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A Simple and Fast Coordinate-Descent Augmented-Lagrangian Solver

for Model Predictive Control

Liang Wu1, Alberto Bemporad1

Abstract— This paper proposes a novel Coordinate-Descent
Augmented-Lagrangian (CDAL) solver for linear, possibly
parameter-varying, model predictive control (MPC) problems.
At each iteration, an augmented Lagrangian (AL) subproblem
is solved by coordinate descent (CD), exploiting the structure
of the MPC problem. The CDAL solver enjoys three main
properties: (i) it is construction-free, in that it avoids explicitly
constructing the quadratic programming (QP) problem associ-
ated with MPC; (ii) is matrix-free, as it avoids multiplications
and factorizations of matrices; and (iii) is library-free, as it
can be simply coded without any library dependency, 90-lines
of C-code in our implementation. To favor convergence speed,
CDAL employs a reverse cyclic rule for the CD method, the
accelerated Nesterov’s scheme for updating the dual variables,
a simple diagonal preconditioner, and an efficient coupling
scheme between the CD and AL methods. We show that CDAL
competes with other state-of-the-art methods, both in case of
unstable linear time-invariant and linear parameter-varying
prediction models.

Index Terms— Augmented Lagrangian method, coordinate
descent method, model predictive control

I. INTRODUCTION

Model predictive control (MPC) has been widely used for

decades to control multivariable systems subject to input and

output constraints [1]. Apart from small-scale linear time-

invariant (LTI) MPC problems whose explicit MPC control

law can be obtained [2], deploying an MPC controller in

an electronic control unit requires an embedded Quadratic

Programming (QP) solver. In the past decades, the MPC

community has made tremendous research efforts to develop

embedded QP algorithms [3], based on interior-point meth-

ods [4], [5], active-set algorithms [6], [7], gradient projection

methods [8], the alternating direction method of multipliers

(ADMM) [9], [10], and other techniques [11]–[15].

A demanding requirement for industrial MPC applications

is code simplicity, for easily being verified, validated, and

maintained on embedded platforms. In this respect, the

interior-point and active-set methods require more compli-

cated arithmetic operations in their algorithm implementa-

tions when compared to first-order optimization methods

like gradient projection and ADMM. The first-order opti-

mization methods are quite appealing in embedded MPC

since their embedded implementations could only involve

additions and multiplications (no divisions, square roots,

etc.). However, most of the proposed approaches require

that the MPC-to-QP transformation is explicitly constructed

for consumption by the solver, such as for preconditioning,

estimating the Lipschitz constant of the cost gradient, and
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factorizing matrices. This may not be an issue for linear

time-invariant (LTI) MPC problems, in which the MPC-

to-QP construction and other operations on the problem

matrices can be done off-line. But for some linear parameter-

varying (LPV) or for linear time-varying MPC problems

in which the linear dynamic model, cost function and/or

constraints change at run time, an explicit online MPC-to-

QP construction increases the complexity of the embedded

code and computation time. Avoiding an explicit MPC-to-QP

construction, can be called as construction-free property of

an MPC solver. The barrier interior-point FastMPC solver [4]

and the active-set based BVLS solver [15] are construction-

free; they directly use the model and weight matrices to

define the MPC problem without constructing a QP problem.

Their complicated implementations are not matrix-free as in-

volving Cholesky or QR factorizations arithmetic operations

during iterations. The well-known simple and efficient first-

order method OSQP [10] is not construction-free and matrix-

free when applied to solve LPV-MPC problems, as it requires

that matrix factorizations are computed and cached on each

sampling time. The OSQP utilizes its own LDLT solver to

perform matrix factorizations, thus being library-free.

A. Contribution

By combining the coordinate descent (CD) and augmented

Lagrangian (AL) methods, in this paper we develop a

construction-free, matrix-free, and library-free solver for LTI

and LPV MPC problems that is particularly suitable for

embedded industrial deployment.

Coordinate descent has received extensive attention in

recent years due to its application to machine learning [16]–

[18]. In this paper, we will exploit the special structure

arising from linear MPC formulations when applying CD.

In [19]–[21], the authors also use AL to solve linear MPC

problems with input and state constraints using the fast

gradient method [22] to solve the associated subproblems.

The Lipschitz constant of the cost gradient and convexity

parameters [19] are needed to achieve convergence, and

computing them requires in turn the Hessian matrix of the

subproblem, and hence constructing the QP problem. As the

Hessian matrix of the AL subproblem is close to a block

diagonal matrix, this suggests the use of the CD method to

solve such a QP subproblem, due to the fact that CD does not

require any problem-related parameter. Moreover, only small

matrices are involved in running the CD method, namely

the matrices of the linear prediction model and the weight

matrices. As a result, the proposed CDAL algorithm does not

require the QP construction phase and is extremely simple
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to implement. In addition, each update of the optimization

vector has a computation cost per iteration that is quadratic

with the state and input dimensions and linear with the

prediction horizon.

