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Hypertracking and Hyperrejection: Control of Signals beyond the Nyquist
Frequency

Kaoru Yamamoto, Yutaka Yamamoto, and Masaaki Nagahara

Abstract— This paper studies the problem of signal tracking
and disturbance rejection for sampled-data control systems, where
the pertinent signals can reside beyond the so-called Nyquist fre-
quency. In light of the sampling theorem, it is generally understood
that manipulating signals beyond the Nyquist frequency is either
impossible or at least very difficult. On the other hand, such control
objectives often arise in practice, and control of such signals is
much desired. This paper examines the basic underlying assump-
tions in the sampling theorem and pertinent sampled-data control
schemes, and shows that the limitation above can be removed by
assuming a suitable analog signal generator model. Detailed anal-
ysis of multirate closed-loop systems, zeros and poles are given,
which gives rise to tracking or rejection conditions. Robustness
of the new scheme is fully characterized; it is shown that there
is a close relationship between tracking/rejection frequencies and
the delay length introduced for allowing better performance. Exam-
ples are discussed to illustrate the effectiveness of the proposed
method here.

I. INTRODUCTION

It is well recognized that sampled-data control systems are inher-
ently limited in resolution in time, due to sampling. This is clearly
seen from the classical sampling theorem, e.g., [16]; there Shannon
showed that the original analog signal can be perfectly reconstructed
if the signal is perfectly band limited below the so-called Nyquist
frequency, i.e., half the sampling frequency.

In spite of such well-established developments, there are many
practical needs to process signals that go beyond the Nyquist fre-
quency. Superresolution in image processing is one such example. In
control as well, we are often confronted with such requirements. For
example,
• tracking a high-frequency sinusoid in regulating AC power

current to a prespecified frequency (particularly in micro-grid
systems),

• rejection of high-frequency disturbance generated by disk rota-
tion in hard-disk drives [3], [30], or

• laser sintering manufacturing systems [9], [20], vision-guided
high-speed controls [17], etc.

Due to the limited resolution in time, such objectives have been
regarded as either impossible or at least ill posed [27]. However,
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if we examine the sampling theorem, it is clear that the band-
limitation below the Nyquist frequency is only a sufficient condition
for perfect signal reconstruction. A different type of band-limiting
hypothesis can lead to a different signal reconstruction result; see,
e.g., [22]. Indeed, by using modern sampled-data control theory,
we have developed a new paradigm for digital signal processing,
including superresolution [28].

The present work is motivated by the above observation, and
intends to give a solution to the control problems as listed above.
More specifically, we study high-frequency tracking and disturbance
rejection of signals beyond the Nyquist frequency. The basic philos-
ophy remains the same as that of [28], with the differences that the
tracking or rejection signals must be precise, and we must also form
a closed-loop system. Robustness becomes a crucial issue here.

In view of the new feature of tracking or rejecting signals beyond
the Nyquist frequency, we call the present control scheme hypertrack-
ing or hyperrejection to highlight the difference with conventional
tracking/rejection problems in sampled-data control.

The basic concept of the present study for hypertracking was
first presented in [29]. This paper is a continuation with a complete
characterization of robustness, which gives a new insight (see Section
V) to us. A related study concerning multiple signals was also given
in [21] in a different setting. We also note that the recent article [20]
has proposed a multirate control scheme to reject the disturbance
beyond the Nyquist frequency in a mechatronic system. However, the
optimized intersample behavior and the robustness are not addressed
there.

Notation
In denoting function values, we will adopt the following conven-

tion: for a function f with a continuous-time variable t, we write
f(t), while we write g[k] with square brackets when k takes on
integer values.

II. PROBLEM FORMULATION

Consider the sampled-data system depicted in Fig. 1.

↑M K(z) Hh/M P (s)
r e

h
+
d

y

−

Fig. 1. Sampled-data feedback system with input disturbance

P (s) is a linear, time-invariant, strictly proper, continuous-time plant,
and K(z) is a linear, time-invariant, discrete-time controller. The
error e is sampled with sampling period h, and after sampled, it is
upsampled by factor M to allow for a faster control processing. The
role of the action (upsampler) of ↑M is to increase the sampling rate
by the factor M by placing M−1 equally spaced zeros between each
pair of samples as follows ([8], [18]):

(↑M)(e)[k] =

{
e[k/M ] if k = mM for some integer m
0 otherwise.



