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Abstract—Self-triggered control, a well-documented technique
for reducing the communication overhead while ensuring desired
system performance, is gaining increasing popularity. However,
existing methods for self-triggered control require explicit system
models that are assumed perfectly known a priori. An end-to-end
control paradigm known as data-driven control learns control
laws directly from data, and offers a competing alternative to
the routine system identification-then-control method. In this
context, the present paper puts forth data-driven self-triggered
control schemes for unknown linear systems using data collected
offline. Specifically, for output feedback control systems, a data-
driven model predictive control (MPC) scheme is proposed,
which computes a sequence of control inputs while generating
a predicted system trajectory. A data-driven self-triggering law
is designed using the predicted trajectory, to determine the next
triggering time once a new measurement becomes available. For
state feedback control systems, instead of capitalizing on MPC
to predict the trajectory, a data-fitting problem using the pre-
collected input-state data is solved, whose solution is employed to
construct the self-triggering mechanism. Both feasibility and sta-
bility are established for the proposed self-triggered controllers,
which are validated using numerical examples.

Index terms— Data-driven control, data-driven MPC, self-
triggered control, predicted control.

I. INTRODUCTION

Thanks to recent advances in data acquisition and computing
technologies, data-driven control has attracted considerable
attention in the past years. Designing control laws directly from
data without resorting to any system identification step, offers
an appealing alternative to the traditional model-based control
paradigm [[1]], [2]. This is because in real-world applications,
it is always difficult or even impossible to acquire an accurate
system model [3[]-[5]. Indeed, a number of publications are
devoted to studying data-driven control. These were mainly
inspired by the celebrated Fundamental Lemma proposed in [6],
which lays the theoretical foundation for data-driven control.
Several control problems have been addressed under the new
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framework, including stabilization and optimization in [7[—
[L1]], linear quadratic regulation in [[12], robust control in [13],
quantized control in [14], model predictive control (MPC) in
[15]-[19]], and control of complex networks in [20].

Yet, the aforementioned works employ periodic transmission
protocols, which may be resource-inefficient for real-world
systems in terms of processor usage, communication bandwidth,
and energy. In cyber-physical networked systems [21]], [22] for
instance, whose communication network is shared by many
devices, the communication bandwidth is always restricted for
each device. To tackle this issue, a resource-efficient scheduling
approach for data transmissions, known as event-based control,
has been widely studied in the context of model-based control.

Generally, there are two event-based approaches that have
been proven effective, namely, event-triggered control and self-
triggered control [23]. In the former, an event e.g., a data
transmission, is triggered only after some designed triggering
condition is met. This condition should be tested at each state
or output, thus requiring continuous monitoring of the system.
While a level of robustness against uncertainties and unmodeled
dynamics can be expected, having the sensor continuously
operating results in waste of resources. Related work can be
found in [24]-[28]]. Self-triggered control, on the other hand,
determines the next sampling time and transmission once a
sampled measurement is received, which does not need to
continuously sample the outputs; see, e.g., [29]-[32]. Notably,
the sensors in self-triggered control can be completely shut
off between sampling times, which saves energy and prolongs
service life of the sensor. This feature appears promising in
the model-based case and motivates the generalization of self-
triggered control from model-based to data-driven settings. The
key idea of traditional self-triggered control is to predict the
future trajectory using the system model. It remains unclear
how a trajectory can be obtained in the absence of a model.

The goal of this paper is to design data-driven self-triggered
controllers for unknown linear systems using only some data
acquired off-line. The challenge here lies in how to obtain a
predicted trajectory using only data. To this end, we begin by
considering unknown output feedback systems. In this setup,
a new data-driven MPC scheme is proposed, which generates
a sequence of optimal control inputs as well as the associated
system trajectory. Leveraging the predicted trajectory, a data-
driven self-triggering mechanism is designed so that the next
triggering time can be dictated without using a system model.
We further extend this method to state feedback control systems,
where the state is sampled to construct the control input based
on a state feedback control law. Again, a norm minimization
problem is formulated to predict the system trajectory using the
pre-collected input-state data, whose solution enables design
of the data-driven self-triggering mechanism.



In succinct form, the contribution of this work is threefold,
summarized as follows.

cl) To predict the future system trajectory based on input-
output data, a data-driven MPC scheme accounting for
noisy online outputs is developed for output feedback
control systems.

Leveraging the solution of the data-driven MPC, a data-
driven self-triggering mechanism is designed which deter-
mines the next transmission time once a new measurement
is received, along with its rigorous and comprehensive
stability analysis.

For state feedback control systems, a norm maximization
problem is suggested to predict the system trajectory,
whose solution is then employed to construct the data-
driven self-triggering law.

c2)

c3)

Notation: Denote the set of real numbers (natural numbers)
by R (N), and define Ny := N U {0}. For a matrix M, if it
has full column rank (full row rank), its left pseudo-inverse
(right pseudo-inverse) is denoted by Mt (A1%). Given a vector
x € R™, ||z| is its Euclidean norm, ||z|/~ is its infinity
norm, and for a positive definite matrix P = PT » 0, define
the weighted norm ||z||p = V2 T Pz. Let further ||M]| be the
spectral norm of matrix M. Let A\ (Ap) represent the minimum
(maximum) eigenvalue of matrix P. Let [t1, ] denote the
time interval from t; to ¢5 with discrete times. A function
a : [0,00) — [0, 00) is said to be of class K if it is continuous,
strictly increasing, and «(0) = 0. A function « : [0,00) —
[0,00) is said to be of class K if it is of class K and also
unbounded. A function § : [0, 00) x [0,00) — [0, 00) is said
to be of class KL if B(-,t) is of class K for each fixed ¢t > 0
and (3(s,t) decreases to 0 as t — oo for each fixed s > 0.

