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Sample Complexity and Overparameterization Bounds for Temporal
Difference Learning with Neural Network Approximation

Semih Cayci! Siddhartha Satpathi! Niao He? R. Srikant?!'*

Abstract

We study the dynamics of temporal difference
learning with neural network-based value func-
tion approximation over a general state space,
namely, Neural TD learning. We consider two
practically used algorithms, projection-free and
max-norm regularized Neural TD learning, and
establish the first convergence bounds for these al-
gorithms. An interesting observation from our re-
sults is that max-norm regularization can dramat-
ically improve the performance of TD learning
algorithms, both in terms of sample complexity
and overparameterization. In particular, we prove
that max-norm regularization achieves state-of-
the-art sample complexity and overparameteriza-
tion bounds by exploiting the geometry of the
neural tangent kernel (NTK) function class. The
results in this work rely on a novel Lyapunov drift
analysis of the network parameters as a stopped
and controlled random process.

1. Introduction

Recently, deep reinforcement learning (RL) algorithms have
achieved significant breakthroughs in challenging high-
dimensional problems in a broad spectrum of applications
including video gaming (Mnih et al., 2013; Silver et al.,
2017b;a), natural language processing (Li et al., 2016), and
robotics (Gu et al., 2017; Kalashnikov et al., 2018). An im-
portant component of these success stories lies in the power
and versatility provided by neural networks in function ap-
proximation. Despite the impressive empirical success, the
convergence properties of RL algorithms with neural net-
work approximation are not yet fully understood due to their
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inherent nonlinearity.

In this paper, we investigate the convergence of temporal-
difference (TD) learning algorithm equipped with neural
network approximation, namely Neural TD learning, which
is an important building block of many deep RL algorithms
(Konda & Tsitsiklis, 2000; Wang et al., 2019). Despite the
theoretical insights provided by recent studies (Cai et al.,
2019; Xu & Gu, 2020; Brandfonbrener & Bruna, 2020;
Agazzi & Lu, 2019; Sirignano & Spiliopoulos, 2019), there
is still a gap between theory and practice. In order to ad-
dress this, in this paper, we consider two practically used
Neural TD learning algorithms, projection-free and max-
norm regularized, and establish sharp convergence bounds.
Interestingly, our theoretical findings show that regulariza-
tion based on max-norm geometry yields sharp convergence
bounds, which justifies the success of max-norm regulariza-
tion methods in practical applications.

1.1. Main Contributions

The paper presents a non-asymptotic analysis of TD learning
with neural network approximation. We elaborate on some
of the contributions in this paper below:

e Analysis of Neural TD learning: We analyze two
practically used Neural TD learning algorithms: (i) vanilla
projection-free Neural TD and (ii) max-norm regularized
Neural TD. We prove, for the first time, that both algo-
rithms achieve any given target error within a provably rich
function class, which is dense in the space of continuous
functions over a compact state space. In particular, we es-
tablish explicit bounds on the required number of samples,
step-size and network width to achieve a given target error.

e Improved convergence bounds: We show that
projection-free and max-norm regularized Neural TD im-
prove the prior state-of-the-art overparameterization bounds
by factors of 1/¢? and 1/€%, respectively, for a given tar-
get error €. Notably, we prove that max-norm regularized
Neural TD achieves the sharpest overparameterization and
sample complexity bounds in the literature, which theoreti-
cally supports its empirical effectiveness.

* Key insights on regularization: Our analysis reveals
that using regularization based on ¢, geometry leads to
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considerably improved overparameterization and sample
complexity bounds compared to the ¢5-regularization over
a provably rich function class in the NTK regime.

* Analytical techniques: We propose a novel Lyapunov
drift analysis to track the evolution of neural network pa-
rameters and the error simultaneously using martingale con-
centration and stopping times.

1.2. Related Work

Neural TD learning has been considered in a variety of
papers. For a detailed comparison, please refer to Appendix
A.

It is shown in (Cai et al., 2019; Wang et al., 2019) that Neu-
ral TD learning with ¢ projection, equipped with a ReL.U
network of width O(1/€%) achieves an error € + ¢,, after
O(1/¢€*) iterations. Unlike (Cai et al., 2019; Wang et al.,
2019), our Neural TD learning algorithms converge to the
true value function in a provably rich function class without
any approximation error. We show that the algorithms that
we consider in this paper achieve improved overparame-
terization bounds O(1/¢%) and O(1/¢?) for a given target
error €, which improve the existing results by 1/¢2 to 1/€5.
The results with ¢5-regularization were generalized to deep
Q-learning setting in (Xu & Gu, 2020).

In another line of work, (Agazzi & Lu, 2019; Brandfon-
brener & Bruna, 2020) consider Neural TD learning; how-
ever, these works only deal with finite state-space problems
in the infinite-width regime. Since these results rely on the
positive definiteness of the limiting kernel, the required over-
parameterization is much larger than the size of the state
space which negates the benefits of Neural TD learning over
tabular TD learning.

2. System Model

For simplicity, we consider a Markov reward process
{(s¢,m¢) : £ =0,1,...}, where the Markov chain s; takes
on values in the state space S, and there is an associated
reward r; = r(s;) in every time-step for a reward function
r:S — [0, 1]. The process {s; : t > 0} evolves according
to the transition probabilities P(s, A) = P(s;41 € Als; =
s)forany s € S, A C S and ¢t > 0. We assume that the
Markov chain {s, : ¢ > 0} is an ergodic unichain, therefore
there exists a stationary probability distribution 7:

m(A) = tli)rgoIP’(st €Alsp=s),Vse S, ACS.

The value function associated with the Markov reward pro-
cess {(s¢,7¢) : t > 0} is defined as follows:

V(s)zE[i’ytrﬂso:s}, Vs e S, (D

t=1

where v € (0, 1) is the discount factor. The Bellman opera-
tor for this Markov reward process, denoted by 7, is defined
as follows:

TV(s) =r(s)+~ V(s)P(s,ds'), Vs €S. (2)
For simplicity, we considér iid distributed samples from the
stationary distribution 7. Namely, we obtain (s, s;) where
s¢ ~ mand sy ~ P(s,-). We denote F; = o({(s;,5}) :
j=0,1,...,t}) to be the history up to (including) time ¢.
The case where the samples are generated by the Markov
reward process can be handled as in (Srikant & Ying, 2019),
but we do not consider that here.

Assumption 1. For any state x € X, we assume ||z||2 < 1.