2

Note that in the present case, the sampled sequence {e[k]}∞k=1
synchronizes with continuous-time signals every h seconds, hence
e[k] enters into the system as e(kh) for every k. With this convention,
the action of the above upsampler takes the following form:

(↑M)(e)(kh+ `) =

{
e(kh) if ` = 0

0 if ` = h/M, . . . , (M−1)h/M.
(1)

Hh/M is the zero-order hold that holds the output as constant for
the period of h/M .

We now consider the following problem:
Problem 1: In the block diagram Fig. 1, consider the reference input
sinωrt and the disturbance input sinωdt where ωr and ωd are
either below or above the Nyquist frequency π/h. Find a discrete-
time controller K(z) such that the output y that tracks the reference
r(t) = sinωrt or its delayed signal r(t − L) for some L > 0,
and also rejects the disturbance d(t). Here the tracking may be only
approximate due to the sample-hold nature in Fig. 1. However, the
error due to this approximation becomes small for a large M or
small h ([26]).

When ωr or ωd is above the Nyquist frequency, this problem
does not fall into the conventional sampled-data control paradigm.
Such signals appear in measurement as aliased components below the
Nyquist frequency, and are mixed with other system signals already
existent in the base-band (i.e., lower than the Nyquist frequency)
range. The prime objective of the present paper is to provide a scheme
that enables us to achieve the above goal.

III. HYPERTRACKING AND TRACKING CONDITIONS

We now proceed to give a solution to the hypertracking problem.
We first give a state-space description of Fig. 1, assuming d ≡ 0,
characterize its zeros for tracking, and then proceed to a design
method and examples in the subsequent sections.

A. State-space description of the lifted multirate system

We first describe the system in Fig. 1 as a time-invariant discrete-
time system with a single sampling period h.

Let P (s) and K(z) be described by the following state-space
equations:

P (s) :

{
d
dtxc(t) = Acxc(t) +Bcu(t)
y(t) = Ccxc(t)

K(z) :

{
xd[k + 1] = Adxd[k] +Bdwd[k]
yd[k] = Cdxd[k] +Ddwd[k].

(2)

Here xc, y, u denote, respectively, the state, output and input of
the plant P (s), and xd, yd, wd the state, output and input of the
controller K(z). Note that the discrete-time controller (2) operates
in conformity with the sampling period h/M . That is, xd[k], yd[k]
and wd[k] occur at time t = kh/M, xd[k+ 1], yd[k+ 1], wd[k+ 1]
at t = (k + 1)h/M , and so on.

Introduce the continuous-time lifting [7], [5], [4], [25]:

L :L2
loc[0,∞)→ `2(L2[0, h)) : x(·) 7→ {x[k](·)}∞k=0,

x[k](θ) := x(kh+ θ), θ ∈ [0, h).

We then have the following:
Proposition 3.1: When lifted with period h, the closed-loop system

Fig. 1, without disturbance d, is described by[
xd[k + 1]
xc[k + 1]

]
=

[
Ad −BdCc

B(h)Cd eAch −B(h)DdCc

] [
xd[k]
xc[k]

]
+

[
Bdδ0

B(h)Ddδ0

]
r[k](θ) (3)

and

e[k](θ) = r[k](θ)− y[k](θ)

=
[
−CcB(θ)Cd −CceAcθ + CcB(θ)DdCc

] [xd[k]
xc[k]

]
+ (I − CcB(θ)Ddδ0)r[k](θ). (4)

where

xd[k] := xd[kM ], yd[k] :=


yd[kM ]

yd[kM + 1]
...

yd[(k + 1)M − 1]

 ,
Ad := AMd , Bd := AM−1d Bd,

Cd :=


Cd
CdAd

...
CdA

M−1
d

 , Dd :=


Dd
CdBd

...
CdA

M−2
d Bd

 ,
H(θ) := [χ

[0, h
M )

(θ), χ
[ h
M , 2hM )

(θ), . . . , χ
[
(M−1)h

M ,h)
(θ)], (5)

with χ
[ ihM ,

(i+1)h
M )