The Hankel matrix associated with the sequence {z;}~ !,
is denoted by

Zo T1 IN-L
Z1 T2 TN-L+1
Hp(x) = ) (D
-1 TL TN-1

In this paper, we consider experiments of length NV, so the
dependence of Hy,(z) on N will be omitted. A stacked window
of a sequence, say {z;}{2, is given by

IEtl
Lltr,ta] = 2

ItQ

II. PRELIMINARIES AND PROBLEM FORMULATION
A. Networked control systems
Consider the following discrete-time linear system

Ti+1 = A.’I}t + B’Ut, te NQ (33.)
Yt = Cxy + Duy (3b)

where x; € R"™*, u; € R™, and y; € R™v are the state, control
input, and output, respectively. In this paper, we make the
following standing assumptions on the system (3).
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Fig. 1. Pictorial description of system (3) with data-driven self-triggered MPC.

Assumption 1 (Controllability and observability). The pair
(A, B) is controllable, and (C, A) is observable.

Assumption 2 (Unknown system model). The system matrices
(A,B,C,D) in are unknown. Instead, some pre-collected
input-output data, i.e., {ul,y?}N ;! are available.

Regarding the two assumptions, a remark comes ready.

Remark 1. Assumption [I] is standard for stability analysis
of linear systems. As a matter of fact, the data-driven self-
triggering controllers along with associated theoretical results
developed in this paper can be generalized to linear systems
which are stablizable and detectable. In real-world setups, it
is almost always impossible to have perfect knowledge of
the system matrices (A, B,C,D) due to modeling and/or
instrumentation inaccuracies. On the other hand, acquiring
input-output data pairs {u?, yP} ;! by exciting the system
with some control inputs is often practical and doable.

We further recall the definition of observability index [33]].

Definition 1 (Observability index). The observability index of
linear systems as in is defined to be the smallest integer
n € {1, - ,ng} such that the observability matrix © has full
rank n,, i.e.,

rank(©) £ rank([CT (CA)T - (CA"™)T|T) = n,. (4)

In networked control systems, the plant is connected with a
sensor which takes the output measurement at sampling times.
Sampled measurements are transmitted to a remote controller
to construct control inputs. Frequent sampling and transmission
inevitably results in waste of energy and network resources. To
save the network bandwidth as well as prolong the life-cycle of
the sensor, we incorporate a self-triggering module running at
the controller side, to dictate when a new output measurement
should be sampled and transmitted.

Specifically, we consider that the output is transmitted over
a network of limited bandwidth to the remote controller, while
the controller-to-plant channel is assumed perfect either over
wired lines or networks with sufficient bandwidth. Furthermore,
to model the network effect, the output is corrupted by bounded
additive noise ||n:|| < 7 for all ¢ € Ny when transmitted over
the network, i.e.,

Gt = Y + M. )



See Fig. [I] for a pictorial depiction of the system structure.

Let t;, € Ng stand for the time at which the ¢-th event (i.e.,
sampling and transmission) is triggered by the self-triggering
module. Assume the sensor is equipped with a buffer of size 7,
which records the most recent 7 historical measurements. Once
an event is triggered, the data packet consisting of the 7 buffered
measurements is sent to the controller. The self-triggering mod-
ule computes the next triggering time by evaluating a triggering
function on a predicted trajectory along with the received data
packet. For example, at time ¢y, the ¢-th transmission has
just been made, and our self-triggering module receives the
data paCket Yltg—n,te—1] = {ytﬁ,*fh Yto—n+15" "5 ytﬁ,*l}’ and
computes the next triggering time ¢4 which is fed back to
the sensor. During the interval [t_1,%,), it is only required
that the sensor samples output measurements for the sub-
interval [ty — 1), t7), which is often much smaller than [ty_1, /),
therefore saving considerable energy as well as expanding life
expectancy of the sensor. Of course, if the inter-triggering time
ty — ty—q is smaller than 7, i.e., ty —ty_1 < 7, one only needs
to send the packet of the new ¢ty — ty_1 measurements as the
old n— (ty —ty—1) ones have already been sent to the controller
in the last packet.

B. Fundamental Lemma

In this section, we briefly review the data-driven system
representation based on the so-called Fundamental Lemma [6]],
which is key to derive our data-driven self-triggering predictive
controllers. Before presenting the lemma, the definition of
persistence of excitation is introduced first.

Definition 2 (Persistence of excitation). A sequence {u; €
RN oL is persistently exciting of order L if rank(H,(u)) =
Ny L.

