 and the
entire envelope B(z) < z < C(z) was computed. This was
compared to the sub-optimal bounds given in Proposition
for a kernel ridge regression (KRR) model. The two previous
datasets with 6 = 1 were used and the obtained results
are displayed in Figure 3] As can be seen from the plots,
the optimal approach yielded tighter uncertainty intervals that
were always within the sub-optimal ones. Moreover, whereas
the average width of the blue envelope was 8.93 and 18.96
respectively in the grid and random cases, the green envelope
displayed average widths of 21.13 and 34.62.

Next, we consider the Gaussian process bounds proposed in
[47, Lemma 3] (see also the closely related works [50], [51])
and analyze how they compare to the proposed robust ones.
Overloading notation for the sake of clarity, these bounds have
the form

lu(z) — f*(x)] < Bo(x) (17a)
with B=T+4A/7 + 1 +1n(1/5), (17b)

where p(z) is the GP mean, o(z) is its standard deviation, A
is the strength of the sub-Gaussian noise, vy is the maximum
information capacity for a fixed number of samples, and 1 —¢
is the confidence of the inequality. For a detailed explanation
of how the experiment was set up, the reader is referred to
Appendix [E| The data, d = 100 samples, corrupted by the
same noise realizations were used throughout the tests for all
methods. Two parameters were then varied to understand how
sensitive each method is to them: the RKHS norm estimate I"
and the noise bound &, which were increased by a factor of
1, 1.5, and 2. Detailed results can be found in Appendix @
Tables [[] and The outcomes in all 18 different scenarios
were unanimous in ranking the optimal bounds as the tightest
method, followed by the sub-optimal ones, and finally the
GP approach. Indeed, the GP bounds always yielded average
widths at least one order of magnitude greater than the optimal
deterministic ones. We attribute this difference especially to
the direct product between of I' and o (z) in (T7), which causes
them to be particularly sensitive to norm over-approximations.
This effect is dampened in (@) due to the interaction with A
(see the derivation in Appendix [C-B).

Example 2: The next numerical experiment involves the
ground-truth (I6) as an unknown constraint for a static prob-
lem (data-driven optimization with unknown constraints is
typical in the field of real-time optimization [33]]). Consider
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Fig. 2. The ground-truth (black) and the upper optimal bound C(z) (blue) with 100 data-points. Two noise levels are considered, § = 1 and § = 5, and two

sampling strategies, an equidistant grid and random uniform sampling.
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Fig. 3. A comparison between the optimal bounds (blue) and the closed-form
sub-optimal ones (green). The 2D ground-truth was sliced at 21 = —3 and
is shown in dashed black.

the following formulation

m]iRn (z1 = 1)? + (22 — 5)2 (18a)
z€R?
subj. to f*(z) < —10 (18b)

where the function f*(z) that maps the decision variables to
the constraint is not explicitly known, but can be measured.
Samples were used to establish an upper bound C(z) for
f*(2), hence providing an inner-approximation for the real
feasible set. We considered the cases of having 64, 81 and 100
evaluations of f*(z) affected by noise with § = 1 and, once
more, the data were collected by means of a uniform random
distribution and an equidistant grid. In the approximate opti-
mization problems, the original constraint (I8b) was replaced
by C(z) < —10. Optimizers z* were computed by gridding
the domain, and the results along with the estimated feasible
sets (shaded areas) are shown in Figure El Notice how in some
instances the set of feasible decisions is not connected. Thanks
to Proposition 2] the addition of new data-points can only
relax the approximate formulation, hence reducing the found
minimum. Indeed, the obtained solutions for the approximate
problems were 13.21, 11.36 and 10.96, respectively with 64,
81 and 100 samples taken randomly. When employing a grid,
the figures were 10.67, 8.48 and 7.67. The solution of the real
problem, i.e., the one with the ground-truth constraint, is 5.69.

