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Advances in Discrete-State-Feedback Stabilization
of Highly Nonlinear Hybrid Systems by

Razumikhin Technique
Henglei Xu and Xuerong Mao

Abstract—In this paper, the authors apply the Razumikhin
technique to investigate the stabilization of hybrid stochastic
systems by feedback control based on discrete-time state ob-
servations, rather than the widely used comparison idea or
Lyapunov functional method to this problem. Further, we extend
the Razumikhin method to study the asymptotic boundedness
of hybrid stochastic systems. The coefficients of these stochastic
systems considered do not meet the usual linear growth condition,
but are highly nonlinear. The control function designed can easily
be implemented in reality. Meanwhile, a better bound for a class
of stochastic systems could be obtained on the duration between
two consecutive state observations comparing with the existing
results. Two interesting examples, the application to stochastic
volatility model and stochastic Cohen-Grossberg neural network,
respectively, are provided to manifest the effectiveness of our new
theory.

Index Terms—Razumikhin technique, highly nonlinearity, Itô
formula, discrete-state feedback control.

I. INTRODUCTION

A lot of practical systems, such as economic systems [1],
manufacturing systems [2] and neural networks [3], whose
structure and parameters may change abruptly, can be mod-
eled by stochastic differential equations (SDEs) driven by
continuous-time Markov chain (also known as hybrid SDEs).
Among many interesting topics in the study of hybrid SDEs,
the automatic control has drawn intensive attention. There is
enormous literature in this area. Here, we refer the reader to
[4]–[9] and references therein.

In the case when a given hybrid SDE is unstable, it
is a general practice to use feedback control to make the
underlying system perform as desired, say stably. Up to 2013,
the design of feedback control was based on continuous-time
state observations. However, in the real world, it is extremely
costly and impossible to have continuous observations of the
state for all time. So it is more realistic and costs less if the
state is only observed at discrete time 0, τ, 2τ, · · · . In 2013,
Mao in [10] initiated the study of the discrete-state-feedback
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stabilization of hybrid SDEs. Since then, this problem has
already been studied by several authors (see, e.g., [11]–[16]).

The principal procedure to investigate the discrete-state-
feedback stabilization problem is: (i) design a feedback con-
troller based on continuous-time state observations, which is
able to stabilize the original unstable system, (ii) obtain a
bound on the observation duration, say by τ∗, (iii) let this
designed controller behave in discrete time and make sure
τ < τ∗. This idea has been used very successfully in some
branches of science and industry for many years (see, e.g.,
[10], [12], [13], [17]). As how to show the stability of the
discrete-time controlled system, to the best of the authors’
knowledge, there are currently two effective methods widely
used.

One is to construct an auxiliary system, namely the
continuous-time controlled system, which is proved to be
stable in advance, and then make use of the state difference
estimation between the discrete-time controlled system and
the auxiliary system to indirectly derive the stability of the
discrete-time controlled system. This indirect technique is
often called the comparison theorem, through which we can
take full advantage of the existing stabilization results by
continuous-time feedback control. And there is very rich
literature in this problem (see, e.g., [18]–[20]). However, the
duration bound, τ∗, derived by using this method is usually
not very sharp (e.g., [10], [13]). But what’s worse, this method
is not applicable for highly nonlinear hybrid SDEs (namely do
not satisfy the linear growth condition). For example, in [21],
Hu et al. showed that this method worked well if and only if
the underlying system was globally Lipschitz continuous (at
most times, satisfied the linear growth condition).

The other one is therefore becoming significant, which
works directly to the discrete-time controlled system. This is
easier to use because we do not need to first guarantee and ver-
ify the stability of an auxiliary system. Now, to implement this
idea, the technique of Lyapunov functionals has received much
attention. By making use of the Lyapunov functional method,
You et al. in [11] also obtained a better τ∗ than that in [10].
In the highly nonlinear area, [16] was the first paper to design
feedback control based on discrete-time state observations to
stabilize a given unstable highly nonlinear hybrid SDE by
using the Lyapunov functional method. Nevertheless, it should
also be pointed out that this approach depends closely on the
construction of Lyapunov functionals. But as we all know,
constructing Lyapunov functionals effectively is sometimes
really a challenge work.
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On the other hand, we notice that the discrete-state-feedback
controlled system is in fact a hybrid stochastic differential
delay equation (SDDE) (see (18) below). In the study of
the stability of delay systems, the Razumikhin technique has
been proved as a very powerful tool. We cite [6], [22]–
[26] to the reader for more details. So this begs a question
naturally: can we use the Razumikhin method to investigate
the stabilization problem of discrete-state feedback control?
The answer is positive. In fact, Li et al. in [14] successfully
applied the Razumikhin method to the discrete-state-feedback
stabilization problem for a class of hybrid stochastic systems,
and surprisingly, they even obtained a sharper τ∗ than that in
[10] and [11]. And to our knowledge, so far [14] has been
the only paper to use the Razumikhin approach to investigate
this kind of stabilization problem. But unfortunately, they
still required system coefficients to meet the linear growth
condition.

Consequently, motivated by [10], [14], [16], we will employ
the Razumikhin technique to study the boundedness and expo-
nential stability of highly nonlinear hybrid SDEs by feedback
control based on discrete-time state observations in this paper.
Certainly, we will work to the discrete-time controlled system
directly. A number of main features which differ from those
in [16] are highlighted below:

• The Razumikhin method is applied to study the discrete-
state-feedback stabilization problem of highly nonlinear
hybrid SDEs, which can avoid the difficulty of con-
structing appropriate Lyapunov functionals and much
complicated analysis. Further, we extend the Razumikhin
technique to investigate the asymptotic boundedness of
hybrid stochastic systems.

• The conditions imposed on the control function and the
original system are weaken, so we can include more gen-
eral stochastic systems and deal with more complicated
situations (see Example 1).

• Conditions imposed on the control function can be veri-
fied much more easily in practice, in particular comparing
with Conditions 4.2 and 5.1 in [16]. Moreover, a better
bound on the duration between two consecutive state
observations will be obtained for a class of hybrid SDEs
(see Example 2).

II. RAZUMIKHIN-TYPE THEOREM ON BOUNDEDNESS AND
EXPONENTIAL STABILITY

Throughout this paper, unless otherwise specified, we use
the following notations. If both a and b are real numbers, then
a ∧ b = min{a, b} and a ∨ b = max{a, b}. Let R+ denote
the collection of all non-negative real numbers. Let Rn be the
n-dimensional Euclidean space and | · | be the Euclidean norm
in Rn. If M is a vector or matrix, MT denotes its transpose. If
M is a matrix, denote its trace norm by |A| =

√
trace(ATA).

For any positive constant h, C ([−h, 0];Rn) represents the
family of all continuous functions ϕ from [−h, 0] to Rn with
norm ||ϕ|| = sup−h≤θ≤0 |ϕ(θ)|. Denote by Lq

Ft
([−h, 0];Rn),

q > 0, the family of all Ft-measurable C ([−h, 0];Rn)-valued
random variables ϕ such that E||ϕ||q < ∞.

We let (Ω,F , {Ft}t≥0, P ) be a complete probability space
with a filtration {Ft}t≥0 satisfying the usual conditions (that

is, it is increasing, right-continuous and F0 contains all P -null
sets). If Ω̄ is a subset of Ω, denote by IΩ̄ its indicator function,
that is, IΩ̄(ω) = 1 if ω ∈ Ω̄ and 0 otherwise. Let B(t) =
(B1(t), B2(t), · · · , Bm(t))

T be an m-dimensional Brownian
motion defined on the probability space. Let r(t), t ≥ 0, be a
right-continuous Markov chain on the probability space taking
values in a finite state space S = {1, 2, · · · , N} with transition
rate matrix Q = (qij)N×N given by

P (r(t+∆) = j|r(t) = i) =

{
1 + qij∆+ o(∆), if i = j,

qij∆+ o(∆), if i ̸= j,

as ∆ ↓ 0. Here qij ≥ 0 is the transition rate from i to j if
i ̸= j, while qii = −

∑
j ̸=i qij . We assume that the Markov

chain r(t) and the Brownian motion B(t) are independent
under the probability measure P .

Most of the existing results (e.g., [6], [22], [23]) mainly
use the Razumikhin technique to derive the q-th moment
exponential stability, but few focus on boundedness. Therefore,
in this paper, we will extend the Razumikhin-type theorem to
the asymptotic boundedness.

Let us first consider an n-dimensional stochastic hybrid
functional differential equation (SFDE)

dx(t) = F (xt, t, r(t))dt+G(xt, t, r(t))dB(t) (1)

on t ≥ 0 with the initial data

{x(θ)| − h ≤ θ ≤ 0} = ζ ∈ C([−h, 0];Rn), r(0) = r0 ∈ S.

Here xt = {x(t+ θ)| − h ≤ θ ≤ 0} is the past segment while

F : C([−h, 0];Rn)× R+ × S → Rn,

G : C([−h, 0];Rn)× R+ × S → Rn×m

are Borel-measurable functions. For convenience, we extend
r(t) to [−h, 0] by setting r(θ) = r0 for all θ ∈ [−h, 0].