Based on Def. [2] it has been shown in [6] that any trajectory
of system (B) can be expressed as a linear combination of
pre-collected input-output data {u?, y?}¥ !, provided that the
input sequence {u? },{if)l is persistently exciting. This result,
formally summarized below, is also known as the Fundamental
Lemma [6]].

Lemma 1 (Fundamental Lemma). Consider a persistently
exciting input sequence {ut YN 3! of order L+4-n,. A trajectory
{ay, gjt}f:_ol is generated by system (3)) if and only if there exists
a vector g € RN=LHL such that the following holds

] o= [pee].

It can be concluded from Lemma [I] that to generate a
predicted trajectory of length L, the pre-collected data should
be persistently exciting of at least order L. To validate this
requirement, the next assumption is imposed.

(6)

Assumption 3 (Pre-collected data). Let {ul}N ' be any
sequence persistently exciting of order L 4+ n, +n. The output
sequence {y? f\; 61 is generated from system (@) offline with
any initial condition b, and input sequence {ul}N .

For notational brevity, we use u” and y” to represent se-
quences {u}}Y ! and {y?} ! in the following, respectively.

Leveraging the observability index 7 in Def. [T} we construct
an extended state for ¢t > 7 as follows

& = [u[t_"’t_”} € R
Ylt—n,t—1]

)

with n¢ := (n, + ny)n. Then, similar to [34], system (3 can
be converted into the ensuing linear system

§t+1 = A&, + Buy,

yr = C& + Duy

for suitable matrices (A, B, C, D) depending on (A, B, C, D).

For subsequent analysis, let us denote the equilibrium point of
the new system (§) by

teN, (8a)

(8b)

e Ufo.n—
€= |: [0,n 1]] 9)
Yjo,n—1]
in which u; = u«® and y; = y® forall: =0,1,--- ,n — 1. As

a matter of fact, such an augmented system (state) has been
commonly employed in studies of data-driven MPC to simplify
the stability analysis; see e.g., [15], [35].

ITII. DATA-DRIVEN SELF-TRIGGERING MPC

This section advocates a data-driven approach to designing a
controller and a self-triggering mechanism for unknown linear
systems as in (3). Commonly, a self-triggering mechanism de-
termines the next transmission by comparing the current output
with a predicted future output, and triggers a transmission if
they differ considerably. However, when the system matrices are
unknown, three grand challenges are there: cl) how to obtain
a predicted system trajectory for the self-triggering mechanism
using only pre-collected data? c2) how to design stablizing data-
driven control inputs? and, c3) how to perform performance
analysis for the data-driven self-triggered closed-loop control
system? We first address cl) and c2) by putting forward a
data-driven MPC scheme, which can compute a window of
control inputs and its corresponding predicted outputs once a
new output measurement is transmitted and received.

A. Data-driven MPC scheme

Although Lemma [I] characterizes system trajectories in some
sense, the correspondence between the input-output trajectory
and the coefficient vector is not unique in general. In addition,
the Fundamental Lemma does not account for any noise,
so it cannot be directly employed for control and trajectory
prediction. Building on existing works [15]], [19]], we propose a
new data-driven MPC that, at each triggered time ¢,, computes
a window of optimal control inputs and associated outputs,
using the received noisy data (s, _,,¢,—1)- The control inputs
are subsequently employed one by one at times ¢ € [tp, to11).
Let vectors a(te) := [l (ty) -~ aj_y(te)]" and g(t) :=
[57,(te) -+ 5] _1(te)]" denote the predicted input and output
from time ¢, —n to t;+L—1, and £(t¢) = [£] (te) -+ €] (to)] T
the corresponding extended state with

Eilte) = [%‘wu <u>]

Yli—n,i—1)(te)



where i € {0,1,---, L}. Mathematically, the following opti-
mization problem is solved at each self-triggered time %,

JZ (utz 7yt1/,) =
L—-1

: o e = e )‘h
Lamin S (k) — R+ (k) — I + S (o)
F(tg),a(te)}r =0

+ Agnllg(to)|I? + 1€ (te) — €117 (10a)
u(te) } {HLMI(UP)}

s.t. _ = t 10b
{ym) T at)| = [Hor)) 90 (100)
Uf—p,—1] (tg)} — [u[teﬁ,tzll] 10c

LJMH ()] [Ctte—nte—1 (0o
Er(te) € Ee (10d)
eV, ie{1,2,---, L—1}. (10e)

The data-driven MPC formulation (T0) generalizes that of
[35]] by accommodating noisy outputs. Preselected weighting
matrices R > 0 and @ > 0 penalize the distances from the pre-
dicted input and output to their equilibrium points. Constraint
(10b) reflects the data-driven system representation in Lemma
ere g(te) € RN=L=n+1 gtands for the coefficient vector
at time ¢, and the vector h(t¢) = [hL, (t¢) -+ hj_y(te)]" is
added to compensate for the unknown network-induced noise
n; in predicting future outputs. Penalties are also imposed on
the use of g(¢,) and h(t,) in the objective function, to guarantee
system stability and improve robustness against noise, with
weights A\p, > 0 and Ay > 0 balancing between minimizing
different costs. Feasibility sets U and =, are prescribed and
convex. Finally, is a terminal constraint, which together
with the last summand having P > 0 in ensures that
the last predicted extended state £ (t;) (at the end of the
window) stays in =, (i.e., a small neighborhood of the desired
equilibrium point). Overall, problem (I0) is convex and can
be efficiently solved using off-the-shelf solvers.