To improve the convergence speed of CDAL, we propose

four techniques: a reverse cyclic rule for CD, Nesterov’s

acceleration [22], preconditioning, and an efficient coupling

between CD and AL. While the use of a reverse cyclic rule

in CD still preserves convergence, when the MPC problem is

solved by warm-starting it from the shifted previous optimal

solution, the gap between the initial guess and the new

optimal solution is mainly caused by the last block of vari-

ables, and computing the last block at the beginning tends to

reduce the overall number of required iterations to converge,

as we will verify in the numerical experiments reported in

this paper. We employ Nesterov’s acceleration scheme for

updating the dual vector to improve computation speed and a

heuristic preconditioner that simply scales the state variables.

In addition, an efficient coupling scheme between CD and

AL method is proposed to reduce the computation cost of

each CD iteration. To analyze the role of each component

of CDAL and its computational performance with respect to

other solvers (FastMPC, µAO-MPC, OSQP, and MATLAB’s

quadprog), we conduct numerical experiments on an ill-

conditioned problem of LTI-MPC control of an open-loop

unstable AFTI-16 aircraft, and on LPV-MPC control of a

continuously stirred tank reactor (CSTR).

B. Notation

H ≻ 0 (H � 0) denotes positive definiteness (semi-

definiteness) of a square matrix H , H ′ (or z′) denotes the

transpose of matrix H (or vector z), Hi,j denotes the element

of matrix H on the ith row and the jth column, Hi,·, H·,j

denote the ith row vector, and jth column vector of matrix

H , respectively. For a vector z, ‖z‖2 denotes the Euclidean

norm of z, z 6=i the subvector obtained from z by eliminating

its ith component zi.

II. MODEL PREDICTIVE CONTROL

Consider the following MPC formulation for tracking

problems

min
1

2

T−1
∑

t=0

‖Wy (yt+1 − rt+1)‖22 +
1

2
‖Wu (ut − ur

t )‖22

+
1

2
‖W∆u∆ut‖22

s.t. xt+1 = Axt +But, t = 0, . . . , T − 1

yt+1 = Cxt+1, t = 0, . . . , T − 1

ut = ut−1 +∆ut, t = 0, . . . , T − 1

xmin ≤ xt ≤ xmax, t = 1, . . . , T

umin ≤ ut ≤ umax, t = 0, . . . , T − 1

∆umin ≤ ∆ut ≤ ∆umax, t = 0, . . . , T − 1

x0 = x̄0, u−1 = ū−1 (1)

in which xt ∈ R
nx is the state vector, ut ∈ R

nu the input

vector, ∆ut = ut − ut−1 the vector of input increments,

yt ∈ R
ny the output vector, rt and ur

t are the output and

input set-points, and x̄0 and ū−1 denote the current state

and the previous input vectors, respectively. We assume that

Wy = W ′
y � 0, Wu = W ′

u � 0, W∆u = W ′
∆u ≻ 0. The

formulation (1) could be extended to include time-varying

bounds on x and u along the prediction horizon, linear

equality constraints or box constraints on the terminal state

xT for guaranteed closed-loop convergence, as well as affine

prediction models. To simplify the notation, in the sequel we

consider the following reformulation of (1)

min
1

2

T
∑

t=1

x̂′
t(Ĉ

′Ŵ Ĉ)x̂t − x̂′
t(Ĉ

′Ŵ r̂t) +
1

2
û′
t−1W∆uût−1

s.t. x̂t+1 = Âxt + B̂ût, t = 0, . . . , T − 1

x̂min ≤ x̂t ≤ x̂max, t = 1, . . . , T

ûmin ≤ ût ≤ ûmax, t = 0, . . . , T − 1

x̂0 =
[

x̄0

ū−1

]

(2)

where x̂t = [ xt
ut−1 ] ∈ Rn̂x , n̂x = nx+nu, ût = ∆ut ∈ Rnu ,

Â = [A B
0 I ] ∈ R

n̂x×n̂x , B̂ = [BI ] ∈ R
n̂x×nu , Ĉ = [C 0

0 I ],

Ŵ =
[

Wy 0
0 Wu

]

, r̂t =
[

rt
ur
t−1

]

. The vector z of variables to

optimize is

z =
[

û′
0 x̂′

1 û′
1 . . . û′

T−1 x̂′
T

]′ ∈ R
T (n̂x+nu)

The inequality constraints on state and input variables, whose

number is 2T (n̂x + nu), are

z ≤ z ≤ z̄ ⇔
{

x̂min ≤ x̂t ≤ x̂max, ∀t = 1, . . . , T
ûmin ≤ ût ≤ ûmax, ∀t = 0, . . . , T − 1

where x̂min = [ xmin
umin

], x̂max = [ xmax
umax

], ûmin = ∆umin and

ûmax = ∆umax. At each sample step, the MPC problem (1)

can be recast as the following quadratic program (QP)

min
1

2
z′Hz + h′z

s.t. z ≤ z ≤ z̄

Gz = g (3)

where H = H ′ � 0, H ∈ R
nz×nz , nz = T (n̂x + nu),

h ∈ R
nz , G ∈ R

Tn̂x×nz , and g ∈ R
Tn̂x are defined as

H =











R 0 . . . 0 0

0 Q . . . 0 0

...
...