(θ), i = 0, . . . ,M − 1 being the characteristic

function of the interval [ih/M, (i+ 1)h/M),

B(θ) :=

∫ θ

0
eAc(θ−τ)BcH(τ) dτ, (6)

and δ0 denotes Dirac’s delta, acting on r[k](θ) as δ0r[k](θ) :=
r[k](0).
Proof Direct calculation. See [29] for details; see also [19], [15]
for pertinent calculation. 2

B. Zeros and tracking

As discussed in [25], the tracking performance of the closed-loop
system (3), (4) is determined by

1) the transmission zeros, and
2) the corresponding zero directions, each of which is the initial

intersample function of the tracking signal.
We make the following assumption:

Assumption A: There is no pole-zero cancellation between the lifted
discrete-time controller and the continuous-time plant.

The following theorem has been obtained in [29]:
Theorem 3.2: Under Assumption A, and the assumption of the

closed-loop stability, the unstable poles of K and lifted P induce
a transmission zero of the closed-loop transfer operator Ger(z) and
vice versa.

As a corollary, consider the case λ = ejωh being an eigenvalue
of Ad. Let xd be the corresponding eigenvector, and then Cdxd 6= 0
(otherwise, the controller is not observable). It follows that by taking
H(θ) to be ejωθ (0 ≤ θ ≤ h), the output of the discrete-time
controller becomes ejkωhejωθyd = ejωtyd, where yd = Cdxd.
That is, the discrete-time controller can work as an internal model
for 1/(s − jω). Taking a combination with the complex conjugate,
this can work as an internal model for sinωt, with this suitable
choice of H(θ). When H(θ) given by (5) is the zero-order hold,
it cannot exactly produce this sinusoidal hold function, but it can
still approximate such a hold function.

Remark 3.3: In fact, if ejωh is an eigenvalue of Ad = AMd ,
ejωh/M is an eigenvalue of Ad. Then, by taking Hh/M to be ejωθ

for 0 ≤ θ ≤ h/M , it is seen that the output of the controller produces
ejωt, because at each step the output is kept multiplied by ejωh/M .
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Since the difference between the zero-order hold and the sinusoidal
hold ejωθ is small for 0 ≤ θ ≤ h/M , for a sufficiently large M , the
controller output can produce an approximation of ejωt. This indeed
occurs in the subsequent Fig. 5 in Example 4.1.

IV. DESIGN METHOD

We now proceed to give a solution to Problem 1. However, Fig. 1
as it is cannot be used as a design block diagram for sampled-data
H∞ control since sampling is not a bounded operator on L2. We thus
place a strictly proper anti-aliasing filter F (s) in front of the adding
point of the error. In other words, the reference signal is pre-filtered
by F (s). This is also advantageous in that we can control frequency
weighting in the input reference signals, which plays a crucial role
in our hypertracking problem. Unlike the usual case, we place more
emphasis on the frequency that we wish to track, possibly beyond
the Nyquist frequency. While we confine our discussions to tracking
problems, it is straightforward to see that disturbance rejection can
be treated in exactly the same way.

We also allow some delays in tracking. Instead of taking the error
e(t) = r(t) − y(t), we try to minimize the delayed error ẽ(t) :=
r(t−L)−y(t) for some L > 0 as stated in Problem 1. This will give
us extra freedom in designing our controller. On the other hand, we
will also see that this delay places certain limitations in robustness;
see Section V below.

Incorporating these changes into Fig. 1, we obtain the generalized
plant in Fig. 2 for design. Here L is a design parameter; we usually
take L to be an integer multiple of h, with some small number such
as 4–10. Problem 1 is now restated as the following sampled-data
H∞-control design problem:
Problem 1a: Given F (s), P (s), L and an attenuation level γ > 0,
find a stabilizing digital controller K(z) such that

‖Gẽr(s)‖∞ < γ

where Gẽr(s) denotes the transfer operator from r to ẽ.

[
e−LsF −P
F −P

]
e

ẽ

u

r

Fig. 2. Generalized plant

The solution to this sampled-data H∞-control problem can be ob-
tained via standard solutions; see, e.g., [7], [11], [27] and references
therein. The only nonstandard element is the delay e−Ls, which is
an infinite-dimensional operator. It is quite effective to rely on the
fast-sample/fast-hold approximation introduced by [1]. See also [26]
for pertinent discussions.