In the next subsection, we introduce the neural network
architecture that will be used to approximate the value func-
tion.

2.1. Neural Network Architecture for Value Function
Approximation

Throughout the paper, we consider the two-layer ReLU
network to approximate the value function V':

Q(z; W, a) = % > aio (W, z). 3)

where ¢(z) = max{0, z} =2 I{z > 0} is the ReLU
activation function, a; € R and W; € R? for i € [m]. We
include a bias term in W;’s, and express z as (x, ¢) for a
constant ¢ € (0,1).

Symmetric initialization: The NTK regime is established
by random initialization. In this paper, we consider the
symmetric initialization, which was proposed in (Bai &
Lee, 2019): a; = —aj 4o ~ Unif{—1,+1} and W;(0) =
Witm/2(0) X N(0,1,) iid over i = 1,2,...,m/2, and
independent from each other. The benefit of the symmetric
initialization is that it provides Q(z; W (0),a) = 0 with
probability 1 for all x € X.

In the following, inspired by (Ji & Telgarsky, 2019), we
define the function class that we consider in this paper,
which can be realized by a neural network in the NTK
regime.

Function class: Define the space

MW= {v ‘R = R | E[|[o(wo)|2] < o0, wp ~ N(O,Id)}.
We assume that the value function V' lies in the following
function class.

Assumption 2. There exists a vector v € H and v > 0
such that:

V(I) = ]E[’UT(U)())Q/)(,I;U)O)], wWo ~ N(Ovld)7 Vr € X7
“)
where sup,,cga |[v(w)|2 < 7 and ¢p(z;w) = Hw'z >
0}
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Remark 1. If we replace the condition
SUp,epe l(w)]l2 < 7 in Assumption 2 by
E[llv(wo)||3] < oo, then it implies that V belongs
to the reproducing kernel Hilbert space (RKHS) induced by
the Neural Tangent Kernel (NTK). The above kernel can be
shown to be a universal kernel (Ji et al., 2019) and hence
the RKHS induced by the NTK is dense in the space of con-
tinuous functions on compact set X (Micchelli et al., 2006).
Therefore, it is possible to replace Assumption 2 by the
more general assumption that V' is continuous on a compact
state space X. In this case, from Theorem 4.3 in (Ji et al.,
2019), one can find a function V in the RKHS associated
with the NTK, i.e., V(z) = E[# " (wo)d(z; wp)], Yz € X,
such that sup,, ||0(w)||2 < 7 for some finite 7 which
approximates V, where 7 depends on the approximation

error sup,, |V (z) — V(z)).

3. Neural Temporal Difference Learning

Algorithms

For a given function p# = [u(x)]zex, we denote the
weighted /2-norm of any function V' as:

wu¢/ ()

TD learning aims to minimize mean-squared Bellman error,
which is defined as follows:

L(W,a) = |Q(W,a) = TQ(W,a)|3
2
— [ (QW.a) - TQwi W.a)) n(ao).
TeEX
&)
for any W; € R%a; € R fori = 1,2,...,m, where

Q(W,a) = [Q(z; W, a)]zex, 7 is the stationary distribu-
tion of the Markov chain, and 7 is the Bellman operator.
Given the initialization {(a;, W;(0)) : ¢ € [m]}, the param-
eter update is performed as follows:

W(t)+a (Tt-f-VQt(SUQ)—Qt(wt)) Vi Qi (),

where « > 0 is the step-size, Q¢(z) = Q(x; W (), a) is the
network at time step ¢ > 0. The algorithm is summarized
in Algorithm 1. We consider two variants of the Neural TD
learning algorithm:

(1) Projection-free Neural TD learning (PF-NTD): The
network parameters are updated as follows:

W (t+1/2). (6)

W(t+1/2) =

W(t+1) =

For regularization, we utilize early stopping, i.e., the number
of samples 7" is chosen as a function of the problem param-
eters and target error, which we will specify in Theorem
1.

Algorithm 1 PF/MN-Neural TD Learning
Initialization: —a; = @4y, 2 ~ Unif{—1,+1},

Wi(0) = Wit 2(0) ~ N(0,14), Vi € [%]

fort <T —1do
Observe x; = 9 (st), s = r(s¢) and =} = (s})
Compute stochastic semi-gradient: g,
Take a semi-gradient step: W (t+1/2) = W(t) + ag:

if projection-free then

WE+1)=W(t+1/2)
end if
if max-norm regularization then

Wi(t + 1) = Hg:‘n RWi(t + 1/2),VZ' S [m]
end if ’

Update iterate:

W(t+1) = (1—26%)@( )—i—mW(t—i—l)

end for

Output: Qr(z) = Q(x; W(T —1),a)forallz € X

(2) Max-norm regularized Neural TD learning (MN-
NTD): For a given parameter R > 0, let the set of pa-
rameters for max-norm regularization be defined as:

tor = {Wi € R+ |W; — W;(0) [m].

)

ll2 < \r} Vi €

Then, the network parameters are updated as follows:

Wi(t-i-l) ZHg:‘”RWi(tﬁ-l/Q),Vi € [m] )

where Ig(+) is the projection operator onto set G.

Max-norm regularization was introduced in (Srebro &
Shraibman, 2005; Srebro et al., 2005), and has been widely
used in training neural networks (Srivastava et al., 2014;
Goodfellow et al., 2013). Unlike the ¢5-projection in (Wang
et al., 2019; Cai et al., 2019), max-norm regularization can
be performed in parallel for all i € [m)], thus it is compu-
tationally more feasible. Also, it implies projection onto a
well-chosen subset, which leads to state-of-the-art overpa-
rameterization and sample complexity bounds as we will
show in Theorem 2.

4. Main Results

In the following, we present our main results on the per-
formance of Neural TD learning algorithms described in
Section 3.

Theorem 1. Under Assumptions 1 and 2, for any (pos-
sibly infinite) state-space X, target error € > 0 and er-
ror probability § € (0,1), let A = (1 7)65, l(m,d) =
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4y/log(2m + 1) + /log(1/9),

- 16(5 + (A +L(mo, 9)) (7 + A)>2

e (=) |

2

min { A , 1}.
3202(\/d + \/21og(mg/9))?

Then, for any width m > mg, PF-NTD with step-size

a < g yields the following bound after T' = ﬁ
iterations:

(1—nv)e
(1+2))2

Qo =

— 1
E[HQT - VHW§5T} ST ;E[“Qt = Vlz:&r] + e < 4e,

where Qi = [Q1(@)]zex, V = [V(2)]zer, and P(Er) >
1 —46.