The terminal constraint (TOd) and the terminal cost ||£7, (t¢) —
€¢||% are also critical ingredients in the model-based MPC, see
e.g., [36]. To proceed, we make the following assumption on
the terminal ingredients =, and the corresponding matrix P.

Assumption 4. There exist matrices P = PT = 0, K €
R™X"¢ and a set 2. : {{ € R™|||€ — £°||p <€} C U xR"
such that for all £ € E., u = u® + K(§ — &%), and y =
(C + DK)¢, the following statements hold true

) uel, Af—FBu € =, and,

2) the following inequality holds

I(A+ BB < €15 — I1KEIR — lylg- D

A feasible data-based method for selecting the matrix P
and the set =, has been discussed in [35, Proposition 10].
It will be shown in the next subsection that these terminal
ingredients have influence on the inter-triggering time, and
should be handled with care. According to (T0c)), a requirement
is imposed on the prediction window as follows.

Assumption 5 (Prediction horizon). The predict horizon of
the data-driven MPC satisfies L > n+ 1.

Without loss of generality, we consider for simplicity the
equilibrium &°¢ [(u®)T (¥*)T]T = 0 in the remainder

of the paper. Let (5*(t¢),a*(t¢), g*(te), h*(t¢)) denote any
optimal solution of problem at ty, thereby yielding the
predicted extended state £*(¢,). Let uy,, y;, and &, represent
the actual input, output and extended state, respectively. The
inter-triggering time between two consecutive self-triggered
times is defined as 7y := ty41 — ty for £ € Ny, with tg = 0.
With these definitions, the following lemma indicates that the
error between the predicted extended state £*(¢,) and the actual
extended state &; is bounded, and it can be rigorously quantified
using the optimizer of (T0).

Lemma 2. Let Assumptions [I[[-5| hold. Consider system
whose control input is generated by solving problem (10) at
each self-triggered time ty. For every { € Ny, the error between

&upyy and &, (ty) satisfies

[1€e eIl == N1€eery — &5, ()] (12a)
Te+n—1

< (Vi + B, g, Do p' (120)

pall [ ()| (12¢)

where p' = ||CA™™®T|| for i =1p, 7+ 1, ,70+n—1
Proof. 1t follows from (T0d) that

Ee(te+m0) = [ Ulrg—n,me—1] (te) ] - ?ETZ_%U—” (£
Ylto+re—n,tet+re—1] Yirg—nre—1] (te)

’ |

_gFTE*mTefl](tZ) '

Therefore, an upper bound on the extended state error ||, (¢, +
7¢)|| can be obtained by calculating y.(t¢ + 7¢) = yt, 47, —
¥z, (te). It follows from (TOb) that

Yr, (te) = Ir, Hy £(y")g" (t0) — h7, ()

where I, denote the corresponding 7,-th block of matrix
Hy 1(y?)g*(te) for the optimizer 7, (t¢). Let gr,(t;) =
I.,H,1(y")g* (t¢), which is a trajectory of system (@) ac-
cording to Lemma [T] Based on (3), one can deduce that

G, (t0) =Yty = CATTION (G 1y (t0) =Yty —n.ts-1))-
It follows from (T3) and that

Z9[—?7,—1] (te) — Ylte—n,te—1]
= Ylte—mte—1] T Pe—nyte—1] T hr—ﬂv—l] (te) — Ylte—n,te—1]
= Ntg—n,te—1) T hr—m_u (te).

|:y[tg +Te—n,te+T1¢ 71]

13)

Therefore, the error between the actual output and the predicted
output obeys

Ye(tete) =CAT O (nyy, i, 1)+, _yj(te)) =h5, ()
(14)

We have that
-
[€c(te +70)|| = H [(CATH’?)T (CATe-‘rQn—l)T}
X [nm_n,t@_u + h?‘_m_l] (té)]

= [, T e Py te)T]T



< (Vi + by (t)]l)

Rl [ A—— )]
which completes the proof. O

According to Lemma 2] an upper bound on the error between
the predicted extended state and the actual extended state is
characterized in terms of known or computable parameters
h*(t;), 71, and unknown parameters p’ fori = 74, --- , 7p+n—1.
Before running the system online, upper bounds of parameters
p' can be obtained offline by solving the optimization problem
proposed in [[18, Section V. B] for¢t=1,--- |L —1

J! = max l9: || oo (15a)
s.t. ||y[077]_1]||00 < 1 (15b)
-1
= 15
[Hiﬂ(yp) g Y[0,4) (15¢)

where H;.1(uP) denotes the first (¢ + 1)n, rows of ma-
trix Hpi,(u?), and likewise for Hp,(y?); vector g/ €
RN=L=n%1 "and yyo ; consists of the i + 1 predicted outputs.
It has been shown in [18] that J! > ||[CA**"®T|, and hence,
an upper bound for p is obtained, i.e., J; > p’. Therefore,
one gets an upper bound on ||&.(te+1)]].