. . .
...

...
0 0 . . . R 0

0 0 . . . 0 Q











,

R = W∆u

Q = Ĉ′Ŵ Ĉ

G =









B̂ −I 0 0 . . . 0 0 0

0 Â B̂ −I . . . 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . Â B̂ −I









h =









−Ĉ′Ŵ r̂1

−Ĉ′Ŵ r̂2
...

−Ĉ′Ŵ r̂T









, g =









−Âx̂0

0

...
0









Clearly matrix G is full row-rank. Note that

A,B,C,Wy ,Wu,W∆u and the upper and lower bounds



on x, u, and ∆u in (1) may change at each controller

execution.

III. ALGORITHM

A. Augmented Lagrangian Method

We solve the convex quadratic programming problem (3)

by applying the augmented Lagrangian method. The bound-

constrained Lagrangian function L : Z × R
T×n̂x → R is

given by

L(z,Λ) = 1

2
z′Hz + z′h+ Λ′(Gz − g)

where Z = {z ≤ z ≤ z̄} and Λ ∈ R
Tn̂x is the vector of

Lagrange multipliers associated with the equality constraints

in (3). The dual problem of (3) is

max
Λ∈RTn̂x

φ(Λ) (4)

where φ(Λ) = minz∈Z L(z,Λ). Assuming that Slater’s

constraint qualification holds, the optimal value of the primal

problem (3) and of its dual (4) coincide. However, φ(Λ) is

not differentiable in general [23], so that any subgradient

method for solving (4) would have a slow convergence

rate. Under the AL framework, the augmented Lagrangian

function

Lρ(z,Λ) =
1

2
z′Hz+ z′h+Λ′(Gz− g)+

ρ

2
‖Gz− g‖2 (5)

is used instead, where the parameter ρ > 0 is a penalty

parameter. The corresponding augmented dual problem is

defined as:

max
Λ∈RT×nx

φρ(Λ) (6)

where φρ(Λ) = minz∈Z Lρ(z,Λ) is differentiable provided

that H + ρG′G ≻ 0. The dual problem (4) and the

augmented dual problem (6) share the same optimal solu-

tion [24, see chapter 2 subsection 2.2], and most important

dρ(Λ) is concave and differentiable, with gradient [23], [25]

∇φρ(Λ) = Gz∗(Λ) − g, where z∗(Λ) denotes the optimal

solution of the inner problem minz∈Z Lρ(z,Λ) for a given

Λ. Moreover, the gradient mapping ∇φρ : RT×nx → R
T×nx

is Lipschitz continuous, with a Lipschitz constant given by

Lφ = ρ−1 [26].

Let Fρ(z; Λ
k) = 1

2z
′HAz + (hk

A)
′z, where hk

A = 1
ρ
h +

G′Λk − G′g, and HA = 1
ρ
H + G′G has the block-sparse

structure

HA =





















φ1 φ2 0 0 0 . . . 0 0 0

φ′

2 φ3 φ4 φ5 0 . . . 0 0 0

0 φ′

4 φ1 φ2 0 . . . 0 0 0

0 φ′

5 φ′

2 φ3 φ4 . . . 0 0 0

..

.
..
.

..

.
..
.

..

.
. . .

..

.
..
.

..

.
0 0 0 0 0 . . . φ3 φ4 φ5

0 0 0 0 0 . . . φ′

4 φ1 φ2

0 0 0 0 0 . . . φ′

5 φ′

2 φ6





















and φ1 = 1
ρ
R + B̂′B̂, φ2 = −B̂′, φ3 = 1

ρ
Q +

(

I + Â′Â
)

,

φ4 = Â′B̂, φ5 = −Â′, φ6 = 1
ρ
Q + I . Since G is full rank,

matrix HA ≻ 0. According to [24], the AL algorithm can be

formulated in scaled form as follows:

zk+1 = argmin
z∈Z

Fρ(z; Λ
k) (7a)

Λk+1 = Λk + (Gzk+1 − g) (7b)

which involves the minimization step of the primal vector z
and the update step of the dual vector Λ. As shown in [24],

the convergence of AL can be assured for a large range

of values of ρ. Typically, the larger the penalty parameter,

the faster the AL algorithm is to converge, but the more

difficult (7a) is to solve, due to a larger condition number

of the Hessian matrix of subproblem (7a). The convergence

rate of the AL algorithm (7) is O(1/k) according to [27].