Theorem 1 implies that there exists a set Ep of trajectories
which occurs with probability at least 1 — 44 such that PF-
NTD achieves target error € under the event £ for m =

— l —’l
polyl¥) and T = P:5) yé(ey 5),

Theorem 2. Under Assumptions 1-2, for any R > v,

2
16| v+ (R+£(m,0) ) (v+R
re s Sl o)

, and step-size

T
21— .
= %, MN-NTD yields:
_ (1+2R)p
E[ —Vﬂ;E:|§7+3E,
1@ - Viei 2] <

where Ey € Finit holds with probability at least 1 — J.

Theorem 2 implies that there exists a set F of trajectories
which occurs with probability at least 1 — § such that MN-
NTD achieves target error € under the event F; for m =
polegi(ﬁ) and T — poly(z;/zllog ) .

The analysis of PF-NTD relies on the following stopping
time:

Definition 1. For \ as given in Theorem 1, let

. A
t = mf{t >0 ma [ Wi(t) — Wi(0) 2 > ﬁ} )

be the stopping time.

Proof outline: Below, we outline the proof steps for The-
orem 1. The methodology is inspired by (Ji & Telgarsky,
2019), which considers binary classification problem with
cross-entropy loss. The details can be found in Appendix C.

1. First, we prove a Lyapunov drift bound for |W (¢) —
W |2 which holds for all ¢ < ¢; where W € R™ is
such that V, Qo (z)W =~ V(z) forallz € X. Anovel
symmetrization and concentration argument enables
establishing this bound for infinite &’

2. In the second step, we use the drift bound in conjunc-
tion with a stopped martingale concentration argument
to show that ¢; > T occurs with high probability, thus
the drift bound holds for all ¢ < 7" under that event.

3. Finally, we will use the drift bound again to show that
the approximation error is bounded as in Theorem 1
under the high-probability event considered in Step 2.

5. Remarks and Conclusions

Theorems 1 and 2 provide, to the best of our knowledge,
the first explicit convergence bounds for PF-NTD and MN-
NTD. Below we list some further implications.

Ly vs. Lo regularizations: Both PE-NTD and MN-NTD
yield improved bounds on m compared to the algorithms in
(Cai et al., 2019; Wang et al., 2019) over the provably rich
NTK function class. A key insight from our analysis is that
this improvement is mainly because both PF-NTD and MN-
NTD are designed to control max;e [, |[|Wi(t) — Wi(0)||2
via the choice of the stopping time (PF-NTD) or max-
norm projection (MN-NTD), while {5 regularization in
(Cai et al., 2019; Wang et al., 2019) is designed to control
|[W(t) — W (0)||2. Notably, MN-NTD achieves the sharpest
overparameterization and sample complexity bounds among
all existing NTD variants, which justifies the empirical suc-
cess of max-norm regularization for training ReLU networks
in practice (Srivastava et al., 2014; Goodfellow et al., 2013).

Approximation power: PF-NTD fully exploits the expressive
power of the neural network approximation in practice since
the parameters are not strictly constrained. On the other
hand, MN-NTD confines the network parameters within the
sets G/, p with a fixed radius R/+/m, which may limit the
expressive power of the neural network, especially for small
radius R. A similar loss of approximation power arise for
the projection-based NTD studied in (Cai et al., 2019; Wang
et al., 2019) for the same reason.

Convergence rate: Regularization of PF-NTD relies on
early stopping, whereas MN-NTD utilizes more aggres-
sive max-norm regularization. Without any strict control
OVer max;cy,) [|Wi(t) — Wi(0)||2, PE-NTD requires con-
siderably smaller step-sizes for convergence. Consequently,
the sample complexity and required width for PF-NTD to
achieve a target error € are worse than MN-NTD for which
larger step-sizes can be chosen.

Future work: In this work, we proved that any target error e
can be achieved by projection-free TD learning under early
stopping for a specific T = T'(¢,7,0). The behavior of
Neural TD learning beyond this 7" requires the analysis of
W (t) leaving the vicinity of W(0), i.e., going beyond the
NTK regime, and is an important open problem. The benefit
of increasing the number of layers is also an open question.
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A. Comparison with Previous Results

Variants of Neural TD learning have been analyzed in the
literature. For a quantitative comparison in terms of the re-
quired sample complexity and overparameterization bounds
to achieve a given target error, please see Table 1.

The first result on the convergence of Neural TD learn-
ing was presented in (Cai et al., 2019). Their work builds
upon the analysis in (Tsitsiklis & Van Roy, 1997; Bhandari
etal., 2018; Du et al., 2018; Arora et al., 2019) and requires
constraining the network parameter within a compact set
through the /5-projection at each iteration. They prove con-
vergence to a stationary point in a random function class
FB,m where m is the network width and B is a given pro-
jection radius. Consequently, the algorithm suffers from an
approximation error €, = O(E[||V —Ilx; , V|,]), which
is not explicitly bounded, and possibly non-vanishing even
with increasing width and projection radius. It is shown

in (Cai et al., 2019; Wang et al., 2019) that this variant of
Neural TD learning with projection, equipped with a ReLU
network of width O(1/€®) achieves an error € + ¢,, after
O(1/€*) iterations. Unlike (Cai et al., 2019; Wang et al.,
2019), our Neural TD learning algorithms converge to the
true value function in a provably rich function class without
any approximation error. We show that the algorithms that
we consider in this paper achieve improved overparame-
terization bounds O(1/¢%) and O(1/¢2) for a given target
error ¢, which improve the existing results by 1/¢2 to 1 /5.
The results with ¢5-regularization were generalized to deep
Q-learning setting in (Xu & Gu, 2020).

In practice, projection-free (Mnih et al., 2013) and max-
norm regularized (Srivastava et al., 2014; Goodfellow et al.,
2013; Srebro et al., 2005) algorithms are often adopted in
training neural networks because of their computational ef-
ficiency and expressive power, which we consider in this
work. In contrast, the Neural TD with ¢5-projection consid-
ered in (Cai et al., 2019; Wang et al., 2019) can be compu-
tationally expensive for high-dimensional state-spaces as it
cannot be performed in parallel.

Projection-free Neural TD learning has also been considered
in (Agazzi & Lu, 2019; Brandfonbrener & Bruna, 2020);
however, these works only deal with finite state-space prob-
lems in the infinite-width regime, i.e., they do not provide
bounds on the amount of overparameterization required.
Since these results rely on the positive definiteness of the
limiting kernel, the required overparameterization is much
larger than the size of the state space which negates the
benefits of Neural TD learning over tabular TD learning.