To state our main results, we need a few more notations.
Let C (Rn × [−h,∞);R+) stand for the collection of all
continuous functions from Rn × [−h,∞) to R+. Denote by
C2,1 (Rn × [−h,∞)× S;R+) the family of all continuous
non-negative functions V (x, t, i) on Rn × [−h,∞) × S such
that for each i ∈ S, they are continuously twice differentiable
in x and once in t. Given V ∈ C2,1(Rn × [−h,∞)×S;R+),
define an operator LV from C([−h, 0];Rn) × R+ × S to R
by

LV (ϕ, t, i) =Vt(ϕ(0), t, i) + Vx(ϕ(0), t, i)F (ϕ, t, i)

+
1

2
trace

(
GT(ϕ, t, i)Vxx(ϕ(0), t, i)G(ϕ, t, i)

)
+

N∑
j=1

qijV (ϕ(0), t, j), (2)

where Vt = ∂V
∂t , Vx =

(
∂V
∂x1

, ∂V
∂x2

, · · · , ∂V
∂xn

)
and Vxx =(

∂2V
∂xi∂xj

)
n×n

.
The following two assumptions are also required.
Assumption 2.1: Assume that for every initial data ζ and r0,

there exists a unique global solution x(t) of SFDE (1). For
some q > 0, the solution has the property that E|x(t)|q < ∞
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for any t ≥ 0. Assume further that there exists a function
V (x, t, i) ∈ C2,1(Rn × [−h,∞)× S;R+) such that

sup
−h≤s≤t

EV (x(s), s, r(s)) < ∞, ∀t ≥ −h,

and
sup

0≤s≤t
E|LV (xs, s, r(s))| < ∞, ∀t ≥ 0.

Moreover, assume that EV (x(t), t, r(t)) and ELV (xt, t, r(t))
are right-continuous functions on t ≥ 0.

Assumption 2.2: For such V (x, t, i) defined in Assumption
2.1, suppose that for any integer k > 0, there is a Lk > 0
such that

|Vx(ϕ(0), t, i)G(ϕ, t, i)| ≤ Lk (3)

for any ϕ ∈ C ([−h, 0];Rn) with ||ϕ|| ≤ k and (t, i) ∈ R+×S.
Remark 1: Assumption 2.1 just provides a general setting

of SFDE (1), which should have a global solution with some
moment properties in terms of a proper function V . Thus in
practice, we need to impose extra conditions that can easily
be verified to guarantee this assumption. For example, in our
subsequent control problem, we give Assumptions 3.1, 3.2, 4.1
and Rules 1, 2 to do this job. On the other hand, we highlight
that Assumption 2.2 is a local requirement, which is used to
estimate the Itô integral. But different from Assumption 2.1,
it is given in terms of an arbitrary function ϕ, rather than the
solution x(s) or xs. Therefore it can be guaranteed in practice,
such as by imposing the local Lipschitz condition on G.

Now, we can give our new Razumikhin-type theorem.
Theorem 2.1: Let Assumptions 2.1 and 2.2 hold. For such

V (x, t, i) defined in Assumption 2.1, assume that there exist
constants p > 1, λ1 ≥ 0 and λ2 > 0 such that

ELV (xt, t, r(t)) ≤ λ1 − λ2EV (xt(0), t, r(t)) (4)

when xt satisfies that

EV (xt(θ), t+ θ, r(t+ θ)) ≤ pEV (xt(0), t, r(t))

for any θ ∈ [−h, 0]. Then for any initial data ζ and r0, the
solution of SFDE (1) has the property that

lim sup
t→∞

EV (x(t), t, r(t)) ≤ λ1

λ
,

where λ = min
{
λ2,

log p
h

}
. In particular, if λ1 = 0,

lim sup
t→∞

1

t
logEV (x(t), t, r(t)) ≤ −λ.

Proof. Fix any initial data ζ and r0. Let η ∈ (0, λ) be arbitrary
and set λ̄ = λ− η. For t ≥ 0, define

U(t) = sup
−h≤θ≤0

(
eλ̄(t+θ)EV (x(t+ θ), t+ θ, r(t+ θ))

)
.

From Assumption 2.1, we know that U(t) < ∞ for any t ≥ 0,
so U(t) is well-defined. Letting yη(t) = λ1

∫ t

0
eλ̄sds, we then

claim that

D+(U(t)− yη(t)) ≤ 0, t ≥ 0. (5)

If assertion (5) is true, we have

U(t)− yη(t) ≤ U(0)− yη(0) ≤ M, t ≥ 0,

where M = sup−h≤θ≤0 V (ζ(θ), θ, r(θ)). It then follows that
for any t ≥ 0,

eλ̄tEV (x(t), t, r(t)) ≤ M + λ1

∫ t

0

eλ̄sds ≤ M +
λ1

λ̄
eλ̄t.

Since η is arbitrary, we have

EV (x(t), t, r(t)) ≤ Me−λt +
λ1

λ
. (6)

Finally, letting t → ∞ gives

lim sup
t→∞

EV (x(t), t, r(t)) ≤ λ1

λ
.

If λ1 = 0, we derive from (6) that

lim sup
t→∞

1

t
logEV (x(t), t, r(t)) ≤ −λ.

Now we show that assertion (5) is true. Fix t̂ ≥ 0 arbitrarily.
It is easy to observe that either

U(t̂) > eλ̄t̂EV (x(t̂), t̂, r(t̂))

or
U(t̂) = eλ̄t̂EV (x(t̂), t̂, r(t̂)).

In the situation of the former, we derive from the right-
continuity of EV (x(·), ·, r(·)) that for all sufficiently small
∆1 ∈ (0, h),

U(t̂) > eλ̄tEV (x(t), t, r(t)), t̂ ≤ t ≤ t̂+∆1. (7)

For t̂+∆1 − h ≤ t < t̂, we naturally have

eλ̄tEV (x(t), t, r(t))

≤ sup
−h≤θ≤0

(
eλ̄(t̂+θ)EV (x(t̂+ θ), t̂+ θ, r(t̂+ θ))

)
= U(t̂).

This together with (7) yields that U(t̂+∆1) ≤ U(t̂), and so

U(t̂+∆1) < U(t̂) + λ1

∫ t̂+∆1

t̂

eλ̄sds.

Then we have

U(t̂+∆1)− yη(t̂+∆1) < U(t̂)− yη(t̂),

which indicates that

D+(U(t̂)− yη(t̂))

= lim sup
∆1→0+

(
U(t̂+∆1)− yη(t̂+∆1)

)
−
(
U(t̂)− yη(t̂)

)
∆1

≤ 0.

On the other hand, if U(t̂) = eλ̄t̂EV (x(t̂), t̂, r(t̂)), we derive
that for any θ ∈ [−h, 0],

eλ̄(t̂+θ)EV (x(t̂+ θ), t̂+ θ, r(t̂+ θ)) ≤ eλ̄t̂EV (x(t̂), t̂, r(t̂)).

Consequently,

EV (x(t̂+ θ), t̂+ θ, r(t̂+ θ)) ≤e−λ̄θEV (x(t̂), t̂, r(t̂))

≤eλ̄hEV (x(t̂), t̂, r(t̂))

≤pEV (x(t̂), t̂, r(t̂)),
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where we have used the fact that p ≥ eλh. Then by condition
(4), we have

ELV (xt̂, t̂, r(t̂)) + λ̄EV (x(t̂), t̂, r(t̂)

≤ELV (xt̂, t̂, r(t̂)) + λ2EV (x(t̂), t̂, r(t̂))

≤λ1 < λ1 + ε,

where ε is an arbitrary positive constant. We therefore see from
the right-continuity of EV (x(t), t, r(t)) and ELV (xt, t, r(t))
that for all ∆2 ∈ (0, h) sufficiently small,

ELV (xt, t, r(t)) + λ̄EV (x(t), t, r(t)) < λ1 + ε (8)

for any t̂ ≤ t ≤ t̂ + ∆2. For each integer k ≥ 1, define the
stopping time

σk(ω) = inf
{
t ≥ t̂

∣∣|x(t, ω)| ≥ k
}
,

which represents the first exiting time of sample path x(t, ω)
leaving from the area {x ∈ Rn||x| < k} after time t̂. But
this could be infinity since it is possible that for some ω,
x(t, ω) would never go beyond that area. In this situation,
the time set

{
t ≥ t̂

∣∣|x(t, ω)| ≥ k
}

is empty. Hence throughout
this paper, we set inf ∅ = ∞ (as usual ∅ is the empty set).
For convenience, we denote σk(ω) by σk. Because SFDE
(1) admits a unique global solution, we observe that σk is
increasing to infinity almost surely as k → ∞. For each k ≥ 1,
by the generalized Itô formula, we have

eλ̄t̂kV (x(t̂k), t̂k, r(t̂k))− eλ̄t̂V (x(t̂), t̂, r(t̂))

=

∫ t̂k

t̂

eλ̄s
(
LV (xs, s, r(s)) + λ̄V (x(s), s, r(s))

)
ds+Mk,

where t̂k = (t̂+∆2) ∧ σk and

Mk =

∫ t̂k

t̂

eλ̄sVx(x(s), s, r(s))G(xs, s, r(s))dB(s).

Note that when |x(t̂)| ≥ k we have t̂k = t̂; while |x(t̂)| < k,
making use of (3), we see that for any s ∈ [t̂, t̂k]

eλ̄sVx(x(s), s, r(s))G(xs, s, r(s)) ≤ eλ̄(t+∆2)Lk < ∞.

Therefore, we have EMk = 0 and hence

E
(
eλ̄t̂kV (x(t̂k), t̂k, r(t̂k))

)
− E

(
eλ̄t̂V (x(t̂), t̂, r(t̂))

)
=E

∫ t̂k

t̂

eλ̄s
(
LV (xs, s, r(s)) + λ̄V (x(s), s, r(s))

)
ds.

It is easy to see that for each k ≥ 1,∣∣∣∣∣
∫ t̂k

t̂

eλ̄s
(
LV (xs, s, r(s)) + λ̄V (x(s), s, r(s))

)
ds

∣∣∣∣∣
≤
∫ t̂+∆2

t̂

∣∣∣eλ̄s (LV (xs, s, r(s)) + λ̄V (x(s), s, r(s))
)∣∣∣ ds.

