
1

Communication Efficient Curvature Aided Primal-dual
Algorithms for Decentralized Optimization

Yichuan Li, Petros G. Voulgaris, Dušan M. Stipanović, and Nikolaos M. Freris

Abstract—This paper presents a family of algorithms for
decentralized convex composite problems. We consider the setting
of a network of agents that cooperatively minimize a global
objective function composed of a sum of local functions plus a
regularizer. Through the use of intermediate consensus variables,
we remove the need for inner communication loops between
agents when computing curvature-guided updates. A general
scheme is presented which unifies the analysis for a plethora
of computing choices, including gradient descent, Newton up-
dates, and BFGS updates. Our analysis establishes sublinear
convergence rates under convex objective functions with Lipschitz
continuous gradients, as well as linear convergence rates when
the local functions are further assumed to be strongly convex.
Moreover, we explicitly characterize the acceleration due to
curvature information. Last but not the least, we present an
asynchronous implementation for the proposed algorithms, which
removes the need for a central clock, with linear convergence
rates established in expectation under strongly convex objectives.
We ascertain the effectiveness of the proposed methods with
numerical experiments on benchmark datasets.

Index Terms—Asynchronous algorithms, decentralized opti-
mization, primal-dual algorithms, network analysis, and control.

I. INTRODUCTION

THE proliferation of mobile devices with computation and
communication capabilities has fueled the surge of appli-

cations of distributed optimization in various fields. Examples
include distributed control, wireless sensor networks, power
grid management, and large-scale machine learning [1]–[5].
A canonical problem in distributed optimization assumes a
network of agents collaboratively optimizing a global objective
function through message passing with immediate neighbors.
In specific, we consider the following optimization problem:

minimize
x̂∈Rd

{
m∑
i=1

fi(x̂) + g(x̂)

}
, (1)

where each fi(·) : Rd → R is a convex and smooth function
accessible only by agent i while g(·) : Rd → R is a
convex (possibly nonsmooth) regularizer. The inclusion of

Yichuan Li is with the Coordinated Science Laboratory and the Depart-
ment of Mechanical Science and Engineering, University of Illinois Urbana-
Champaign, IL 61820 USA (email: yli129@illinois.edu).

Petros G. Voulgaris is with the Department of Mechanical Engineering,
University of Nevada, Reno, NV 89557, USA (email: pvoulgaris@unr.edu).

Dušan M. Stipanović is with the Coordinated Science Laboratory and the
Department of Industrial and Enterprise Systems Engineering, University of
Illinois Urbana-Champaign, IL 61820 USA (email: dusan@illinois.edu).

Nikolaos M. Freris is with the School of Computer Science, University
of Science and Technology of China, Hefei, Anhui, 230027, China (email:
nfr@ustc.edu.cn).

Freris (correspondence) was supported by the Ministry of Science and
Technology of China under grant 2019YFB2102200. Voulgaris and Li were
supported by NSF grants CCF-1717154, CPS-1932529 and CMMI-2137764.

the regularizer is multi-faceted, e.g., it serves for promoting
desired structures in the decision vector, such as sparsity in
controller designs using the `1-norm [6], preventing overfitting
in machine learning using the squared `2-norm [7], and
enforcing constraints using indicator functions of convex sets.

First-order methods [8]–[15] using (sub)-gradient informa-
tion constitute popular choices for solving (1) due to their
economical computational costs and simple implementation.
In first-order methods, agents compute updates by using local
gradients combined with averaged information from their
neighbors. For the case with no regularizer (g(·) ≡ 0), [9],
[11], [13] exploit the history of gradient and iterate values to
achieve linear convergence rate for strongly convex objectives.
[14] provides a unified framework for designing various first-
order schemes for the general problem (1). When nonsmooth
regularizers are present, existing work almost exclusively
applies proximal gradient type of updates: each agent first
performs gradient descent on the smooth part of the objective
function and then invokes the proximal operator associated
with the nonsmooth regularizer g(·). Nonetheless, using only
first-order information suffers from slow convergence speed
and thus requires a large number of total iterations to reach
a prescribed accuracy. This constitutes a key limitation for
first-order methods, which is most pronounced in applications
where high-accuracy solutions are pursued in a few rounds of
iterations, for example, due to high communication costs.

A natural option for accelerating the convergence is to use
second-order information for local updates. Most second-order
methods [16]–[19] for solving (1) focus on cases where the
objective function is smooth, i.e, g(·) = 0. One reason is that
even when proximal gradient steps are efficiently computable,
proximal Newton steps require significantly more computa-
tional resources due to the Hessian scaling in the evaluation of
the proximal operator. Another challenge in designing second-
order methods lies in constructing distributedly computable
Newton updates. Computing curvature-guided updates requires
solving a linear system that, in general, involves global infor-
mation, whence a direct application of the Newton method is
not feasible. Moreover, the standard Newton method requires
backtracking line search to select appropriate step sizes for
ensuring global convergence [20]. Such operations incur heavy
communication burdens in the form of collecting all local
objective function values in the network; this necessitates
extensive message passing between agents or the presence of a
centralized coordinator. Authors in [17] propose to use matrix
splitting techniques in the dual problem, so that the Hessian in-
verse admits a distributedly computable Taylor expansion. By
truncating the Taylor series to K terms, agents may compute
local updates with an additional K rounds of communication

ar
X

iv
:2

20
4.

06
38

0v
2

 [
m

at
h.

O
C

]
 1

1
Fe

b
20

23

2

loops with their neighbors. With g(·) = 0, [18] and [19] use
similar matrix splitting techniques to solve a penalized version
of (1) where the former presents a synchronous scheme and
the latter extends it to asynchronous settings. We note that [18]
and [19] are effectively solving a different problem (penalized
version) compared to (1) when using constant stepsizes, and
therefore do not converge to the exact solution.

Another popular line of algorithmic design for solving
(1) is based on primal-dual methods, such as the Gener-
alized Method of Multipliers, the Augmented Lagrangian
Method, and the Alternating Direction Method of Multipliers
(ADMM) [21], [22]. In the setting of distributed primal-
dual algorithms [23]–[28], agents solve a sub-optimization
problem at each iteration, which often involves multiple inner
loops and thus induces heavy computation burden. Several
approximation schemes [29]–[34] were proposed to replace
the exact minimization step with one or multiple update steps
using approximated models of the augmented Lagrangian. It
has been shown that by appropriately choosing the mixing
matrices and the augmented Lagrangian model, primal-dual
algorithms can recover several accelerated primal-only algo-
rithms using gradient and iterate tracking techniques [35].
Further acceleration can be achieved by resorting to Newton or
quasi-Newton primal updates [32]–[34]. However, all of them
are synchronous algorithms considering the smooth problem
(g(·) ≡ 0) and [33], [34] require multiple inner communication
loops at each iteration of the algorithm. In such scenarios, de-
spite improving the convergence speed, it is not clear whether
the overall communication costs can be reduced due to the
additional communication rounds per iteration. In emerging
applications such as multi-agent Cyberphysical Systems [36]
and Federated Learning [37], [38], high responsiveness and
reducing communication costs are of primordial importance.
This motivates the development of methods with accelerated
convergence as well as with guaranteed low communication
costs, which is the focus of this paper.
Contributions:
• We introduce a framework for designing distributed

primal-dual algorithms for (1) with a nonsmooth reg-
ularization function. Through the use of intermediate
consensus variables, we decouple the primal subproblem
pertaining to an agent from those of its neighbors. As a re-
sult, we obtain a block-diagonal Hessian that allows us to
incorporate curvature information in local updates without
additional communication. This is in contradistinction
with the state-of-the-art, where multiple communication
inner loops are required to compute (quasi) Newton
updates.

• Using this framework, we propose DistRibuted cUrvature
aided prImal Dual algorithms (DRUID), a family of al-
gorithms that offer flexible choices of updating schemes,
including gradient, Newton, and BFGS type of updates.
Furthermore, we present a unified analysis framework
for this class of algorithms, which not only establishes
O(1

T) convergence rate to optimality under convex ob-
jectives, but also theoretically reveals the discrepancies
among them. When strong convexity is further assumed,
we establish linear convergence rates for this class of

algorithms, and once again quantify the acceleration.
• We devise an asynchronous extension for this class of

algorithms, and establish linear convergence rates in
expectation, under strong convexity. This setting removes
the need for a central clock in the network, and further
allows for an arbitrary number of agents to be active at
each iteration. We demonstrate the merits of the proposed
framework through simulations using real-life datasets.

Notation: We represent column vectors x ∈ Rd with lower
case letters, matrices A ∈ Rn×m with capital letters, and
matrix transpose as A>. We also use [A,B] and [A;B] to
respectively denote row and column stacking (for matrices
with equal numbers of rows or columns, respectively). Su-
perscript denotes the sequence index while subscript denotes
the vector component. For example, xti represents the vector
component held by agent i at iteration t. Moreover, [A]ij
denotes the ij-th entry of matrix A. If a norm specification
is not provided, ‖x‖ and ‖A‖ represent the vector Euclidean
norm and the induced matrix norm, respectively. For a positive
definite matrix P � 0, we define ‖x‖P :=

√
x>Px. The set

{1, . . . ,m} is abbreviated as [m] and the proximal mapping
associated with a function g(·) : Rd → R is defined as
prox g

µ
(v) := argmin

θ∈Rd

{
g(θ) + µ

2 ‖θ − v‖
2
}

. We further denote

the identity matrix of dimension d as Id and the Kronecker
product between two matrices of arbitrary dimension A,B as
A⊗B.

II. PRELIMINARIES

In this section, we begin with reformulating problem (1)
to the consensus setting that is used for our development in
Section II-A.