Our work is related to the analysis of (stochastic) gradient
descent in the NTK regime. It is shown in (Du et al., 2018;
Jacot et al., 2018) that the network parameters trained by
gradient descent lie inside a ball around their initialization.
However, they require massive overparameterization to en-
sure the positive definiteness of the neural tangent kernel,
which would imply finite state and width much larger than
the size of the state space in Neural TD learning. To estab-
lish such a result for stochastic gradient descent (and with
modest overparameterization) requires additional work, and
this problem has been considered for supervised learning
tasks in (Ji & Telgarsky, 2019; Oymak & Soltanolkotabi,
2019). Our paper deviates from this line of work as we
consider TD learning over an infinite state space, which has
significantly different dynamics than supervised learning.
Firstly, the stochastic semi-gradient in TD learning update
is not a real gradient (or its unbiased estimate) because of
bootstrapping, while the SGD update in supervised learn-
ing instances correspond to unbiased estimates of the true
gradient. This leads to significant difficulties in the anal-
ysis of projection-free algorithms. Also, the exponential
tails of the cross-entropy loss in (Ji & Telgarsky, 2019) lead
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to m = O(poly(log(1/¢))) dependency, which is not the
case for TD learning because the objective is mean-squared
Bellman error.

B. Analysis of PF-NTD: Proof of Theorem 1

In this section, we will prove Theorem 1. Before starting the
proof, let us define a quantity that will be central throughout
the proof.

Definition 2. For \ as given in Theorem 1, let

tlzinf{t>0:iré1[% Wi (£) = Wi (0)]|2 > (10)

=)
NT
be the stopping time at which there exists i € [m] such that
Wi(t) & B(W;(0),\/\/m) for the first time.

Since the updates, g;, are random in the Neural TD Learning
Algorithm (see Algorithm 1), the stopping time ¢; is random,
which constitutes the main challenge in the proof. As we
will show, for any ¢ < t1, the drift of W (¢) can be controlled.
Therefore, we will prove that ¢; > T with high probability
to prove the error bounds in Theorem 1.

Proof outline: Below, we outline the proof steps for Theo-
rem 1.

1. First, we will prove a drift bound for ||[W () — W2
which holds for all ¢ < ¢; where W € R™ is a weight
vector such that V', Qo (z)W ~ V(z) forall z € X.

2. In the second step, we will use the drift bound obtained
in the first step in conjunction with a stopped mar-
tingale concentration argument to show that t; > T
occurs with high probability, thus the drift bound holds
for all ¢ < T under that event.

3. Finally, we will use the drift bound again to show that
the approximation error is bounded as in Theorem 1
under the high-probability event considered in Step 2.

B.1. Step 1: Lyapunov Drift bound for W (¢)

We first prove a drift bound on the weight vector W (¢), a
common step in the analysis of stochastic gradient descent
and TD learning with function approximation (Cai et al.,
2019; Ji & Telgarsky, 2019; Bhandari et al., 2018; Xu & Gu,
2020). Define the point of attraction as follows:

— U(WZ(O))
W= [Wi 0 ,»7} , 1
( ) ta \/ﬁ i€[m] (i
where W (0) is the initial weight vector. Intuitively,
lim,, o0 V%Qo(x)W = V(z) for any z € X

under the symmetric initialization, which guarantees

VirQo()W(0) = Qo(z) = 0 for all z € X. For er-
ror probability § € (0, 1), recall that we define ¢(§, m) =
44/log(m + 1) + /log(1/5), and let

)\Jrﬁ(m,é)}’

E, = {;LGIE)( 1 Z L{|W;" (0)z| < N

w0 < T <

and & = EyN{t <t} forany ¢t < T.

The following key proposition is used to establish the drift
bound.

Proposition 1. Denote Ay = ry + vQ(x}) — Qi) as
the Bellman error. Under Assumptions 1-2, we have the
following inequalities:

(DE[A(Qe(xe) = V(m4)); &) < —(1— )2}
2)E[A(V(ze) = Vi Qo(z)W); &] < 4?

(3) For £(m, ) defined in Theorem 1:

E[A(ViwQo(ae) = ViwQi(er) 3£
- 4w+ A) (A+£(m,5))zt’ 12
vm
where z, = \/E[[|Q; — V[|2; &), E is the expectation over

random initialization and trajectory, By[.| = E[.|F_1] with

F_1 = Finit-

The proof of Proposition 1 is given in Appendix C. The first
inequality in Proposition 1 follows from the fact that the
Bellman operator 7 is a contraction with respect to ||. ||,
and V is the fixed point of 7 (Tsitsiklis & Van Roy, 1997).
The second inequality holds since Vi, Qo ()W turns into
an empirical estimate of V' with m /2 iid samples, where the
variance of each term is at most 2. The last inequality is
the most challenging one as it reflects the evolution of the
network output over TD learning steps, and it is essential to
have W;(t) € B(W;(0), A/+/m) to prove that part.

Now we present the main drift bound for the TD update.
Lemma 1 (Drift Bound). For anyt > 0, we have the fol-

lowing inequalities:

E[E W (t +1) — W55t < t1] <E[|W(t) = W|3;t < ta]
—2a(1 — )22 + (1 +2))?
+ (17+/\)(>\+€(m,5)))

Jm

+ 8azt(17
(13)

\/IE ||Qt VH%?&]'

Lemma 1 implies that for ¢ < ¢4, i.e., as long as W;(¢) €
B(W;(0),A//m) for all i € [m], the drift can be made
negative by sufficiently large width m and sufficiently small
step-size a.

where W is as defined in (11), z; =
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Paper State sp. | Width Sample complexity Error Regularization

(Cai et al., 2019) General | O(1/€%) O(1/€%) €+ €m | l2-projection

(Wang et al., 2019) General | O(1/¢€®) O(1/¢*) €+ €so | fo-projection
(Agazzi & Lu, 2019) Finite poly(|X|) | O(log(1/e)) € poly(|X|) width

This paper (PF-NTD) General | O(1/¢%) O(1/€5) € Early stopping

This paper (MN-NTD) General | O(1/€2) O(1/€*) € Max-norm projection

Table 1. The overparameterization and sample complexity bounds for neural TD-learning algorithms. PF-NTD denotes projection-free,
MN-NTD denotes max-norm regularized Neural TD learning algorithm. €,, = E||V — II FBom V||~ denotes the approximation error of

the random function class Fg,,, for a given value function V.