We start with the simplest case of hypertracking:
Example 4.1: Consider the plant

P (s) :=
1

s2 + 2s+ 1
(7)

with (normalized) sampling period h = 1 in Fig. 1. From here on, we
always normalize the sampling period h to 1. The Nyquist frequency
is then π [rad/sec] which is just equal to 0.5 [Hz]. Suppose that we
are given the tracking signal r = sin(3π/2)t, i.e., the sinusoid at
0.75 [Hz]. This is clearly above the Nyquist frequency, and a normal
signal-processing intuition or a digital control thinking may claim
that it is impossible to track.
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−40

−20

0

20

3π/2Nyquist Frequency
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Bode Diagram

Fig. 3. Weighting function F (s) in Example 4.1
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Fig. 4. System output tracking sin(3π/2)t along with the delayed error

The basic idea is that we place more weight on this high fre-
quency signal rather than the low frequency range below the Nyquist
frequency. In this example, we take the weighting function

F (s) :=
s

s2 + 0.1s+ (3π/2)2
,

which has a sharp peak at 3π/2 [rad/sec] and also deemphasizes
low-frequency as can be seen in Fig. 3.

The response against the sinusoid r(t) = sin(3π/2)t is shown in
Fig. 4 along with the delayed error, represented by the dashed line.
Here we chose the upsampling factor M = 8 and the delay L =
4h = 4. This figure clearly shows that the output tracks the reference
input sin(3π/2)t, which has the natural frequency greater than the
Nyquist frequency π, and the output matches the given frequency
3π/2. Note also that the output shows the delay of 4 steps specified
by the design specification. ♦
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Fig. 5. Discrete-time controller output
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Fig. 6. Poles of the controller

Fig. 6 shows the eigenvalues of the upsampled controller, i.e., those
of Ad. There are poles at ±j corresponding to e±3πj/2—necessary
to produce sin(3π/2)t, along with e±jωh/M with ω = 3π/2, M =
8, as discussed in Remark 3.3.

Remark 4.2: For the choice of the design parameter M , there is
a clear trade-off between the accuracy of the internal model (and
the tracking output) and computational burden. For example, if we
increase the upsampling factor M in the example above, it is ex-
pected that the designed controller produces more accurate sinusoids
compared with the one in Fig. 5, at the expense of computational
cost. Generally speaking, our experience tells us that M = 8 gives a
suitable compromise.

One may also question if the above success of hypertracking is
perhaps due to the relatively “low” tracking signal; but it has been
shown that even a higher frequency signal of sin(5π/2)t can be well
tracked [29].

Remark 4.3: As we noted, the delay length L is a design parame-
ter. By comparison with the case L = 0, we easily see that a larger L
can generally provide more design freedom, but it is not necessarily
true that a larger L always leads to a better result. This is closely
related to robustness, and will be discussed in detail in the subsequent
Section V. See also [14] for the behavior as we increase L.

V. ROBUSTNESS

In this section we discuss the robustness condition for hypertrack-
ing/hyperrejection problems under the presence of plant fluctuations
or reference/disturbance frequency variations.

The following theorem clarifies the crucial relationship between
the tracking delay L and robustness:

Theorem 5.1: Consider the hypertracking problem in Fig. 1 with
tracking/rejection signal sinωt and tracking delay L = mh. Under
the condition of closed-loop stability, the closed-loop system Fig. 1
with tracking delay L possesses an (approximate) internal model of
this sinusoidal signal, (and hence robust (approximate) tracking) if
and only if L is an integer multiple of the period 2π/ω of sinωt.

Let us first give a brief argument on this fact. Recall Theorem 3.2
on the transmission zeros of the closed-loop system, and the remark
following it. The tracking signal here is sinωt, and suppose also
that ±jω is not an eigenvalue of the continuous-time plant P . Then,
if tracking to sinωt is achieved, it means λ = ejωh should be an
eigenvalue of Ad, and, simultaneously, ejωh/M an eigenvalue of Ad
as noted there (Remark 3.3). Hence with a proper choice of the hold
device H(θ) = ejωθ , the discrete-time controller K(z) should work

as an internal model for sinωt. When the hold device is a fast zero-
order hold on [0, h/M ] instead, the tracking becomes approximate.