B. Self-triggering mechanism

Observe that the prediction horizon constrains at most
L — 1 future outputs at time ¢, can be obtained by solving
(TO). Therefore, the inter-triggering time between any two
consecutive self-triggered times obeys 7, < L — 1 for all
¢ € No. Leveraging the upper bound in Lemma 2] our self-
triggering mechanism is given in the following lemma.

Lemma 3. Let Assumptions hold. Consider system (3)
with control inputs generated by the data-driven MPC (10) at
each self-triggered time t, for all ¢ € No. Assume further that
(I0) is feasible at to. For appropriate Ay > 0, A\, >0, € >0,
and P > 0 satisfying Assumption |4} there exists a constant
g € (0,1) such that for all o € (0,7 ), problem (10) is feasible
at all t; € Ny, if i) the constant r, matrices P, and K, are
chosen obeying Assumption {| and

A A AL
Pr( _M) TQSGQSTQ (16)
Ap Ap,
and ii) the inter-triggering time satisfies
7¢ = min {7y, 7, L — 1} (17)

with

o= sup { (i + (e

gl < 5 = 1O 19

T

and

Fo o= sup {742 Aq + 2xp, + AgallHE 12 (1 + i)}

Tp—1 Te—1

X [0 4+ 1B g I2) 0 (02 + 3 i (8 2]
=0

i=0

_ . A
+ A 4+ €2 + 2[)\1:,,, + A Hye 2 (1 + /\PT )}
AR

Te—1
<& P <o 3 ||£;<te>||2}

(19)
i=0
where matrix H,¢ is defined by
HL+ (Up) :|
H, = K . 20
3 |:H1(§§/—L—n+1) (20)

Proof. First, for some ¢ € Ny, we assume that the problem is
feasible at ¢, and construct a candidate solution at ;4. Then,
leveraging a carefully designed Lyapunov function, recursive
feasibility of problem (T0) is proven by showing the decrease
of the Lyapunov function.

Suppose that (T0) is feasible at ¢, for some ¢ € Ng. Denote a
candidate solution of (I0) at t¢11 by §(te+1), @(tes1), g(tes1),
and h(te4+1). Using (I2)), one gets from (I7)—(I8) that

€eess Py < NEetera)llp, + 1IE7, (t)llp, < 7.

Thus, for terminal region E,. : {£ € R™¢|||{ —£°||p. < r} there
exist matrices P, and K, such that conditions in Assumption
hold. Let ;(te+1) = K& (tes1) and §i(te1) = Yt for
i € {0,---,L — 1}. Capitalizing on (I0Db), the slack variable
h(te1) can be chosen as hj_, _1)(tey1) = 0y
and h;(tes1) =0 for i € {0,1,---

_1y(tes1)
¢ — gt [Yo.L 1) (et
9(tesr) ut [ E(tes1)
with H,¢ in (20). It follows from (II)) that

1641 (ter) B, < N&i(ter)l|P, — Hf_i(t€+1)H%(TTRKT
<1 = Arrri /AP I€ (ter )P,

for all 4 € {0,---,L — 1}. Recursively, we arrive at
— — L —
€L (ber D)1, < [ = Axy i, /Ar ] Mot IE, - (22)

Combining (T6) with [[&o(tes1)[|3. < r?, inequality (22)
implies that |1 (te1)]|% < €2. Therefore, if problem (T0)
is feasible at ¢, it is feasible at £y .

Next, we construct a Lyapunov function to show the recursive
feasibility. Since (C, A) is observable, (C, A) is detectable.
According to [37]], there exists an input-output-to-state stability
Lyapunov function W (£) = £ P:£ such that

topr—n,tep1—1]

,L—1}. Set

2L

_ 1
W (AE + Bu) — W(¢) < —§||€||2 +erlul® + eallyl* (23)

for suitable c1,cp > 0, P¢ > 0, and all w € R™, £ € R"¢, yy =
C¢ + D¢. Consider the Lyapunov function V(&) = J5 (&) +
YW (&) having v = min{Ay, A }/max{ci, 2¢c2}. Recalling
the candidate solution (@(te+1),¥(te+1), g(tes1), h(tes1)) for
problem (I0) in Lemma [3] Denote the corresponding cost
function by J,(&;,). The optimizer of (I0) at ¢, is denoted by
(a*(te), y*(te),g*(te), h*(t¢)). The difference of the Lyapunov
function at two consecutive self-triggered times satisfies

V(Stz+1) - V(&z) (24)



= L(§t£+l) + VW(ftz+1) - Jz(&w) — W (&,)
< (jL(ftz+1) - J}:(&e)) +V(W(£t2+1) - W(gtl)) .

2T

(25)
(26)

2T

Next, we derive upper bounds on the two terms.
Part a: Upper-bounding T;. According to (I0a), it can be
obtained that

L-1

Ti< D (laitter)l7 + 19:(te)lI)

=0

+ Agiillg(ter)I” + (An/R) [A(tes) 1 + 1€ (ter) | B
L—-1

- [Z (1 E)l% + 177 (2e)l13) + Agnillg™ (tes) 1

i=0
+ /R [IB* (tes) |1 + Hézmm\%}-

In addition, since @;(tsy1) = KE&(tey1), it can be deduced
recursively from (TI) that

L-1
D (laates )7 + 17t )IB) < e I, — €L,

=0
< 22p, (Il (tern)II* + 117, (£) ).
Notice from 1) that
lg(tes)I* < WL Mo, -110) 17 + €2 11%)

< HE P+ Ap /AR e 1P

A _
< 2 HEN? (14 52 ) (&) P + 15, (1) 1).
AR

Since hi_, —1)(te41) = Nty —nytes,—1) and hi(tey1) = 0 for
i1€{0,---,L— 1}, one has that

/@) h(tes)lI* < Apni.