To improve the speed of the AL method, [28] proposed

an accelerated AL algorithm, whose iteration-complexity

is O(1/k2) for linearly constrained convex programs, by

using Nesterov’s acceleration technique. The accelerated AL

algorithm is summarized in Algorithm 1.

Algorithm 1 Accelerated augmented Lagrangian method

[28]

Input: Initial guess z0 ∈ Z and Λ0; maximum number Nout

of iterations; parameter ρ > 0.

1. Set α1 ← 1; Λ̂0 ← Λ0;

2. for k = 1, 2, · · · , Nout do

2.1. zk ← argminz∈Z Fρ(z; Λ̂
k−1);

2.2. Λk ← Λ̂k−1 + (Gzk − g);
2.3. if ‖Λk − Λ̂k−1‖22 ≤ ǫ, stop;

2.4. αk+1 ← 1+
√

1+4α2
k

2 ;

2.5. Λ̂k ← Λk + αk−1
αk+1

(Λk − Λk−1);

3. end.

For solving the strongly convex box-constrained QP (7a),

the fast gradient projection method was used in [19], [21].

Inspired by the fact that the Gauss-Seidel method in solving

block tridiagonal linear systems is efficient [29], in this paper

we propose the use of the cyclic CD method to make full

use of block sparsity and avoid the explicit construction of

matrix HA. Note that in the gradient projection method or

fast gradient projection method [21], the Lipschitz constant

parameter deriving from matrix HA needs to be calculated or

estimated to ensure convergence. Therefore, for linear MPC

problems that change at runtime such methods would be

less preferable than cyclic CD. In this paper, by making full

use of the structure of the subproblem, we will implement

a cyclic CD method that requires less computations, as we

will detail in the next section.

B. Coordinate Descent Method

The idea of the CD method is to minimize the objective

function along only one coordinate direction at each iteration,

while keeping the other coordinates fixed [30]. In [31], the

authors showed that the CD method is convergent in convex



differentiable minimization problems, and the rate of con-

vergence is at least linear. We first give a brief introduction

of the CD method to solve (7a). Under the assumption

that the set of optimal solutions is nonempty and that the

objective function Fρ is convex, continuously differentiable,

and strictly convex with respect to each coordinate, the CD

method proceeds iteratively for k = 0, 1, . . . , as follows:

choose ik ∈ {1, 2, . . . , nz} (8a)

zk+1
ik

= argmin
zik∈Z

Fρ(zik , z
k
6=ik

; Λ̂k) (8b)

where with a slight abuse of notation we denote by

Fρ(zik , z
k
6=ik

; Λ̂k) the value Fρ(z; Λ̂
k) when z 6=ik = zk6=ik

is fixed. The convergence of the iterations in (8) for k →∞
depends on the rule used to choose the coordinate index ik.

In [31], the authors show that the almost cyclic rule and

Gauss-Southwell rule guarantee convergence. Here we use

the almost cyclic rule, that provides convergence according

to the following lemma:

Lemma 1 ( [31]): Let
{

zk
}

be the sequence of

coordinate-descent iterates (8), where every coordinate

index is iterated upon at least once on every N successive

iterations, N ≥ nz . The sequence
{

zk
}

converges at least

linearly to the optimal solution z∗ of problem (7a).

In this paper we will use the reverse cyclic rule

ik = nz − (kmodnz)

to exploit the fact that the shifted previous optimal solution

is used as a warm start. The chosen rule clearly satisfies

the assumptions of Lemma 1 for convergence. The imple-

mentation of one pass through all nz coordinates using

reverse cyclic CD is reported in Procedure 2. In Proce-

dure 2, the Lagrangian variable Λ̂ ∈ R
T×n̂x is divided

into {λ̂0, . . . , λ̂t−1, . . . , λ̂T−1}, where λ̂t−1 ∈ R
n̂x . For a

given symmetric M ∈ R
ns×ns � 0, d ∈ R

ns , the operator

CCD[s,s̄] {M,d} used in Procedure 2 represents one pass

iteration of the reverse cyclic CD method through all ns

coordinates sns
, . . . , s1 for the following box-constrained QP

min
s∈[s,s̄]

1

2
s′Ms+ s′d (9)

that is to execute the following ns iterations

for i = ns, . . . , 1

si ←
[

si − 1
Mi,i

(Mi,·s+ di)
]s̄i

si

end

(10)

where [si]
s̄i
si

is the projection operator

[si]
s̄i
si

=







s̄i if si ≥ s̄i
si if si < si < s̄i
si if si ≤ si

(11)

Note that in Procedure 2, Steps 2, 3, 4.1, and 4.2 all involve

the same operator CCD. In Procedure 3, we exemplify an

efficient way to evaluate such an operator for Step 4.2 of

Procedure 2, as the approach is similar for evaluating Steps 2,

3, and 4.1, where σ records the sum of squared coordinate

variations.