A. Problem formulation

We capture the network topology by an undirected graph
G = {V, E} where V := [m] denotes the vertex set and the
edge set E ⊆ V × V contains the pair (i, j) if and only if
agent i can communicate with agent j. We do not consider
self loops, i.e., (i, i) /∈ E for any i ∈ [m]. For notational
convenience, we enumerate the edge set (arbitrary order) and
use Ek to denote the k-th edge, k ∈ [n], where n := |E|
is the number of edges. Moreover, the set of neighbors of
agent i is defined as Ni := {j ∈ V : (i, j) ∈ E}. Using the
above definitions, we reformulate problem (1) to the following
consensus formulation, by introducing local decision variables
xi at corresponding agent i, as well as edge variables zij for
(i, j) ∈ E . The consensus formulation is given by:

minimize
xi,θ,zij∈Rd

{
m∑
i=1

fi(xi) + g(θ)

}
,

s.t. xi = zij = xj , ∀ i ∈ [m] and j ∈ Ni.
xl = θ, for one arbitrary l ∈ [m].

(2)

Note that we have also introduced θ to separate the argument
of the smooth and nonsmooth functions and only enforce
the equality constraint for θ at the l-th agent as xl = θ,
where l can be arbitrarily selected. We emphasize that this

3

agent is not a central coordinator, but rather the agent whose
local updates factor in the nonsmooth regularizer. This is
without loss of generality and induces minimal computational
overhead from evaluating proximal mappings. Assuming G is
connected, it is easy to check that (2) is equivalent to (1) since
their optima coincide, i.e., x̂? = x?i = z?ij = θ?, ∀ i ∈ [m]
and j ∈ Ni. This is achieved by satisfying the consensus
constraints in (2). We note that consensus can be enforced by
simply letting xi = xj , i.e., without intermediate consensus
variables {zij}. However, the introduction of intermediate
variables is key to our design: the purpose of {zij} is to
decouple xi from its neighbors so that we achieve a block-
diagonal Hessian for the augmented Lagrangian. A block-
diagonal Hessian allows agents to compute the (quasi) Newton
steps without additional communication with their neighbors.
We provide further discussion on this choice in Section III.

We proceed to define the source and destination matrices
Âs, Âd ∈ Rn×m. Each row of Âs and Âd corresponds to an
edge Ek in the graph, k ∈ [n]: [Âs]ki = [Âd]kj = 1 if and
only if Ek = (i, j), and 0 otherwise. Problem (2) can then be
compactly expressed using the concatenated column vectors
x := [x>1 , . . . , x

>
m]>, z := [z>1 , . . . , z

>
n]> (we note a slight

abuse of notation in using zk ≡ zij where k ∈ [n] is the
corresponding edge (i, j) ∈ E in the enumeration order) as:

minimize
x∈Rmd,θ∈Rd,z∈Rnd

{
F (x) + g(θ)

}
,

s.t. Ax =

[
Âs ⊗ Id
Âd ⊗ Id

]
x =

[
Ind
Ind

]
z = Bz,

S>x = θ,

(3)

where F (x) :=
∑m
i=1 fi(xi) and matrices A and B are

obtained by stacking the matrices as shown in (3). We further
define S := (sl ⊗ Id) ∈ Rmd×d where sl ∈ Rm is an all-zero
vector except for the l-th entry being one. In other words, the
S> matrix serves to select the l-th component of x held by the
agent l, i.e., S>x = xl. We proceed to present some identities
that associate source and destination matrices to the incidence
and Laplacian matrices corresponding to the graph topology
in the following.

Ês = Âs − Âd, Êu = Âs + Âd, (4a)

L̂s = Ê>s Ês, L̂u = Ê>u Êu, (4b)

D̂ = 1
2 (L̂s + L̂u) = Â>s Âs + Â>d Âd, (4c)

where Ês, Êu ∈ Rn×m are signed and unsigned graph inci-
dence matrices and L̂s, L̂u ∈ Rm×m are signed and unsigned
graph Laplacian matrices respectively. The diagonal matrix
D̂ ∈ Rm×m denotes the graph degree matrix with entries
Dii = |Ni|. We further introduce the block extensions to
the dimension d, that is Es := Ês ⊗ Id and similarly for
Eu, Ls, Lu, and D.

B. Background on ADMM
We begin by defining the augmented Lagrangian for prob-

lem (3):

L(x, θ, z; y, λ) := F (x) + g(θ) + y>(Ax−Bz)

+λ>(S>x− θ) + µz
2 ‖Ax−Bz‖

2
+ µθ

2

∥∥S>x− θ∥∥2
, (5)

where y ∈ R2nd, λ ∈ Rd are Lagrange multipliers associated
with the constraints Ax = Bz and S>x = θ, respectively.
Note that since penalty coefficients of the quadratic terms
are closely related to dual step sizes, we have separated
them into µz and µθ to offer broader choices of selection.
ADMM solves (3), equivalently (2) and (1), by sequentially
minimizing the augmented Lagrangian (5) over each of the
primal variables (x, θ, z), and then performs gradient ascent
on the dual variables (y, λ):

xt+1 = argmin
x
L(x, θt, zt; yt, λt), (6a)

θt+1 = argmin
θ
L(xt+1, θ, zt; yt, λt), (6b)

zt+1 = argmin
z
L(xt+1, θt+1, z; yt, λt), (6c)

yt+1 = yt + µz(Ax
t+1 −Bzt+1), (6d)

λt+1 = λt + µθ(S
>xt+1 − θt+1). (6e)

The above iterations fall into the category of 3-block ADMM
which is not guaranteed to converge for arbitrary µz, µθ > 0
[39]. Step (6a) requires a solution to a sub-optimization
problem which often involves multiple inner-loops for general
objective functions, and therefore becomes the most expensive
step in ADMM. Executing step (6b) bears the complexity of
computing the proximal mapping of the regularization function
g(·). For commonly used g(·), such as the `1-norm, squared
`2-norm, and indicators of several convex sets, a closed-form
solution exists. For other cases, one would often resort to
the fact that the proximal operator is separable, Lipschitz
continuous with constant 1, firmly nonexpansive, and the asso-
ciated Moreau envelope function is continuously differentiable
irrespective of the function g(·), to devise efficient algorithms
to approximate the proximal mapping. We refer readers to
[40] for more details. Step (6c) results from the introduction
of {zij}-variables, and it does not require explicit evaluation
as we demonstrate in the Section III.

C. Introduction to quasi-Newton methods

Quasi-Newton methods [20] constitute a class of methods
that aim to accelerate convergence using curvature information
of the objective function without solving a linear system as in
the Newton method. Specifically, the update direction ut ∈ Rd
in quasi-Newton methods is given by:

ut = (Ht)−1∇f(xt),

where (Ht)−1 � 0 is some matrix (the inverse is just notation
for ease of exposition, and no inversion is needed) that ap-
proximates the Hessian inverse. One of the main advantages of
quasi-Newton methods lies in the fact that (Ht)−1 is explicitly
available so computing ut amounts to performing matrix
multiplication at the cost of O(d2) for general problems, as
compared to solving a linear system with computational costs
O(d3) in Newton method. Many schemes exist for estimating
(Ht)−1 and in subsequent discussions, we focus on the one
proposed by Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
[41]–[44], which is considered to be the most effective in terms
of acceleration and self-correcting capabilities [20].

4

We define the consecutive iterate and gradient differences
as:

st = xt+1 − xt, and qt = ∇f(xt+1)−∇f(xt). (7)

BFGS requires the updated Hessian inverse approximation
(Ht+1)−1 to satisfy the following secant condition:

(Ht+1)−1qt = st, (8)

which is motivated by the fact that the exact Hessian inverse
satisfies (8) as xt+1 tends to xt. However, the secant condition
alone is not enough to specify (Ht+1)−1. BFGS proposes to
select (Ht+1)−1 by further requiring the updated estimate to
be close to the previous one in the following sense:

minimize
H−1

∥∥H−1 − (Ht)−1
∥∥
W

(9)

s.t. H−1 = (H−1)>, H−1qt = st,

where ‖M‖W :=

∥∥∥∥W 1
2MW

1
2

∥∥∥∥
F

denotes the weighted

Frobenius norm with W being the average Hessian [20].
Problem (9) admits a closed-form solution which gives rise
to the update formula for (Ht+1)−1 in BFGS:

(Ht+1)−1 =
(
I − ρtst(qt)>

)
(Ht)−1

(
I − ρtqt(st)>

)
+ρtst(st)>, (10)

where ρt = 1/(qt)>st. By using only gradient information as
in first-order methods, BFGS iteratively constructs a Hessian
estimate of the objective function as in (10) that is accurate
enough to achieve superlinear convergence rates. However,
the direct application of BFGS does not admit a distributed
implementation as can be seen in the formula (10) where
computing st(qt)> involves global operations and message
passing among agents. In the following section, we introduce
BFGS updates in the framework of primal-dual algorithms that
are not only distributedly computable, but also retain the same
communication costs as their first-order counterparts.