Proof. Recall that
gt = (re +7Qu(}) — Qu(w1)) Viw Qe (1)
= AV Qi (xt),

is the semi-gradient, where Ay = r; + vQ(z}) — Q¢ (x¢)
is the Bellman error. Since W (t + 1) = W(t) + ag;, we
have the following relation:

(14)

IW(E+D)=T I3 = W () ~T7 |3+2a g/ (W (1) — )]
+a?|gell3-
We can write the expected drift in the following form:
E[[W(t+1) - W3 &] = [W(t) - Wl31Le,
+20Eg[ )W () = W) L, + 0” Ee|lgell3 Le,.  (15)
——
(@) (i)

Bounding (i) in (15): In order to bound (i), we expand it as
follows. For any ¢ < #;:

Et[gt—r (W(t) - W)} = Ei[As - (Qt(xt) - V(ft))]
+EAr - (V) - V%QO(%)W)]
+E[A - (Vv Qo(ze) = VwQu(z) W], (16)
Then, we obtain the inequality in Lemma 1 by applying

Proposition 1.

Bounding (ii) in (15): The next argument follows the proof
of Lemma 4.5 in (Cai et al., 2019):

lgtll2 = [[(re + Qi (2y) — Qe (2e)) Vi Qu() |2,
< re +9Qe(wy) — Qe ()],

17)
< (
1+ 219%1)}({\62,5(90)\,

ST+2(W () = W0)[2 < 1+2),

where the first inequality follows since ||V Q¢(x)]]2 < 1
for any ¢, z, the second inequality follows since r(x) €
[0,1] for all x € X, and the last inequality holds since
|Qi(2)] = [Qi(x) = Qo ()| < [[W(t) =W (0)][zand ¢ < t,.
Consequently, ||g¢[|3 < (1 + 2X)2.

The result in (13) immediately follows by combining these
two bounds. O

B.2. Step 2: Stopping time ¢; > 7" with high probability

Now, we will use the drift result in Step 1 to show that
ty > T with high probability.
Lemma 2. Under Assumptions 1-2, we have:

A
=i : i\t) = Wi T2
t1 1nf{t >0 max IWi(t) = Wi(0)]l2 > m} =T,

with probability at least 1 — 0.
Proof. First, invoking Lemma 1 with the values for 7', A and

m specified in Theorem 1, we have the following inequality
for any t:

E[E, W (t + 1) —= WI3; &] <E[|W(t) - W|3; &]
—2a(1 — )22 +2a(l — 7)e® +4a(l — y)ez, (18)

where z; = \/E[|Q: — V[|2; &]. The step-size « is chosen
sufficiently small so that, by (17), || g¢||? < 2a(1 — 7)€%

Claim 1. Telescoping sum of (18) overt < T yields:

0<7?—2a(l —7) Z(zt — €)% 4+ 4a(1 — 4)eT.
t<T

Proof of Claim 1. Recall the notation E;[.] = E[.|F;_1].
Let §(t) = W(t) — W and (r be defined as:

¢r =3 (BllS(t+ DIEILe, — I8¢+ D31, )
t<T
> 3 1e (RIS + DI - 13+ DIE) = ¢o
t<T
for T > 1 with (o = ¢{, = 0, where the inequality holds
since 1g, ., < 1g,. Note that (; is a martingale over the
filtration {F; } since each summand constitutes a martingale
difference sequence, and 1g, € F;_; is predictable and
nonnegative. Then, we have:

S (BalIB + I3 - 1518 1, = Gr — 72

t<T
+[IW(T) = W31,

>0
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which follows from ||[W(0) — W||2 < . Since (7 > ¢}
forany 7' > 1, and (/- is a martingale with ¢} = 0, we have
E[¢r] > E[¢/] = 0. Hence,

> (BIW (t+1)- W3 &) -ElW () - |3:&]) > -7

t<T

and therefore the claim follows. ]

Applying Claim 1 and Jensen’s inequality, we have:

302

This bound on the total error will be the fundamental quan-
tity in the proof. Now, by using (19), we will show that the
event & = {t; < T} N E; occurs with low probability.

Forany i € [m], letg,(t + 1) = W;(t + 1) — W;(¢). Then,
we have:
ng ||2 = || Z gz t+ 1 H27
t<ty
<UD G +1) = Eyfgi(t+ 1]l
t<ty t<ty
(20)
{1 el (t+ D] @1
t<t1
Bounding (20): For any ¢, let
Dy =Wi(t+1)—=W;(t) —E [W;(t+1) — W;(8)], (22)

which forms a martingale difference sequence with re-
spect to the filtration F; since E;[D; ;] = 0. Let X, »» =
Zt < Dit. Since D; ; is a martingale difference sequence,
X 1 1s a martingale. Thus, bounding (20) is equivalent to
bounding || X; 4, ||2, under the event £7.. In order to achieve
this, we use a concentration inequality for vector-valued
martingales Theorem 2.1 in (Juditsky & Nemirovski, 2008),
which is given in the following.

Proposition 2 (Concentration for Vector Martingales). Con-
sider a martingale difference sequence {D; € RY : t > 0},
and let X7 = Y, .1 Dy. If || D¢z < o almost surely for
all t, then for any T and B > 0, we have the following
inequality:

P(|Xr] > (V2d+ 5V2)oVT) < exp(~5/2). ©23)

< [[W(t) = W(0)[]2 < A for all
2a(142))

NG . Define the stopped

Since sup ¢y |Q: ()|
t < t1, we have [[D; > <

martingale )~(i’t = X min{t,t;}» Which is again a martingale

with a corresponding martingale difference sequence 15”
that satisfies ||.D; ;|2 < || D; ¢]|2 (Williams, 1991). Since

1 X501l - Ter, < 11X,

the following inequality holds:

2a(1 + 20)VT

]P)(HX”’“H2 > V2(Vd + ) ( T [Ep) e P2,

which follows from

20(1 + 22)VT

{I1Xi.1,ll2 > V2(Vd + ) pnér

Jm
{1 Xzl > \/i(ﬁJrg)W}’
and
P(I %l > VE(Vd+ ﬁ)W) ot

by Proposition 2. Therefore, by using union bound:

P(|| X4, |2 > (\/ﬁ+2, /1og(7?))\/:2a(1+2A);%)

<4, (24

The step-size « is chosen to satisfy
(V2d + 2y/log(m/8)) VT - 2a(1 + 2X) < \/2.