Example 3: Finally, we verify if a sequence of control
actions obtained by means of a certainty equivalence approach
will or will not lead to the real system violating constraints.
In this scenario, previous examples in the form of control and
state trajectories are exploited to build the necessary datasets.

Let us consider a continuous stirred-tank reactor (CSTR)

described by the differential equations

éat) = ult)(cao — ea(t)) — prealt) — psci (1)
én(t) = —ult)en(t) + prealt) — pach(t)

ca and cp denote respectively the concentrations of cyclopen-
tadiene and cyclopentenol, whereas w represents the feed
inflow of cyclopentadiene. The parameters are p; = ps =
41 x1073h7 1, p3=6.3x10"* h™L, ca9 = 5.1 mol/l. The
system is subject to the constraints 1 < cy < 3,0.5 < cp < 2,
3 < wu < 25, and is sampled at a rate of 1/30 Hz. In order
to steer the CSTR states toward cfgf = 2.14, crg,f = 1.09, an
optimal control problem (OCP) based on KRR models was
formulated and solved. The approach featured no uncertainty
quantification, i.e., it relied solely on certainty equivalence.

To verify if OCP control actions would not lead to the true
system violating constraints, the tools developed in Section [l1I
were employed. The certification problem was broken down
into several steps: the 1-step ahead analysis, the 2-step ahead
analysis, and so on. The associated datasets {(z;,y;)}%_, were
composed of initial states and sequences of control actions to
form x;, and the final state to form y; (this multi-step approach
is the same as the one explained in [30, Sec. 4]). The squared-
exponential kernel was used throughout the whole process and
the various lengthscales were selected through a 5-fold cross-
validation process based on 400 samples. The same batch of
data were exploited to estimate the different RKHS norms T’
following the procedure of Appendix [A] The obtained lower
estimates were then augmented to account for possible unseen
complexity. A different dataset was gathered to compute the
bounds by starting the system at 800 initial conditions and
solving OCP from those locations. We highlight that, as there
are two states and one control variable, the domain of the
ground-truth mapping the initial condition to the 8-th step
ahead state has dimension 10, hence justifying the need for a
large dataset. The noise affecting the measurements was drawn
uniformly from the interval —0.05 to 0.05, and a bound of
§ = 0.06 was used.

The two types of bounds were then computed defining an
interval per state and, thus, a “bounding box” for each step.
These are then guaranteed to contain the true system evolution,
the ground-truth, as illustrated in Figure [5] After visually
inspecting the phase portraits, one sees how conservative the
sub-optimal method was: the average area of the sub-optimal
boxes was 0.1780, and 0.0741 in the optimal case. In addition
to it, one bounding box around the trajectory that starts at the
bottom right corner of the plots extends below the cp > 0.5

(19a)
(19b)
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Fig. 4. Solutions and feasible sets (shaded areas) for problem (I8) with 64, 81 and 100 samples of f*(z). Top row: samples drawn uniformly. Bottom row:
samples on an equidistant grid. The true feasible set and optimal solution are shown on the right.

constraint. A time-domain view of the situation is shown in
Figure [0, where at time-step 1 the lower-bound violates the
aforementioned constraint in the top plot, but not in the bottom
one. As a result, the OCP control sequence could not be
certified by the sub-optimal approach, but could by means of
the optimal one.
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Fig. 5. Phase portraits of the CSTR system under the same control inputs,
but with different uncertainty quantification techniques. Constraints are rep-
resented by the dashed lines.
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Fig. 6. State trajectories of the CSTR system under the same control

inputs, but with different uncertainty quantification techniques. Constraints
are represented by the dashed lines.

VII. FINAL REMARKS AND FUTURE DIRECTIONS

We investigated the uncertainty quantification problem as-
sociated with evaluations of an unknown function that belongs
to a possibly infinite-dimensional reproducing-kernel Hilbert
space. Optimal robust bounds were derived by exploiting a
finite set of samples and an estimate of the ground-truth
function complexity as measured by its norm. Several formula-
tions were then analyzed: a primal finite-dimensional program,
one possible dual form, as well as closed-form sub-optimal
solutions centered around pre-specified kernel models. When
considering the optimal alternatives, it was shown how the
addition of new data can only shrink the uncertainty envelope
everywhere.