III. ALGORITHMIC DEVELOPMENT

An approximated augmented Lagrangian L̂(·) can be ob-
tained using second-order expansion as follows:

L̂(x, θt, zt; yt, λt) = Lt(xt)+(x−xt)>∇xLt+ 1
2

∥∥x− xt∥∥2

Ht
,

where we abbreviated the L(xt, θt, zt; yt, λt) as Lt(xt), and
the selection of Ht is a means for designing a range of
methods as will be subsequently elaborated in this section.
We obtain a closed form solution when minimizing L̂(·) over
x and replace step (6a) with the following one-step update:

xt+1 = xt − (Ht)−1∇xL(xt, θt, zt; yt, λt). (11)

By completion of squares, step (6b) admits an analytical
expression through the proximal mapping:

θt+1 = proxg/µθ (S
>xt+1 + 1

µθ
λt). (12)

Moreover, since the augmented Lagrangian is quadratic with
respect to z, it follows that zt+1 of step (6c) can be computed
by solving the following linear system of equations:

B>yt + µzB
>(Axt+1 −Bzt+1) = 0. (13)

Dual variables are updated in verbatim as in steps (6d) and
(6e). We note that dual updates can be performed in parallel
once primal updates are completed. Before we explicate the
choice for Ht, we present a lemma that allows for efficient
implementation of (11)–(13) and (6d)–(6e) under appropriate
initialization.

Lemma 1. Recall the identities in (4a)–(4c) and the definitions
thereafter. We express the dual variable as yt = [αt;βt],
αt, βt ∈ Rnd. If y0 and z0 are initialized so that α0 +β0 = 0
and z0 = 1

2Eux
0, then αt + βt = 0 and zt = 1

2Eux
t for

all t ≥ 0. Moreover, defining φt = E>s α
t, we equivalently

express the updates (11)–(13), (6d)–(6e) as:

xt+1 = xt − (Ht)−1
[
∇F (xt) + φt + Sλt + µz

2 Lsx
t

+ µθS(S>xt − θt)
]
, (14a)

θt+1 = proxg/µθ (S
>xt+1 + 1

µθ
λt), (14b)

φt+1 = φt + µz
2 Lsx

t+1, (14c)

λt+1 = λt + µθ(S
>xt+1 − θt+1). (14d)

Proof : See Appendix A.

Remark 1. We emphasize that (Ht)−1 is for notational pur-
poses and no matrix inversion is needed in all cases (the
exact computation scheme will be specified in the subsequent
subsections). Note that to satisfy the requirement of Lemma
1, zero initialization for all variables suffices. Lemma 1 estab-
lishes that updates (14a)–(14d) are equivalent to (11)–(13) and
(6d)–(6e) under appropriate initialization. This has a twofold
implication: (i) we have achieved transforming a 3-block
ADMM to a 2-block ADMM, which allows for a broader range
of algorithm parameters µz, µθ that guarantee convergence;
(ii) it is not required to explicitly store and update zt since
it evolves on a linear manifold parameterized by xt, i.e.,
z = 1

2Eux. Besides, only half of yt needs to be stored since
yt = [αt;−αt]. This further reduces associated storage and
communication costs. We note that a 2-block ADMM can be
achieved directly without introducing z variables. However,
such a direct formulation induces additional communication
rounds when curvature information is computed. We further
discuss this in Remark 2.

Using the equivalent while more efficient updates (14a)–
(14d), we proceed to develop a family of algorithms by
explicating different choices of J t used in the construction
of the approximated Hessian of the augmented Lagrangian as:

Ht = J t + µzD + µθSS
> + εImd, (15)

where we have introduced ε > 0 to provide additional robust-
ness for our approximation. Notice that µzD+µθSS

>+εImd
is a diagonal matrix, whence Ht is block-diagonal when J t

is. When Ht is block-diagonal, each component of the update
direction, (Ht)−1∇xLt in (11) and equivalently in (14a), can
be computed individually by agents. More precisely, agent i
computes the update uti by solving the following linear system:

Ht
iiu

t
i = ∇xLti. (16)

Therefore, once the right-hand side of (16) is obtained by i-
th agent, no additional communication is needed to solve for

5

uti. This is made possible by using the intermediate consensus
variables {zij} which decouple xi from xj .

Remark 2. If consensus constraints are enforced directly as
xi = xj , e.g., Esx = 0, then the Hessian of the augmented
Lagrangian will not be block-diagonal, but rather have a
structure compatible with the graph:

Ht = ∇2F (xt) + µzLs + µθSS
> + εImd.

Due to the presence of the signed graph Laplacian matrix Ls,
the ij-th block will be nonzero if (i, j) ∈ E . In such scenarios,
computing uti either requires the presence of a fusion center
that gathers all ∇xLti for centralized processing, or a dis-
tributed implementation can be pursued by computing inexact
(quasi) Newton-updates by truncating the Taylor expansion of
the Hessian inverse with K terms [18], [19], [33], [34], [45]–
[48]. However, the truncation approach incurs K additional
communication rounds among agents and their neighbors,
per iteration. This not only induces large communication
overhead, but also demands stringent synchronization among
agents [49]. In contrast, all our proposed methods feature
minimal communication complexity (see step 8 of Alg. 1), and
are amenable to an asynchronous implementation. Different
choices of J t in (15) affect the local computational cost and
convergence rate as we elaborate next.

A. Gradient updates

By choosing J tGradient ≡ 0, it follows that Ht is diagonal.
Therefore, (14a) is equivalent to performing diagonally pre-
conditioned gradient descent on the augmented Lagrangian,
where step sizes are controlled by setting ε. We note that the
proposed algorithm recovers Decentralized Linearized ADMM
(DLM) [30] with g(·) = 0 as a special case of (3). Specifically,
agent i computes uti from (16) as:

uti = (µz|Ni|+ δilµθ + ε)−1∇xLti, (17)

where δil = 1 if i = l and 0 otherwise. The above shows
that the step size of the gradient descent at agent i is related
to the number of its neighbors and can be adjusted by tuning
ε. Computing updates for agents using (17) involves O(d)
computational costs, and we proceed to specify how curvature
information is incorporated with nonzero J t in the following.

B. Newton updates

By setting J tNewton = ∇2F (xt) in (15), we obtain the
Hessian of the augmented Lagrangian plus εImd:

Ht
Newton = ∇2F (xt) + µzD + µθSS

> + εImd. (18)

We note that since F (xt) =
∑m
i=1 fi(x

t
i), ∇2F (xt) is a

block diagonal matrix with the i-th block being ∇2fi(x
t
i). As

discussed previously, this induces a block diagonal Ht and the
update direction uti can be obtained by solving (16) by each
agent at the cost of O(d3) for general objective functions,
without additional communication among agents.

C. Quasi-Newton updates

In this section, we introduce a distributedly implementable
BFGS scheme that harnesses curvature information without
inner communication loops. Some insights can be gained by
investigating the target Hessian of the augmented Lagrangian
in (18). We note that the only time-varying part of Ht

Newton

is ∇2F (xt), while the remaining part is constant (the graph
structure is assumed to be time-invariant in this paper). In [34],
authors propose to estimate ∇2F (xt) using the BFGS formula
with each node’s local information and then compute the K-
th order Taylor expansion of (Ht)−1. For a distributed im-
plementation, K additional communication rounds are needed
due to direct coupling between xi and xj in [34]. We note that
such schemes not only incur higher communication costs per
round, but also induce O(d3) computational costs since linear
systems have to be solved by agents.

In contrast, we exploit the block-diagonal structure of the
Hessian (18), and propose the following scheme for approx-
imating (Ht)−1 using no additional communication (i.e., by
means of local computation with information already available
at the agents). In specific, each agent i constructs the Hessian
inverse model directly using the pairs {qti , sti}mi=1 defined as:

qti := ∇fi(xt+1
i)−∇fi(xti)

+ (µz|Ni|+ δilµθ + ε) sti, and sti := xt+1
i − xti.

(19)

In other words, instead of approximating the Hessian inverse of
the local objective

(
∇2fi(x

t
i)
)−1

, we are directly constructing
a model for

(
∇2
xLti
)−1

. The i-th block of the approximated
Hessian inverse (Ht

ii)
−1 can be recursively updated using (10)

for the {q, s} pairs defined in (19). We emphasize that it is
not needed to explicitly form Ht

ii and solve for the update
direction as in (16). Instead, computing uti is tantamount to
performing matrix multiplication (Ht

ii)
−1∇xLti. In summary,

the proposed algorithm is advantageous compared to existing
methods over the following aspects: (i) no additional com-
munication loops are needed after each gradient evaluation
and (ii) the computation costs for each agent is reduced from
O(d3) to O(d2). For the sake of comparison with the gradient
and Newton updates, we define:

J tBFGS := Ht
BFGS − µzD − µθSS> − εImd, (20)

where Ht
BFGS is obtained by the BFGS formula with

{qti , sti}mi=1 pairs defined in (19). We proceed to describe the
distributed implementation of the proposed algorithms.

IV. ASYNCHRONOUS DESCRIPTION

In synchronous algorithms, all agents communicate with
their neighbors and participate in computing in a coordi-
nated and deterministic fashion. Such settings are appropriate
when abundant communication bandwidth is available and the
network is homogeneous in the sense that agents are able
to finish local computations in adjacent time windows. In
heterogeneous networks, where agents have different hardware
conditions and different volumes of data, the progress of
synchronous algorithms is limited by the slowest agent in
the network at each iteration (also known as the straggler
problem). Moreover, the requirement of a central coordinator

6

becomes less practical when the size of the network grows
and the availability of agents becomes unpredictable.

Asynchronous algorithms [21] remove the need for a central
clock by letting a subset of agents update in a randomized
fashion at each iteration. Asynchronous methods can be further
classified into totally asynchronous algorithms and partially
asynchronous. In the former setting, agents are able to tol-
erate arbitrarily large delays between updates while in the
latter, a maximum delay constraint is imposed to guarantee
convergence. In this section, we extend DRUID to the totally
asynchronous setting that further broadens its applicability.

