
1

Numerical Gaussian process Kalman filtering for
spatiotemporal systems

Armin Küper and Steffen Waldherr

Abstract— We present a novel Kalman filter for spa-
tiotemporal systems called the numerical Gaussian pro-
cess Kalman filter (GPKF). Numerical Gaussian processes
have recently been introduced as a physics informed ma-
chine learning method for simulating time-dependent par-
tial differential equations without the need for spatial dis-
cretization. We bring numerical GPs into probabilistic state
space form. This model is linear and its states are Gaus-
sian distributed. These properties enable us to embed the
numerical GP state space model into the recursive Kalman
filter algorithm. We showcase the method using two case
studies.

Index Terms— Kalman filtering, Gaussian processes,
Spatiotemporal systems, Machine learning

I. INTRODUCTION

State estimators are algorithms for reconstructing a system’s
state from a stream of noisy online measurements and model
predictions. The model is usually in the form of a probabilistic
state space model. Given linear finite-dimensional dynamics,
the process and measurement equation read as

xt = Axt−1 + qt−1, (1)
yt = Cxt + rt, (2)

with the state at time t as xt ∈ Rdx , and the measurements
as yt ∈ Rdy . Dynamics are described by matrix A while
measurements are obtained through C. Process qt−1 and
measurement noise rt are modeled as Gaussian distributed
zero-mean white noise with covariance matrix Q and R,
respectively. Process and measurement equations (1) – (2) can
also be represented by probability density functions p(·) that
take the form of Gaussian distributions N(·) due to the nature
of the noise processes. In particular we have

p(xt|xt−1) = N (xt|Axt−1,Q) , (3)
p(yt|xt) = N (yt|Cxt,R) . (4)

The following question arises: How should the measurement
yt be used to correct the model prediction of xt in real time?

One answer to this question is the Kalman filter. In fact,
it gives the optimal estimate mopt

t of the current state xt
under consideration of the measurement history up to the
present y1:t = {y1, . . . ,yt} [1]. It is optimal in the sense
that the expected squared error between estimated and true
state conditioned on the measurement history is minimized.
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The Kalman filter estimates the state in a recursive manner.
In Bayesian statistical terms this can be written as

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
. (5)

Since the recursion starts with a Gaussian distribution and
the dynamics are linear, all the above distributions remain
Gaussian, and the posterior estimate can be obtained in closed
form by calculating its mean and covariance.

Remember that the above model equations described finite-
dimensional systems. Infinite-dimensional filtering theory cer-
tainly exists [2], but direct practical infinite-dimensional
Kalman filtering does not to the best knowledge of the au-
thors. Finite-dimensional approximations are therefore needed.
Using spatial discretization methods, e.g. the finite volume
method [3], one usually obtains a large system of ordinary
differential equations which can be formulated as the above
state space model (1) – (2).

In this paper, we will take a different route. We will use so-
called numerical Gaussian processes [4] to solve spatiotem-
poral models. Gaussian processes (GPs) are a probabilistic
machine learning method that can be used for regression [6].
Numerical GPs are structured by the spatiotemporal model
in the form of a (linear) time-dependent partial differential
equation

∂

∂t
f(t,x) = Lxf(t,x), x ∈ Ω ⊂ Rdx (6)

f(t,xb) = Bxf(t,x), xb ∈ ∂Ω, (7)

where Lx : L2(Rdx ,R) → L2(Rdx ,R), f(t, x) 7→ Lxf(t, x)
is a linear (integro-)differential operator determining the dy-
namics, and Bx is a linear functional imposing the boundary
condition.

Due to the probabilistic nature of GPs, they provide us with
uncertainty quantification. This will be of much benefit for
their use in state estimation.

The contributions of this paper are as follows:
• we extend numerical GPs with an output channel for

online measurements and formulate this as a probabilistic
linear state space model which is by definition Gaussian
distributed, see Section III;

• this allows us to put numerical GPs through the Kalman
filter algorithm and therefore derive the numerical Gaus-
sian process Kalman filter (GPKF), see Section IV;

• using numerical case studies of spatiotemporal systems,
we showcase the numerical GPKF, see Section V.
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spatial discretization temporal discretization

Fig. 1: Spatial discretization methods lay down a mesh on
the spatial domain and describe how neighboring mesh cells
should interact with each other dictated by the PDE. This
results in a system of ODEs that is simulated with tradi-
tional solvers. Numerical Gaussian processes [4] on the other
hand start with a temporal discretization. The resulting time
discretized PDE is used to build up a structured Gaussian
processes that is evaluated on arbitrarily chosen regression
points. To simulate, one recursively formulates the so-called
posterior Gaussian process. Figure adapted from [5].

Preliminary results were presented in the conference paper
[7]. This article significantly extends this previous work. In
contrast to [7], the preliminaries now contain a didactical
example to streamline the section. Furthermore, numerical GPs
are explicitly expressed as probabilistic state space models in
this paper. Moreover, boundary conditions are treated as part
of the model and not as measurements. This affects the KF
algorithm as such that boundary conditions enter through the
prediction step, rather than the update step of the Kalman filter.
Finally, more sophisticated case studies are presented.

Related works: Infinite-dimensional Kalman filtering with
Gaussian processes has previously been done by [8], [9].
Therein, certain covariance functions are shown to be convert-
ible via Fourier-transforms to infinite-dimensional state space
models. Using these models, infinite-dimensional Kalman
filtering can then be done. This approach does not need a
structured PDE to inform the GPs, contrary to numerical
GPs. Of course, this also means that the GP has to learn
the dynamics from the full state vector which might not be
accessible in the first place.

Another fully non-parametric approach is given in [10].
Assuming space-time separability of the covariance function,
a finite-dimensional discrete-time state space model is built
up that can be used for Kalman filtering. Again, the full states
need to be accessible for this method to work.

Finite-dimensional filtering with Gaussian processes has
been done by [11]. Different Bayesian filters such as particle

filters, extended and unscented Kalman filters are recovered.
Closely related is the work of [12], wherein an analytic
moment-based Gaussian process filter is presented. A general
perspective on finite-dimensional Gaussian filtering is given in
[13].

Mathematical notation: Scalars are lowercase non-bold sym-
bols x, while vectors are bold x, and matrices are uppercase
and bold X .

A random variable x stemming from probability density
function p(·) is symbolically written as x ∼ p(x). Gaussian
random variables and their distributions are denoted as x ∼
N(x|m,P ) with mean m and variance P .