Since

E
∣∣∣eλ̄s (LV (xs, s, r(s)) + λ̄V (x(s), s, r(s))

)∣∣∣
≤eλ̄s

(
E|LV (xs, s, r(s))|+ λ̄EV (x(s), s, r(s))

)
< ∞

holds for any s ∈ [t̂, t̂+∆2], by Fubini theorem, we have

E

∫ t̂+∆2

t̂

∣∣∣eλ̄s (LV (xs, s, r(s)) + λ̄V (x(s), s, r(s))
)∣∣∣ ds

=

∫ t̂+∆2

t̂

E
∣∣∣eλ̄s (LV (xs, s, r(s)) + λ̄V (x(s), s, r(s))

)∣∣∣ ds
<∞.

Letting k → ∞ and using the Fatou lemma, the dominated
convergence theorem, we obtain that

eλ̄(t̂+∆2)EV (x(t̂+∆2), t̂+∆2, r(t̂+∆2))

=E

(
lim inf
k→∞

eλ̄tkV (x(tk), tk, r(tk))

)
≤ lim inf

k→∞
E
(
eλ̄tkV (x(tk), tk, r(tk))

)
=eλ̄t̂EV (x(t̂), t̂, r(t̂)) + E

∫ t̂+∆2

t̂

eλ̄s
(
LV (xs, s, r(s))

+ λ̄V (x(s), s, r(s))
)
ds. (9)

Applying the Fubini theorem again as well as (8) yields that

eλ̄(t̂+∆2)EV (x(t̂+∆2), t̂+∆2, r(t̂+∆2))

<eλ̄t̂EV (x(t̂), t̂, r(t̂)) +

∫ t̂+∆2

t̂

(λ1 + ε)eλ̄sds. (10)

By analogy with (10), for any t̂ ≤ t ≤ t̂+∆2, we have

eλ̄tEV (x(t), t, r(t))

<eλ̄t̂EV (x(t̂), t̂, r(t̂)) + (λ1 + ε)

∫ t

t̂

eλ̄sds

≤U(t̂) + (λ1 + ε)

∫ t̂+∆2

t̂

eλ̄sds.

For t̂+∆2 − h ≤ t < t̂, it is also easy to see that

eλ̄tEV (x(t), t, r(t)) < U(t̂) + (λ1 + ε)

∫ t̂+∆2

t̂

eλ̄sds

since eλ̄tEV (x(t), t, r(t)) < U(t̂). Thus, we obtain that

U(t̂+∆2) ≤ U(t̂) + λ1

∫ t̂+∆2

t̂

eλ̄sds+ ε

∫ t̂+∆2

t̂

eλ̄sds.

Letting ∆2 → 0 implies that D+(U(t̂)− yη(t̂)) ≤ εeλ̄t̂. This
holds for any ε > 0, so we must have D+(U(t̂)− yη(t̂)) ≤ 0.

Since t̂ is chosen arbitrarily, claim (5) is true. This therefore
completes the proof. □

It should be pointed out that condition (4) is given in terms
of the SFDE solution. Although it can be checked easily in
our later discrete-state-feedback stabilization problem, we give
the following corollary to make our theory more applicable in
reality, where condition (4) is replaced by a general one which
does not involve the solution.

Corollary 2.1: Let Assumptions 2.1 and 2.2 hold. For such
V (x, t, i) defined in Assumption 2.1, assume that there are
constants p > 1, λ1 ≥ 0 and λ2 > 0 such that

E

(
max

1≤i≤N
LV (ϕ, t, i)

)

Advances in discrete-state-feedback stabilization of highly nonlinear hybrid systems by Razumikhin technique
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≤λ1 − λ2E

(
max

1≤i≤N
V (ϕ(0), t, i)

)
for those ϕ ∈ Lq

Ft
([−h, 0];Rn) satisfying

E

(
min

1≤i≤N
V (ϕ(θ), t+ θ, i)

)
≤ pE

(
max

1≤i≤N
V (ϕ(0), t, i)

)
for any θ ∈ [−h, 0]. Then for any initial data ζ and r0, the
solution of SFDE (1) has the property that

lim sup
t→∞

EV (x(t), t, r(t)) ≤ λ1

λ
,

where λ = min
{
λ2,

log p
h

}
. In particular, if λ1 = 0,

lim sup
t→∞

1

t
logEV (x(t), t, r(t)) ≤ −λ.

Finally, we make some comments about the right-continuity
of EV and ELV required in Assumption 2.1.

Remark 2: From (8), we find that when using the Razu-
mikhin technique, it is crucial to require both EV (x(t), t, r(t))
and ELV (xt, t, r(t)) to be right-continuous. But to guarantee
the right-continuity of these two functions is not trivial,
especially for highly nonlinear systems. We will introduce
this in detail later in Lemmas 3.1, 4.1 and subsequent Re-
mark 6. Moreover, even if we have the right-continuity of
V (x(t), t, r(t)) and LV (xt, t, r(t)), we still cannot draw the
conclusion that EV (x(t), t, r(t)) and ELV (xt, t, r(t)) are
right-continuous. Because in general, only the right-continuity
of a process cannot guarantee its expectation remains right-
continuous. We will give an example in Appendix (Example
3) to show this.

III. DISCRETE-STATE-FEEDBACK STABILIZATION
PROBLEM

Consider an n-dimensional nonlinear hybrid SDE

dy(t) = f(y(t), t, r(t))dt+ g(y(t), t, r(t))dB(t) (11)

on t ≥ 0, with the initial data y(0) = x0 ∈ Rn and r(0) =
r0 ∈ S, where f : Rn × R+ × S → Rn and g : Rn × R+ ×
S → Rn×m are Borel measurable functions. In the classical
theory of SDEs (see, e.g., [6]), the local Lipschitz condition
and the linear growth condition would be imposed to system
coefficients. The former makes sure SDE (11) has a unique
maximal local solution, but may explode to infinity at finite
time. The latter is then used to limit the growth of f and g,
and force the local solution to become global. However, as
we mentioned before, the linear growth condition is not of
interest to us in this paper. As a consequence, we will keep
the local Lipschitz condition, but replace the linear growth
condition by two more general conditions, polynomial growth
condition and Khasminskii-type condition, which are stated in
the following two assumptions, respectively.

Assumption 3.1: Assume that there exist four constants
K0 ≥ 0, K1 > 0, q1 > 1 and q2 ≥ 1 such that

|f(x, t, i)| ≤K0 +K1(|x|+ |x|q1),
|g(x, t, i)| ≤K0 +K1(|x|+ |x|q2) (12)

for all (x, t, i) ∈ Rn × R+ × S.

In this assumption, we call condition (12) the polynomial
growth condition, which is required since we still do not want
f and g to grow very rapidly. But it is not able to ensure
the existence of global solution of SDE (11). The following
assumption should be imposed.

Assumption 3.2: Assume that for any integer b > 0, there
is a positive constants Mb such that

|f(x, t, i)−f(y, t, i)|∨|g(x, t, i)−g(y, t, i)| ≤ Mb|x−y| (13)

for all x, y ∈ Rn with |x|∨|y| ≤ b and (t, i) ∈ R+×S. Assume
also that there exist constants α > 0 and q̄ ≥ 2q1 + 2q2 − 2
such that

xTf(x, t, i) +
q̄ − 1

2
|g(x, t, i)|2 ≤ α(1 + |x|2) (14)

for all (x, t, i) ∈ Rn × R+ × S.
In Assumption 3.2, condition (13) is the local Lipscitz

condition and condition (14) is known as the Khasminskii-type
condition. Then by Theorem 3.19 in [6], under Assumption
3.2, for any initial data x0 and r0, SDE (11) admits a unique
global solution y(t) such that sup0≤s≤t E|y(s)|q̄ < ∞ for any
t ≥ 0.

Remark 3: It should be pointed out that both Assumption
3.1 and Assumption 3.2 are needed in this paper. On the
one hand, Assumption 3.2 is used to guarantee that SDE
(11) has a unique global solution y(t) with property that
E|y(s)|q̄ < ∞. On the other hand, Assumption 3.1 can imply
that both f(x(t), t, r(t)) and g(x(t), t, r(t)) are in L2, and
these properties are very useful in the subsequent stability
analysis. Meanwhile, the Khasminskii-type condition is given
based on Assumption 3.1 since q̄ ≥ 2q1 +2q2 − 2. These two
assumptions can also be found in [16] and [27]. But here we
have a little stronger restriction on q̄ that q̄ ≥ 2q1 + 2q2 − 2,
rather than q̄ ≥ 2q1 ∨ (q1 + 2q2 − 1). This is required to
make sure Assumption 2.1 is true. More details can be seen in
Lemmas 3.1, 4.1 and Remark 6. Additionally, if q1+1 > 2q2, q̄
could sometimes be large arbitrarily. We will give an example
in Appendix (Example 4) to illustrate this.

But the solution may not be stable. In the case when the
given hybrid system (11) is unstable, we want to design a
discrete-time feedback controller in the drift part so that the
controlled system

dx(t) =(f(x(t), t, r(t)) + u(x([t/τ ]τ), t, r(t)))dt

+ g(x(t), t, r(t))dB(t) (15)

becomes stable. Here, to avoid confusion, we denote by
x(t) the solution of the controlled system. The feedback
control u(x([t/τ ]τ), t, r(t)) is indeed based on discrete-time
observations of the state x(t) at time 0, τ, 2τ, · · · . In this paper,
we assume that the control function u : Rn × R+ × S → Rn

is Borel measurable and globally Lipschitz continuous.
Rule 1: Assume that there exists a positive constant K2 such

that
|u(x, t, i)− u(y, t, i)| ≤ K2|x− y| (16)

for all (x, y, t, i) ∈ Rn × Rn × R+ × S. Moreover, for the
stability purpose, assume that u(0, t, i) ≡ 0.