Part b: Upper-bounding Ts. 1t follows recursively from 23)
that

W(fte+1 ) - W(gtz)

1 — %
_§||§[t1{,t£+1*1] ||2 + CIHU[O,U—I] (t€)|‘2 + 82||y[t14,t14+1] H2

1%+ 202150, r, -1y (t) I
27)

1 — %
< _§||§[t£7tl+1—1]||2+Cl||u[0,ﬂg—l] (t€>
+ 202||y[tz7te+1] - gr(),n—l] (te)”Q'

Since v = min{Ay, Ap}/max{ci, 2c2}, we have that

y(eallify 1y (b 1* 2620150 ., -1y (£ IP)
Te—1

< D (@l + 17 t)lI3)-
i=0
Substituting (I4) and (28) into (27), we arrive at

Tg*l

Y 3 *
T < =g l€t ten-nl* + 220 > lIRs ol
=0

(28)

Tg—l

+ 5 (g )13 + 195 (1) 1)

=0

Tp—1

+ Ao (2n® +2|hf_,, _y(t)lI*) D (07
=0

(29)
Combining the results in Parts a and b, it holds that

’)/ — —
V(€)= V(E) < =3Il + 2[R + 2p

[

+AgnHH§§H2(1 +

Te—1 Te—1

DICAEDY ||h:<te>||2] T i + 2[&
1=0 1=0
Y _
— I 2 Py * 2
a1+ 316 ol 60)

In addition, (T7) indicates that 7, < 7, and hence (30) obeys
V(§t£+l) - V(gte)
7'1(71

< (2ol + 20nn2+;(0||§i(te)||2—;Hftﬁi2)

7‘(71
v _ gl F .
< (3 =)l +20ma + 3 D7 & te + )P
i=1

~(v/2 = 20)&, |I* + e (n)

where a1 (1) := R[J} (t) /A +3005 (0" (047 (8) /3] +
2anﬁ2 is a Koo function, and & < -y/4. Moreover, according to
[15, Lemma 1], the Lyapunov function satisfies A Pe 1112 <
V(&,) < 7ll&, |I>+az(n) for every £ € Ng and some constant
~1 > 0 with function as(-) € K. Hence, we have that

IN

v—4o
2m

v—4o
2m

ViE) < (1= T52) Vi) + T5—aa(R) + ar(m).

A AN
=v2<1 =a3(n)e

In conclusion, the Lyapunov function decreases at every self-
triggered time. Since problem (I0) is feasible at ¢, it is feasible
at t, for all £ € No. O]

Remark 2. Condition (T8) ensures that problem (T0) is feasible
at tg4q if it is feasible at ¢,, which is also known as recursive
feasibility. In addition, condition (T9) guarantees the Lyapunov
function of system (3)) decreases along the self-triggered times.
Therefore, the self-triggering law reduces the communication
load while ensuring the recursive feasibility of (T0). Similar to
model-based self-triggered control, the choice of the contraction
factor o € (0,1) determines the trade-off between having a
better control performance and incurring less transmissions.
The smaller o, the better the system performance.

Merging the data-driven MPC and self-triggering schemes in
Lemma [3] our data-driven self-triggered controller is presented
in Alg. [I] with stability guarantees provided below.

Theorem 1. Let Assumptions hold. Consider system (3)
whose control input is generated by solving problem (10) ar
each self-triggered time t,. If the sequence {t;}ven, satisfies
the conditions in Lemma 3| then system () achieves practical
exponential stability under the controller (10).



Algorithm 1 Data-driven Self-triggered Predictive Control.

1: Input: Prediction window L > n + 1; coefficients R > 0,
Q>0,P>0,\y>0,X >0,0€(0,1),e>0andr >
0 satisfying (16)); noise bound 7; data {u[o No1] y[O N_ 1]}
of (@) from 1n1t1al condition zf, with u[ 1] persistently
exciting of order L +n + 1.

2: Construct Hankel matrices for the input, output, and the
extended state trajectories ie., Hpyn(uP), Hpy(y?), and
Hye == [HEH;(UP) Hl €3 N—L— n+1)}T-

3. Compute p* for i € {1,2,...,L — 1} from (T3).

4: If t = ¢4, do

5: Use the past n measurements, i.e., up_y:—1) and
Cft—n,t—1]» to solve problem (I0).