A covariance matrix K (X,X) ∈ RM×M in the Gaussian
process regression context is built up by evaluating the un-
derlying covariance function element-wise Kij = k(xi,xj)
using the data matrixX = {x1, . . . ,xM} ∈ Rdx×M . A cross-
covariance matrix K (X,X∗) ∈ RM×S can also be built up
with X∗ ∈ Rdx×S .

II. PRELIMINARIES

In this section we will introduce Gaussian process regres-
sion, linear operators in combination with GP regression,
and numerical GPs for time-dependent partial differential
equations.

Gaussian process regression

A Gaussian process is a stochastic process f(x) that is fully
defined by its mean function m(x) and covariance function
k(x,x′)

m(x) = E [f(x)] (8)

k(x,x′) = E
[
(f(x)−m(x)) (f(x′)−m(x′))

T
]
. (9)

What makes GPs usable in practice is their property that any
finite dimensional collection of random variables f(X) =
{f(x1), . . . , f(xM )} is jointly Gaussian distributed

f(X) ∼ N (m(X),K (X,X)) , (10)

with

m(X) =
(
m(x1) · · · m(xM )

)T
(11)

K (X,X) =

 k(x1,x1) · · · k(x1,xM )
...

. . .
...

k(xM ,x1) · · · k(xM ,xM )

 . (12)

In regression, we wish to infer the process f(·) based on its
inputs x and its (possibly noisy) output y. The output is not
restricted to algebraic expressions such as y = f(x) + noise,
but can also be generalized to linear transforms of the process
y = Lxf(x) + noise.

We will illustrate GP regression using the following differ-
ential example

y =
df
dx

+ ε, with ε ∼ N
(
0, σ2

ε

)
, (13)

f b = Bxf, (14)
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Fig. 2: Inferring f(x) from noisy differential observations y =
df
dx + ε and boundary condition f b = f(xb) using Gaussian
process regression. The true function is ftrue = x2 sin(x) +
0.2x3/2 + 20.

with a Dirichlet boundary condition rendering the boundary
operator to the identity operator Bx = Ix, and therefore f b =
f(xb = 0). To start, we place a GP prior on f(x) and write

f(x) ∼ GP
(
0, kff (x, x′)

)
, (15)

where we chose the prior consisting of a zero-mean function
and a squared exponential covariance function k(x, x′) =

σ2 exp
(
− (x−x′)2

2l2

)
. Here, σ2 and l are hyper-parameters that

permit to adjust the shape of the covariance function, and
therefore the behavior of f(x), to the data.

Next, we make use of the fact that a linear transform of a
GP is another GP that is structured by the linear transform,
see [14] and the references therein. We therefore have

y ∼ GP

0,LxLx′kff (x, x′)︸ ︷︷ ︸
=kyy

 , (16)

f b ∼ GP

0,BxBx′kff (x, x′)︸ ︷︷ ︸
=kbb

 . (17)

For our example, kff and kbb are identical due to the Dirichlet
boundary condition. The covariance function kyy can easily
be derived under use of the formal definition of a covariance
function (9). Note the important distinction between Lx and
Lx′ , meaning that the operator should be applied with respect
to either the first or second argument, that is x or x′.

We continue by formulating the evaluated joint model
p(f , f b,y) at test locations x∗ = {x∗1, . . . , x∗S}, the bound-
ary xb, and observation locations x = {x1, . . . , xM}f(x∗)

f b(xb)
y(x)

 ∼ N (0,K) , (18)

with covariance matrix

K =

Kff (x∗,x∗) kfb (x∗, xb) Kfy (x∗,x)

kbf (xb,x∗) kbb(xb, xb) kby (xb,x)

Kyf (x,x∗) kyb (x, xb) Kyy (x,x)

 . (19)

Before doing inference, we learn the hyper-parameters
of the covariance function by minimizing the negative log
marginal likelihood (NLML) − log p(f b,y). We will touch on
this more thoroughly later on.

Inference is now done by calculating the conditional dis-
tribution p(f |f b,y). For Gaussian distributions, this results
in another Gaussian with conditional mean E[f |f b,y] and
covariance V[f |f b,y] as

E[f |f b,y] =
[
kfb Kfy

] [kbb kby

kyb Kyy + σ2
nI

]−1(
f b

y

)
(20)

V[f |f b,y] =Kff

−
[
kfb Kfy

] [kbb kby

kyb Kyy + σ2
nI

]−1 [
kbf

Kyf

]
.

(21)

Here, another hyper-parameter σ2
n has been introduced to

model measurement noise ε as additive zero mean Gaussian
white noise. This hyper-parameter is also learned via the
NLML. As can be seen in Fig. 2, the structured GP (18) is
able to infer f from derivative observations.

To summarize, we give a cooking recipe for probabilistic
inference with GPs:

1) Carefully place a GP prior to prevent inversion of linear
operators (prior on f in our example to prevent inversion
of d

dx ).
2) Build up output GPs that are linear transforms of the GP

prior (y, f b in our example).
3) Construct the joint model p(f, f b, y) and learn the hyper-

parameters via the marginal distribution p(y, f b).
4) Do inference by conditioning p(f |f b, y).

Numerical Gaussian processes for time-dependent
partial differential equations

So far we looked at static examples. We are however
interested in spatiotemporal systems described through time-
dependent partial differential equations (PDEs). We assume
that the PDE model is known and linear. Given an initial
condition and boundary conditions, we wish to solve the PDE
via GPs. We can do this with the recently introduced numerical
GPs [4]. We will present the essential idea here, referring the
reader to the original paper for further details.

Numerical GPs are built on the fact that linear transforms
of a GP result in another GP. In fact, numerical GPs use a
very similar procedure as shown earlier.