Note that when K0 = 0, condition (12) forces f(0, t, i) ≡ 0
and g(0, t, i) ≡ 0. This means the controlled system (15) has
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the trivial solution when K0 = 0, which is also required for
the stability purpose. Moreover, Rule 1 implies the following
linear growth condition

|u(x, t, i)| ≤ K2|x|, ∀(x, t, i) ∈ Rn × R+ × S. (17)

In fact, the controlled system (15) is a hybrid SDDE with a
bounded variable delay, if we define delay function ξ : R+ →
[0, τ ] by ξ(t) = t− kτ for kτ ≤ t < (k+1)τ , k = 0, 1, 2 · · · .
Thus the controlled system (15) can be rewritten as

dx(t) =(f(x(t), t, r(t)) + u(x(t− ξ(t)), t, r(t)))dt

+ g(x(t), t, r(t))dB(t). (18)

As systems (15) and (18) are equivalent, we will mainly
concentrate on the controlled system (18) in the rest of this
paper. Then by Theorem 7.13 in [6], under Assumptions 3.1,
3.2 and Rule 1, for any initial data x(0) = x0 ∈ Rn and
r(0) = r0 ∈ S, the controlled system (18) also has a unique
global solution x(t) such that sup0≤s≤t E|x(s)|q̄ < ∞ for any
t ≥ 0. With a little more effort, we can have a better result.

Lemma 3.1: Let Assumptions 3.1, 3.2 and Rule 1 hold. For
any initial data x(0) = x0 ∈ Rn and r(0) = r0 ∈ S, the
solution of the controlled system (18) has the property that

E

(
sup

0≤s≤t
|x(s)|2q1

)
< ∞, ∀t ≥ 0. (19)

Proof. Fix any time t ≥ 0. Applying the Itô formula to |x|2q1 ,
we see that for any 0 ≤ s ≤ t

|x(s)|2q1

=|x0|2q1 +
∫ s

0

2q1|x(v)|2q1−2xT(v)(f(x(v), v, r(v))

+ u(x(v − ξ(v)), v, r(v)))dv

+

∫ s

0

q1|x(v)|2q1−2|g(x(v), v, r(v))|2dv

+

∫ s

0

q1(2q1 − 2)|x(v)|2q1−4
∣∣xT(v)g(x(v), v, r(v))

∣∣2 dv
+

∫ s

0

2q1|x(v)|2q1−2xT(v)g(x(v), v, r(v))dB(v).

Since q̄ ≥ 2q1 + 2q2 − 2, we derive from condition (14) that

xTf(x, t, i) +
2q1 − 1

2
|g(x, t, i)|2 ≤ α(1 + |x|2)

for all (x, t, i) ∈ Rn ×R+ ×S. Using this and condition (17)
as well as the Young inequality, and then taking expectations
on both sides, we get

E

(
sup

0≤s≤t
|x(s)|2q1

)
≤|x0|2q1 + J(t) + E

∫ t

0

2q1α|x(v)|2q1−2
(
1 + |x(v)|2

)
dv

+ E

∫ t

0

(
(2q1 − 1)K2|x(v)|2q1 +K2|x(v − ξ(v))|2q1

)
dv,

(20)

where

J(t) =E

(
sup

0≤s≤t

∣∣∣∣∣
∫ s

0

2q1|x(v)|2q1−2xT(v)

× g(x(v), v, r(v))dB(v)

∣∣∣∣∣
)
.

By the Burkholder-Davis-Gundy inequality, we compute

J(t)

≤3E

(∫ t

0

4q21 |x(v)|4q1−2|g(x(v), v, r(v))|2dv
) 1

2

≤3E

(∫ t

0

8q21K
2
1

(
|x(v)|4q1 + |x(v)|4q1+2q2−2

)
dv

) 1
2

≤3E

(∫ t

0

8q21K
2
1 |x(v)|4q1dv

) 1
2

+ 3E

(∫ t

0

8q21K
2
1 |x(v)|4q1+2q2−2dv

) 1
2

≤E

(
sup

0≤s≤t
|x(s)|2q1

∫ t

0

72q21K
2
1 |x(v)|2q1dv

) 1
2

+ E

(
sup

0≤s≤t
|x(s)|2q1

∫ t

0

72q21K
2
1 |x(v)|2q1+2q2−2dv

) 1
2

≤1

4
E

(
sup

0≤s≤t
|x(s)|2q1

)
+ 72q21K

2
1E

∫ t

0

|x(v)|2q1dv

+
1

4
E

(
sup

0≤s≤t
|x(s)|2q1

)
+ 72q21K

2
1E

∫ t

0

|x(v)|2q1+2q2−2dv,

where we have used the inequalities
√
ab ≤ 1

4a + b and√
a+ b ≤

√
a+

√
b. Substituting this into (20) gives that

E

(
sup

0≤s≤t
|x(s)|2q1

)
≤2|x0|2q1 + CE

∫ t

0

(
|x(v)|2q1 + |x(v − ξ(v))|2q1

+ |x(v)|2q1−2 + |x(v)|2q1+2q2−2
)
dv,

where C is a positive constant depending on q1, α, K1 and
K2. Recalling that sup0≤s≤t E|x(s)|q̄ < ∞, and using the
Fubini theorem, we obtain that

E

(
sup

0≤s≤t
|x(s)|2q1

)
≤2|x0|2q1 + 4C

(
1 + sup

0≤s≤t
E|x(s)|q̄

)
t < ∞.

This completes the proof. □
Before ending this section, we assume further that for any

fixed (x, i) ∈ Rn × S, f(x, ·, i), g(x, ·, i) and u(x, ·, i) are
right-continuous functions on t ≥ 0. Then since f, g, u are
all continuous in the first component x, we observe from
the right continuity of t − ξ(t), r(t) and the continuity of
solution x(t) that the drift coefficient f(x(t), t, r(t))+u(x(t−
ξ(t)), t, r(t)) and the diffusion coefficient g(x(t), t, r(t)) are
right-continuous on t ≥ 0.

In fact, the requirements of f, g, u on the second component
t is quite natural when studying the stability of hybrid SDEs
because at most time (see, e.g., [6]), we always need the
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system coefficients to be right-continuous. While in general,
we do not mention these conditions on t explicitly. But it
should be pointed out that the Lipschitz conditions (global or
local) in x are not enough.

IV. STABILIZATION RESULTS

We have only shown that there admits a global solu-
tion to the controlled system (18) with the property that
sup0≤s≤t E|x(s)|q̄ < ∞ and E

(
sup0≤s≤t |x(s)|2q1

)
< ∞

for any t ≥ 0 under our standing Assumptions 3.1, 3.2 and
Rule 1. In order for the controlled system (18) to be stable, we
need to impose more conditions on the control function and
the original system (11). In this section, we will show that
with Assumption 4.1 and Rule 2, the controlled system (18)
is (q1 + 1)-th moment exponentially stable and almost surely
exponentially stable.

Assumption 4.1: For each i ∈ S, assume that there are non-
negative constants c, c̄ and positive constants ρi, ρ̄i, βi, β̄i

such that

xTf(x, t, i) +
1

2
|g(x, t, i)|2 ≤ c+ ρi|x|2 − βi|x|q1+1 (21)

and

xTf(x, t, i) +
q1
2
|g(x, t, i)|2 ≤ c̄+ ρ̄i|x|2 − β̄i|x|q1+1 (22)

for any (x, t) ∈ Rn × R+.
Rule 2: For each i ∈ S, assume that we can find constant

κi ∈ R for
xTu(x, t, i) ≤ κi|x|2 (23)

for any (x, t) ∈ Rn × R+, while for

A := −2diag(α1, · · · , αN )−Q (24)

to be a non-singular M -matrix, where αi = ρi + κi.
Next, we make some comments about these two conditions

that there are many control functions available and we can
cover more general hybrid SDEs compared with [16].

Remark 4: Under Assumption 4.1, we can actually design
lots of control functions to satisfy Rules 1 and 2. For example,
design the control function in the linear form u(x, t, i) =
−2ρix. Then Rule 1 is satisfied with K2 = 2maxi∈S |ρi|,
Rule 2 is true with κi = −2ρi and αi = −ρi, while
A = 2diag(ρ1, · · · , ρN ) − Q is a non-singular M -matrix.
Combining with conditions (21), (22) and (23), we see that

xT(f(x, t, i) + u(x, t, i)) +
1

2
|g(x, t, i)|2

≤c+ αi|x|2 − βi|x|q1+1 (25)

and

xT(f(x, t, i) + u(x, t, i)) +
q1
2
|g(x, t, i)|2

≤c̄+ ᾱi|x|2 − β̄i|x|q1+1, (26)

where ᾱi = ρ̄i+κi. This is exactly Condition 4.1 in [16]. But
differently, we now do not require the matrix

−(q1 + 1)diag(ᾱ1, · · · , ᾱN )−Q

also to be a non-singular M -matrix, since we will make use
of the last term −βi|x|q1+1 in (25) and set free parameters to

balance the term |x|q1+1. In this case, there is no need to give
such restriction on ᾱi, i ∈ S. This enables us to include more
general hybrid SDEs and tackle more practical issues. We will
give an example (Example 1) to illustrate this modification.

We set (η1, · · · , ηN )T := A−1(µ, · · · , µ)T, where µ is a
free parameter. As A is a non-singular M -matrix, all ηi are
positive. Besides, once A is fixed, all ηi are propositional
to the value of µ, namely ηi =

∑N
j=1(A−1)ijµ. This rela-

tionship is important to the determination of τ∗, so we set
ηm = mini∈S ηi = Amµ and ηM = maxi∈S ηi = AMµ,
where

Am = min
i∈S

 N∑
j=1

(A−1)ij

 , AM = max
i∈S

 N∑
j=1

(A−1)ij

 ,

which are two positive constants only depending on the matrix
A.