Determine the next self-triggered time ¢,4; such that
the inter-triggering time obeys (I7)—(19).
Set Ut = ﬂ{;(t)
Set tp = to41
Else if ¢t # t;
Set uy = uy_y, (te).
End if
Set t =t + 1 and go back to [4

0,N—

0L PR

Proof. Recall from Lemma [3] that it holds for any t,

V(€tor) <72V I(&,) + as(n). (31)
Recursively, it can be deduced that
V(&) <72V (E) + as(n sz (32)

In addition, noticing that Ap, [|&;,[* < V(&) < mll€. ] +
as(n), we arrive at

3y, 6l + (0202 + 0s(n 272)

which verifies the system’s practical exponential stability. [

I8, 1% <

IV. DATA-DRIVEN SELF-TRIGGERED PREDICTIVE CONTROL

FOR STATE FEEDBACK SYSTEMS

In this section, we consider a special case of the system in
(@) having C = I and D = 0; that is, when input-state data
become available. In this setup, a state feedback controller
is employed. Although simpler than the MPC scheme, the
state feedback controller does not provide a predicted system
trajectory, which makes design of the self-triggering mechanism
difficult. To address this issue, a data-based norm maximization
problem is put forth such that a future system trajectory can
be predicted from the input-state data. The key idea behind
constructing a predicted trajectory for our self-triggered state
feedback controller is combining the results of Lemmas [I]
and 2] Therefore, the trajectory prediction along with the self-
triggering mechanism here builds on the idea of (I0).

Consider the following state feedback controller

t € Ng
tg§t<tg+1

Tiy1 = Ay + Buy,
Uy = KCtz?

(33a)
(33b)

| Unknown !
ld 1

U, plant < :
i

Next sampling T,
time tp \ 4

Next sampling
time ¢, 1

Uty = KCn

Data-based Gt
controller

online

Fig. 2. Data-driven self-triggered state feedback controller for (33).

Gty = T4, + 14, (33¢)
where the gain matrix K € R™*™+ can be obtained via a
data-based linear matrix inequality method in e.g. [2]]. At each
self-triggered time {4, the state x;, is sampled and sent to
the controller. Similar as in Section the transmission is
corrupted by noise n;, and hence the controller receives (;,.
The control input u;, is sent to the plant, and kept the same
within the interval [t,t¢41). See Fig. [2| for an illustration.
Instead of input-output data in Section input-state data are
available in this section, and hence Assumptions E] and E] are
replaced as follows.

Assumption 6 (Unknown system model). The system matrices
(A,B) in are unknown, but some pre-collected input-state
data {u?, x? YY1 are available.

Assumption 7 (Pre-collected data). Let {u}}N' be any
sequence persistently exciting of order L+ n, Jr 1, where
L > 2. The state sequence {x¥ }ZN o s genemted by system
B3 offline usmg the input sequence {u}'}\ i1, from any initial
condition xf.

Different from the (data-driven) MPC, (data-driven) state-
feedback control does not produce a system trajectory. Hence,
we resort to the following problem to predict the states for
ensuing L times at each triggered time ¢,

i) = max Z 12 (te)]| oo (34a)
z;(tg) 1=0
u(te)| _ [Hi(uP)
s.t [f(tf):| = [HL(xp) g(te)  (34b)
Zo(te) + h(te) = G, (34c)
Ih(te)]l <7 (344)
where Z(ty) = [7] (to) -+ x._,(t)]" € R™L collects the
predicted states for times from ¢y to t, + L — 1, u(ty) =
[ug cee Uy 2] € R™L repeats the control input u;, for all

times in [tg, tp + L — 1], and h(ty) € R™= is a slack variable
mitigating the noise n;. Upon solving (34), the optimal state
Z*(ty) predicts the worst (in terms of norm) state trajectory
under noise n; and control inputs u (), which is subsequently
used to characterize the actual future state following the same
procedure as in Section Specifically, capitalizing on Z*(ty),



the self-triggering mechanism is constructed as follows

ter1 =t +min{L — 1,7}, tE€Ng; to:=0
7o :=min{r € N : o(Z,(ts), (s, P 71, T) > 0|24, |00 }
35

where o € (0,1) is a threshold parameter, p™ := min{p|p >=
Am} forr=1,--+,L—1is defined in Lemmawith C=1,
and ¢ : R™ X R™ X R x R x N — Ry is a certain function
to quantify the error induced by the self-triggered sampling.
The error between the states at the current triggered time ¢,
and its next one satisfies

— &, (t0)[oo + 1.

(36)
It follows from Lemma [2] that the error between the predicted
state and the actual state can be bounded by

Hctz 7 HOO < ||‘rt£ _i.:zk'g (tf)HOO + ||xtz+1

@,y — 27, () loo < p™ (R4 [P (te) o). (BT)
Substituting into (36)), the self-triggering function () in

(33) can be given by

(Z(te), h(te), Geprp" 15 T) (38)
= [z, = Zr(te)lloo + 2™ (2 + [[B(te) |oo) + 7.

Based on (33), (37), and (38), the following stability result
comes ready whose proof is similar to that of the model-based
self-triggered control in [[38]] and is thus omitted here.

Lemma 4. Let Assumptions [I} [6] and [7] hold. Consider the
state feedback system in (33)). If the self-triggered times satisfy
(B3) with function ¢(-) defined by (8)), and the parameters
h*(te), T*(t¢) obtained by solving problem (34), then system
(33) achieves input-to-state stability under the proposed self-
triggering mechanism.