Procedure 2 Full pass of reverse cyclic coordinate descent

on all block variables

Input: Λ̂ = {λ̂0, . . . , λ̂T−1}, U = {û0, · · · , ûT−1}, X =
{x̂0, x̂1, · · · , x̂T }; MPC settings Â, B̂, Q, R, ûmin, ûmax,

x̂min, x̂max; parameter ρ > 0.

1. σ ← 0;

2. {x̂T , σ} ← CCD
x̂T∈[x̂min,x̂max]

{ 1
ρ
Q + I,−λ̂T−1 − Âx̂T−1 −

B̂ûT−1 − Ĉ′Ŵ r̂T , σ};
3. {ûT−1, σ} ← CCD

ûT−1∈[ûmin,ûmax]
{ 1
ρ
R + B̂′B̂, B̂′(λ̂T−1 +

Âx̂T−1 − x̂T ), σ};
4. for t = T − 2, T − 3, . . . , 0 do

4.1. {x̂t+1, σ} ← CCD
x̂t+1∈[x̂min,x̂max]

{ 1
ρ
Q + I + Â′Â,−(λ̂t +

Âx̂t+B̂ût)+Â′(λ̂t+1+B̂ût+1−x̂t+2)−Ĉ′Ŵ r̂t, σ};

4.2. {ût, σ} ← CCD
ût∈[ûmin,ûmax]

{ 1
ρ
R + B̂′B̂, B̂′(λ̂t + Âx̂t −

x̂t+1), σ};
5. end.

Output: Û , X̂ , σ.

Procedure 3 Evaluation of CCD in Step 4.2 of Procedure 2

Input: λ̂t, ût, x̂t, x̂t+1; MPC settings Â, B̂, R, ûmin, ûmax;

parameter ρ > 0; update amount σ ≥ 0.

1. V ← λ̂t + Âx̂t + B̂ût − x̂t+1;

2. for i = nu, . . . , 1 do

2.1. s← 1
ρ
Ri,·ût + (B̂·,i)

′V ;

2.2. θ ←
[

ût,i − s
1
ρ
Rii+(B̂′B̂)ii

]ûmax,i

ûmin,i

;

2.3. ∆← θ − ût,i;

2.4. σ ← σ +∆2;

2.5. ût,i ← θ;

2.6. V ← V +∆B̂·,i;

3. end.

Output: ût, σ.

C. Preconditioning

Preconditioning is a common heuristic for improving the

computational performance of first-order methods. The op-

timal design of preconditioners has been studied for several

decades, but such a computation is often more complex

than the original problem and may become prohibitive if it

must be executed at runtime. Diagonal scaling is a heuristic

preconditioning that is very simple and often beneficial [32],

[33]. In this paper, we propose to make the change of state

variables x̄ = Ex̂, where E ∈ Rn̂x×n̂x is a diagonal matrix

whose ith entry is

Ei,i =
√

Qi,i + Â′
·,iÂ·,i (12)

and replace the prediction model x̂t+1 = Âx̂t + B̂ût by

x̄t+1 = Āx̄t + B̄ût



Procedure 4 Modified Procedure 3 to efficiently couple CD

and AL

Input: λt, ût; MPC settings Â, B̂, R, ûmin, ûmax; parameter

ρ > 0; update amount σ ≥ 0.

1. for i = nu, . . . , 1 do

1.1. s← 1
ρ
Ri,·ût + (B̂·,i)

′λt;

1.2. θ ←
[

ût,i − s
1
ρ
Rii+(B̂′B̂)ii

]ûmax,i

ûmin,i

;

1.3. ∆← θ − ût,i;

1.4. σ ← σ +∆2;

1.5. ût,i ← θ;

1.6. λt ← λt +∆ · B̂·,i;

2. end.

Output: ût, λt, σ.

where Ā = EÂE−1 and B̄ = EB̂. The weight matrix Q
and constraints [x̂min, x̂max] are scaled accordingly by setting

Q̄ = E−1QE−1 and x̄min = E−1x̂min, x̄max = E−1x̂max.

D. Efficient coupling scheme between CD and AL method

We are now ready to couple CD and AL to solve the posed

MPC problem (1) efficiently. We first note that updating ut

and xt+1 for all t involves computing a similar temporary

vector V in Procedure 3. As V is in fact the next update of

the dual vector Λ in Algorithm 1, we modify Procedure 3 as

shown in Procedure 4. The overall solution method described

in the previous subsections is summarized in Algorithm 5,

that we call CDAL. Note that the main update of the La-

grangian variables in Algorithm 5 is placed early in Step 3.1,

unlike in Algorithm 1,due to the use of the proposed efficient

coupling scheme. The AL (outer) iterations are executed for

maximum Nout iterations, the CD (inner) iterations for at

most Nin iterations. The tolerances ǫout and ǫin are used to

stop the outer and inner iterations, respectively. Algorithm 5

is matrix-free and library-free, and we could implement it in

90 lines of C code.