Define a function V (x, t, i) ∈ C2,1(Rn× [−τ,∞)×S;R+)
by

V (x, t, i) = ηi|x|2 + |x|q1+1 (27)

while define a function LV : Rn × R+ × S → R by

LV (x, t, i) =2ηi

(
xT(f(x, t, i) + u(x, t, i)) +

1

2
|g(x, t, i)|2

)
+

N∑
j=1

qijηj |x|2

+ (q1 + 1)|x|q1−1xT(f(x, t, i) + u(x, t, i))

+
q1 + 1

2
|x|q1−1|g(x, t, i)|2

+
(q1 + 1)(q1 − 1)

2
|x|q1−3|xTg(x, t, i)|2.

By (25) and (26), it is easy to derive that

LV (x, t, i) ≤2cηi + (q1 + 1)c̄− µ|x|2 − (q1 + 1)β̄i|x|2q1

− (2ηiβi − (q1 + 1)(c̄+ αi))|x|q1+1. (28)

Define, for (ϕ, t, i) ∈ C ([−τ, 0];Rn)× R+ × S,

F (ϕ, t, i) =f(ϕ(0), t, i) + u(ϕ(−ξ(t)), t, i),

G(ϕ, t, i) =g(ϕ(0), t, i).

Then our controlled system (18) becomes SFDE (1) on t ≥ 0
with initial data x0(θ) = x0 for θ ∈ [−τ, 0]. Here, xt =
{x(t+ θ)| − τ ≤ θ ≤ 0}.

In order to use the Razumikhin technique developed in
Theorem 2.1, it is incredibly necessary to verify Assumptions
2.1 and 2.2 at first, which is stated as the following lemma.

Lemma 4.1: Assumptions 2.1 and 2.2 are true under As-
sumptions 3.1, 3.2, 4.1 and Rules 1, 2.
Proof. We divide the verification work step by step.

Step 1: We have already shown in Section III that controlled
system (18) has a global solution satisfying that for any t ≥ 0,
E|x(t)|q̄ < ∞.

Step 2: The function V has been given by ηi|x|2 + |x|q1+1

in (27). Since q̄ ≥ 2q1 + 2q2 − 2, it is easy to see that

sup
−τ≤s≤t

EV (x(s), s, r(s))
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≤ηM |x0|2 + |x0|q1+1 + sup
0≤s≤t

(
ηME|x(t)|2 + E|x(t)|q1+1

)
<∞.

Then by conditions (12) and (17), compute

|LV (xt, t, r(t))|
≤2ηMK1

(
|x(t)|2 + |x(t)|q1+1

)
+ ηMK2|x(t)|2 + ηMK2|x(t− ξ(t))|2

+ 2ηMK2
1

(
|x(t)|2 + |x(t)|2q2

)
+NηM

(
max

1≤i,j≤N
|qij |

)
|x(t)|2

+ (q1 + 1)K1

(
|x(t)|q1+1 + |x(t)|2q1

)
+ q1K2|x(t)|q1+1 +K2|x(t− ξ(t))|q1+1

+ q1(q1 + 1)K2
1

(
|x(t)|q1+1 + |x(t)|q1+2q2−1

)
≤C

(
1 + sup

0≤s≤t
|x(s)|2q1

)
,

where C is a positive number independent from t. By Lemma
3.1, we see that sup0≤s≤t E|LV (xs, s, r(s))| < ∞.

Step 3: For any integer k > 0 and any ϕ ∈ C ([−τ, 0];Rn)
with ||ϕ|| ≤ k and (t, i) ∈ R+×S, since g is locally Lipschitz
continuous in x and g(0, t, i) ≡ 0, it is easy to see that

|Vx(ϕ(0), t, i)G(ϕ, t, i)|
=
∣∣(2ηiϕT(0) + (q1 + 1)|ϕ(0)|q1−1ϕT(0)

)
g(ϕ(0), t, i)

∣∣
≤2MkηMk2 + (q1 + 1)Mkk

q1+1 := Lk,

where we have set G(ϕ, t, i) = g(ϕ(0), t, i) before. Thus,
condition (3) is true.

Step 4: Recalling the discussions at the end of Section III,
V (x(t), t, r(t) and LV (xt, t, r(t)) are right-continuous on t ≥
0. Then for any sufficiently small ∆ > 0, we have

sup
t≤s≤t+∆

|V (x(s), s, r(s))| ≤ C

(
1 + sup

0≤s≤t+∆
|x(s)|q1+1

)
and

sup
t≤s≤t+∆

|LV (xs, s, r(s))| ≤ C

(
1 + sup

0≤s≤t+∆
|x(s)|2q1

)
,

where C is a positive number independent from t. Since in
Lemma 3.1

E

(
sup

0≤s≤t+∆
|x(s)|2q1

)
< ∞,

using the Hölder inequality and the dominated convergence
theorem shows that

lim
s→t+

EV (x(s), s, r(s)) =E

(
lim
s→t+

V (x(s), s, r(s))

)
=EV (x(t), t, r(t))

and

lim
s→t+

ELV (xs, s, r(s)) =E

(
lim
s→t+

LV (xs, s, r(s))

)
=ELV (xt, t, r(t)).

As a result, EV (x(t), t, r(t) and ELV (xt, t, r(t)) are right-
continuous.

Up to now, all the conditions in Assumptions 2.1 and 2.2
are satisfied. □

In the study of discrete-state-feedback stabilization problem,
no matter which method we pick up, it is very significant to
estimate the difference between current state x(t) and discrete-
time state x(t− ξ(t)). We state this estimation as a lemma.

Lemma 4.2: Let all the conditions of Lemma 4.1 hold, Then
for all t ≥ 0, we have

E|xt(0)− xt(−ξ(t))|2

≤2cτ +K0τ +H1(µ)τ sup
−τ≤θ≤0

EV (xt(θ), t+ θ, r(t+ θ)),

(29)

where

H1(µ) =

(
2αM +K1 + 3K2

Amµ
∨ 2K1q1

q1 + 1

)
+

(
K0 +K1 + 3K2

Amµ
∨ 2K1

q1 + 1

)
, (30)

in which αM = maxi∈S αi.
Proof. For any t ≥ 0, there exists some integer k ≥ 0 such that
kτ ≤ t < (k + 1)τ . Then it is easy to see that v − ξ(v) = kτ
for v ∈ [kτ, t]. Applying the Itô formula to (18) yields that

|x(t)− x(t− ξ(t))|2

=M(t) +

∫ t

kτ

(
2(x(v)− x(kτ))T(f(x(v), v, r(v))

+ u(x(kτ ), v, r(v))) + |g(x(v), v, r(v))|2
)
dv

=M(t) +

∫ t

kτ

(
2xT(v)(f(x(v), v, r(v))

+ u(x(v), v, r(v))) + |g(x(v), v, r(v))|2
)
dv

−
∫ t

kτ

2xT(kτ)f(x(v), v, r(v))dv

−
∫ t

kτ

2xT(v)u(x(v), v, r(v))dv

+

∫ t

kτ

2xT(v)u(x(kτ), v, r(v))dv

−
∫ t

kτ

2xT(kτ)u(x(kτ), v, r(v))dv, (31)

where

M(t) =

∫ t

kτ

(2(x(v)− x(kτ))Tg(x(v), v, r(v))dB(v)

is a continuous martingale. From condition (25), we derive
that ∫ t

kτ

(
2xT(v)(f(x(v), v, r(v)) + u(x(v), v, r(v)))

+ |g(x(v), v, r(v))|2
)
dv

≤2cτ + 2αM

∫ t

kτ

|x(v)|2dv.

Making use of (12) and (17) as well as the Young inequality,
we obtain that

−
∫ t

kτ

2xT(kτ)f(x(v), v, r(v))dv
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9

≤2

∫ t

kτ

|x(kτ)| (K0 +K1|x(v)|+K1|x(v)|q1) dv

≤K0τ +K1

∫ t

kτ

|x(v)|2dv + (K0 +K1)

∫ t

kτ

|x(kτ)|2dv

+
2K1q1
q1 + 1

∫ t

kτ

|x(v)|q1+1dv +
2K1

q1 + 1

∫ t

kτ

|x(kτ )|q1+1dv

and ∫ t

kτ

2xT(v)u(x(kτ), v, r(v))dv

≤2K2

∫ t

kτ

|x(v)||x(kτ )|dv

≤K2

∫ t

kτ

|x(v)|2dv +K2

∫ t

kτ

|x(kτ )|2dv.

Substituting these into (31) gives that

|x(t)− x(t− ξ(t))|2

≤M(t) + 2cτ +K0τ + (2αM +K1 + 3K2)

∫ t

kτ

|x(v)|2dv

+
2K1q1
q1 + 1

∫ t

kτ

|x(v)|q1+1dv

+ (K0 +K1 + 3K2)

∫ t

kτ

|x(kτ )|2dv

+
2K1

q1 + 1

∫ t

kτ

|x(kτ)|q1+1dv

≤M(t) + 2cτ +K0τ +

(
2αM +K1 + 3K2

ηm
∨ 2K1q1

q1 + 1

)
×
∫ t

kτ

(
ηr(v)|x(v)|2 + |x(v)|q1+1

)
dv

+

(
K0 +K1 + 3K2

ηm
∨ 2K1

q1 + 1

)
×
∫ t

kτ

(
ηr(kτ)|x(kτ)|2 + |x(kτ )|q1+1

)
dv.