Future research could focus on the following topics. Firstly,
the developed theory could be generalized to accept uncertain
inputs, thus allowing for uncertainty propagation in multi-
stage problems. Additionally, resampling techniques could
be used to construct sparse representations or to confer a
desired geometrical property on the input points, enabling
fast evaluation of the bounds. Exploring further estimation
techniques for ' and &, especially joint estimation, could be
of interest for practical application of the approach. Finally,
the developed finite-sample bounds could give support to the
area of data-driven optimization under unknown constraints
or objectives by establishing formal feasibility or performance
guarantees.

APPENDIX A
ESTIMATING RKHS COMPLEXITY FROM DATA

We consider an unknown map f € H and a set of
samples D = {(z;, f(z;))}¢,. Using the shorthand fx =
[f(z1)... f(:cd)]T, we have that

L= /LK fx < 1flly

for any number of samples d € N due to the optimal
recovery property [4]. Moreover, the decomposition used in
the proof of Proposition [2 shows that the quantity I" can only

(20)
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Fig. 7. Estimating the RKHS norm using randomly sampled data (all circles).
The quadratic form I" for the random samples is shown on the right plot. If
one sampled only the black subset of the data, the corresponding I' would
capture over 90% of the total complexity, i.e., I'/|| f]l% > 0.9.

increase with the addition of new data. Since ||fl,, is the
least upper bound for it, then this quantity can be used as
an efficient lower estimate for the RKHS norm. An example
is shown in Figure [7] for an f composed of 25 squared-
exponential kernel functions from which 80 samples were
drawn uniformly (left). The corresponding values for I for
an increasing number of data are also reported (right). After
around 40 samples, essentially all of the RKHS complexity had
already been captured. Moreover, by sampling only the peaks
and valleys indicated by the black subset of the data-points,
one could retrieve over 90% of the final norm. In a practical
situation, expert knowledge should be elicited to augment r
through a safety factor and hopefully transform it into an upper
bound I > || f||,,. Note however that no hard guarantees are
offered—a situation similar to estimating Lipschitz constants
purely from scattered observations. Finally, in case the outputs
are corrupted by measurement noise, it is possible to quantify
its worst-case effect on the estimation process [13]].

APPENDIX B
THE DATA-SELECTION MATRIX

Recall that nq,no, ...,
able at the input locations x1, x2, . . .
d and is defined as

ng are the number of outputs avail-
,&q. A has size (D, n;)

1, 0, O, 0,
0, 1, 0, 0,

Ae=| 0 27 .2 1)
Ond Ond Ond 1,,

where 1,, and 0,, are respectively column vectors of ones
and zeros of size n;. If only a single output is available at
every input, A simplifies to an identity matrix.

APPENDIX C
DERIVATIONS
A. Proof of Theorem ]|
Let X := X U {z} and define the finite-dimensional

subspace H! = {f € H : f € span(k(z;,-),z; € X)}. Fur-
thermore, let - = {g € H : (g, f13 = 0,VfI € HII} be the
orthogonal complement of #!l. Then, we have H = H/l @ H*
and for all f € H, 3fl e HI, f- e H': f=fIl + fL By

employing the latter decomposition and using the reproducing
property, we can reformulate PO in terms of !l and -+ as

AR D) e
J =t s
frent
(22)
O VT T e I )
Fllen!
frent
(23)
@ qup {f| Hqu <r2, Hf“ H <5} (24)
flhenl

In (i), the f+ component vanished from the cost and from the
last constraint due to orthogonality w.r.t. k(x;, ) € H for any
2; € X; moreover, the Pythagorean relation | f[|5, = || f! H o

|| fJ-H 2, Was also used. To arrive at the second equality (i),
one only has to note that the objective is insensitive to f* and
that any f' # 04 would tighten the first constraint.