The first step is to discretize the time-dependent PDE (7) in
time using one of the many existing methods (explicit Euler
for simplicity here)

ft(x) = ft−1(x) + ∆tLxft−1(x) (22)
= Axft−1(x). (23)

Next, a GP prior is placed on ft−1 ∼ GP
(

0, kfft−1,t−1(x,x′)
)
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and therefore ft is also a GP defined as

ft(x) ∼ GP

0,AxAx′kfft−1,t−1︸ ︷︷ ︸
=kff

t,t

 , (24)

and so is the boundary condition f bt = Bxft

f bt (x) ∼ GP

0,BxBx′AxAx′kfft−1,t−1︸ ︷︷ ︸
=kf

bfb

t,t

 . (25)

Then, the evaluated joint model p(f t,f
b
t ,f t−1) on arbitrary

test points Xt, the boundaries Xb, and previous points Xt−1
is formulated as f t

f bt
f t−1

 ∼ N

0,

 K
ff
t,t Kffb

t,t Kff
t,t−1

Kfbf
t,t Kfbfb

t,t Kfbf
t,t−1

Kff
t−1,t Kffb

t−1,t Kff
t−1,t−1


 . (26)

Here, the inputs to the individual covariance matrices are
omitted. They can be inferred from the sub- and superscripts,
e.g. Kffb

t−1,t(Xt−1,Xb).
To simulate the spatiotemporal model, we now recursively

compute the conditional distribution p(f t|f
b
t ,f t−1). Here

the solution from the previous simulation step f t−1 acts as
an artificial measurement. Hyper-parameters are optimized in
each simulation step by minimizing − log p(f bt ,f t−1).

III. NUMERICAL GAUSSIAN PROCESSES AS
PROBABILISTIC STATE SPACE MODELS

In this section we will derive a probabilistic state space
model from numerical Gaussian processes. This probabilistic
state space model is linear and its random states are, by
definition of GPs, Gaussian distributed. These model prop-
erties allow us in Section IV to go through the Kalman filter
algorithm, thereby deriving the numerical Gaussian process
Kalman filter.

We start by introducing an output channel for noisy online
measurements that are linear transforms of f(t,x). Mathemat-
ically this reads as

fyt (y) = (Hxft) (x) + rt(y). (27)

The measurement operator is Hx : L2(Rdx ,R) →
L2(Rdy ,R), ft 7→ fyt . Obtained measurements are point
evaluations of fyt at locations yi.

In this work, we consider measurement noise rt as zero-
mean spatiotemporal white noise with constant variance over
y. To model this, we place a GP prior on rt that is independent
of all the other GP priors. We write

rt ∼ GP
(
0, krrt,t(y,y

′)
)
, (28)

where the covariance function is krrt,t = σ2
rδ(y − y′) and

E[rtrt+τ ] = 0. Other additive noise models are conceivable.
Particularly the spatial white noise assumption could be re-
laxed to something more suitable under use of an appropriate
covariance function [6].

Since ft(x) is a GP, so is the measurement output

fyt ∼ GP

0,
(
HxHx′kfft,t

)
(x,x′) + krrt,t(y,y

′)︸ ︷︷ ︸
=kf

yfy

t,t

 . (29)

Regarding the PDE itself, we add spatiotemporal process
noise to the PDE to obtain

∂

∂t
f(t,x) = Lxf(t,x) + q(t,x). (30)

Discretization in time yields

ft(x) = Axft−1(x) + ∆tqt−1(x), (31)

with process noise modeled as an independent zero-mean GP
prior with a white noise kernel kqqt−1,t−1(x, x′) = σ2

qδ(x−x′).
Of course, the above discretization is mathematically not rigor-
ous because (30) is not continuous due to the spatiotemporal
white noise. A more rigorous treatment would require Itô–
Calculus [15]. We could formally circumvent this by first
discretizing and then adding process noise qt−1(x) (without
∆t), as done in the finite-dimensional state space models.
However, we found that exclusion of ∆t in the process noise
term drastically reduced estimation performance. Moreover,
above we recovered a time-discrete form that is similar to the
Euler-Maruyama method. This brief discussion lays bare the
gap between proper theoretical treatment and actual imple-
mentation, as lamented as early as in [16].

The updated GP for ft(x) is

ft(x) ∼ GP

0,AxAx′kfft−1,t−1 + ∆t2kqqt−1,t−1︸ ︷︷ ︸
=kff

t,t

 . (32)

The complete multi output GP now reads as


ft
fyt
f bt
ft−1

 ∼ GP


0,


kfft,t kf

yf
t,t kff

b

t,t kfft,t−1

kf
yf
t,t kf

yfy

t,t kf
yfb

t,t kf
yf
t,t−1

kf
bf
t,t kf

bfy

t,t kf
bfb

t,t kf
bf
t,t−1

kfft−1,t kff
y

t−1,t kff
b

t−1,t kfft−1,t−1


︸ ︷︷ ︸

=KGP


.

(33)
All covariance functions inside KGP are known as they can
be built up from the prior covariance function kfft−1,t−1 (for
the explicit Euler) and the respective linear operators Ax, Hx
or functionals Bx, see Appendix C.

We can recover a probabilistic state space model from (33).
For this purpose we assume that (33) has been evaluated
at measurement locations Y , boundaries Xb and arbitrarily
chosen test locations X . The covariance functions there-
fore become covariance matrices, e.g. kf

yfb

t,t (y,xb) becomes

Kfyfb

t,t (Y ,Xb).
The process equation is

p
(
f t|f

b
t ,f t−1

)
= N

(
f t
∣∣At

(
f bt
f t−1

)
, PGPf

t

)
, (34)
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with the covariance matrix

At =
[
Kffb

t,t Kff
t,t−1

] [Kfbfb

t,t Kfbf
t,t−1

Kffb

t−1,t Kff
t−1,t−1

]−1
(35)

taking the role of the dynamic matrix in a state space model.
Here, At is time-varying, indicated by the subscript, due
to changing hyper-parameter values and possibly changing
regression points. The process noise covariance matrix of the
state space model, usually denoted Q, is given by

PGPf
t = Kff

t,t −At

[
Kffb

t,t Kff
t,t−1

]T
. (36)

The measurement equation reads as

p (fyt |f t) = N

(
fyt

∣∣∣∣Ctf t, P
GP,fy

t

)
, (37)

with

Ct = Kfyf
t,t

(
Kff
t,t

)−1
(38)

taking the role of the measurement matrix in a state space
model. The measurement noise covariance matrix of the state
space model, usually denoted R, is given by

PGP,fy

t = Kfyfy

t,t −CtK
ffy

t,t . (39)

The noise covariance matrices Q and R in a classical
state space model are usually static matrices. The GP model
however naturally allows for an adaptive noise description,
due to online adaptation of the hyper-parameters, thereby
drastically reducing the usually required tedious fine-tuning
of the Kalman filter. This will be showcased with case studies
in Section V and discussed in Section VI.

For the recursive Kalman filter algorithm we will also need
the following

p(f bt |f t−1) = N
(
f bt |A

fb

t f t−1,P
GP,fb

t

)
, (40)

with

Afb

t =Kfbf
t,t−1

(
Knn
t−1,t−1

)−1
, (41)

PGP,fb

t =Kfbfb

t,t −Afb

t K
ffb

t−1,t. (42)

Equipped with a probabilistic state space model, we are now
ready to write down the recursive Kalman filter equations.