IV. NUMERICAL EXAMPLES

We test the performance of the CDAL solver against other

solvers in two numerical experiments. The first one is the ill-

conditioned AFTI-16 control problem [34], [35] based on

LTI-MPC, used in the Model Predictive Control Toolbox

for MATLAB [36]. The main goals of this experiment

include investigating whether our proposed simple heuristic

preconditioner, reverse cyclic rule, and Nesterov’s accelera-

tion scheme are helpful, and provide a detailed comparison

with other solvers. The second experiment demonstrates the

benefits of the construction-free property in LPV-MPC of a

CSTR [37], in which the prediction model is obtained by

linearizing a nonlinear model of the process at each sample

step. The reported simulation results were obtained on a

MacBook Pro with 2.7 GHz 4-core Intel Core i7 and 16GB

RAM. Algorithm 5 is executed in MATLAB via a C-mex

interface.

Algorithm 5 Accelerated reverse cyclic CDAL algorithm for

linear (or linearized) MPC

Input: primal/dual warm-start U = {û0, û1, · · · , ûT−1},
X = {x̂0, x̂1, · · · , x̂T }, Λ−1 = Λ0 = {λ0, λ1, · · · ,
λT−1}; MPC settings {Â, B̂, Ĉ, Wy , Wu ,W∆u, ∆umin,

∆umax, umin, umax, xmin, xmax}; Algorithm settings

{ρ,Nout, Nin ǫout, ǫin}

1. Obtain preconditioned X̄ = {x̄0, · · · , x̄T }, Ā, B̄, Q̄,

x̄min, x̄max according to Section III.C

2. α1 ← 1; Λ̂0 ← Λ0;

3. for k = 1, 2, · · · , Nout do

3.1. for t = 0, . . . , T − 1 do

3.1.1. λk
t = λ̂k−1

t + Āx̄t + B̄ût − x̄t+1;

3.2. for kin = 1, 2, · · · , Nin do

3.2.1. U, X̄, σ ← Procedure 2 with use of Procedure 4;

3.2.2. if σ ≤ ǫin break the loop;

3.3. if ‖Λk − Λ̂k−1‖22 ≤ ǫout stop;

3.4. αk+1 ← 1+
√

1+4α2
k

2 ;

3.5. Λ̂k ← Λk + αk−1
αk+1

(Λk − Λk−1);

4. Recover X from X̄
5. end.

Output: U,X,Λ

A. AFTI-16 Benchmark Example

The open-loop unstable linearized AFTI-16 aircraft model

reported in [34], [35] is

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

−0.0151 −60.5651 0 −32.174
−0.0001 −1.3411 0.9929 0
0.00018 43.2541 −0.86939 0

0 0 1 0



x

+





−2.516 −13.136
−0.1689 −0.2514
−17.251 −1.5766

0 0



u

y =
[

0 1 0 0
0 0 0 1

]

x

The model is sampled using zero-order hold every 0.05 s.

The input constraints are |ui| ≤ 25◦, i = 1, 2, the output

constraints are −0.5 ≤ y1 ≤ 0.5 and −100 ≤ y2 ≤ 100. The

control goal is to make the pitch angle y2 track a reference

signal r2. In designing the MPC controller we take Wy =
diag([10,10]), Wu = 0, W∆u = diag([0.1, 0.1]), and the

prediction horizon is T = 5.

To investigate the effects of the three techniques (re-

verse cyclic rule, acceleration, and preconditioning) that we

have introduced to improve the efficiency of the CDAL

algorithm, we performed closed-loop simulations on eight

schemes with fixed ρ = 1. These are: 0-CDAL, the basic

scheme, without acceleration and reverse cyclic rule; R-

CDAL, the scheme with the Reverse cyclic rule; A-CDAL,

the Accelerated scheme; AR-CDAL, the Accelerated scheme

with the Reverse cyclic rule, and their respective schemes

with preconditioner, namely P-0-CDAL, P-R-CDAL, P-A-

CDAL, and finally CDAL, that includes all the proposed
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Fig. 1: Linear AFTI-16 closed-loop performance

techniques. The stopping criteria are defined by ǫin = 10−6,

ǫout = 10−4, and Nout, Nin are set to the large enough value

5000 in order to guarantee good-quality solutions.

The computational load associated with the above schemes

is listed in Table I, in which the last column represents

the closed-loop performance, which is the average value
1
T

∑T−1
t=0 ‖Wy (yt+1 − rt+1)‖22 +

∥

∥Wu

(

ut+1 − ur
t+1

)∥

∥

2

2
+

‖W∆u∆ut‖22 of the MPC cost over the duration T of

the closed-loop simulation and is almost the same for all

schemes. The associated closed-loop trajectories are reported

in Figure 1, which shows that the pitch angle correctly tracks

the reference signal from 0◦ to 10◦ and then back to 0◦, and

that both the input and output constraints are satisfied.