Remark 3 (Novelty). The closest references to the results in this
section are [8]] and [[10], yet they distinguish from the present
work considerably. First, the work [8]] is devoted to estimating
the maximum sampling interval for state feedback systems
under different levels of process noise and controller gains.
Therefore, they only use the pre-collected data to estimate upper
bounds of ||A?|| for all i € {1,---,h}. This plays a similar
role as the norm maximization problem (13). However, the key
idea of our self-triggering mechanism is to construct a future
state trajectory using the most recently received state, and (I3))
offers a way for estimating one of the parameters required for
constructing the trajectory. In addition, although the work [10]
considers the self-triggered control problem by generalizing the
estimation method in [8], its system model as well as associated
self-triggered controller design are completely different from
ours.

V. NUMERICAL EXAMPLES

To validate the effectiveness of our proposed data-driven
self-triggering mechanism as well as predictive controllers,
several numerical examples are provided in this section.

08—
S06¢ ]
2
504 —y(1)]]

—y(2)
0.2 ' ' '
0 50 100 150 200

f Time

210t 1
o
2 s *
=)

E

L0 ‘ : :

Fa“? 0 50 100 150 200
= Time

Fig. 3. Output trajectory (top) and inter-sampling time ¢y, ; — t, (bottom)
with o = 0.88.

A. Output feedback system

Consider a linearized version of the four-tank system in, e.g.,
[15]], [39]]. The system matrices are given by

[0.927 0 0.041 0 0.017 0.001
A— 0 0.918 0 0.033 B 0.001 0.023
B 0 0 0.924 0 e 0 0.061
0 0 0 0937 0.072 0
(1 0 0 0
C=1p 1 o o P=0

with the observability index n = 2. To this end, an input-
output trajectory of length N = 800 was obtained by means
of simulating the open-loop system off-line using persistently
exciting input sequence. Let the network-induced noise n;
satisfies 7 = 0.0015. Parameters of Alg. [I] were set as
follows: the prediction horizon L = 11, cost matrices @ = I,
R =8-10731, coefficients A\,7i = 1076, \;, /7 = 500 the input
constraint set U = [—2,2]2, and the input-output equilibrium
(u®,y¢) = ([1,1]7,[0.65,0.77]) 7. Over a simulation horizon
of 200 time steps, Fig. 3] depicts the output trajectory of
system using data-driven self-triggering MPC scheme with
o = 0.88. Evidently, the system converges to the setpoint
with 37 measurement packets transmitted to the controller.
In addition, since n = 2, at most 2 x 37 = 74 outputs are
sent based on the packetized transmission protocol in Section
II-Al which is also much lesser than 200, and illustrates the
effectiveness of the self-triggering mechanism. Figs. f] and [3]
compare the cost function J; (¢,) and the self-triggered times
for different o values.

B. State feedback systems

In this part, we consider state feedback systems and illustrate
the effectiveness of the self-triggering mechanism in Section
[[V] To guarantee the system performance as done in the model-
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based event-triggered case e.g., [40], the following Lo-like
condition is incorporated and examined

Te
K> NIE; ()| < prem (39)

i=1

where constants £ > 0 and p > 0 balance between achieving
a better system performance and incurring less transmissions.

1) Example 1: Consider the system

i(t) = [8 _(1).1} () + [091] (), £>0.  (40)
Here, we consider a discrete-time version of this system with
a sampling period of 0.1s. Let 0 = 0.27, k = 0.1, p = 200,
and use the initial state o = [3 — 2]". System performance
is depicted in Fig. |6} where only 14 out of 200 samples are
needed. This outperforms the result in the previous work [10],
which uses 15 measurements under noise bounded by 1074,

4+ —z(1)1
iy —(2)
g 2\ 7
[av]

A OF

2 : : :

0 50 100 150 200
T Time

§40

(5]

g

020t ]
g

=

NESAaAN | |

5 0 50 100 150 200
= Time

Fig. 6. State trajectory of the order-2 system under (34) with o = 0.27.

A —a() —a(2) —2(3) —a(d).
LRI e

Fig. 7. State trajectory of the order-4 system under (34) with o = 0.3.

2) Example 2: Consider the inverted pendulum control
problem in [40]. The linearized system is given by

0 1 0 0 0

. 0 0 9 o L
z(t) = 00 o 1 z(t) + ¥ u(t) 41)

—1

0 0 % 0 P

where m; = 1, mo = 10, £ = 3, and g = 10. Let 0 = 0.27,
x = 0.1, 4 = 200, and the initial state o = [0.98 0 0.2 0] .
It can be seen from Fig. [7] that the system converges to zero
with 62 samples over [0, 200], which is less than that of [10].

VI. CONCLUSIONS

This paper puts forth a data-driven self-triggering control
framework for unknown linear systems through trajectory
prediction. For output feedback systems, a data-driven MPC
scheme is developed, which generates a sequence of control
inputs once an event (transmission) is triggered. The predicted
output trajectory from the MPC is further used to design a



self-triggering law that is purely data-based. Both feasibility
as well as practical exponential stability were established
for the resulting data-driven self-triggered MPC. Moreover,
when a state feedback control law is considered, a norm
maximization problem was developed to predict future system
states, thus enabling the data-driven self-triggered control.
Finally, numerical examples are presented to validate the
practical merits of the proposed data-driven control methods
and theory.
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