IV. NUMERICAL GAUSSIAN PROCESS KALMAN FILTER
DERIVATION

In this section we will embed the numerical GP state space
model into the Kalman filter algorithm. Afterwards, we will
briefly discuss the Kalman filter marginal likelihood for the
use of hyper-parameter estimation.

There are two ways to derive the Kalman filter. The first
derivation is rooted in recursive least squares regression, see
e.g. [17]. The second derivation takes a Bayesian filtering
perspective, see e.g. [18]. In this article, we take the latter
perspective to derive the numerical Gaussian process Kalman
filter since the Bayesian perspective neatly fits into the Gaus-
sian process framework.

PREDICTION STEP UPDATE STEP

p(ft|f bt , ft−1) × p(ft−1|fy1:t−1, f b1:t−1)

p(f bt |ft−1)

p(ft, f
b
t , ft−1|f

y
1:t−1, f

b
1:t−1)

prior p(ft|fy1:t−1, f b1:t) ×

likelihood p(fyt |ft)

p(ft, f
y
t |f

y
1:t−1, f

b
1:t)

posterior p(ft|fy1:t, f b1:t)

p(f0)

first marginalize ft−1,
then condition on f bt

condition on fyt

repeat re-
cursively
t→ t− 1

start recursion

Fig. 3: The recursive Kalman filter algorithm for calculating
the posterior state distribution of a spatiotemporal system.

Recall that in Kalman filtering, we want to calculate the
probability distribution of a dynamic state given all the mea-
surement history up to the present. For spatiotemporal sys-
tems, we additionally condition on the boundary data history.
Boundary conditions are treated as part of the model and
therefore enter through the prediction step of the Kalman filter.
According to Bayes’ rule, the posterior distribution of the state
estimate is given by

p(f t|f
y
1:t,f

b
1:t) =

p(fyt |f t)p(f t|f
y
1:t−1,f

b
1:t)

p(fyt |f
y
1:t−1,f

b
1:t)

. (43)

We make the usual assumptions for the Kalman filter [18]
and an additional one for the boundary data:
Assumption 1) States are assumed to be Markovian, i.e. the

current state f t is conditionally independent
of anything that happened before t − 1 given
the previous state f t−1.

Assumption 2) Given the current state f t, the current mea-
surement fyt is conditionally independent of
the measurement fy1:t−1 and state histories
f1:t−1, as well as the boundary history up to
the present f b1:t.

Assumption 3) Given the previous state f t−1, the current
boundary condition f bt is conditionally in-
dependent of the measurement fy1:t−1 and
boundary history data f b1:t−1.

In this article, only one-step discretization schemes such as the
Euler method are considered. Using multi-step methods would
require to extend the Markovian property to an accordingly
higher order.

The individual terms of (43) can be calculated in closed
form for Gaussian distributions as
• prior p(f t|f

y
1:t−1,f

b
1:t) = N(f t|m−t ,P

−
t )

• posterior p(f t|f
y
1:t,f

b
1:t) = N(f t|mt,P t)

• marginal likelihood
p(fyt |f

y
1:t−1,f

b
1:t) = N(fyt |Ctm

−
t ,St)

The road map ahead to derive these expressions is shown in
Fig. 3. To calculate the prior distribution p(f t|f

y
1:t−1,f

b
1:t),

we will first formulate the joint distribution between states f t,
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f t−1, and current boundary condition f bt , conditioned on mea-
surement and boundary histories. Under use of Assumptions
1 and 3 1, the prior joint is calculated as

p(f t,f
b
t ,f t−1|f

y
1:t−1,f

b
1:t−1) (44)

= p(f t|f
b
t ,f t−1)︸ ︷︷ ︸

model prediction

p(f bt |f t−1) p(f t−1|f
y
1:t−1,f

b
1:t−1)︸ ︷︷ ︸

previous posterior

(45)

= N

(
f t|At

(
f bt
f t−1

)
,PGP,f

t

)
(46)

×N
(
f bt |A

fb

t f t−1,P
GP,fb

t

)
×N

(
f t−1|mt−1,P t−1

)
= N

 f t
f bt
f t−1

 |m′,P ′
 . (47)

The covariance matrices At and PGP,f
t have been introduced

in (34), while Afb

t and PGP,fb

t have been introduced in (42).
Using Lemma A two times, the joint mean m′ of (47) is

m′ =


At

(
Afb

t mt−1
mt−1

)
Afb

t mt−1
mt−1

 (48)

and the covariance is

P
′
=



AtP̃ t−1AT
t + P

GP,f
t At

 S
fb

t

P t−1(A
fb

t )T

 At

Afb

t P t−1
P t−1


At

 S
fb

t

P t−1(A
fb

t )T




T

S
fb

t A
fb

t P t−1At

Afb

t P t−1
P t−1

T (
A

fb

t P t−1

)T

P t−1


.

(49)

Here we introduced

Sf
b

t =Afb

t P t−1

(
Afb

t

)T
+ PGP,fb

t , (50)

P̃ t−1=

 Sf
b

t Afb

t P t−1(
Afb

t P t−1

)T
P t−1

 . (51)

The prior distribution

p(f t|f
y
1:t−1,f

b
1:t) = N

(
f t|m−t ,P

−
t

)
, (52)

is now obtained from (47) by first marginalizing over f t−1
and then conditioning on f bt . Prior mean m−t and covariance
P−t are

m−t =At

(
fb
t

mt−1 + P t−1

(
Afb

t

)T (
Sfb

t

)−1 (
fb
t −Afb

t mt−1

)) ,
(53)

P−t =AtP̃ t−1A
T
t + PGP,f

t −At

 Sf
b

t

P t−1

(
Afb

t

)T


×
(
Sf

b

t

)−1  Sf
b

t

P t−1

(
Afb

t

)T
T AT

t . (54)

1regarding the boundary, one could also think of assuming that the current
boundary fb

t and the previous state ft−1 are independent but this would be
in conflict with the numerical GP state space model.