The attainment of the supremum is addressed next. Consider
([4) and denote the members of 7! simply as f. Hf”?-[ <TI?
is a closed and bounded constraint as it is the sublevel set of a
norm. We transform || fx —y||,, < & into |f(z;) — i ;] <6,
i=1,...,d, 5 =1,...,n; Sets of the form {a € R : |a| <
b} are clearly closed in R, hence {f(z;) € R : |f(x;) —
yij| < 6,Vi,j} is also closed. For any z;, the evaluation
functional L, (f) = f(z;) is a linear operator and thus pre-
images of closed sets are also closed. Consequently, {f € HI -
|f(x;) — i ;| <8,Vi,j} is closed in H/l. The intersection of
a finite number of closed sets is necessarily closed, thus all
constraint present in (24) define a closed feasible set. Since
! is finite-dimensional, any closed and bounded subset of it
is compact (Heine—Borel); therefore, the continuous objective
L.(f) = f(x) in (24) attains a maximum by the Weierstrass
extreme value theorem.

Finally, we establish the connection between PO and PP1.
From the above arguments, an optimizer for IO must lie in HlI
The members f € HIl have the form f(z) = o' Kx., being
defined by the o weights. Due to the positive-definiteness
of k, there exists a bijective map between outputs at the
X locations fx = [f(x1) f(zq) f(a:)]T and the
weights «, namely o = Kg;‘{ fx. Kxx denotes the kernel
matrix associated with the set X = X U {z}. Consequently,
optimizing over f € Hl is equivalent to optimizing over
[£(21) fza) f@)]" = [c7 ¢ . The bounded
norm condition can be recast as ||f\|i = (f,fin =
al Kxxa = [CT cx] K)\Esl\{ [cT cx] . The remaining con-
straint and the objective are straightforward. Noting that this
reformulation is valid for any x € 2 concludes the proof. [J



B. Proof of Proposition 3]
For any given s(z) = a' Kx,, we have

(@) = s(a)]
= If*(2) = 3(@) + 3(2) = s(a)| e3)
<I7 (@) (f5 + 80K Kol + [5(0) —s@)] @6)
<17 (@) = 5(0) 43 [ Kk x|, + @) = (@) @)
< P(a) 12 — 5l + 8| K Koxe |, + [5(2) — s(a)

(28)

< P(2) \J T2+ A = |I3]5, + 8 | Kk Kxol|, +[3(x) — s(2)]

(29)

with f% being the vector of true function values at the sample
locations in X and dx the vector of additive measurement
noise for the samples y. follows from the triangle in-
equality and the additive noise property of y. Using the triangle
inequality again, we arrive at (27), where 5 denotes the noise-
free interpolant of f% . The noise-free interpolation error bound
gives the estimation in the first term of (28), while (Z9) follows
from [13, Lemma 1], with A = maxH(;”mSg(—éTK;(ﬁ(é +
2y" Ky \6). A standard dualization procedure as the one
presented in Appendix leads to the dual problem

1
min 41/ TKyxv+v y+5||1/||1+yTKXXy (30)

veER4
for A. Notice that the last term in (30)) is constant and the
same as the squared interpolant norm ||§ ||,2H Therefore, these
terms cancel in (@]) and we are left with

f*(2) — s(z)] < P(z) VI? + A+ 5 | K3k Kxa |, 31
+15(x) — s(2)]

where A represents (30) without the constant term.