Since each MPC execution requires different numbers of

inner and outer iterations, the average (“avg”) and maximum

(“max”) number of iterations (or CPU time) are computed

over the entire closed-loop execution. It can be observed that

the maximum and average number of inner-loop iterations

of R-CDAL are smaller than that of 0-CDAL (especially

the maximum number), while their outer-loop iterations are

almost the same, which shows that the reverse cyclic rule

provides a significant improvement. Although A-CDAL has

fewer outer-loop iterations, it has more inner-loop iterations

than 0-CDAL on average. It therefore does not result in

a significant reduction in total computation time. We can

see that AR-CDAL achieves fewer iterations both in the

inner loop and outer loop and has better average and worst-

case computation performance. It can also be seen from

Table I that preconditioning significantly reduces the number

of outer-loop iterations.

Next, we investigate the effect on computation efficiency

of parameter ρ, that we expect to tend to trade off feasibility

versus optimality. In particular, we expect larger values of

ρ to favor feasibility, i.e., provide more inner-loop itera-

tions and less outer-loop iterations, and vice versa. The

computational performance results obtained by performing

TABLE I: Computational performance of different schemes

method sum of inner iters outer iters time (ms) cost
avg max avg max avg max

0-CDAL 8577 79615 339 2104 4.9 55.3 42.3
R-CDAL 7298 72693 340 2103 4.3 53.2 42.5
A-CDAL 7437 57026 45 297 4.0 41.1 42.5
AR-CDAL 6207 51884 44 205 3.8 39.5 42.5

P-0-CDAL 3467 13386 33 171 2.1 11.4 42.5
P-R-CDAL 1757 13430 33 171 1.0 10.9 42.5
P-A-CDAL 3299 12161 13 60 1.7 9.7 42.5
CDAL 1543 12508 13 60 0.85 9.5 42.5

closed-loop simulations using the final CDAL algorithm for

different values of ρ between 0.01 and 1 are listed in Table II.

When the parameter value is between 0.01 and 0.1, the

CDAL algorithm has very similar computational burden.

To further illustrate the efficiency of CDAL, Table II

also lists the results obtained by using other solvers. Here

the fastMPC solver is also a construction-free solver which

provides a free C-mex code. We also made comparison with

the µAO-MPC solver v1.0.0-beta [38], which is based on

an augmented Lagrangian method together with Nesterov’s

gradient method. The µAO-MPC differs from CDAL in the

way the subproblems are solved, and the outer loop not

involving an acceleration scheme. The state-of-the-art first-

order method for QP, the OSQP solver v0.6.2 [10], and

MATLAB’s built-in QP solver (quadprog) are also used for

comparison. For a fair comparison, each solver setting is

chosen to at least ensure each shares the same objective cost

and constraint violation. When the parameter ρ of the CDAL

is 0.01, the CDAL is faster than the other solvers. Regarding

the µAO-MPC, OSQP and quadprog solver, we split between

QP problem construction time (including the required matrix

factorizations) and pure solution time. Note that in this case,

the controller is LTI-MPC, and hence the MPC problem

construction and matrix factorizations required by these

non-construction-free solvers can be performed offline. On

the other hand, in case of LPV-MPC problems the total

computation time would be spent online and the embedded

code would also include routines for problem construction

and matrix factorization functions. Instead, CDAL does not

require any construction nor factorizations, thus making the

solver very lean and fast also in a time-varying MPC setting,

as investigated next.

B. Nonlinear CSTR Example

To illustrate the performance of CDAL when the lin-

ear MPC formulation (1) changes at runtime we consider

the control of the CSTR system [37], described by the

continuous-time nonlinear model

dCA

dt
= CA,i − CA − k0e

−EaR
T CA

dT
dt

= Ti + 0.3Tc − 1.3T + 11.92k0e
−EaR

T CA

y = CA

(13)

where CA is the concentration of reagent A, T is the

temperature of the reactor, CA,i is the inlet feed stream

concentration, which is assumed to have the constant value



TABLE II: Computational load of CDAL with different

values of ρ and comparison with other solvers

Solver solver setting time (ms) cost
avg max

CDAL ρ = 1 0.85 9.5 42.561
ρ = 0.5 0.72 7.1 42.590
ρ = 0.2 0.53 4.2 42.612
ρ = 0.1 0.47 3.8 42.619
ρ = 0.05 0.42 3.3 42.618
ρ = 0.01 0.41 3.2 42.618

FastMPC maxit = 5, k = 0.1 0.54 4.2 42.627

µAO-MPC µ = 0.05 7.0* 68.1* 42.627

in iter=100,ex iter=100 8** 69**

OSQP N = 5000, ǫ = 10−6 0.6* 10.1* 42.627

1.5** 13.8**

quadprog default 10.3* 20.6* 42.622

11** 22**

* : pure solution time, without including matrix factorization
** : total time (MPC construction + solution)