Bounding (21): Note that we can bound (21) as follows:

1> Eafg, (t+1)] ey |12 < Z = ||Qt

t<ty t<ty

Vi, (25)

for all i € [m] under & since sup; , , |V, Q¢(2)[2 <
1/4/m. The expectation of the RHS above is bounded as
follows:

t — Vﬂ- ! E t Vﬂagt
\F E[) 11Qr = Viale \FZ Qe = Vix: &]

t<ty t<T

E 2ty

by the law of iterated expectations as the event {¢ < t1} N
E, € Fi_q as ||W;(t) — Wi(0)|| € Fi—1. Note that the
RHS of the previous inequality is upper bounded by (19).
Therefore, we have:

61T e
Vm

2«
—E[D_ Q= V7] <
\/m t<ty
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Hence, we have the following:

U {I X B+ it I > T gy

1€[m] t<t;

c { Z 204|Qt\/l/||rr]15'T . ?;LT;}
m m
t<ty
which implies that
6aT'e

} £L) <6, (26)

PCU {1 Edgit+ 1))z >

i€[m] t<t1

Jmo

by Markov’s inequality. Now, using (24) and (26) in (20)
and (21), we conclude that P(E}.) < 26. Since £ = &, U
Ef and P(ES) < § by Lemma 3, we conclude that Er holds
with probability at least 1 — 34.

O

B.3. Step 3: Error bound

In Step 2, we have shown that the event {¢t; > T’} occurs
with high probability. Since &7 = {t; > T} N Ey C &, for
any t < T, we have the following inequality:

EflQ: -

Vi €r] < VE[Q: — V(25 &1]
VE[Q: — V|12; &,

for any t < T'. Consequently, by using (19) and Jensen’s
inequality, we have:

<z =

1 1
Elll7: Y Q= Vini&r] < o D ElIQr = Vx; r]
t<T t<T
1
< T Z 2z < 3e.
t<T

In the final step, by following similar steps as (Cai et al.,
2019), we use Proposition 3 in Appendix C to show the
proximity of @ and £ 3", _, Q; to V{;,QoW, and con-
clude that E[[| Q7 — % >, 7 Q¢l«; Er] < €, which implies
E[||Q7 — V|x; Er] < 4e by triangle inequality.

C. Technical Results

In this section, we will provide a uniform tail inequality
which will be used in the analysis of Neural TD learning al-
gorithms. The argument is inspired by the proof of Glivenko-
Cantelli theorem (Wainwright, 2019; Bartlett, 2003).

Lemma 3. Forany ¢ € (0,1) and m € N, let
VIog(1/5).

Then, for any € > 0, if W; ~ N(0, 1) for all i € [m], we

lo(m,d) = \/8log(m +1) +

have:

1 & [2  lo(m,0)
sup — Y L{|W, x| <€} <4/ Ze+ —r7,
rr\lr\lzﬁlm; i vim
27
with probability at least 1 — & over the random initialization.

Proof. Let X = {z € R* : ||z|2 < 1}. For any [Wi];c(m)
ecand z € X, let

Ziw) = S LW | < )

i=1

and

JWi, Wa, ..., Wy) = Zc(x).

For any w, w’ € R™¢, let

Then, we have:

sup | f(w) — f(wV (u))| < (28)

1
weRmd m

for any i € [m]. Therefore, by Azuma-Hoeffding inequality,
we have:

1 1
sup | Z.(2)—EZ.(z)| > E sup |Z(z)—EZ. ()| + M,
reX reX 2m

(29)

with probability at least 1 — 4.

The following standard symmetrization argument, which
follows from in Theorem 4.10 in (Wainwright, 2019), will
provide an upper bound for Esup, ¢ v | Ze(z) — EZ(z)].

Claim 2. Let 0; "> Rademacher be a sequence of random

variables independent from W. Then,

1 m
E sup |Z.(z)~EZ.(z)| < 2E sup ‘7 S o {2l < €.
rzeX zex ' i—1

In the following, we show that there is an underlying struc-
ture, which will be the key in deriving the uniform bound.
For any given w € R™?, we can order w as follows:

lwiyal < Jwlyyzl = Hlwizl < e > 1wzl < e,

for any 7 < m. The existence of such a transformation
implies that, for any w € R™d

[1{|w z| < e}] | € Ac{o,1}™,
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where |A| < m + 1 since
[1{|wiya| < €}] icpm) € {Uiliepm) € {0,13™, i = Jiga }-
Furthermore, for any w € R™e 2 e X and € > 0,

<+m.

| (24w 2l < ], <

i€[m]

Therefore, by Massart’s finite class lemma (Massart, 2000),
we have:

1 m
E[sup | >~ o, 1{|W;al < c}||[Wilietm]

i=1

2log(m + 1) (30)
—

Therefore, by the law of iterated expectations:

)

1 m
E sup |— ;1 WiTm <e
sup | Dot (Wal < )

= EE[sup |% ZJJ{|W:$| < G}H[Wi]ie[m]],
r i=1

2log(m +1)

m

By using this result in conjunction with Claim 2, we obtain
the following bound:

21 1
E sup |Z.(z) — BZ.(z)| < 2/ 28 ED 4y
zeX
Now, (29) and (31) together imply that:

81 1 log( L
sup | Z(z) — EZ.(z)| < og(m+1) n og((s)’
reX m m

(32)

holds with probability at least 1 — 4. By Gaussian anti-
concentration, it is obvious that

EZ (z) =P(|W, x| <€) < \/56,
s

for any x € X. Using this result, we conclude the proof. [

C.1. Proof of Proposition 1
Part (1) Let £(6, m) = 2+/log(2m + 1) + /log(1/5)/2,
1 2 £(m, d)
Ei={sup— Y 1L{|w." <el < \/> ’
v={un SO 1IWT Ol <6 < /et T

Foranyt < T,let& = Ey N {t < t1}. (1) Forany ¢ < ¢,
we have the following inequality:

E:[A; (Qt(u’ct) - V(xt))] <-(1=-9Q:— V”Er

3

Proof. The proof follows the strategy first proposed in (Tsit-
siklis & Van Roy, 1997), and then used for the convergence
proofs in (Bhandari et al., 2018; Cai et al., 2019; Xu & Gu,
2020). Let E;[.] = E[.|F;—1], i.e., the expectation is over
(2, x}). Then, we have