Equipped with this, we can calculate the joint distribution
of the current state (prior distribution) and measurements
(likelihood). This will allow us to write down the posterior
distribution later on. Using Assumption 2, we have

p(f t,f
y
t |f

y
1:t−1,f

b
1:t)

= p(fyt |f t)︸ ︷︷ ︸
likelihood

p(f t|f
y
1:t−1,f

b
1:t)︸ ︷︷ ︸

prior

= N(fyt |Ctf t,P
GP,fy

t )N
(
f t|m−t ,P

−
t

)
= N

((
f t
fyt

)
|m′′,P ′′

)
. (55)

The covariance matrices Ct and PGP,fy

t were introduced in
(37). We use Lemma A one more time to get the joint mean
as

m′′ =

(
m−t
Ctm

−
t

)
, (56)

and the covariance as

P ′′ =

[
P−t P−t C

T
t

CtP
−
t CtP

−
t C

T
t + PGP,fy

t

]
. (57)

The posterior distribution

p(f t|f
y
t ,f

y
1:t−1,f

b
1:t) = p(f t|f

y
1:t,f

b
1:t)

= N (mt,P t) (58)

is obtained by conditioning the joint distribution (55) on the
current measurement using Lemma B. The posterior mean is

mt =m−t + P−t C
T
t

×
(
CtP

−
t C

T
t + PGP,fy

t

)−1 (
fyt −Ctm

−
t

)
, (59)

and the corresponding posterior variance is

P t = P−t −P
−
t C

T
t

(
CtP

−
t C

T
t + PGP,fy

t

)−1
CtP

−
t . (60)

To summarize the numerical GPKF, we have the prediction
step as

m−t =At

(
fb
t

mt−1 + P t−1

(
Afb

t

)T (
Sfb

t

)−1 (
fb
t −Afb

t mt−1

)) ,
(61)

P−t =AtP̃ t−1A
T
t + PGP,f

t −At

 Sf
b

t

P t−1

(
Afb

t

)T


×
(
Sf

b

t

)−1  Sf
b

t

P t−1

(
Afb

t

)T
T AT

t . (62)

and the update step as

vt = fyt −Ctm
−
t , (63)

St = CtP
−
t C

T
t + PGP,fy

t , (64)

Kt = P−t C
T
t (St)

−1, (65)

mt = m−t +Ktvt, (66)

P t = P−t −KtSt(Kt)
T . (67)
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Due to having to include boundary conditions, the prediction
step doesn’t perfectly align with the traditional KF. It is not
possible to simply write the prior mean prediction as the pre-
vious posterior mean mapped through the dynamic matrix At.
Treating boundary conditions as measurements results in much
simpler expressions that smoothly align with the traditional
KF, see [7]. Of course this means that prediction steps do not
abide boundary conditions which can be problematic when
multiple prediction steps have to be computed between update
steps.

Hyper-parameter estimation via the marginal likelihood

Hyper-parameters are estimated in each update step. In
GP regression the hyper-parameters are usually estimated by
minimizing the negative log marginal likelihood (NLML).
The marginal likelihood of the Kalman filter, marginal with
respect to the current state ft, is found in the recursive Bayes
denominator (43) as

p(fyt |f
y
1:t−1,f

b
1:t) = N

(
Ctm

−
t , St

)
. (68)

The corresponding NLML is

− log p(fyt |f
y
1:t−1,f

b
1:t) (69)

=
1

2

(
fyt −Ctm

−
t

)T
S−1t

(
fyt −Ctm

−
t

)
+

1

2
log(det(St)) +

Ny
2

log(2π), (70)

with Ny being the number of measurements. The partial
derivatives of this NLML required for minimization can be
calculated analytically and are shown in Appendix D.

V. SIMULATION CASE STUDIES

In this section we will showcase the numerical Gaussian
process Kalman filter (GPKF) using different case studies.
For all case studies the relative error between posterior mean
estimate mt and analytical solution f t,ref evaluated on the
same points X is defined as

relative error at time t =
‖f t,ref −mt‖
‖f t,ref‖

, (71)

with euclidean distance ‖·‖. All case studies have been imple-
mented in MATLAB.

A. Step shaped one-dimensional advection equation

We study the one-dimensional advection equation

∂

∂t
f(t, x) = −g ∂f

∂x
, (72)

with initial and boundary condition as

f(0, x) = 2H(x)− 1, (73)
f(t, 0) = 0. (74)

Here, H(x) is the Heaviside step function. We solve (72) with
the implicit Euler and a step size of ∆t = 0.005. The GP prior

is ft ∼ GP(0, kfft,t (x, x
′)) with a neural network covariance

function

kfft,t (x, x
′) = 2

π sin−1
(

2(σ2
0+σ

2xx′)√
(1+2(σ2

0+σ
2x2))(1+2(σ2

0+σ
2x′2))

)
.

(75)

This covariance function is capable of capturing discontinu-
ities. The hyper-parameters are σ2

0 and σ2. Measurements are
noisy point evaluations so that the measurement equation reads
as

fyt (y) = ft(x) + rt, (76)

with rt ∼ N(0, σ2
r,true) being white noise. Measurements are

received every third model step size so that between each
KF update step there are three KF prediction steps. Hyper-
parameters are learned by minimizing the NLML (70) in each
update step.

Estimation results are illustrated in Fig. 4. The initial
estimate (blue curve with uncertainty band in Fig. 4a) is far off
from the true solution (black line). However, rather quickly the
estimate converges closer, as indicated by a dropping relative
error (black curve in Fig. 4b). The relative error drops to a
value of around 0.1 before it slowly starts to increase. This
divergence is not uncommon in Kalman filtering [19]. One
possible cause, that is also present in Fig. 4a, is a low posterior
covariance matrix P t. As a result, the KF puts less importance
on measurements and more on model predictions, which in this
case aren’t perfect due to the temporal discretization required
for numerical GPs. Remedies such as the Kalman filter with
fading memory exist [17].

The measurement noise level σr is correctly learned online
to be σr,true. Estimated process noise σq is non-zero, likely
reflecting the aforementioned model imperfection. For a few
time steps at the beginning its estimation gets exceedingly
large. This is cut off from the plot.

B. Liouville’s equation
We study Liouville’s equation

∂

∂t
f(t,x) = −div (f(t,x)ẋ) (77)

= −ẋ1
∂f

∂x1
− f ∂ẋ1

∂x1
− ẋ2

∂f

∂x2
− f ∂ẋ2

∂x2
, (78)

wherein the vector field ẋ is governed by

ẋ =

[
0 1
−1 0

]
x. (79)

Initial and boundary conditions are

f(0, x1, x2) = N (µ1,Σ) + N (µ2,Σ) , (80)
f(t, 0, x2) = 0, (81)
f(t, x1, 0) = 0. (82)

Here, the initial condition consists of two Gaussian bumps
sitting opposite of each other at µ1 = (0,−2)T and µ2 =
(0, 2)T with covariance matrix Σ = diag(0.4, 0.65). The initial
estimate communicated to the Kalman filter consists of only
one Gaussian bump located at µ1 with increased variance Σ+
diag(0.4, 0.4).