Recall the synchronous updates defined in (14). With any
choice of computing scheme (gradient descent, Newton, or
BFGS), we compactly express the synchronous algorithm by
defining the operator T : R(2m+2)d → R(2m+2)d as follows:

vt+1 = Tvt, (21)

where v ∈ R(2m+2)d is a concatenation of [x;φ; θ;λ], and the
operator T maps [xt;φt; θt;λt] to [xt+1;φt+1; θt+1;λt+1] ac-
cording to (14). We proceed to define the following activation
matrix:

Ωt :=

Xt 0 0 0
0 Xt 0 0
0 0 Xt

ll 0
0 0 0 Xt

ll

 , (22)

where Xt ∈ Rmd×md is a diagonal random matrix with sub-
blocks Xt

ii ∈ Rd×d, i ∈ [m], being random sub-matrices
corresponding to the i-th agent and taking values as the
identity matrix Id or a zero matrix. Using the definition (21)
and (22), the proposed asynchronous algorithms are expressed
as:

vt+1 = vt + Ωt+1(Tvt − vt). (23)

The above construction corresponds to activating agents,
i.e., the i-th agent only updates the corresponding pair (xti, φ

t
i)

(additionally (θt, λt) if i = l) if and only if Xt+1
ii = Id. We

proceed to describe the implementation details of DRUID.

A. Distributed and Asynchronous Implementation

The proposed algorithms admit the exact same implemen-
tation with variable computing choices corresponding to the
selection of J t in (15), so as to incorporate curvature informa-
tion or not. The unified description is detailed in Algorithm
1. We let the i-th agent hold (xti, φ

t
i) while the l-th agent

additionally holds the pair (θt, λt) pertaining to the nonsmooth
regularization function g(·). The gradient of the augmented
Lagrangian pertaining to agent i, ∇xLti, is expressed as:

hti = ∇fi(xti) + φti + µz
2

∑
j∈Ni

(xti − xtj)

+δilµθ(x
t
i − θt + 1

µθ
λt).

(24)

Before we present the asynchronous implementation (Alg.
1), we describe the synchronous case as a special case to
shed some light on the design principles. At the beginning of
each round, all agents become active and estimate their local
curvatures as in steps 3-4 (without communication, irrespective

Algorithm 1 DRUID
Initialization: zero initialization for all variables.

1: for t = 0, 1, . . . do
2: for all active agents i do

Compute the local curvature Ht
ii:

3: J tii =

{
0 Gradient updates
∇2fi(x

t
i) Newton updates

4: (Ht)ii ← J tii + (µz|Ni|+ δilµθ + ε) Id
Primal update:

5: Compute hti as in (24)

6:

{
Ht
iiu

t
i = hti Gradient/Newton updates

uti = (Ht
ii)
−1hti BFGS updates

7: xt+1
i = xti − uti

Communication:
8: Broadcast xt+1

i to neighbors
Dual update:

9: φt+1
i = φti + µz

2

∑
j∈Ni(x

t+1
i − xt+1

j)
Updates pertaining to the regularization function:

10: if i = l then
11: θt+1 = proxg/µθ (x

t+1
l + 1

µθ
λt)

12: λt+1 = λt + µθ(x
t+1
l − θt+1)

13: end if
Curvature estimation update (BFGS only):

14: Update (Ht+1
ii)−1 using {qti , sti} in (19) and the

formula in (10)
15: end for
16: end for

only for
gradient

or
Newton
updates

of the computing schemes). For the BFGS computing scheme,
no computation is required at these steps. Agents then carry
primal updates by first computing hti expressed in (24). We
emphasize that hti can be computed without communication,
since each agent i already has access to the variables of its
neighbors, {xtj |j ∈ Ni}, from the previous round with zero
initialization. If gradient or Newton updates is opted as the
computing scheme, agents compute uti by solving the linear
system (for gradient descent uti can be trivially solved since
Ht
ii is a constant scalar times the identity matrix). For the

BFGS scheme, uti is computed by performing matrix-vector
multiplication (Ht

ii)
−1hti. Once uti is obtained, agents update

their xt+1
i in step 7. We note that the only communication

round occurs at step 8 where agents broadcast xt+1
i to their

neighbors (thus incurring the same cost for all computing
schemes, i.e., |Ni|d for agent i). Dual updates are executed in
step 9. We require agents to store {xt+1

j , j ∈ Ni}, to execute
step 5 in the next iteration. In addition to the primal-dual
variables (xl, φl), the l-th agent further holds (θ, λ) associated
with the regularization term g(·), which are updated in steps
11-12. Finally, if BFGS is opted as the updating scheme,
agents update local curvature estimation (Ht+1

ii)−1 in step 14.
In the case of asynchronous implementation, we equip each

agent with a buffer so that even if agents are not active,
they can still receive information from their neighbors. Once
active, the i-th agent executes steps 3-4 using only local
information and then retrieves the most recent xtj from its
buffer for computing hti in step 5. Once uti is computed and

7

xt+1
i is updated in steps 6 and 7, respectively, the active agent
i broadcasts xt+1

i to its neighbors, whose buffers store the
updated xt+1

i . Finally, the active agents check their buffers
for most recent xt+1

j and proceed to dual updates and finish
their computing as in steps 9-14.

V. ANALYSIS

In this section, we present a unified framework for analyzing
the proposed algorithms with gradient, Newton, and BFGS
updates. Throughout this section, we assume that the initial-
ization requirement in Lemma 1 is satisfied. We recall the
concatenated vector v = [x;φ; θ;λ] ∈ R(2m+2)d introduced
in (21), and we similarly define vα = [x; z;α; θ;λ] ∈
R(m+2n+2)d. We use v for implementation as in Algorithm 1
but analyze convergence using vα for technical convenience.
We note that their equivalence is established by Lemma 1
using φ = E>s α, z = 1

2Eux. We first establish the sublin-
ear convergence rate of the synchronous DRUID under the
assumption that the local objective functions are convex. By
further assuming strong convexity, we establish the global
linear convergence rate for both the synchronous and the
asynchronous settings.

A. Preliminaries

Assumption 1. (Existence of solutions) The solution set X ? of
problem (1) is nonempty, i.e., X ? 6= ∅.
Assumption 2. The local costs functions fi(·) and the regular-
izer function satisfy the following conditions:
(i) Each fi(·) : Rd → R is twice continuously differentiable,
mf–strongly convex and Mf–smooth, i.e., ∀i ∈ [m] , xi ∈ Rd:

mfId � ∇2fi(xi) �MfId, (25)

where 0 ≤ mf ≤Mf <∞.
(ii) The regularizer function g(·) : Rd → R is proper, closed,
and convex, i.e., ∀x, y ∈ Rd,

(x− y)>(∂g(x)− ∂g(y)) ≥ 0, (26)

where the inequality is meant for arbitrary elements in the
subdifferential sets ∂g(x) and ∂g(y), respectively.

Assumption 3. The Hessians of the local objective func-
tions are Lipschitz continuous with constant Lf , i.e., ∀ i ∈
[m], x, y ∈ Rd,∥∥∇2fi(x)−∇2fi(y)

∥∥ ≤ Lf‖x− y‖.
Note that we allow the case mf = 0 (convex but not
strongly convex), and we will analyze separately for the cases
mf = 0 and mf > 0 to establish sublinear and linear
rates, respectively. Assumptions 1-2 are standard for analyzing
distributed algorithms while Assumption 3 is standard for
analyzing second-order methods [50].

Assumption 4. The Hessian estimate obtained by the BFGS is
uniformly upper bounded, i.e., for any t ≥ 0, there exists a
constant ψ > 0 such that:

Ht
BFGS � ψImd. (27)

Remark 3. Assumption 4 applies only for BFGS updates and
is, in general, not standard. However, many techniques can be
used to satisfy (27). For example, adding small regularization
when computing the Hessian inverse approximations, i.e.,
(Ht

BFGS)−1 = (Ĥt
BFGS)−1 + 1

ψ Imd, where (Ĥt
BFGS)−1 is

obtained through (10). Other means include using regularized
BFGS updates and invoking L-BFGS [51] estimation by using
a finite prescribed number of {qti , sti} copies. In brief, we make
this assumption for convenience and without serious loss in
generality; see also [34] and [52].

When local functions are assumed to be only convex (mf =
0), there might be multiple optimal primal solutions, each with
multiple optimal dual solution. However, there exists a unique
dual pair that lies in the column space of some matrix, to be
defined and formalized in the following.

Lemma 2. The tuple (x?, z?, α?, θ?, λ?) solves (3), and equiv-
alently (1), if and only if the following holds:

∇F (x?) + E>s α
? + Sλ? = 0, KKTa

∂g(θ?)− λ? 3 0, KKTb
Esx

? = 0, KKTc
Eux

? = 2z?, KKTd

S>x? = θ?. KKTe

Moreover, there exists a unique dual optimal pair [α?;λ?] ∈
R(n+1)d that lies in the column space of C :=

[
Es
S>

]
∈

R(n+1)d×md.
Proof : See Appendix A of the extended version of this

paper.

We proceed to establish a lemma that characterizes the
suboptimality of the iterates when replacing (6a) with (14a).

Lemma 3. Consider the iterates generated by (14). The fol-
lowing holds:

et +∇F (xt+1)−∇F (x?) + ε(xt+1 − xt) + E>s (αt+1 − α?)
+µzE

>
u (zt+1 − zt) + S

(
λt+1 − λ? + µθ

(
θt+1 − θt

))
= 0

where the error term is:

et = ∇F (xt)−∇F (xt+1) + J t(xt+1 − xt). (28)

Proof : See Appendix A.