Ei[A(Qi(xe) — V(24))]
= Ei[(TQe(xt) — Qu(24))(Qe () — V()]

by taking expectation over x} first, which implies the fol-
lowing:

B[ (TQi@e) = Qulwn) (Qulae) — V()|
=E, [(TQt(l“t) — TV () (Qi(wr) — V(ﬂﬁt))}
B | (Qilen) = V(@) (Qul) = V(@) |.

since TV (z) = V(z) for any x € X. Therefore, we have:

B[ (TQu(w0) = Qulw) (Qulwe) = V(w)]
<= [1Qe = VI3

where m = Et[(TQt(.Tt) - TV(.’Et)) (Qt(xt) — V({L't))]
Since ||.||r defines a norm, by Cauchy-Schwarz inequality,
we have:

m = Et[(TQt(mt) - TV(xt)) (Qt(wt) - V(xt))]
SNTQe =TVl - Qe = V|

From Lemma 6.3.1 in (Bertsekas, 2011), we have ||[7Q; —
TV < 7||Q¢ — V||, which implies the result. O

Part (2) For any ¢, we have:

EIA V() — Vi Qola) W) &) < %wa[n@t “VIZ &l

Proof. Let V{,QoW
any ¢, we have:

[V‘TVQO(:C)W]IE/Y. Then, for

E,[A, (V(xt) - V%Qo(xt)w)}
= Be[(TQe(we) — Qe(1)) (V (1) — Vi Qo) W)]

By using Cauchy-Schwarz inequality, we have:
Ee[(TQi(:) = Qel(we)) (V (1) — Vi Qo) W)]
< ITQ: = QllaJEl(V (1) — Vi Qolae) T)2).

Then, by using the contraction of T with respect to || - || by
Lemma 6.3.1 in (Bertsekas, 2011),

1TQ: — Qillx < (1 4+7)[|Qt — V|-
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By the law of iterated expectations,

E[A(V(21) = Viy Qo(z)W); &)
<A+ NE[Q: — Vllxle, [V — Vi QoW |l],

since 1¢, € F;—1. Hence, by Cauchy-Schwarz inequality,
we have the following:

E[A(V(2) — VigQo(z)W);: &
< 2VEQ — VIGEENV - Vi QTI2). (33)

In the following, we will bound \/IE [V — Vi, QoW |2].
For any x € X, we have:

713 (ve

i=1

V(z) = Vi :13) (34)

where V;(z) = {W, (0)z > 0}v™ (W;
V(z) = E[{W; (0)x > 0}v™ (Wi(0)z] = E[V,
Assumption 2. Hence, for any i € [m],

W;(0))x. Recall that
i(z)] by

and for ¢, j € [m/2], we have:

Cov(Vi(), V(@) < 1{i = j}E[lo(WA (0)) 3]
Under symmetric initialization, W;(0) = W;,,,2(0) for
all i € [m/2]. Therefore, by using the above result along

with Fubini’s theorem, we have:

E|V-Vy QW |2

reX m

since Var(V;(z)) < E[[lu(W1(0))||2] < 72 by Assumption
2 and ||z|]2 < 1 for all z € X by Assumption 1. The extra
factor is due to the symmetric initialization. By substituting
(35) into (33), we have:

E |:At (V(l“t) - V{TVQO(%)W%&}

fgé%v@m@f-

V% &l

Part (3) Let
T, = alv(%o)) i € [m],
with U = [U;];e[m], which implies W = W (0) + U. Note

that under symmetric initialization, Vi Qg ()W (0) =
Qo(z) = 0 for all z € X. Then, for any ¢, we have:

- VWQt(xt))TU§ &)
45(\ + £(m, 8))

E[A; (Vi Qo(w¢)

< T'Zh (36)
and
E[A (Vi Qo) — Vv Qu(wr)) W (0); &
AN+ 7 4
< DAtlmd) e D e

with probability at least 1 — § over the random initialization.

Proof. In order to prove (36), we have the following bound
by using Lemma 6.3.1 in (Bertsekas, 2011):

Ei[A; - (Vir Qo) — Vi Qu(ar))  Ull,
<A +Qi = VI-IVHQT - Vi QoUllx  (38)

For any x € X, we have:

(VwQo(x) — VwQ:(z) T
= 3 (1w O > 031w (1) > 0}) “T(W%
1€[m]
Let
S, (t) = {z € [m] : I{W," (0)z > 0} £ I{W," (t)a > o}}.
(39)
For any x € X and i € S,(t), we have:
(Wi (0)z| < [W;T(0)z — W;T (8)z] < [Wi(0) — Wi(t) 2,

since i € S, (t) implies W, (0)z and W, (¢)x have differ-
ent signs. Therefore, we have the following relation:

Sa(t) < {i € [m] + W (0)a] < [Wi(0) = Wil®)]12},
c {ieml: W] (Ol <AV},
(40)
for any t < t;. With this definition, we have:
[(VwQo(z) — VWQt( ))Ti\
<= Z I{i € S, (t)}7 < %S(x). (41)

1€[m
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since v(w) < ¥ for any w € R? by Assumption 2, where

m/2

> 1w )l < v},

i=1

(42)

S(a)

for any 2 € X. By Lemma 3, under F; N {t < t1}, we
have:

25(x) < A V2U(m/2, 6)' 43)
m vm vm
Therefore, we can bound (38) as follows:
E[A (Vi Qo) — Vi Qu(wy)  Ulle,
40N+ 4(m, 0
< PRAEL0)4 0, v e

Jm

By taking expectation and using Cauchy-Schwarz inequality,
we obtain:

4 (At U(m. 5))
vm "

In order to prove (37), we use Lemma 6.3.1 in (Bertsekas,
2011) to obtain the following inequality:

E[A (Vi Qo) —VwQy(w1)) ' T <

Vi Qi(z)) W(0)]
Vil (Viy QoW (0) — Vi QW

E[A; (VWQO(z) -
<2(Q: —

For any x € X, we have:

(O (44)

(vao< ) = VwQu(x)) ' W(0)
\r 3 al(H{WT( )z > 0}—I{W, (t)a > o})WT( )z.