We can take expectations on both sides and then use the Fubini
theorem to get that

E|x(t)− x(t− ξ(t))|2

≤2cτ +K0τ +

(
2αM +K1 + 3K2

Amµ
∨ 2K1q1

q1 + 1

)
×
∫ t

kτ

EV (x(v), v, r(v))dv

+

(
K0 +K1 + 3K2

Amµ
∨ 2K1

q1 + 1

)
×
∫ t

kτ

EV (x(kτ ), kτ, r(kτ))dv. (32)

Noting the definition of xt, we further have

E|xt(0)− xt(−ξ(t))|2

≤2cτ +K0τ +H1(µ)τ sup
−τ≤θ≤0

EV (xt(θ), t+ θ, r(t+ θ)),

which is the required assertion (29). □
In order to obtain the bound of τ , we need to guarantee the

positivity of H1(µ). But observing (30) in detail, we find that

H1(µ) ≥
2K1q1
q1 + 1

+
2K1

q1 + 1
> 0.

We now present our first stabilization result in this paper.
Theorem 4.1: Under the same conditions of Lemma 4.1,

there is a positive number τ∗ such that for any initial data x0

and r0, the solution of the controlled system (18) obeys that

lim sup
t→∞

E|x(t)|q1+1 < ∞

as long as τ < τ∗. In particular, if K0 = 0, c = 0 and c̄ = 0,
the solution satisfies

lim sup
t→∞

1

t
logE|x(t)|q1+1 < 0.

In other words, the controlled system (18) is asymptotically
bounded in (q1 + 1)-th moment and exponentially stable in
(q1 + 1)-th moment when K0 = 0, c = 0 and c̄ = 0 provided
τ < τ∗.

Before giving the proof, to make this theorem can be
implemented in practice, we make some comments on how
to determine the value of τ∗.

Remark 5: Set

φ(γ, µ)

=
1

H2(γ, µ)

(
1− γ

AM
∧ (2Amµβm − (q1 + 1)(c̄+ ᾱM ))

)
,

where ᾱM = maxi∈S ᾱi, βm = mini∈S βi, β̄m = mini∈S β̄i,

H2(γ, µ) = H1(µ)

(
K2

2A
2
Mµ

γ
+

(q1 + 1)K2
2

4β̄m

)
and γ and µ are free parameters taking values in

Λ = (0, 1)×
(
(q1 + 1)(c̄+ ᾱM )

2Amβm
∨ 0,∞

)
.

Then τ∗ is given by

τ∗ = sup
(γ,µ)∈Λ

φ(γ, µ). (33)

With a little effort, we can show that there exists a (γ̂, µ̂) ∈ Λ
such that φ(γ̂, µ̂) = sup(γ,µ)∈Λ φ(γ, µ). It is easy to see that
φ(γ, µ) is a positive, continuous and bounded function in Λ.
Moreover, we observe that φ̄(γ, ·) tends to 0 as γ tends to 0

or 1 and φ(·, µ) tends to 0 as µ tends to
(

(q1+1)(c̄+ᾱM )
2Amβm

∨ 0
)

or ∞. As a result, there exists (γ̂, µ̂) ∈ Λ such that

τ∗ = sup
(γ,µ)∈Λ

φ(γ, µ) = φ(γ̂, µ̂).

From now on, the free parameters γ and µ are fixed as γ̂
and µ̂, respectively. And also all ηi, i ∈ S are fixed. Next, we
show that Theorem 4.1 is true.
Proof. We have checked Assumptions 2.1 and 2.2 in Lemma
4.1. The rest work is to verify condition (4).

Recalling the definition of LV and LV , and making use of
(16), (28), we see that

LV (xt, t, r(t))

=LV (xt(0), t, r(t)) + Vx(xt(0), t, r(t))

× (u(xt(−ξ(t)), t, r(t))− u(xt(0), t, r(t)))

≤2cηr(t) + (q1 + 1)c̄− µ̂|xt(0)|2 − (q1 + 1)β̄r(t)|xt(0)|2q1

− (2ηr(t)βr(t) − (q1 + 1)(c̄+ ᾱr(t)))|xt(0)|q1+1

Advances in discrete-state-feedback stabilization of highly nonlinear hybrid systems by Razumikhin technique
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+K2

(
2ηr(t)|xt(0)|+ (q1 + 1)|xt(0)|q1

)
× |xt(0)− xt(−ξ(t))|. (34)

By the elementary inequality, we can get

2K2ηr(t)|xt(0)||xt(0)− xt(−ξ(t))|

≤γ̂µ̂|xt(0)|2 +
K2

2η
2
r(t)

γ̂µ̂
|xt(0)− xt(−ξ(t))|2

and

(q1 + 1)K2|xt(0)|q1 |xt(0)− xt(−ξ(t))|

≤(q1 + 1)β̄r(t)|xt(0)|2q1 +
(q1 + 1)K2

2

4β̄r(t)

|xt(0)− xt(−ξ(t))|2.

Substituting these into (34), we derive that

LV (xt, t, r(t))

≤2cηr(t) + (q1 + 1)c̄− (1− γ̂)µ̂|xt(0)|2

− (2ηr(t)βr(t) − (q1 + 1)(c̄+ ᾱr(t)))|xt(0)|q1+1

+

(
K2

2η
2
r(t)

γ̂µ̂
+

(q1 + 1)K2
2

4β̄r(t)

)
|xt(0)− xt(−ξ(t))|2.

Taking expectations on both sides and making use of (29), we
derive that

ELV̄ (xt, t, r(t))

≤λ1 −
(1− γ̂)µ̂

ηM
E
(
ηr(t)|xt(0)|2

)
− (2ηmβm − (q1 + 1)(c̄+ ᾱM ))E

(
|xt(0)|q1+1

)
+H2(γ̂, µ̂)τ sup

−τ≤θ≤0
EV (xt(θ), t+ θ, r(t+ θ)),

where

λ1 = 2cηM + (q1 + 1)c̄+ 2cτ

(
K2

2η
2
M

γ̂µ̂
+

(q1 + 1)K2
2

4β̄m

)
is a constant. For any τ < τ∗, we observe that

1− γ̂

AM
−H2(γ̂, µ̂)τ > 0

and

(2Amµ̂βm − (q1 + 1)(c̄+ ᾱM ))−H2(γ̂, µ̂)τ > 0.

Recalling the fact that ηm = Amµ̂ and ηM = AM µ̂, there is
some p > 1 so that

(1− γ̂)µ̂

ηM
− pH2(γ̂, µ̂)τ > 0

and

(2ηmβm − (q1 + 1)(c̄+ ᾱM ))− pH2(γ̂, µ̂)τ > 0.

For all t ≥ 0 and those xt satisfying

EV (xt(θ), t+θ, r(t+θ)) ≤ pV (xt(0), t, r(t)), ∀θ ∈ [−τ, 0],

we have

ELV (xt, t, r(t))

≤λ1 −
(
(1− γ̂)µ̂

ηM
− pH2(γ̂, µ̂)τ

)
E
(
ηr(t)|xt(0)|2

)

− ((2ηmβm − (q1 + 1)(c̄+ ᾱM ))− pH2(γ̂, µ̂)τ)

× E
(
|xt(0)|q1+1

)
≤λ1 − λ2EV (xt(0), t, r(t)),

where

λ2 =

(
(1− γ̂)µ̂

ηM
− pH2(γ̂, µ̂)τ

)
∧ ((2ηmβm − (q1 + 1)(c̄+ ᾱM ))− pH2(γ̂, µ̂)τ) .

Applying Theorem 2.1, we derive that

lim sup
t→∞

E|x(t)|q1+1 ≤ λ1

λ2 ∧ log p
τ

.

In particular, if K0 = 0, c = 0 and c̄ = 0, namely, λ1 = 0

lim sup
t→∞

1

t
logE|x(t)|q1+1 ≤ −

(
λ2 ∧

log p

τ

)
.

This completes the proof. □
Remark 6: Compared with the Lyapunov functional method,

the advantage of the Razumikhin method to study delay
systems is that it can tackle the difficulty arisen from the
nondifferentiability and fast change of the time delay. But we
require EV and ELV to be right-continuous. For hybrid SDEs
meeting the linear growth condition (e.g., [6]), it is very easy
to prove the right-continuity of EV and ELV since we always
have E

(
sup0≤s≤t |x(s)|r

)
< ∞ for any t ≥ 0 at any positive

order r. However, in the highly nonlinear ones, we need to
impose extra assumptions to guarantee this, see Lemmas 3.1
and 4.1. This is the main reason why we require q̄ is no less
than 2q1 + 2q2 − 2.

Also for highly nonlinear SDEs, moment exponential sta-
bility in general cannot imply the almost sure exponential
stability. However, this is possible in our case. We state this
as our second theorem.

Theorem 4.2: Let all the conditions in Theorem 4.1 hold. If
K0 = 0, c = 0 and c̄ = 0, for any initial data x0 and r0, the
solution of the controlled system (18) obeys that

lim sup
t→∞

1

t
log |x(t)| < ∞ a.s. (35)

as long as τ < τ∗.
We can use the same analysis as in the proof of Theorem

5.4 in [16] to show this theorem so we leave these proofs to
the reader.

V. EXAMPLES

A couple of examples are given in this part to illustrate our
theoretical results. In order to avoid complicated calculations,
we let B(t) be a scalar Brownian motion and r(t) be a
continuous Markov chain on the state space S = {1, 2} with
the transition rate matrix

Q =

(
−1 1
1 −1

)
.

Certainly, B(t) and r(t) are independent.
Example 1: We first give an example to show that we can

include more general stochastic systems compared with [16].
Consider a scalar hybrid SDE in financial mathematics, which
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can be regarded as a generalisation of the well-known Heston
stochastic volatility 1.5-model (see, e.g., [1], [6], [28])

dy(t) = y(t)
(
ar(t) − br(t)|y(t)|

)
dt+ cr(t)|y(t)|1.5dB(t),

(36)
on t ≥ 0, where

a1 = 2, a2 = 0.2, b1 = 2, b2 = 2.4, c1 = 1, c2 = 0.5.