C. The Lagrange dual problem
Consider the case z ¢ X. Let z := [CT cw}—r, a =
[OT 1}T, A= [I 0]. The Lagrangian of PP1 is
L(z,),8,7) =a"z = Az Kxx 'z —T?) (32)
—BT(AAz —y —61) =~y (y — AAz — 61)
where Kxx denotes the kernel matrix evaluated at X U {z}.
Suppose A > 0. Computing V_L(z*) = 0 leads to

2r = —ﬁKxx (ATAT(B—7) —a).
Defining the auxiliary variable v = 3 — ~, and substituting z*
into (32) gives the dual objective

1

T
g(/\, I/) JVTAAKxxATATV + <y - AAKXXa) v

- 1
+68[lv] + —~a' Kxxa+ AT

By 33)
I T T !
:ﬁl/ AKxxA 1/+<y—2/\AKXI> v
- 1
+ |y + Ek(axm) + A\I? (34)

where in the second equality the matrix Kxx was expanded
and the resulting terms were reorganized. Since (3, € Rio
and v = 8 — «y then v is unconstrained. B

Now if A = 0, the Lagrangian (32)) simplifies to £(z,v) =
(a— ATATY)T 2z + v Ty + §||v||1, which is linear in z. Its
supremum w.r.t. z is only finite if a = A" ATv. Recalling
the definitions of a, A and A, one can see that Fv that
could satisfy the latter condition. Therefore, A\ = 0 —
sup, L(z,\,v) = 400, meaning that the dual problem is
infeasible. As a conclusion, the Lagrangian dual of P1 in (6
is precisely D1 in (12)).

Next, consider the case x € X, x = x;. The objective of
P1’ can be written as a'c¢ with a; = 1 and a, = 0,n # 1.
When deriving its Lagrangian, one obtains again with
the simplifications: z < ¢, Kxx < Kxx and A < L. We
proceed by analyzing the two scenarios for A as before. If
A > 0, the previous derivations apply, leading to the same the
quadratic-over-linear objective @]) However, if A\ = 0, the
Lagrangian becomes £(z,v) = (a—ATv) Tz +v Ty + 6|y,
whose supremum w.rt. z is only finite if @ = ATv. In
contrast with the previous paragraph, this condition now can
be satisfied. It is equivalent to v; 1 + -+ + 15, = 1, where
the variables are all the multipliers associated with the i-th
input location x;. The resulting expression can be minimized
analytically, yielding the minimum min; y; ; + 5, ie., the
smallest output available at z; augmented by the noise bound.
Finally, we conclude that the dual objective for P1’ is

o) = {@’

if A>0

35
iftA=0 5>

minj yl j + S s

As a last observation, a dual problem can also be derived for

(7, calculating the lower part of the envelope. The formulation
is analogous to (I2), assuming the form

+
1
max — — VT AKxxATv — (y + AKXQE) v
verin>0  4A 2) (36)

- 1
—olvl = —<k(z,x) — A2

4N

Note that these are distinct objectives, not merely opposites.
Therefore, two problems have to be solved to fully quantify
the ground-truth uncertainty.

APPENDIX D
A BLOCK MATRIX IDENTITY

Let A € R%*? pe invertible, B € R? and ¢ € R. The
following identity holds

{ A B] - {AT 4+ 1ATIBBTATY —iA-iB
T = _
B c _éBTA 1 %
(37
where d =c— BT A 1B.
APPENDIX E

GP COMPARISON: SETTINGS AND RESULTS

In order to compare the GP uncertainty bounds (17) to
their deterministic counterparts, the following approach was



adopted. First, a lower bound for the maximum information
gain v was used since the problem of exactly computing such
a quantity is in general NP-hard [52f]. Note how this decision
favors the GP bounds by shrinking them. The chosen lower
bound was the information gain of our inputs X, which in
our zero-mean Gaussian noise setting with variance M\? is
2 In(det(I + A"2Kxx)) [52]. As for the noise realizations,
we proceeded as follows. Starting from our hard noise limit
5, we considered a zero-mean Gaussian distribution with
variance such that its samples would lie in the [—6,5] band
with confidence 0.99, i.e., a standard deviation of \ = ﬁ.
The noise was then drawn from the normal distribution and
clipped to the interval [0, §] to fulfill Assumption [1} Finally,
the probabilistic inequality was evaluated for a final
confidence of 99%. The obtained numerical results are shown
in Tables I and II.
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