8

0
-2
4

time

0.5

x

2

0

f(
t,x

)

0 1

2

(a) Snapshots for the step shaped one-dimensional advection equa-
tion. Noisy measurements are blue dots, while the true solution is
represented by black lines. Posterior mean estimates along with their
95% confidence intervals are shown in blue.
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(b) Hyper-parameter estimation and relative error (71) over time.
Estimated process noise σq gets exceedingly large at the beginning.
This is cut off from the plot.

Fig. 4: Estimation results for the step shaped one-dimensional advection equation (72).

We discretize (78) in time using the implicit Euler method
with a step size of ∆t = 0.005, and place a GP prior on
ft ∼ GP(0, kfft,t (x, x

′)) with the following squared exponen-
tial covariance function

kfft,t (x, x
′) = σ2

n exp

(
− (x1 − x′1)2

2l21
− (x2 − x′2)2

2l22

)
. (83)

Here, the hyper-parameters are σ2
n, l1, and l2. Through noisy

measurements we receive the marginal distribution of x1 as

fyt (y = x1) =

∫ x2,max

x2,min

ft(x1, x2)dx2 + rt, (84)

with rt ∼ N(0, σ2
r,true) being white noise.

The vector field ẋ describes harmonic oscillations, plotting
the solution f(t,x) results therefore in circular motions. The
simulation runs for one full rotation Tsim = 2π. Although
measurements are formally the x1-marginal, over time mea-
surements will be marginals of the initial distribution from
all angles due to the circular motion of the joint distribution
f(t,x). Interested readers are referred to [20] for further
details. As discovered and explained by [21], this case study
illustrates the relatedness to tomography. Measurements are
received every Tsim

64 , which translates to 19 KF predictions
steps for every KF update step.

State estimation results are displayed in Fig. 5 while noise
level estimations are displayed in Fig. 6. Through measure-
ments of the x1−marginal f(t, x1) the numerical GPKF is able
to reconstruct the latent x2−marginal distribution f(t, x2) and
the joint distribution f(t, x1, x2). Noise level estimation σr
oscillates around its true level σr,true, while process noise σq
is set to zero by the numerical GPKF. The relative estimation
error drops significantly before settling in at around 0.16.

Hyper-parameter optimization requires an ad-hoc approach
for this case study. Simply using the marginal likelihood
p(fyt |f

y
1:t−1,f

b
1:t) of the Kalman filter as before will result in

ever larger hyper-parameter values of the marginalized dimen-
sion, i.e. l2. We conjecture that due to the marginalization of
x2, its impact on the marginal likelihood has been largely nul-
lified, rendering l2 unidentifiable. A remedy to this would be to
use the Radon-transform and thereby treat this case study as a
problem of tomographic type. Through a change of variables,
known as input warping in the GP community, the Radon-
transform would convolute the dimensions x1 and x2, and
therefore also both length-scales l1 and l2, thereby preventing
cancellation of l2 through the measurement marginalization.
See [22] for the use of GPs in tomographic inverse problems.

Instead, we successfully employed the function

− log p(fyt ,f
b
t ,f t−1)

=
1

2

 fyt
f bt
mt−1

T
K

fyfy

t,t Kfyfb

t,t Kff
t,t−1

Kfbfy

t,t Kfbfb

t,t Kfbf
t,t−1

Kffy

t−1,t Kffb

t−1,t Kff
t−1,t−1


−1

︸ ︷︷ ︸
=K

 fyt
f bt
mt−1



+
1

2
log(det(K)) +

N

2
log(2π) (85)

as the objective function to minimize. Here, we used the
previous posterior mean mt−1 as fixed targets for f t−1. The
number of data points is N . This objective function now
contains both length-scales l1 and l2 explicitly and therefore
works.

VI. DISCUSSION

In this section we elaborate on computational load, optimal-
ity, observability, and distinguishing features of the numerical
Gaussian process Kalman filter.
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Fig. 5: Selected snapshot plots of Liouville’s equation. Left
and right plots show the marginal distributions f(t, x2)
and f(t, x1), respectively. Posterior mean estimates of the
marginals are shown in blue along with their 95 % confidence
intervals (CI), while black curves show the analytical solution.
Right plots also show noisy measurements of f(t, x1) as blue
circles. Middle plots show the posterior mean estimate for the
joint distribution f(t, x1, x2), as well as the analytical solution
(transparent). Uncertainty bands have been omitted. The initial
estimate is based on the black dots (first row, middle plot).
Online measurements of f(t, x1) shown as blue dots (right
plots).

On computational cost
The main computational cost lies in the hyper-parameter

optimization which requires the inversion of the measurement
covariance matrix. This is inherent to GPs and scales cubically
with the number of training points. There are however different
approximations to reduce this to less than cubic scaling, see
e.g. [23], [24].

Actual simulation of the model with numerical GPs, i.e.
propagation through time, does not require numerical integra-
tion and instead only involves algebraic manipulations as given
by (21). The two dimensional simulation ran for 111 min,
while the one dimensional simulation ran for 9.5 min on a
2020 13” MacBook Pro 2, 3 GHz quad-core i7.

In addition to the number of dimensions x ∈ Rdx , com-
putational load is also influenced by the prior covariance
function and the PDE structure. Both can lead to less or more
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Fig. 6: Noise hyper-parameter estimation and relative estima-
tion error for Liouville’s equation.

difficult to handle contours of the NLML, thereby influencing
the computational load via the hyper-parameter optimization.
For example, we found simulations of the same PDE using a
squared exponential covariance function to run faster and more
robustly than using a neural network covariance function.

On optimality
For a linear and Gaussian system, the Kalman filter gives

the optimal estimate of the state mopt
t given the measurement

history ny1:t. For spatiotemporal systems, we also condition on
the boundary history nb1:t. Optimal is defined in this context
as

mopt
t (ny1:t,n

b
1:t,θ)

= arg min
mt

E
[
(nt −mt)

T (nt −mt)|ny1:t,nb1:t,θ
]
. (86)

Here, the estimated state is mt and the true (stochastic)
state is nt. The hyper-parameters of the Gaussian process are
denoted as θ. They influence the state estimate through i) the
covariance function itself and ii) their estimated values.