It is easy to verify that Assumptions 3.1 and 3.2 are satisfied
with K0 = 0, K1 = 2.4, q1 = 2, q2 = 1.5 and α = 2, q̄ = 5.
Through computer simulation, we can find that hybrid SDE
(36) is unstable (see Fig. 1).

0 1 2 3 4 5 6 7 8 9 10

t

1

1.5

2

r(t
)

0 1 2 3 4 5 6 7 8 9 10

t

0

1

2

y(
t)

0 1 2 3 4 5 6 7 8 9 10

t

0

1

2

x(
t)

Fig. 1. Computer simulation of the sample paths of the Markov chain (the
top one), and SDE (36) without control (the middle one) and the controlled
system (37) with the control function (38) and τ = 0.00001 (the bottom one)
using the truncated Euler-Maruyama method [29] with time step size 10−6.

Here we will discuss an interesting phenomena that the state
can be observed fully in mode 1 but in mode 2, it is not
observable. Therefore, we can only design feedback control in
mode 1, based on discrete-time state observations of course,
but we cannot have feedback control in mode 2. For example,
the financial market can be roughly divided as “bullish”
mode and “bearish” mode. Sometimes, only “bearish” mode
can cause investors’ much attention, where the market can
be observed easily and needed extra control. In terms of
mathematics, the controlled system is

dx(t) =
(
ar(t)x(t)− br(t)|x(t)|x(t) + u(x([t/τ ]τ), r(t))

)
dt

+ cr(t)|x(t)|1.5dB(t), (37)

where

u(x, 1) = −3x, u(x, 2) = 0. (38)

Here to avoid confusion, we denote by x(t) the solution of
the controlled system. It is easily observed that Rule 1 holds
with K2 = 3. For any initial data x0 ∈ R and r0 ∈ S, the
controlled system (37) has a unique global solution on t ∈ R+

with the property that E|x(t)|5 < ∞. But this is not enough
for the stability purpose.

Let us now check Assumption 4.1. For (x, i) ∈ R × S,
compute

x (aix− bi|x|x) +
c2i
2
|x|3 ≤

{
2|x|2 − 1.5|x|3, i = 1,

0.2|x|2 − 2.275|x|3, i = 2,

and

x (aix− bi|x|x) + c2i |x|3 ≤

{
2|x|2 − |x|3, i = 1,

0.2|x|2 − 2.15|x|3, i = 2.

It is easy to see that

c = 0, ρ1 = 2, ρ2 = 0.2, β1 = 1.5, β2 = 2.275,

c̄ = 0, ρ̄1 = 2, ρ̄2 = 0.2, β̄1 = 1, β̄2 = 2.15,

and βm = 1.5, β̄m = 1. Further, we have

xTu(x, i) =

{
− 3|x|2, i = 1,

0, i = 2,

which implies that κ1 = −3, κ2 = 0. Consequently, α1 = −1,
α2 = 0.2, ᾱ1 = −1, ᾱ2 = 0.2, αM = 0.2, ᾱM = 0.2 and

A =

(
3 −1
−1 0.6

)
. We then obtain that Am = 2, AM = 5,

which shows that A is a non-singular M -matrix. Hence, Rule 2
is fulfilled. We then derive that τ∗ = 0.000019 defined in (33).
By Theorems 4.1 and 4.2, we can, therefore, conclude that
the controlled system (37) is 3-th moment and almost surely
exponentially stable provided τ < 0.000019. We perform a
computer simulation with τ = 0.00001 and the initial data
x0 = 1 and r0 = 1. The sample paths of the Markov chain,
the solution of SDE (36) and the solution of the controlled
system (37) are plotted in Fig. 1. The simulation supports our
theoretical results clearly.

On the other hand, we see that

−(q1 + 1)diag(ᾱ1, ᾱ2)−Q =

(
5 −1
−1 0.2

)
,

which is obviously not a non-singular M -matrix. This indi-
cates that the theory in [16] cannot be applied to this example,
so we weaken the conditions in [16].

Example 2: In this example, we will show that we indeed
improve the estimation of the bound of τ compared with [16].
Consider a stochastic Cohen-Grossberg neural network with
Markovian switching consisting of 10 neurons, where the j-th
neuron can be described by

dyj(t) =− a(r(t))yj(t)

(
b(r(t))y2j (t)

−
N∑

k=1

Wjk(r(t))Υk(yk(t), r(t))

)
dt

+ d(i)y2j (t)dB(t), 1 ≤ j ≤ 10. (39)

Here, in mode i, i = 1, 2, a(i)yj represents the amplification
function, b(i)y2j is the behaved function, Wjk(i) stands for the
connection weight from neuron k to neuron j, Υj(yj , i) =

υ(i) 1−e−yj

1+e−yj
is the neuron activation function, d(i)y2j is the

noise perturbation. For more information of stochastic Cohen-
Grossberg neural network, we cite [30]–[33] as references.
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Fig. 2. The neuron network connection graph at mode 1.
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Fig. 3. The neuron network connection graph at mode 2.

The network parameters are given as a(1) = 0.4, a(2) =
0.45, b(1) = 0.9, b(2) = 0.95, υ(1) = 0.8, υ(2) = 1,
d(1) = 0.1, d(2) = 0.11. The connection weight Wjk(i)
can be obtained from the network connection graphes with
mode 1 in Fig. 2 and mode 2 in Fig. 3. Let us take Fig.
2 as an example to explain the network connection graph:
node j stands for the j-th neuron, directed edge (j, k) means
the output of the k-th neuron is connected with the input of
the j-th neuron, the number on the edge (j, k) is the value
of Wjk(1), if there is no edge between two nodes, these two
neurons do not have direct interaction and the value of Wjk(1)
is zero, such as W32(1) = 0.09, W31(1) = 0. Here, positive
number represents the output-input connection is noninverting,
negative is inverting.

Let y = (y1, · · · , y10)T, y2 =
(
y21 , · · · , y210

)T
, W (i) =

(Wjk(i))10×10, Υ(y, i) = (Υ1(y1, i), · · · ,Υ10(y10, i))
T.

Then we can rewrite network (39) as a general type of SDE

dy(t) = f(y(t), r(t))dt+ g(y(t), r(t))dB(t), (40)

where

f(y, i) = −a(i)diag(y1, · · · , y10)
(
b(i)y2 −W (i)Γ(y, i)

)
and g(y, i) = d(i)y2.

It is clear that both f and g are locally Lipschitz continuous.
Noting that for y ∈ R10,

∣∣y2∣∣ ≤ |y|2 and |Υ(y, i)| ≤ υ(i) since∣∣∣ 1−e−yj

1+e−yj

∣∣∣ ≤ 1, we derive that

|f(y, i)| ≤
∣∣−a(i)diag(y1, · · · , y10)b(i)y2

∣∣
+ |−a(i)diag(y1, · · · , y10)W (i)Υ(y, i)|

≤a(i)b(i)|y|
∣∣y2∣∣+ a(i)|W (i)||y||Υ(y, i)|

≤a(i)υ(i)|W (i)||y|+ a(i)b(i)|y|3

and
|g(y, i)| = d(i)

∣∣y2∣∣ ≤ d(i)|y|2.

Then it is easy to verify that Assumption 3.1 holds with K0 =
0, K1 = 0.4275, q1 = 3 and q2 = 2. To verify Assumption
3.2, for y ∈ R10, compute

yTf(y, i) =− a(i)
(
y2
)T (

b(i)y2 −W (i)Υ(y, i)
)

≤− a(i)b(i)
∣∣y2∣∣2 + a(i)υ(i)|W (i)|

∣∣y2∣∣
≤a(i)υ(i)|W (i)||y|2 − a(i)b(i)

10
|y|4

because |y|4 ≤ 10
∣∣y2∣∣2. We hence see that

yTf(y, i) +
q̄ − 1

2
|g(y, i)|2

≤a(i)υ(i)|W (i)||y|2 −
(
a(i)b(i)

10
− q̄ − 1

2
(d(i))2

)
|y|4.

As a result, Assumption 3.2 is satisfied with α = 0.084 and
q̄ = 8. Through computer simulation, we can find that SDE
(40) is unstable (see Fig. 4). Then we want to design a discrete-
state feedback control to stabilize SDE (40). To make it simple,
our control function will have the form

u(y, i) = π(i)y, (41)

where π(1) = −3, π(2) = −3.1. Then the controlled system
becomes

dx(t) =(f(x(t), r(t)) + u(x([t/τ ]τ), r(t)))dt

+ g(x(t), r(t))dB(t). (42)

Here, to avoid confusion, we use x(t) to denote the solution of
the controlled system. It is easy to observe that Rule 1 holds
with K2 = 3.1. Then compute

xT f(x, i) +
1

2
|g(x, i)|2

≤a(i)υ(i)|W (i)||x|2 −
(
a(i)b(i)

10
− 1

2
(d(i))2

)
|x|4

and

xT f(x, i) +
q1
2
|g(x, i)|2

≤a(i)υ(i)|W (i)||x|2 −
(
a(i)b(i)

10
− 3

2
(d(i))2

)
|x|4

for (x, i) ∈ R10 × S. Consequently, it is easy to see that
Assumption 4.1 is satisfied with c = 0, c̄ = 0, ρ1 = 0.0474,
ρ2 = 0.016, β1 = 0.031, β2 = 0.0367, ρ̄1 = 0.0474, ρ̄2 =
0.016, β̄1 = 0.021, β̄2 = 0.0246. Further, βm = 0.031, β̄m =
0.021. We also have

xTu(x, i) = π(i)|x|2,

which implies that κ1 = −3, κ2 = −3.1, α1 = −2.9506,
α2 = −3.016, ᾱ1 = −2.9506, ᾱ2 = −3.016, αM = −2.9506,

ᾱM = −2.9506, A =

(
6.9012 −1
−1 7.0319

)
. We then obtain

that Am = 0.1662 and AM = 0.169, which shows that A
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is a non-singular M -matrix. Therefore, Rule 2 is fulfilled.
Recalling the discussion in Remark 5 and making use of MAT-
LAB, we derive that τ∗ = 0.0071. By Theorems 4.1 and 4.2,
we conclude that the controlled system (42) is 4-th moment
exponentially stable and almost surely exponentially stable
provided τ < 0.0071. We perform a computer simulation with
τ = 0.001 and the initial data x0 = (0.15, · · · , 0.15)T and
r0 = 1. The sample paths of the Markov chain, the solution
of SDE (39) and the solution of the controlled system (42)
are plotted in Fig. 4. The simulation supports our theoretical
results clearly.
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Fig. 4. Computer simulation of the sample paths of the Markov chain (the
top one), and SDE (39) without control (the middle one) and the controlled
system (42) with the control function (41) and τ = 0.001 (the bottom one)
using the truncated Euler-Maruyama method [29] with time step size 10−6.