B. Sublinear Convergence

We recall J t in (15) and the concatenated vector vα ∈
R(m+2n+2)d. We further define J

t
= J t + εI , and the scaling

matrix Gt as follows:

vα =

x
z
α
θ
λ

 , Gt =

J
t

0 0 0 0
0 2µz 0 0 0
0 0 2

µz
0 0

0 0 0 µθ 0
0 0 0 0 1

µθ

 . (29)

Theorem 1. Recall the definition in (29). Consider the iterates
generated by (14). We denote the smallest and the biggest
eigenvalue of Lu and Ls as σLumin and σLsmax respectively. Under

8

Assumptions 1-4, (mf = 0), and we select µz and ε such that:
ε >

Mf

2 , µzε < ψ2. Then the following holds:

1
T
µz
2

∥∥x1
∥∥2

Ls
+ µθ

T

∥∥x1
l − θ1

∥∥2
+ 1

T

T∑
t=1

∥∥vt+1
α − vtα

∥∥2

Gt (30)

≥ 1
T
µz
2

∥∥xT+1
∥∥2

Ls
+ µθ

T

∥∥xT+1
l − θT

∥∥2

+ 1
T

T∑
t=1

{
ε

ρM
2

∥∥∇F (xt) + E>s α
t + Sλt

∥∥2
+ µθ

∥∥θt+1 − θt
∥∥2

+ 2µz
∥∥zt+1 − zt

∥∥2
+
(
µz
2 −

εµ2
z

2M
2

)∥∥xt∥∥2

Ls

+
(
µθ − 2εµ2

θ

M
2
(ρ−1)

)∥∥S>xt − θt∥∥2
}
,

where dmax = max
i
|Ni|, ρ > max

{
2εµθ
M

2 , σLsmax

}
+ 1, and M

(for each scheme) is given by: MGradient = µzdmax + ε +
µθ,MNewton = Mf + µzdmax + ε+ µθ,MBFGS = ψ.

Proof : See Appendix B.
Remark 4. It is not hard to verify zt = 1

2Eux
t (Remark 1) and

λt ∈ ∂g(θt) holds along the convergence path and establishing
convergence amounts to satisfying KKTa,c,e. We proceed to
explicate the convergence rate of these terms in the following.
Corollary 1. The running-average suboptimality residual and
consensus errors converge as follows:

1
T

T∑
t=1

∥∥∇F (xt) + E>s α
t + Sλt

∥∥2
= O(1

T), (31a)

1
T

T∑
t=1

∥∥xt∥∥2

Ls
= O(1

T), (31b)

1
T

T∑
t=1

∥∥S>xt − θt∥∥2
= O(1

T). (31c)

Proof : See Appendix B.

C. Linear Convergence

By further assuming strongly convex fi(·) (mf > 0), we
establish the linear convergence rate of DRUID. We show that
the iterates converge to the unique [x?; z?;α?; θ?;λ?], where
the dual pair [α?;λ?] lies in the column space of C as shown
in Lemma 2. We first bound the error in (28).
Lemma 4. Recall the error term defined in (28). The following
holds: ‖et‖ ≤ τ t

∥∥xt+1 − xt
∥∥, where

τ tGradient = Mf , (32a)

τ tNewton = min
{

2Mf ,
Lf
2

∥∥xt+1 − xt
∥∥}, (32b)

τ tBFGS =
∥∥Ht −Ht+1

∥∥ ≤ 2ψ. (32c)

Proof : See Appendix C.
The above lemma complements the result presented in [30]
and [32]. By upper bounding the error induced when we
replace the exact suboptimization step (6a) with a one-step
update (14a), we reveal the differences when using differ-
ent computing schemes. Since the algorithm converges, as
established in the previous subsection, the Lf

2

∥∥xt+1 − xt
∥∥

term will eventually become smaller than the 2Mf term in

Table I: Comparison between updating schemes in terms
of communication and computation costs per iteration, and
storage costs per agent as a function of vector dimension d
and neighborhood size |Ni|. The last column characterizes
the decay rate of et in Lemma 4 in terms of the difference
xte := xt+1 − xt.

Methods Comm. costs Comp. costs Storage costs Decay rate
Gradient |Ni|d O(d) O(d) O(

∥∥xt
e

∥∥)
BFGS |Ni|d O(d2) O(d2) o(

∥∥xt
e

∥∥)
Newton |Ni|d O(d3) O(d2) O(

∥∥xt
e

∥∥2)
(32b). In other words, the error term eventually diminishes
quadratically with respect to

∥∥xt+1 − xt
∥∥ in Newton updates.

On the other hand, since
∥∥Ht −Ht+1

∥∥ → 0, we conclude
that the error term in BFGS diminishes superlinearly with
respect to

∥∥xt+1 − xt
∥∥. We have summarized these along with

other properties of different updating schemes in Table I. Note
that the l-th agent, that performs updates pertaining to g(·),
additionally holds the (θ, λ) pair; thus, storage increases by
2d and additional computation is incurred for evaluating the
proximal operator (typicallyO(d)). The fact that all computing
schemes share the same communication cost (equal to the
vector dimension d) is because agents only communicate once
per iteration with their neighbors (step 8 of Alg. 1).

Before establishing the linear convergence rate of DRUID,
we recall vα and introduce the following diagonal scaling
matrix H = diag[ε, 2µz,

2
µz
, µθ,

1
µθ

] similar to (29).
Theorem 2. Under Assumptions 1–4 with mf > 0, we denote
the maximum and minimum eigenvalue of Lu as σLumax and
σLumin respectively. Let σ+

min be the smallest positive eigenvalue

of CC>, where C :=

[
Es
S>

]
, and cmax = 2 ·max{Mf , ψ}. By

selecting µz = 2µθ, ε > c2max(mf+Mf)
2mfMf

, and arbitrary constant

ζ ∈
(
mf+Mf

2mfMf
, ε

(τt)2

)
, the iterates generated by (14) satisfy:∥∥vt+1

α − v?α
∥∥2

H ≤
1

1+η

∥∥vtα − v?α∥∥2

H,

where η satisfies:

η = min

{(
2mfMf

mf+Mf
− 1

ζ

)
1

ε+µθ(σLumax+2)
, 1

2 ,
2
5

µθσ
+
min

mf+Mf
,

µθσ
+
min(ε−ζ(τt)2)

5((τt)2+ε2) ,
σ+
min

5 max{1,σLumax}

}
(33)

Proof : See Appendix C.
Remark 5. To shed some light on the convergence rate, we first
consider the case when the sub-optimization problem (6a) is
solved exactly. When an exact solution is obtained, Lemma 3
holds with et = 0, and therefore τ t = 0 in Lemma 4. Having
τ t = 0 allows us to choose ε = 0 and ζ � 1, which gives the
following rate:

ηexact = min

{
2mfMf

mf+Mf

1

µθ(σLumax+2)
, 1

2 ,
2
5

µθσ
+
min

(mf+Mf) ,

σ+
min

5 max{1,σLumax}

}
. (34)

Denoting κ = Mf/mf and choosing µθ = mf
√
κ, we

obtain an iteration complexity of O (
√
κ log(1/ε)) from (34),

9

where ε is the solution accuracy and not to be confused
with the hyperparameter ε. Moreover, since σ+

min is related
to the smallest positive eigenvalue of Ls, i.e., the algebraic
connectivity of the graph, (34) implies that a more connected
graph (larger σ+

min) gives rises to a larger ηexact, and faster
convergence rates. On the other hand, the rate η established
in (33) is no larger than ηexact in (34): this is due to the fact
that we have replaced the exact optimization step with the
one step update (14a). Characterizing the gap between η and
ηexact serves to reveal the differences between using gradients,
Newton, and BFGS updates. This is achieved by comparing
the upper bound for the error term τ t, and how et (Lemma
4) evolves as characterized by the last column of Table I.
As established in Section V-B, limt→∞

∥∥xt+1 − xt
∥∥ = 0, the

error bound τ tNewton/BFGS → 0 from inspecting (32b) and
(32c). In other words, we can recover the convergence rate in
(34) only if we use curvature-aided updates.

We recall that the asynchronous implementation in (23)
is defined using {φi}mi=1 and v = [x;φ; θ;λ], for the most
efficient and economical deployment. In the rest of this section,
we first characterize the condition for vα to converge under
random activation, and then show that the implementation (23)
satisfies this condition. We first define the following activation
matrix corresponding to vα = [x; z;α; θ;λ] ∈ R(m+2n+2)d:

Ωtα :=

Xt 0 0 0 0
0 Y t 0 0 0
0 0 Y t 0 0
0 0 0 Xt

ll 0
0 0 0 0 Xt

ll

 . (35)

The activation matrix Ωtα differs from Ωt in (22) as we allow
(zt, αt) to be updated independently from xt, captured by the
random matrix Y t ∈ Rnd×nd. We can similarly develop an
asynchronous algorithm as:

vt+1
α = vtα + Ωtα(Tαv

t
α − vtα), (36)

where the operator Tα : R(m+2n+2)d → R(m+2n+2)d is
equivalent to the synchronous updates (14). The update (36)
captures a wider range of random activation schemes than the
update in (23), but it is more costly to implement. Therefore,
we only use (36) as a guideline for analysis. We proceed to
define Et[·] := E[·|F t], where F t is the filtration generated
by (X1, . . . , Xt) and (Y 1, . . . , Y t).

Theorem 3. Consider the iterates generated by the asyn-
chronous algorithm (36). Under the same setting as in the
Theorem 2 and any activation scheme such that Et[Ωt+1

α] =
Ωα � 0, then the following holds:

Et
[∥∥vt+1

α − v?α
∥∥2

HΩ−1
α

]
≤
(

1− pminη
1+η

)∥∥vtα − v?α∥∥2

HΩ−1
α
,

where for i ∈ [m], j ∈ [n], we denote Et[Xt+1
ii] =

pXi ,Et[Y
t+1
jj] = pYj , pmin := min

i∈[m],j∈[n]
{pXi , pYj }, and η is

given by (33).
Proof : See Appendix C.