1€[m]

Recall the definition of S, (¢) in (39). By using triangle
inequality:

|(Vw Qo) — Vi Qi(z)) W(0)|
<Ly uies.mr o
i1€[m]

Forany z € X and ¢ € S, (t), we have:
WiT (0)z] < Wi (0)2 — Wi (B)z] < [[W(0) = Wi(t)]l2,

since i € S,(t) implies W, (0)z and W, ()= have dif-
ferent signs. The correlation between 1{i € S, (¢)} and
[|[W;(t) — W;(0)]|2 creates the main problem in the proof,
which we resolve under the event {¢t < ¢;}. Fort < t1, we
have |W;(0) — W;(¢)|l2 < A/+/m. Thus, we have:

25 wie s.0)

1€[m]

A
— <
1.0 <

|(VwQo() — VwQ:(x)) W (0)] <

%S(Z‘)

IN

where S(z) is defined in (42). Using Lemma 3 similar to
(43), under F7 N {t < t1}, we have:

ANA + £(m, 8))

E[A (Vi Qo(z)—ViwQi(x,)) U] < N

Zt.
O

C.2. Proximity of Q and + >, _+ Q;

In this section, we will show that the output of Algo-
rithm 1, Qp(z) = Q(z; 7 >, W(t),a), is close to
F >, Qi(z) in expectation, which will prove that Q7
achieves the target error. The idea is based on (Cai
et al., 2019), and aims to use the linear approximation
Vi Qo(z)W (T'— 1) as an auxiliary function to show the
proximity of Q- and % Dot Qt

Proposition 3. Let W € R™ pe q (random) vec-
tor of parameters. Also, let Q(x) Q(z; W, a) and
Qo(z) = V,Qo(x)W for any v € X, and the event
A = {maxie[m] ||Wz — W1(0)||2 < \/%} N Ey. Then,
we have the following inequality:

A+ £(m,

E[G - Dol N )

Al <

<

DN

Consequently, we have:

(45)

'ET] <e.

efor - ;;Qt g

Proof. First, note that the difference of Q and Qo can be
written as follows:

|@< ) = Qo(2)]
f ST LWz > 03— 1{W,; (0)x > 0} W, ],

1€[m]
forany x € X. Let
S, = {z e [m] : W, (0)z > 0} # I{W, = > o}}.

Then, we have:

~

10(x) — Ool(x)| < % Z 1{i € S} W,

\F Z 1{i e S, }HW Wi (0)][2.

since ¢ € S, implies |WT£L'| < |WT$7 w.m(0 )z| <
|[W; — W;(0)||2. Similarly, we have: [W, (0)z| < ||W; —
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W;(0)||2- Then, we have:

A ~ A
() — Qo)1 < ~[S.l14
< MA+Um,9))
< NG .
Taking the expectation and using Jensen’s inequality, we
have:

E[[|Q — Qollx; A]

IN

VENGr — Goll2: A
A+ £(m,9))
v

which concludes the proof of the first claim.

IN

In order to prove the second claim, consider W= /V[7(T —
1) = £ >, W(t), and note that /W(T —1) € Fr_q and
Er C A by definition. Therefore, the first part implies the
following:

EflQr — VJVQ()W(T —V|lx:€ér] < ( \/(a ))
(46)
with the usual notation V. QOW T - 1) =

(Vi Qo(a)W (T - 1) _,,

. Finally, we have:

||—2Qt Viy QoW (T — 1)||x; 7]

t<T

<*ZEIIQf Vi QoW (1)]x: 1],

t<T

by Jensen’s inequality. For any ¢ < T, letting W =
W (t), and noting that &+ C A, we have E[||Q; —
Vi QoW ()| x; & < M\/(ﬁm’é)) by using the first part
of the proposition, which implies:

Elll 7 3 Qe VR QoW (T 1) | £1] <

t<T

vm

(47)
Using (46), (47) and triangle inequality together, we con-
clude that

1 —
E[”f Z Qi — Qrllx;&r] < e,
t<T

with the choice of parameters in Theorem 1. O

D. Analysis of MN-NTD: Proof of Theorem 2

The proof of Theorem 2 consists of the same steps as Theo-
rem 1, but it is simpler because the growth of || W (t) — W |2
is controlled by the max-norm constraint. In the first step,
we will prove a Lyapunov drift bound.

A+ E(m,é)).

D.1. Lyapunov Drift Bound

First, note that for any R > 0 and m € N,

Gm. R = {w € R™ : [W;(0) — willz < \/—%,Vi € [m]},

is the Cartesian product of convex sets g;;m R» Which is con-
vex. This leads to the following result.
Lemmad4. Foranyt > 0and R > U, we have the following

inequalities:

E[[W(t +1) = W|3; E1] < E[|W(t) — W|[3; B1]
—2a(1 — )22 + a*(1 4+ 2R)?
+ (7+R) (R+€(m76)))

Jm

+ 8az (D
(43)

VE[Q: — V2; Eq].

where W is as defined in (11), z, =

Proof. First, note that W (t 4+ 1) = IIg,, ,W(t+1/2) by
the update rule in (8), and G, g is a convex set. Also, note
that R > v implies W € G, r. Therefore, we have:

IW(t+1) = W3 = |lg,, ,W(t+1/2) -

<[IW(t+1/2) - W5,

Hgnl,RWH§7

which follows since projection is a non-expansive operation
for convex subsets. Since W (t + 1/2) = W (t) + ag, and
llgtll2 <14 2R by (17), we have:

E W (t+1) = W3 < [[W ()W |[3+2aE,[g, (W (£)~W)
+ (14 2R)%
Then, the proof follows by multiplying both sides by 15,
taking expectation, and using Proposition 1 with X replaced
by R since [|W;(t) — W;(0)||2 < R/+/m for all i € [m]
and t; = oo. O
D.2. Error Bound

Note that by the choices of step-size a and network width
m, we have:

(1 +2R)% = a(1 — v)é,
and
+ (7 + R) (R +£(m,?))
<e(l— 4.
" <e(l-9)/

Using these in Lemma 4, we have:
E[|W(t+ 1) — WI[3; Er] <E[[|[W(t) — W|3; E1]
—a(l -7 ( e) +2a(1 — 7)€
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By telescoping sum over ¢ = 0,1,...,7 — 1, the above
inequality yields:
1 E[[W(0) - W3 E1] |, »
=Y (zn—e?< + 2¢%,
T = a(l—~)T
=2
v
< 262,
a7

By using Jensen’s inequality,

1 2 v
— —€) < ——— +262
(T Zzt 6) ~a(l-9)T +ae

The above inequality yields:

A
Sl
N
R

1
= SCEIQ— Vi Bl <

t<T t<T

< — +3e.
a(l—T

We conclude the proof by using Proposition 3.