Although working with spatiotemporal systems, the input
space of numerical GPs is solely the spatial domain. Choosing
an appropriate covariance function should therefore be based
upon the solution shape with respect to spatial dimensions.
For the step shaped one-dimensional advection equation for
example, we chose the neural network covariance function
due to its ability to handle discontinuities. In the original
numerical GP work [4] the Burgers equation is solved with
the neural network covariance function as well because its
solution develops a shock front.

As showcased and argued in [6], multiple optima of the
marginal likelihood can certainly exist, but are usually not
a problem. Indeed, the different optima represent different
interpretations of the data.

On observability
We showed that numerical Gaussian processes can be

brought into probabilistic state space model form. By design



10

of numerical GPs, this state space model is structured by the
underlying time-dependent partial differential equation. Show-
ing observability of the PDE might therefore be transferable
to the numerical GP state space model (34), (37).

Closely connected to observability is the concept of identi-
fiability. This relates to the estimation of (hyper-)parameters.
As seen and explained in the second case study involving
Liouville’s equation, an ad-hoc replacement for the marginal
likelihood might be necessary to make hyper-parameter esti-
mation work.

On distinguishing features

Kalman filters require fine-tuning before they deliver ac-
ceptable performance. This fine-tuning involves adjusting the
process Q and measurement noise covariances R, as well as
the initial error covariance matrix P 0.

Fine-tuning of numerical GPKFs is either much less tedious
or not required at all. Once initialized with reasonable values,
process and measurement noise level hyper-parameters σq and
σr are adapted online to the measurement stream.

As for the initial error covariance matrix P 0, no manual
fine-tuning was required for the case studies due to the proba-
bilistic nature of GPs. P 0 was simply obtained by calculating
the posterior GP variance (21) for given initial data. This was
done without optimizing the hyper-parameters, as can be seen
by the bad initial fit to the step function in Fig. 4a.

VII. CONCLUSIONS

In this article, we presented a new type of Kalman filter
for spatiotemporal systems. Building on numerical Gaussian
processes, we developed a probabilistic state space model that
is linear and has Gaussian distributed states. These properties
made it possible to derive the Kalman filter algorithm based
on numerical Gaussian process state space models.

The resulting numerical Gaussian process Kalman filter
was showcased with a step shaped one-dimensional advection
equation where measurements were noisy point evaluations of
the solution. In another case study Liouville’s equation with
integral measurements was studied. In both case studies the
numerical GPKF was able to reconstruct the latent state and
also estimate the true measurement noise levels through its
hyper-parameters.

APPENDIX

Lemmata A and B are taken from [18].

A. Joint distribution of Gaussian variables

If random variables x ∈ Rdx and y ∈ Rdy have the
Gaussian probability distributions

x ∼ N (m,P ) (87)
y|x ∼ N (Hx+ u,R) , (88)

than the joint distribution of x, y and the marginal distribution
of y are given as(

x
y

)
∼ N

((
m

Hm+ u

)
,

(
P PHT

HP HPHT +R

))
,

(89)

y ∼ N
(
Hm+ u,HPHT +R

)
. (90)

B. Conditional distribution of Gaussian variables

If the random variables x and y have the joint Gaussian
probability distribution(

x
y

)
∼ N

((
a
b

)
,

(
A C

CT B

))
, (91)

than the conditional distribution is

x|y ∼ N
(
a+CB−1(y − b),A−CB−1CT

)
. (92)

C. Numerical Gaussian process state space model
precursor

We can derive the covariance functions of the joint model
(33), here shown using the implicit Euler, as

KGP = E




ft(x)
fyt (y)
f bt(xb)
ft−1(x)




ft(x
′)

fyt (y′)
f bt (x′b)
ft−1(x′)


T (93)

= E




ft
Hxft + rt
Bxft

Axft −∆tqt−1




ft
Hx′ft + rt
Bx′ft

Ax′ft −∆tqt−1


T

=

 k Hx′k Bx′k Ax′k
Hxk HxHx′k + krrt,t HxBx′k HxAx′k
Bxk BxHx′k BxBx′k BxAx′k
Axk AxHx′k AxBx′k AxAx′k + ∆t2kqqt,t

 .
(94)

Here, the prior covariance function kfft,t has been abbreviated
as k.

D. Partial derivatives of the KF NLML

We had

− ∂

∂θj
log p(fyt |f

y
1:t−1,f

b
1:t)

=
1

2

∂

∂θj

(
fyt −Ctm

−
t

)T
S−1t

(
fyt −Ctm

−
t

)
+

1

2

∂

∂θj
log(det(St)). (95)
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Expanding the first term and then using the product rule on it
to evaluate all necessary partial derivatives gives

∂

∂θj

(
fyt −Ctm

−
t

)T
S−1t

(
fyt −Ctm

−
t

)
=

∂

∂θj

(
(nyt )TS−1t f

y
t − (fyt )TS−1t Ctm

−
t

− (Ctm
−
t )TS−1t f

y
t + (Ctm

−
t )TS−1t Ctm

−
t

)
= (fyt )T

∂S−1t
∂θj

fyt

− (fyt )T
(
∂S−1t
∂θj

Ctm
−
t + S−1t

∂Ct

∂θj
m−t + S−1t Ct

∂m−t
∂θj

)
−

(
∂
(
m−t

)T
∂θj

CT
t S
−1
t + (m−t )T

∂CT
t

∂θj
S−1t

)
fyt

− (m−t )TCT
t

∂S−1t
∂θj

fyt

+
∂(m−t )T

∂θj
CT
t S
−1
t Ctm

−
t + (m−t )T

∂CT
t

∂θj
S−1t Ctm

−
t

+ (m−t )TCT
t

∂S−1t
∂θj

Ctm
−
t + (m−t )TCT

t S
−1
t

∂Ct

∂θj
m−t

+ (m−t )TCT
t S
−1
t Ct

∂m−t
∂θj

. (96)

The second term in (95) can be calculated as

∂

∂θj
log(det(St)) = tr

(
S−1t

∂St
∂θj

)
, (97)

while the partial derivative of S−1t can be calculated as

∂S−1t
∂θj

= −S−1t
∂St
∂θj

S−1t , (98)

see [6] for both identities.
We still need the partial derivatives of St, Ct, and m−t .