We note that the activation of the asynchronous scheme
using (Ωt+1

α , vt+1
α) described by (36) amounts to specifying

the random matrix Xt+1 and Y t+1, which can be chosen

independently from each other. Theorem 3 shows that as long
as Et[Ωt+1

α] � 0, iterates vtα converge linearly in expectation.
On the other hand, the implementation using (Ωt+1, vt+1)
described by (23), only needs to specify Xt+1, i.e., activating
agents. The difference of the two lies in the fact that (36) first
updates a subset of αk, then computes φ = E>s α, while (23)
directly updates a subset of φi. In the following corollary, we
show that using the activation scheme described by (23), the
induced iterates vtα converge linearly in expectation.
Corollary 2. Consider activation matrices Ωt+1 in (22) and
Ωt+1
α in (35). Under the same Xt+1 and updating scheme

(23), if Et[Xt+1] � 0, then it holds that Et[Ωt+1
α] � 0.

Proof : See Appendix C.
Since Et[Ωt+1

α] � 0, we conclude that the implementation
using (Ωt, vt) induces an equivalent sequence of (Ωtα, v

t
α) that

converges linearly in expectation using Theorem 3.

VI. NUMERICAL EXPERIMENTS

In this section, we present a comparative experimental
validation of the proposed methods with existing state-of-the-
art methods, namely PGE [10], P2D2 [12], and ESOM [33].
Note that ESOM and other existing (quasi) Newton methods
[19], [32], [34], [47] do not support nonsmooth regularization
functions and therefore ESOM is only compared in the Fig 4,
where the regularization function is differentiable. We consider
the following distributed optimization problem:

minimize
x∈Rd

G(x) =

{
m∑
i=1

fi(x) + g(x)

}
, (37)

where fi(·) and g(·) are to be specified according to the
application. All experiments are conducted using real-life
data sets from the LIBSVM1 and UCI Machine Learning
Repository2. We generate connected random graphs with m
agents by repetitively drawing edges between agents according
to a Bernoulli(p) distribution. We ensure connectedness by
redrawing the graph if necessary. The mixing matrices of
P2D2 and ESOM are generated using the Metropolis rule [12]
while the mixing matrix of PG-EXTRA is generated by the
Laplacian-based constant weight matrix [10], respectively.

A. Distributed LASSO

The distributed LASSO problem considers solving (37) with
g(x) = γ‖x‖1, γ ∈ R, and fi(·) : Rd → R defined as:

fi(x) = 1
2

mi∑
i=1

(
a>i x− bi

)2
. (38)

Each {ai, bi} ∈ Rd ×R is a given data point and mi denotes
the total number of data points held by the i-th agent. The
purpose of the regularization function γ‖x‖1 is to promote
a sparse solution vector. We consider the Combined Cycle
Power Plant (CCPP) dataset from the UCI Machine Learning
Repository, using 9,000 data points of dimension d = 4.

We note that all algorithms have the same communication

1https://www.csie.ntu.edu.tw/ cjlin/libsvm/
2https://archive.ics.uci.edu/ml/index.php

10

Figure 1: Performance comparison on the CCPP dataset. We
plot the iteration number versus the relative cost error (left)
G(xt)−G(x?)
G(x0)−G(x?) and the relative distance error (right) ‖x

t−x?‖
‖x0−x?‖ on

a randomly generated graph consisting of m = 20 agents.

Figure 2: Performance comparison of DRUID algorithms and
existing methods in a network with m = 20 agents, in
synchronous (left) and asynchronous (right) settings. In each
iteration of the asynchronous setting, half of the agents in the
network are activated in a uniformly random fashion.

costs per iteration (this is due to the fact that only one
round of communication of the local variable xi is required
for all updating schemes; see step 8 of Alg. 1), while first-
order methods have lower computational costs. However,
a significant reduction of iteration numbers for prescribed
accuracy can be achieved by using (quasi) Newton methods.

B. Distributed Logistic Regression

The distributed logistic regression solves (37) with g(x) =
γ‖x‖1 and fi(·) : Rd → R defined as:

fi(xi) =

mi∑
j=1

[
ln
(

1 + e−w
>
j xi
)

+ (1− yj)w>j xi
]
,

where mi is the number of data points accessible by the i-th
agent. We denote the local training data set as {wj , yj}mij=1 ⊂
Rd × {0, 1}, where wj are feature vectors and yj are known
labels. We consider 5, 000 data points from the skin noskin
dataset with dimensions d = 3, and 2, 000 data points from
the ijcnn1 dataset with dimensions d = 22. In Figure 2,
we observe that the convergence is slower when only a
subset of agents become active (due to less total computa-
tion/communication per round compared to the synchronous
case). Note that P2D2 and PGE do not support asynchronous
implementations. We further explore the effect of the graph
topology by varying the size of the network m in Figure 3. We
observe that DRUID is insensitive to networks with different
sizes, but with fixed p = 0.2. This is consistent with our
analysis where the convergence rate is affected by algebraic
connectivity, but not system size m.

Figure 3: Performance comparison using the ijcnn1 dataset
with different network sizes. We plot the iteration number
versus the relative cost error on random graphs with m = 10
(left) and m = 20 (right).

Figure 4: Performance comparison using the space ga dataset.
We use the communication rounds as the metric, with the
number of agents and probability of generating an edge equal
to m = 20, p = 0.2 (left) and m = 40, p = 0.8 (right).

C. Distributed Ridge Regression

Since existing second-order methods only support differ-
entiable regularization functions, we consider the problem of
distributed ridge regression, whose fi(·) is the same as in (38)
but with g(x) = γ‖x‖2. We compare DRUID with ESOM-
K, where K denotes the number of inner communication
loops. In the case of ESOM-K, a more accurate Hessian
estimation can be obtained by increasing K, at the cost of more
communication rounds. On the other hand, we emphasize that
through the use of consensus variables {zij}, DRUID-Newton
utilizes the exact Hessian without inducing inner loops, and
thus achieves the highest communication efficiency.

VII. CONCLUSIONS

We have proposed a family of distributed primal-dual algo-
rithms for solving convex composite optimization problems.
Various computing choices, including gradient, Newton, and
BFGS updates, are proposed to achieve a balance between
economical computational costs, solution accuracy, and con-
vergence speeds. By use of intermediate consensus variables,
we achieve a block-diagonal Hessian that allows us to harness
the curvature information without additional communication
rounds after each gradient evaluation. An asynchronous exten-
sion of the proposed algorithms is also presented. We establish
a unified analytical framework for the proposed algorithms
that reveals the difference between various updating schemes.
Some future directions include extensions to time-varying and
directed network topologies, stochastic gradient evaluation,
and hybrid updating schemes.

11

APPENDIX A

Proof of Lemma 1: The proof was similarly derived in [23]
and [26] for the case g(·) = 0 and the suboptimization problem
(6a) was solved exactly. We generalize the results by first
writing yt = [αt;βt] and recalling the dual update for yt+1 in
(6d):

yt+1 = yt + µz(Ax
t+1 −Bzt+1).

Using (13) and premultiplying (6d) with B> on both sides, we
obtain B>yt+1 = 0 for all t ≥ 0. Since B> = [Ind, Ind], it
holds that αt+1 +βt+1 = 0 for all t ≥ 0. By further assuming
α0 = −β0, we obtain αt = −βt for all t ≥ 0. Recall As :=
Âs ⊗ Id and Ad := Âd ⊗ Id, as well as the definition of A in
(3), the dual update (6d) can be rewritten as:

αt+1 = αt + µz(Asx
t+1 − zt+1), (39)

−αt+1 = −αt + µz(Adx
t+1 − zt+1). (40)

Recall that Es = As −Ad and Eu = As +Ad. By taking the
sum and difference of (39) and (40), we obtain for t ≥ 0,

zt+1 = µz
2 Eux

t+1, (41)

αt+1 = αt + µz
2 Esx

t+1. (42)

This establishes that the dual update (6d) for yt+1 can be
replaced by (42). Using the definition of φt = E>s α

t and
premultiplying (42) with E>s , we obtain (14c). By initializing
z0 = 1

2Eux
0, we have that zt = 1

2Eux
t for t ≥ 0.

Therefore, the update (13) for zt+1 is not necessary since zt

can be obtained by computing 1
2Eux

t. It remains to show the
equivalence between (11) and (14a). Using (5), it follows that
update (11) is given by:

xt+1 = xt − (Ht)−1
[
∇F (xt) +A>yt + Sλt

+µzA
>(Axt −Bzt) + µθS(S>xt − θt)

]
. (12)

Since yt = [αt;−αt] and zt = 1
2Eux

t, we obtain:

A>yt =
[
A>s A>d

]
yt = E>s α

t = φt, (43)

µzA
>(Axt −Bzt) = µz

2 (2D − Lu)xt = µz
2 Lsx

t, (44)

where we have used the identity A>s −A>d = E>s , D = A>A,
and µzA

>Bzt = µz
2 E
>
u Eux

t = µz
2 Lux

t. After substituting
(43) and (44) into (11), we obtain the desired. �

Proof of Lemma 2: The KKT conditions for (3) are:

∇F (x?) +A>y? + Sλ? = 0, (45a)

B>y? = 0, (45b)
∂g(θ?)− λ? 3 0, (45c)

Ax? = Bz?, (45d)

S>x? = θ?. (45e)

Since the objective function is convex with linear constraints,
strong duality holds. Recall the definition B =

[
Imd; Imd

]
∈

R2md×md. The condition (45b) implies that for any dual
optimal y? = [α?;β?], it holds that α? = −β?. Since
A = [As;Ad] and Es = As − Ad, the condition (45a) can
be rewritten as:

∇F (x?) + E>s α
? + Sλ? = 0. (46)

Note that since E>s has a nontrivial kernel for any network
with agent number m > 1, there exist multiple α? that satisfy
(46). We proceed to show that there exists a unique dual

optimal [α?;λ?] that lies in the column space of C =

[
Es
S>

]
.