Proof of Theorem 5.1 We adopt the framework of [25] to
place sampled-data systems into a continuous-time scheme with the
identification of z ↔ ehs. To be more specific, the finite Laplace
transform over the period [0, h)

L[φ](s) :=

∫ h

0
φ(t)e−stdt

turns the discrete-time controller K(z) into K(ehs). With respect to
this setting, the controller K(ehs) is to receive a sampled signal∑

k

ek(0)e−khs

which is the Laplace transform of the impulse train∑
k

ek(0)δkh,

where δkh is the delta distribution placed at point kh. The loop
transfer operator then becomes K(ehs)L[H](s)P (s). Suppose for
the moment that H is the zero-order hold. Then L[H](s) = (ehs −
1)/sehs, and the loop transfer operator is expressible as a ratio
of polynomials in s and ehs. (For a more detailed discussion, see
[25, page 710].) Hence this falls into the category of pseudorational
transfer functions [23], [24]. In fact, even when H is not the zero-
order hold, but is a compactly supported function on [0, h), it is
still pseudorational. They are generally expressible as ratios of entire
functions of the complex variable s.

Consider the block diagram in Fig. 7. Suppose that the tracking
signal is generated by 1/α(s) where α(s) is a polynomial in s. In the
present case, α(s) = s2 +ω2. The forward-loop system is described
by D−1(s)N(s), where D and N are entire functions of exponential
type. If the tracking is achieved, then in the steady-state mode it is
equivalent to Fig. 8. This is precisely in the scope of the situation
considered in [25, Theorem 6.4]. Hence the asymptotic tracking
implies that any signal generated by α−1(s) must be contained in
the response generated by D−1(s). This implies α(s)|D(s) [25,
Theorem 6.4]. That is, the forward loop must contain α(s) as an
internal model. If α(s) = s2 +ω2 and if P (s) does not contain α(s)
in the denominator, then α(s) must be contained in the controller
K(z) in combination with the hold element H(θ).

Now let us return to the issue of the tracking delay L. As we noted,
the current objective is to make y(t) track the delayed signal r(t−L),
not r(t). In other words, the argument above works ideally only for
the case L = 0. When L is nonzero, our design seeks a controller
that makes r(t−L)−y(t)→ 0 but e(t) = r(t)−y(t) need not go to
zero. However, if r(t) = sinωt and if L is selected to be an integer
multiple of the period 2π/ω of sinωt, then sinω(t−L)−y(t)→ 0
also implies e(t)→ 0. Under this condition, we return to the situation
discussed above, and e(t)→ 0 is guaranteed.

Hence the above argument works again, and α(s)|D(s), which
means that s2 + ω2 must be included in the forward-loop as an
internal model.

Conversely, if the above divisibility condition (2π/ω)|L does not
hold, then the tracking r(t − L) − y(t) → 0 does not guarantee
e(t)→ 0. Indeed, r(t−L)− y(t)→ 0 and e(t) = r(t)− y(t)→ 0
hold simultaneously only when (2π/ω)|L. Hence this is a necessary
and sufficient condition for an internal model to be formed in the
forward loop transfer operator. 2

Remark 5.2: The above proof gives an argument for an ideal case
where the internal model is given as a continuous-time system. While
this is possible for some choice of a generalized hold H(θ) (see, for
example [25], where 1/s can be generated in a combination of a
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Fig. 7. Generalized tracking configuration
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Fig. 8. Steady-state mode

suitable hold and a discrete-time controller), the internal model is
not exact in the sampled-data context, in general. As we have seen
in Remark 3.3, the precise tracking is not achieved because of the
finite resolution of the upsampling factor M , and the compensator
cannot exactly generate the sinusoid sinωt, but only approximately.
However, as shown in [26], this error due to sample and hold ap-
proaches the continuous-time internal model as M increases. Hence
the proof above shows that the result should hold in the limiting case.

We give two suggestive examples. The nominal plant P (s) is the
same as (7):

P (s) =
1

s2 + 2s+ 1
.

with the sampling time h = 1, the upsampling factor M = 8, and
the delay length L = 4h = 4.