Next, we give a remark to demonstrate that we can improve
the estimation of the bound of τ in this example.

Remark 7: We apply the theory developed in [16] to the
unstable SDE (40). Here, for convenience, we use the same
notations in [16]. It is easy to check that Assumptions 2.1, 2.2,
2.3 and Conditions 4.1, 4.2 in [16] are all satisfied. Hence, we
only need to check Condition 5.1. But the reader may find, in
practice, it is not easy to verify this condition, that is

LU(x, t, i) + γ1 (2ηi|x|+ (q1 + 1)η̄i|x|q1)2 + γ2|f(x, t, i)|2

+ γ3|g(x, t, i)|2 ≤ −γ4|x|2 − γ5|x|2q1 , (43)

since there are five positive free parameters γj , j = 1, 2, 3, 4, 5
to be chosen freely. These free parameters influence the bound
of τ we obtain, namely Condition 5.2 in [16],

τ <

√
γ4γ1

2K2
2

∧
√
γ1γ2√
2K2

∧ γ1γ3
K2

2

∧ 1

4
√
2K2

. (44)

And a bad choice may bring us a relatively small bound of τ .
As a result, through this example, we will introduce a method
to avoid lots of trails of γj , j = 1, 2, 3, 4, 5. Here,

(η̄1, η̄2)
T := Ā−1(1, 1)T = (0.0846, 0.083)T,

where Ā = −(q1 + 1)diag(ᾱ1, ᾱ2)−Q is a non-singular M -
matrix. The Lyapunov function U used in [16] now becomes

U(x, i) =

{
0.338|x|2 + 0.3384|x|4, i = 1,

0.3325|x|2 + 0.3321|x|4, i = 2,

and we have

LU(x, t, i) ≤

{
− |x|2 − 1.0105|x|4 − 0.0071|x|6, i = 1,

− |x|2 − 1.0122|x|4 − 0.0082|x|6, i = 2.

Compute

LU(x, t, 1) + γ1 (2η1|x|+ (q1 + 1)η̄1|x|q1)2

+ γ2|f(x, 1)|2 + γ3|g(x, 1)|2

≤− (1− 0.1142γ1 − 0.0024γ2)|x|2

− (1.0105− 0.2287γ1 − 0.0356γ2 − 0.01γ3)|x|4

− (0.0071− 0.1145γ1 − 0.1296γ2)|x|6

and

LU(x, t, 2) + γ1 (2η2|x|+ (q1 + 1)η̄2|x|q1)2

+ γ2|f(x, 2)|2 + γ3|g(x, 2)|2

≤− (1− 0.1105γ1 − 0.0071γ2)|x|2

− (1.0122− 0.2208γ1 − 0.0719γ2 − 0.0121γ3)|x|4

− (0.0082− 0.1103γ1 − 0.1828γ2)|x|6.

Then Condition 5.1 is satisfied with

γ4 =(1− 0.1142γ1 − 0.0024γ2)

∧ (1− 0.1105γ1 − 0.0071γ2),

γ5 =(0.0071− 0.1145γ1 − 0.1296γ2)

∧ (0.0082− 0.1103γ1 − 0.1828γ2)

if we have

1− 0.1142γ1 − 0.0024γ2 > 0,

1− 0.1105γ1 − 0.0071γ2 > 0,

1.0105− 0.2287γ1 − 0.0356γ2 − 0.01γ3 > 0,

1.0122− 0.2208γ1 − 0.0719γ2 − 0.0121γ3 > 0,

0.0071− 0.1145γ1 − 0.1296γ2 > 0,

0.0082− 0.1103γ1 − 0.1828γ2 > 0. (45)

Through (45), we get a rough estimation of γ1, γ2, γ3 that

(γ1, γ2, γ3) ∈ Γ = (0, 0.0621)× (0, 0.0447)× (0, 83.6531).

In this situation, we can define a function φ̃ in Γ by

φ̃(γ1, γ2, γ3) =
1

19.22

(√
(1− 0.1142γ1 − 0.0024γ2)γ1

∧
√

(1− 0.1105γ1 − 0.0071γ2)γ1

)
∧

√
γ1γ2

4.3841
∧ γ1γ3

9.61
∧ 1

17.5362
.

Then the bound of τ , say by τ∗1 , defined in (44) can be
modified as

τ∗1 = sup{φ̃(γ1, γ2, γ3)|(γ1, γ2, γ3) ∈ Γ, (45) is satisfied}.
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Using MATLAB, we get τ∗1 = 0.0066. By Theorem 5.3 in
[16], the controlled system (42) is exponentially stable in 4-
th moment and almost surely provided τ < 0.0066. Through
this, we see that we get a better bound of τ in this example.
This shows the advantage of the Razumikhin technique in the
estimation of the bound of τ .

VI. CONCLUSION

In this paper, we have discussed the stabilization of
highly nonlinear hybrid SDEs by feedback control based on
discrete-time state observations by the Razumikhin technique,
rather than the comparison idea or the Lyapunov functional
method in the most existing results. We firstly developed
a Razumikhin-type theorem to study the asymptotic bound-
edness and moment exponential stability of hybrid SFDEs.
Then we applied this generalized theory to our discrete-state-
feedback stabilization problem and showed that the underlying
unstable system could be stabilized in the sense of (q1+1)-th
moment exponential stability and almost sure exponential sta-
bility. Finally, two interesting examples and computer simula-
tions were provided to demonstrate that we could include more
general models and get a better estimation of τ∗ compared
with the existing results. We also observed that there were
several advantages of the Razumikhin technique compared
with the Lyapunov functional method in the discrete-state-
feedback stabilization problem: the control function designed
are easier to be implemented in practice; a better bound
of τ could be obtained for a class of hybrid SDEs; much
complicated analysis can be avoided.

APPENDIX

In this Appendix, we first give a counter example to show
the right-continuity of a process sometimes cannot ensure its
expectation keeps this property as discussed in Remark 2.

Example 3: Let B(t) be a scalar Brownian motion. Define
the stopping time T = inf{t ≥ 0|B(t) = 1}. It is easy to
see that T < ∞ a.s. from the recurrence of B(t). Then for
any t ≥ 0, set Y (t) = B(t ∧ T ). By the well-known Doob
martingale stopping theorem, Y (t) is actually a continuous
martingale vanishing at t = 0 with the property that

lim
t→∞

Y (t) = 1 a.s.

Define a process X(t) by

X(t) =

Y

(
1

t− 1

)
, t > 1,

1, 0 ≤ t ≤ 1.

Since
lim
t→1+

X(t) = lim
s→∞

Y (s) = 1 a.s.

we observe that X(t) is continuous (certainly right-
continuous). However, we have for 0 ≤ t ≤ 1, EX(t) = 1,
and for t > 1

EX(t) = EY

(
1

t− 1

)
= 0.

This means EX(t) is not right-continuous at t = 1.

In Remark 3, we have discussed that when q1+1 is strictly
larger than 2q2, q̄ sometimes could be arbitrarily large, which
can be seen in the following example.

Example 4: Consider a scalar hybrid SDE discussed in [16],
namely

dy(t) = f(y(t), t, r(t))dt+ g(y(t), t, r(t))dB(t) (46)

on t ≥ 0, where B(t) is a one-dimensional Brownian motion,
r(t) takes values on S = {1, 2}, and f, g are defined by

f(y, t, 1) = y − 3y3, g(y, t, 1) = |y|1.5,
f(y, t, 2) = y − 2y3, g(y, t, 2) = 0.5|y|1.5.

Let q̄ be arbitrarily large. For i = 1,

yf(y, t, 1) +
q̄ − 1

2
|g(y, t, 1)|2

=y2 − 3y4 +
q̄ − 1

2
|y|3 ≤

(
1 +

(q̄ − 1)2

48

)
|y|2

since (q̄ − 1)|y|3 ≤ 6|y|4 + (q̄−1)2

24 |y|2. For i = 2,

yf(y, t, 2) +
q̄ − 1

2
|g(y, t, 2)|2

=y2 − 2y4 +
q̄ − 1

8
|y|3 ≤

(
1 +

(q̄ − 1)2

512

)
|y|2

since (q̄− 1)|y|3 ≤ 16|y|4+ (q̄−1)2

64 |y|2. Then Assumption 3.2
is satisfied with any large q̄ and α = 1 + (q̄−1)2

48 .
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