Starting with the prior mean we have

∂m−t
∂θj

=
∂

∂θj
At

(
fb
t

mt−1 + P t−1

(
A

fb

t

)T (
S
fb

t

)−1 (
fb
t −A

fb

t mt−1

))
︸ ︷︷ ︸

=m̃t−1

=
∂At

∂θj
m̃t−1 +At

∂m̃t−1

∂θj
, (99)

with

∂At

∂θj

=
∂

∂θj

[
Kffb

t,t Kff
t,t−1

] [Kfbfb

t,t Kfbf
t,t−1

Kffb

t−1,t Kff
t−1,t−1

]−1

=

[
∂Kffb

t,t

∂θj

∂Kff
t,t−1

∂θj

][
Kfbfb

t,t Kfbf
t,t−1

Kffb

t−1,t Kff
t−1,t−1

]−1

+
[
Kfb

t,t Kff
t,t−1

] [Kfbfb

t,t Kfbf
t,t−1

Kffb

t−1,t Kff
t−1,t−1

]−1

×


∂Kfbfb

t,t

∂θj

∂Kfbf
t,t−1

∂θj

∂Kffb

t−1,t

θj

∂Kff
t−1,t−1

θj


[
Kfbfb

t,t Kfbf
t,t−1

Kffb

t−1,t Kff
t−1,t−1

]−1
,

(100)

∂m̃t−1

∂θj
=

[
0,

(
P t−1

(
Afb

t

)T
∂θj

(
Sf

b

t

)−1

+ P t−1

(
Afb

t

)T ∂ (Sfb

t

)−1
∂θj

)
×
(
f bt −A

fb

t mt−1

)
− P t−1

(
Afb

t

)T (
Sf

b

t

)−1 ∂Afb

t

∂θj
mt−1

]T
,

(101)

∂Afb

t

∂θj
=

∂

∂θj

(
Kfbf
t,t−1

(
Kff
t−1,t−1

)−1)

=
∂Kfbf

t,t−1

∂θj

(
Kff
t−1,t−1

)−1
+Kfbf

t,t−1

∂
(
Kff
t−1,t−1

)−1
∂θj

,

(102)

∂Sf
b

t

∂θj
=
∂Afb

t

∂θj
P t−1

(
Afb

t

)T
+
∂PGP,fb

t

∂θj

+Afb

t P t−1
∂
(
Afb

t

)T
∂θj

, (103)

∂PGP,fb

t

∂θj
=
∂Kfbfb

t,t

∂θj
− ∂Afb

t

∂θj
Kffb

t−1,t −A
fb

t

∂Kffb

t−1,t

∂θj
.

(104)

For the measurement matrix we have

∂Ct

∂θj
=
∂Kfyf

tt

(
Kff
tt

)−1
∂θj

=
∂Kfyf

tt

∂θj

(
Kff
tt

)−1
+Kfyf

tt

∂
(
Kff
tt

)−1
∂θj

=
∂Kfyf

tt

∂θj

(
Kff
tt

)−1
−Kfyf

tt

(
Kff
tt

)−1 ∂Kff
tt

∂θj

(
Kff
tt

)−1
.

(105)

The covariance matrix of the innovation is a bit more elaborate,
we have

∂St
∂θj

=
∂CtP

−
t C

T
t + PGP,fyfy

t

∂θj

=
∂Ct

∂θj
P−t C

T
t +Ct

∂P−t
∂θj

CT
t

+CtP
−
t

∂CT
t

∂θj
+
∂PGP,fy

t

∂θj
. (106)
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The partial derivatives in the second and last term need to be
derived. For the prior covariance matrix of the state error we
get

∂P−t
∂θj

=
∂At

∂θj
P̃ t−1A

T
t +AtP̃ t−1

∂AT
t

∂θj
+
∂PGP,f

t

∂θj

−At


∂Sf

b

t

∂θj

P t−1
∂
(
Afb

t

)T
∂θj


(
Sf

b

t

)−1  Sf
b

t

P t−1

(
Afb

t

)T
T AT

t

−At

 Sf
b

t

P t−1

(
Afb

t

)T
 ∂

(
Sf

b

t

)−1
∂θj

 Sf
b

t

P t−1

(
Afb

t

)T
T AT

t

−At

 Sf
b

t

P t−1

(
Afb

t

)T
(Sfb

t

)−1


∂Sf
b

t

∂θj

P t−1
∂
(
Afb

t

)T
∂θj


T

AT
t

−At

 Sf
b

t

P t−1

(
Afb

t

)T
(Sfb

t

)−1  Sf
b

t

P t−1

(
Afb

t

)T
T ∂AT

t

∂θj
.

(107)

The partial derivatives of the dynamic matrix are already
covered in (99). The partial derivative of the inherent GP
uncertainty is

∂PGP,f
t

∂θj

=
∂Kff

t,t −K
ff
t,t−1

(
Kff
t−1,t−1

)−1
Kff
t−1,t

∂θj

=
∂Kff

t,t

∂θj
−
∂Kff

t,t−1

∂θj

(
Kff
t−1,t−1

)−1
Kff
t−1,t

+Kff
t,t−1

(
Kff
t−1,t−1

)−1 ∂Kff
t−1,t−1

∂θj

(
Kff
t−1,t−1

)−1
Kff
t−1,t

−Kff
t,t−1

(
Kff
t−1,t−1

)−1 ∂Kff
t−1,t

∂θj
. (108)

The partial derivative of the inherent GP uncertainty for the
output values (last term of 106) is

∂PGP,fy

t

∂θj
=
∂Kfyfy

t,t −Kfyf
t,t

(
Kf
t,t

)−1
Kffy

t,t

∂θj

=
∂Kfyfy

t,t

∂θj
−
∂Kfyf

t,t

∂θj

(
Kff
t,t

)−1
Kffy

t,t

+Kfyf
t,t

(
Kff
t,t

)−1 ∂Kff
t,t

∂θj

(
Kff
t,t

)−1
Kffy

t,t

−Kfyf
t,t

(
Kff
t,t

)−1 ∂Kffy

t,t

∂θj
. (109)

REFERENCES

[1] R. E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, 03
1960. [Online]. Available: https://doi.org/10.1115/1.3662552

[2] R. F. Curtain and H. Zwart, An introduction to infinite-dimensional linear
systems theory. Springer Science & Business Media, 2012, vol. 21.
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[8] S. Särkkä and J. Hartikainen, “Infinite-dimensional Kalman filtering ap-
proach to spatio-temporal Gaussian process regression,” in International
Conference on Artificial Intelligence and Statistics, 2012, pp. 993–1001.
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