Example 5.3: Consider the tracking problem to the signal r(t) =
sin(4π/3)t. We take the weighting function

Fr(s) :=
s

s2 + 0.01s+ (4π/3)2
.

As Fig. 9 shows, this gives a fine tracking property. However, if we
perturb the plant P to P + ∆, ∆(s) = 0.05/(s + 1), the resulting
response exhibits a fairly large error as shown in Fig. 10, failing to
show a robust tracking property. Note that the closed-loop system
remains stable here. ♦
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Fig. 9. System output tracking sin(4π/3)t without disturbance
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Fig. 10. System output for the reference sin(4π/3)t under the additive
perturbation 0.05/(s+ 1) to the plant
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Fig. 11. System output tracking sin(3π/2)t under the additive
perturbation 0.1/(s+ 1) to the plant

On the other hand, the following example exhibits quite a different
behavior:

Example 5.4: We take the same plant and simulation condition as
in Example 5.3, but with the tracking signal r(t) = sin(3π/2)t. The
result of robustness test for the plant perturbation P 7→ P + ∆,
∆(s) = 0.1/(s+ 1) is given by Fig. 11.

In spite of the larger plant perturbation, the closed-loop system
achieves a steady-state tracking. ♦

In light of Theorem 5.1, the difference of the above two is clear:
In Example 5.3, the period 2π/(4π/3) = 3/2 does not divide L = 4
while in the latter Example 5.4, L = 4 is an integer multiple of
2π/(3π/2) = 4/3, thereby assuring robust tracking. We can also
easily ensure that taking L = 6 in Example 5.3 will recover the
robust tracking property as shown in Fig. 12.

VI. MISCELLANEOUS EXAMPLES

We now give a few typical examples that can often arise in practical
situations:
• hypertracking for multiple sinusoids above the Nyquist fre-

quency;
• simultaneous tracking and disturbance rejection objectives;
• simple hypertracking for an unstable plant;
• hypertracking for a non-minimum phase plant.

In all the examples, the delay L is chosen to be an integer multiple of
the tracking/rejection frequency so that the robustness is guaranteed.

A. Hypertracking to multiple sinusoids

The following example shows a case where we have two tracking
frequencies above the Nyquist frequency:
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Fig. 12. System output tracking sin(4π/3)t with L = 6 under the
additive perturbation 0.1/(s+ 1) to the plant
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Fig. 13. Hypertracking for multiple sinusoids sin(5π/4)t +
sin(9π/4)t

Example 6.1: (Hypertracking for multiple sinusoids) Let

P (s) :=
1

s2 + 2s+ 1

with (normalized) sampling period h = 1 (and hence the Nyquist fre-
quency is π [rad/sec].) We aim at tracking two sinusoids sin(5π/4)t+
sin(9π/4)t, having natural frequencies above the Nyquist frequency.
We set the upsampling factor M = 8 and the delay L = 8. The
weighting function is chosen as

F (s) :=
s

(s2 + 0.01s+ (5π/4)2)(s2 + 0.01s+ (9π/4)2)

to have clear peaks at 5π/4 and 9π/4. The result is shown in Fig. 13.
We see that tracking is well achieved even for this multiple signal
tracking. ♦

B. Simultaneous tracking and disturbance rejection

We now consider the simultaneous tracking and disturbance re-
jection problem given in Fig. 1 where the disturbance d is injected
before the plant P . The generalized plant for the design is shown in
Fig. 14 where Fr and Fd are the weights on the reference signal and
the disturbance, respectively.

[
e−LsFr −PFd −P
Fr −PFd −P

]
u

d

r

e

ẽ

Fig. 14. Generalized plant in the presence of input disturbance
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Fig. 15. Delayed error against sin(π/4)t in the presence of the input
disturbance sin(3π/2)t
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Fig. 16. Delayed error against sin(3π/2)t in the presence of the input
disturbance sin(3π/2)t

Example 6.2: (Simultaneous tracking and rejection) Let h = 1,
M = 8, L = 8, and

P (s) :=
1

s2 + 2s+ 1
.

Our objective here is to track r(t) = sinωrt while the system is
subject to the disturbance d(t) = sinωdt.