To show existence, let ξ0 :=
[
α0;λ0

]
be any dual optimal

that satisfies (46) and (45c). We denote its projection to the
column space of C as ξ? := [α?;λ?]. By the property that
C>(ξ0 − ξ?) = 0, we conclude that ∇F (x?) + C>ξ? = 0.
Moreover, since col(E>s) ∩ col(S) = 0 and ker(S) = 0,
it holds that λ0 = λ?. We prove the uniqueness of ξ? by
contradiction. Suppose there exist ξ1 = Cr1 and ξ2 = Cr2,
r1 6= r2, that satisfy:

∇F (x?) + C>Cr1 = 0,

∇F (x?) + C>Cr2 = 0.

After taking the difference of the above, we obtain C>C(r1−
r2) = 0. Note that C>C = E>s Es + SS> = Ls + SS>.
Since both Ls and SS> are positive semidefinite, C>C(r1−
r2) = 0 if and only if Ls(r1 − r2) = SS>(r1 − r2) = 0.
Moreover, since the graph is connected, the kernel of Ls is a
one dimensional subspace spanned by consensus vector 1 and
the kernel of SS> is spanned by vectors with the l-th entry
being 0. Therefore, Ls(r1 − r2) = SS>(r1 − r2) = 0 if and
only if r1 − r2 = 0, which contradicts with the assumption
r1 6= r2. �

Proof of Lemma 3: Recall the primal update (14a) and the
identity φt = E>s α

t. After rearranging, we obtain:

∇F (xt) + E>s α
t + Sλt + µz

2 Lsx
t + µθS(S>xt − θt)

+Ht(xt+1 − xt) = 0 (47)

From the dual update (14c), we obtain:

E>s α
t + µz

2 Lsx
t = E>s α

t+1 − µz
2 Ls(x

t+1 − xt). (48)

Similarly, from the dual update (14d), it holds that

Sλt + µθS(S>xt − θt)
=Sλt+1 − µθS

(
S>(xt+1 − xt)− (θt+1 − θt)

)
. (49)

After substituting (48) and (49) into (47), we obtain:

∇F (xt) + E>s α
t+1 − µz

2 Ls(x
t+1 − xt) + S

(
λt+1 (50)

−µθS>(xt+1 − xt) + µθ(θ
t+1 − θt)

)
+Ht(xt+1 − xt) = 0

Recall 2D = Ls+Lu from (4c). After adding and subtracting
(µzD + µθSS

> + εI)(xt+1 − xt) from (50), we obtain:

∇F (xt) + E>s α
t+1 + µz

2 Lu(xt+1 − xt) + Sλt+1

+µθS(θt+1 − θt) + ε(xt+1 − xt)
+
(
Ht − µzD − µθSS> − εI

)
(xt+1 − xt) = 0.

Moreover, µz
2 Lu(xt+1 − xt) = µz

2 E
>
u Eu(xt+1 − xt) =

µzE
>
u (zt+1−zt) by (41). Recall Ht in (15), as well as (20) for

the BFGS case. After subtracting KKTa and substituting the
definition of et in (28) and the expression for µz2 Lu(xt+1−xt)
into the above, we obtain the desired. �

12

APPENDIX B

Proof of Theorem 1: We begin with proving the following
two technical inequalities:

(λt+1 − λt)>(θt+1 − θt) ≥ 0, (51)

(λt+1 − λ?)>(θt+1 − θ?) ≥ 0. (52)

From the definition of the proximal operator, it holds that:

θt+1 = argmin
θ

{
g(θ) + µθ

2

∥∥∥S>xt+1 + 1
µθ
λt − θ

∥∥∥2
}
. (53)

By the optimality condition of (53), we obtain:

0 ∈ ∂g(θt+1)−µθ(1
µθ
λt+S>xt+1−θt+1) = ∂g(θt+1)−λt+1,

where the last equality follows from the dual update (14d).
Therefore, it holds that:

(λt+1−λt)>(θt+1−θt) ∈ (∂g(θt+1)−∂g(θt))>(θt+1−θt) ≥ 0,

where the inequality follows from the convexity of g(·).
Moreover,

(λt+1−λ?)>(θt+1−θ?) ∈ (∂g(θt+1)−∂g(θ?))>(θt+1−θ?) ≥ 0,

where the inclusion follows from KKTb. The rest of the proof
is constituted by the following:

(i) Establishing the convergence of ‖vtα − v?α‖
2
Gt to 0.

(ii) Establishing the running average upper bound in (30).
Part (i): Since F (·) is convex with the gradient being Lipschitz
continuous with parameter Mf , the following holds:

1
Mf

∥∥∇F (xt)−∇F (x?)
∥∥2 ≤ (xt − x?)>(∇F (xt)−∇F (x?))

= (xt+1 − x?)>(∇F (xt)−∇F (x?))

+ (xt − xt+1)>(∇F (xt)−∇F (x?)). (54)

We proceed to establish an upper bound for the right-hand side
of (54) by separately bounding the two components. Recall Ht

in (15). From Lemma 3, the following holds:

∇F (xt)−∇F (x?) = −
{
E>s (αt+1 − α?) + S

(
λt+1 − λ?

+ µθ(θ
t+1 − θt)

)
+
(
J t + εI

)
(xt+1 − xt)

+ µzE
>
u (zt+1 − zt)

}
. (55)

Denoting J
t

= J t + εI and using (55), we rewrite the first
component of the right hand side of (54) as:

(xt+1 − x?)>(∇F (xt)−∇F (x?)) =

− (xt+1 − x?)>E>s (αt+1 − α?)
− (xt+1 − x?)>S

(
λt+1 − λ? + µθ(θ

t+1 − θt)
)

− (xt+1 − x?)>J t(xt+1 − xt)
− µz(xt+1 − x?)>E>u (zt+1 − zt). (56)

From the dual update, KKT conditions, and Lemma 1, the
following holds:

(xt+1 − x?)>E>s = 2
µz

(αt+1 − αt)>,
(xt+1 − x?)>S = (θt+1 − θ?)> + 1

µθ
(λt+1 − λt)>,

(xt+1 − x?)>E>u = (zt+1 − z?)>.

Using these expressions for (xt+1−x?)>E>s , (xt+1−x?)>S,
and (xt+1 − x?)>E>u , we rewrite (56) as:

(xt+1 − x?)>(∇F (xt)−∇F (x?)) (57)

= − 2
µz

(αt+1 − αt)>(αt+1 − α?)
−(θt+1 − θ?)>(λt+1 − λ?)︸ ︷︷ ︸

≤0 from (52)

− 1
µθ

(λt+1 − λt)>(λt+1 − λ?)

− µθ(θt+1 − θ?)>(θt+1 − θt)−(λt+1 − λt)>(θt+1 − θt)︸ ︷︷ ︸
≤0 from (51)

− (xt+1 − x?)>J t(xt+1 − xt)− 2µz(z
t+1 − z?)>(zt+1 − zt)

≤ − 2
µz

(αt+1 − αt)>(αt+1 − α?)
− 1

µθ
(λt+1 − λt)>(λt+1 − λ?)− µθ(θt+1 − θ?)>(θt+1 − θt)

− (xt+1 − x?)>J t(xt+1 − xt)− 2µz(z
t+1 − z?)>(zt+1 − zt)

=
(i)

1
2

{
2
µz

(∥∥αt − α?∥∥2 −
∥∥αt+1 − α?

∥∥2 −
∥∥αt+1 − αt

∥∥2
)

+ 1
µθ

(∥∥λt − λ?∥∥2 −
∥∥λt+1 − λ?

∥∥2 −
∥∥λt+1 − λt

∥∥2
)

+ µθ

(∥∥θt − θ?∥∥2 −
∥∥θt+1 − θ?

∥∥2 −
∥∥θt+1 − θt

∥∥2
)

+
∥∥xt − x?∥∥2

J
t −

∥∥xt+1 − x?
∥∥2

J
t −

∥∥xt+1 − xt
∥∥2

J
t

+ 2µz

(∥∥zt − z?∥∥2 −
∥∥zt+1 − z?

∥∥2 −
∥∥zt+1 − zt

∥∥2
)}

=
(ii)

1
2

(∥∥vtα − v?α∥∥2

Gt −
∥∥vt+1
α − v?α

∥∥2

Gt −
∥∥vt+1
α − vtα

∥∥2

Gt

)
,

where (i) follows from the identity −2(a − b)>(a − c) =
‖b− c‖2−‖a− b‖2−‖a− c‖2; (ii) follows from the definition
(29). We proceed to establish an upper bound for the second
term of (54) in the following. Note that a>b ≤ 1

2ζ a
2 + ζ

2b
2

holds for any ζ > 0. By setting ζ =
Mf

2 , we obtain:

(xt − xt+1)>(∇F (xt)−∇F (x?))

≤ 1
Mf

∥∥∇F (xt)−∇F (x?)
∥∥2

+
Mf

4

∥∥xt+1 − xt
∥∥2
. (58)

After substituting (57) and (58) into (54), we obtain:

1
Mf

∥∥∇F (xt)−∇F (x?)
∥∥2 ≤ 1

2

(∥∥vtα − v?α∥∥2

Gt −
∥∥vt+1
α − v?α

∥∥2

Gt

−
∥∥vt+1
α − vtα

∥∥2

Gt

)
+ 1

Mf

∥∥∇F (xt)−∇F (x?)
∥∥2

+
Mf

4

∥∥xt+1 − xt
∥∥2
.