10.0 kgmol/m3. The disturbance comes from the inlet feed

stream temperature Ti, which has fluctuations represented by

Ti = 298.15 + 5 sin(0.05t) K . The manipulated variable is

the coolant temperature Tc. The constants k0 = 34930800
and EaR = −5963.6 (in MKS units). The reactor’s initial

state is at a low conversion rate, with CA = 8.57 kgmol/m3,

T = 311 K. The goal is to adjust the reactor state to

a high reaction rate with CA = 2 kgmol/m3, which is a

quite large condition. The controller manipulates the coolant

temperature Tc to track a concentration reference as well as

reject the measured disturbance Ti. Due to its nonlinearity,

the model in (13) is linearized online at each sampling step:

dx

dt
≈ f(xt, ut−1, p)+

∂f

∂x

∣

∣

∣

∣

xt,ut−1,p

(x−xt)+
∂f

∂u

∣

∣

∣

∣

xt,ut−1,p

(u−ut−1)

where f(x, u, p) is the mapping defined in (13) for x =
[CA T ]′, u = Tc, p = [CA,i Ti]

′. By setting Ac =
∂f
∂x

∣

∣

∣

xt,ut−1,p
, Bc = ∂f

∂u

∣

∣

∣

xt,ut−1,p
, ec = f(xt, ut−1, p) −

Atxt −Btut−1, we get the following linearized continuous-

time model
d

dt
x = Acx+Bcu+ ec

We use the forward Euler method with sampling time Ts =
0.5 minutes to obtain the following discrete-time model

xt+1 = Adxt +Bdut + ed

where Ad = I + TsAc, Bd = TsBc, ed = Tsec. Although

held constant over the prediction horizon, clearly matrices

Ad, Bd and the offset term ed change at runtime, which

makes the controller an LPV-MPC. Regarding the perfor-

mance index, we choose weights Wy = 1, Wu = 0,

W∆u = 0.1. The physical limitation of the coolant jacket

is that its rate of change ∆Tc is subject to the constraint

[−1, 1] K when considering the sampling time Ts = 0.5
minutes. The prediction horizon is T = 10 steps.

We compare again CDAL with fastMPC, FGAL, OSQP,

and quadprog solvers in the LPV-MPC setting described
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Fig. 2: Nonlinear CSTR closed-loop performance

above. CDAL is run with ǫin = 10−6, ǫout = 10−4,

ρ = 0.01, and Nout = Nin = 5000. For a fair comparison,

each solver setting is chosen to at least ensure each shares

the same objective cost and constraint violation. The closed-

loop simulation results of CDAL and other solvers almost

coincide and are plotted in Figure 2, from which it can

be seen that CA tracks the reference signal well, and the

fluctuation of Ti is effectively suppressed. The computational

load and closed-loop performance associated with CDAL

and other solvers are reported in Table III. In this succes-

sive linearization-based MPC example, we found that the

problem-construction time has a comparable computation

time to the problem-solving time from the results of non-

construction-free solvers. If we only compare the solution

time, CDAL is faster than other solvers except for OSQP,

but in fact the MPC construction time must be included for

comparison, which leads to CDAL being faster than OSQP.

Because of the construction-free, matrix-free, and library-

free features, CDAL has an advantage in industrial embedded

deployment when the optimization problem associated with

MPC is constructed online and this operation has a cost that

is comparable to the solution time.

TABLE III: Computational performance of CDAL and other

solvers

Solver solver setting time (ms) cost
avg max

CDAL ρ, ǫin, ǫout = 0.01, 10−6, 10−4 0.3 0.6 0.02202

FastMPC maxit=5,k = 0.1 0.5 7.2 0.030170

µAO-MPC µ = 0.01 1.4* 10.1* 0.02202

in iter=100,ex iter=10 2.1** 15.2**

OSQP default 0.15* 0.37* 0.02219

0.6** 5.5**

quadprog default 1.6* 9.7* 0.02219

1.8** 13.3**

* : solution time
** : MPC construction time + solution time



V. CONCLUSION

This paper has proposed a construction-free, matrix-free,

and library-free MPC solver, based on a cyclic coordinate-

descent method in the augmented Lagrangian framework. We

showed that the method is efficient and competes with other

existing methods, thanks to the use of a reverse cyclic rule,

Nesterov’s acceleration, a simple heuristic preconditioner,

and an efficient coupling scheme. Compared to many QP

solution methods proposed in the literature, CDAL avoids

constructing the QP problem, which makes it particularly

appealing for some scenarios in which its online construction

is required and has a comparable computation time to solving

itself.

The proposed algorithm can be immediately extended to

handle linear time-varying systems, in which the plant-model

and/or cost-function matrices are allowed to vary over the

prediction horizon. Future research will investigate the use

of CDAL to solve nonlinear MPC problems and data-driven

MPC formulations in which the model is adapted online by

recursive system identification.
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