We here set ωr := π/4 and ωd := 3π/2; that is, the tracking
frequency is low, and there is a high-frequency disturbance above the
Nyquist frequency. We commonly encounter such a situation, e.g., in
hard-disk drives, where the tracking frequency is below the Nyquist
frequency but the disturbance is above it. We choose the weighting
functions as

Fr(s) :=
s

s2 + 0.01s+ ω2
r
, Fd(s) :=

s

s2 + 0.01s+ ω2
d

. (8)

The delayed output and the delayed error are shown in Fig. 15.
This simultaneous tracking and disturbance rejection problem is
reasonably well performed. ♦

The following example treats a little more delicate case where the
tracking and rejection signals are at the same frequency:

Example 6.3: (Simultaneous tracking and rejection of the same
frequency) We now consider a more demanding case of tracking and
rejecting the same sinusoid of sin(3π/2)t for the same plant as in
Example 6.2. The weighting functions are set to be in the form (8)
with ωr = ωd = 3π/2. The delayed output and the delayed error are
shown in Fig. 16. While the response is somewhat slower, the result
shows good tracking/rejection. ♦

Remark 6.4: It may be noted that the transfer operator from
the disturbance to the output is not the complementary sensitivity
function, but rather P/(1 + PC). Therefore, the classical trade-off
between the sensitivity function and the complementary sensitivity
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Fig. 17. Delayed tracking for sin(3π/2)t for an unstable plant

function in a closed-loop system does not apply here. See also [21]
for more details in multiple signal tracking and rejection, with a
slightly different two-step design method.

C. Simple hypertracking for an unstable plant
We have so far considered only a stable and minimum-phase plant.

We will now see that hypertracking (and hyperrejection) also works
for unstable or non-minimum phase plants.

The following example shows a case for an unstable plant:
Example 6.5: (Hypertracking for an unstable plant) Take an un-

stable plant P :

P (s) :=
1

(s− 0.5)
,

with h = 1, M = 8, L = 4, and the weighting

F (s) =
s

s2 + 0.01s+ (3π/2)2
.

The delayed output and the delayed error against sin(3π/2t) are
shown in Fig. 17. Again, hypertracking is well achieved for this case
also. ♦

D. Simple hypertracking for a non-minimum phase plant
Finally, we give the following example dealing with a non-

minimum phase plant.
Example 6.6: (Hypertracking for a non-minimum phase plant.)

Take the following plant that has an unstable zero at s = 1:

P (s) :=
s− 1

s2 + 2s+ 1
.

The tracking frequency is 3π/2 as before, and we take the weighting

F (s) =
s

s2 + 0.01s+ (3π/2)2
,

with the same h = 1, M = 8, and L = 4 as above.
The delayed output and the delayed error are shown in Fig. 18.

While there remain some errors, the overall tracking must be satis-
factory. ♦

VII. CONCLUDING REMARKS

We have proposed a new scheme (along with [29]) for track-
ing/rejection of signals that reside either beyond or below the Nyquist
frequency. This has been made possible by introducing a suitable
choice of signal weighting. When the tracking/rejection signal is
above the Nyquist frequency, an appropriate choice allows us to
control high-frequency intersample response.

We have also completely characterized robustness in this context.
That is, the designed closed-loop system achieves robust track-
ing/rejection if and only if the tracking/rejection delay L is an integer
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Fig. 18. Delayed error against sin(3π/2)t for a non-minimum phase
plant

multiple of the periods of target signals (Theorem 5.1). This leads to
an interesting observation.

In general, when there is no feedback loop, i.e., in the case of
a delayed signal reconstruction, a longer delay length is always
advantageous; for example, in the signal reconstruction, the designed
filter will approach an ideal filter as L → ∞ [6]. In the present
setting, however, a longer delay does not necessarily yield a desirable
result in view of robustness. A delay incompatible with the target
signal period can behave very poorly when there is a small amount
of perturbations.

Multirate sampled-data control has been studied in the control
literature: see, e.g., [2], [10], [12], [13]. However, the emphasis
there is mainly on how one can obtain full information by multirate
sampling of the output, thereby extending the capability of control.
It is to be noted that we do not perform further sampling on the
sampled output, and the basic sampling period remains intact for
outputs. Upsampling is performed only on the side of the control
signals, and we focus our attention on how it can enhance control
capability. This is made possible by a proper choice of weighting on
tracking/rejection signals.
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