By canceling the identical term and rearranging, we obtain:

1
2

(∥∥vtα − v?α∥∥2

Gt −
∥∥vt+1
α − v?α

∥∥2

Gt

)
(59)

≥ 1
2

∥∥vt+1
α − vtα

∥∥2

Gt −
Mf

4

∥∥xt+1 − xt
∥∥2

= 1
2

(∥∥xt+1 − xt
∥∥2

J
t−

Mf

2 I
+ 2µz

∥∥zt+1 − zt
∥∥2

+ µθ
∥∥θt+1 − θt

∥∥2
+ 2

µz

∥∥αt+1 − αt
∥∥2

+ 1
µθ

∥∥λt+1 − λt
∥∥2)

.

Recall J
t

= J t + εI and we proceed to find a uniform
lower bound for

∥∥xt+1 − xt
∥∥2

J
t , for gradient descent, Newton,

and BFGS computing scheme. Since J tGradient = 0 and
J tNewton = ∇2F (xt) � 0 by construction, it holds that
εI � J

t

Gradient/Newton. It remains to find a lower bound for

13

the case of BFGS. Recall J tBFGS defined in (20). By the secant
condition, (J tBFGS +µzD+µθSS

>+ εI)st−1 = qt−1, where

st−1 = xt − xt−1,

qt−1 = ∇F (xt)−∇F (xt−1) +
(
µzD + µθSS

> + εI
)
st−1.

Therefore, it holds that:

J tBFGSs
t−1 = ∇F (xt)−∇F (xt−1). (60)

By premultiplying (st−1)> on both sides of (60), we obtain:

(st−1)>J tBFGSs
t−1 = (xt−xt−1)>(∇F (xt)−∇F (xt−1)) ≥ 0.

Therefore, the following holds:

σJmin

∥∥xt+1 − xt
∥∥2 ≤

∥∥xt+1 − xt
∥∥2

J
t ,

where σJmin = ε. By selecting ε > Mf

2 , we obtain:∥∥xt+1 − xt
∥∥2

J
t−

Mf

2 I
≥ σJmin−

Mf

2
σJmin

∥∥xt+1 − xt
∥∥2

J
t .

We denote δ =
σJmin−

Mf

2
σJmin

and since δ < 1, it holds that:

2µz
∥∥zt+1 − zt

∥∥2
+ µθ

∥∥θt+1 − θt
∥∥2

+ 2
µz

∥∥αt+1 − αt
∥∥2

+ 1
µθ

∥∥λt+1 − λt
∥∥2 ≥ δ

(
2µz
∥∥zt+1 − zt

∥∥2
+ µθ

∥∥θt+1 − θt
∥∥2

+ 2
µz

∥∥αt+1 − αt
∥∥2

+ 1
µθ

∥∥λt+1 − λt
∥∥2
)
.

Therefore, (59) can be rewritten as:∥∥vt+1
α − v?α

∥∥2

Gt ≤
∥∥vtα − v?α∥∥2

Gt − δ
∥∥vt+1
α − vtα

∥∥2

Gt . (61)

Since (61) shows that ‖vtα − v?α‖
2
Gt is monotonically decreas-

ing, it is therefore convergent. We proceed to show Part (ii).
Part (ii): Recall (47) and after rearranging, we obtain:

Ht(xt+1 − xt) = −
{
∇F (xt) + E>s α

t + Sλt + µz
2 Lsx

t

+ µθS(S>xt − θt)
}
. (62)

Since Ht = J t + µzD + εI + µθSS
> as in (15), an upper

bound Ht �MI can be obtained by using (25) and (27):

MGradient = µzdmax + ε+ µθ,

MNewton = Mf + µzdmax + ε+ µθ,

MBFGS = ψ,

where dmax = maxi |Ni| denotes the maximum degree.
Therefore, the following holds:

M
2∥∥xt+1 − xt

∥∥2 ≥
∥∥xt+1 − xt

∥∥2

(Ht)2
. (63)

We proceed to establish a lower bound for
∥∥xt+1 − xt

∥∥2

J
t :∥∥xt+1 − xt

∥∥2

J
t ≥ σJmin

∥∥xt+1 − xt
∥∥2 ≥

(i)

σJmin

M
2

∥∥xt+1 − xt
∥∥2

(Ht)2

=
(ii)

σJmin

M
2

∣∣∣∣∣∣∇F (xt) + E>s α
t + Sλt + µz

2 Lsx
t + µθS(xtl − θt)

∣∣∣∣∣∣2
≥
(iii)

σJmin

M
2

(
1
ρ

∥∥∇F (xt) + E>s α
t + Sλt

∥∥2

− 1
ρ−1

∥∥µz
2 Lsx

t + µθS(S>xt − θt)
∥∥2
)

≥
(iv)

σJmin

M
2

(
1
ρ

∥∥∇F (xt) + E>s α
t + Sλt

∥∥2 − 2
ρ−1

∥∥µz
2 Lsx

t
∥∥2

− 2
ρ−1

∥∥µθ(xtl − θt)∥∥2
)
, (64)

where (i) follows from (63); (ii) follows from (62); (iii) follows
from (a+b)2 ≥ 1

ρa
2− 1

ρ−1b
2 for any ρ > 1; (iv) follows from

−(a+b)2 ≥ −2(a2+b2). Also note that
∥∥µθS(S>xt − θt)

∥∥ =
‖µθ(xtl − θt)‖ by definition of S = sl⊗Id being the selection
matrix. Further observe that the following holds due to dual
updates (14c) and (14d):

αt+1 − αt = µz
2 Esx

t+1,

λt+1 − λt = µθ(S
>xt+1 − θt+1).

Therefore, we obtain the following:

2
µz

∥∥αt+1 − αt
∥∥2

= µz
2

∥∥Esxt+1
∥∥2

= µz
2

∥∥xt+1
∥∥2

Ls
, (65)

1
µθ

∥∥λt+1 − λt
∥∥2

= µθ
∥∥xt+1

l − θt+1
∥∥2
, (66)

By denoting the maximum eigenvalue of Ls as σLsmax and
selecting ρ− 1 > σLsmax, we obtain:

σJmin

M
2

2
ρ−1

∥∥µz
2 Lsx

t
∥∥2 ≤ σJminµ

2
z

2M
2
σLsmax

∥∥xt∥∥2

(Ls)2
≤ σJminµ

2
z

2M
2

∥∥xt∥∥2

Ls
.

(67)

Recall the definition (29). We establish (30) as follows:

1
T
µz
2

∥∥x1
∥∥2

Ls
+ µθ

T

∥∥x1
l − θ1

∥∥2
+ 1

T

T∑
t=1

∥∥vt+1
α − vtα

∥∥2

Gt

= 1
T
µz
2

∥∥x1
∥∥2

Ls
+ µθ

T

∥∥x1
l − θ1

∥∥2
+ 1

T

T∑
t=1

(∥∥xt+1 − xt
∥∥2

J
t

+ 2µz
∥∥zt+1 − zt

∥∥2
+ µθ

∥∥θt+1 − θt
∥∥2

+ 2
µz

∥∥αt+1 − αt
∥∥2

+ 1
µθ

∥∥λt+1 − λt
∥∥2
)
≥
(i)

1
T
µz
2

∥∥xT+1
∥∥2

Ls
+ µθ

T

∥∥xT+1
l − θT+1

∥∥2

+ 1
T

T∑
t=1

(
σJmin

M
2
ρ

∥∥∇F (xt) + E>s α
t + Sλt

∥∥2
+ 2µz

∥∥zt+1 − zt
∥∥2

+ µθ
∥∥θt+1 − θt

∥∥2
+

(
µz
2 −

σJminµ
2
z

2M
2

)∥∥xt∥∥2

Ls

+

(
µθ − 2σJminµ

2
θ

M
2
(ρ−1)

)∥∥xtl − θt∥∥2
)

where (i) follows from substituting (64)-(67). All coefficients
are ensured to be positive by selecting: µzε < ψ2, and ρ >

max

{
2σJminµθ

M
2 , σLsmax

}
+ 1, where σJmin = ε.

Proof of Corollary 1: Following Theorem 1 and stan-
dard analysis techniques in [53] and [54], we obtain that
‖vtα − v?α‖ → 0 as t → ∞. After taking telescoping sum
from t = 1 to ∞ on both sides of (61), we obtain:

δ

∞∑
t=1

∥∥vt+1
α − vtα

∥∥2

Gt ≤
∥∥v1
α − v?α

∥∥2

Gt ,

i.e.,
∑∞
t=1

∥∥vt+1
α − vtα

∥∥2

Gt is bounded. Define

bT := 1
T

∑T
t=1

∥∥vt+1
α − vtα

∥∥2

Gt . Then limT→∞ TbT =

limT→∞
∑T
t=1

∥∥vt+1
α − vtα

∥∥2

Gt < ∞. Therefore,

bT = 1
T

∑T
t=1

∥∥vt+1
α − vtα

∥∥2

Gt = O(1
T). By (30), each

term in (31) is of order O(1
T). �

14

APPENDIX C

Proof of Lemma 4: Recall the definition of et in (28):

et = ∇F (xt)−∇F (xt+1) + J t(xt+1 − xt).

By applying the triangle and Cauchy-Schwartz inequality, we
obtain:∥∥et∥∥ ≤ ∥∥∇F (xt)−∇F (xt+1)

∥∥+
∥∥J t∥∥∥∥xt+1 − xt

∥∥. (68)

In the case of gradient updates, J t = 0. Therefore,∥∥etGradient

∥∥ ≤ ∥∥∇F (xt)−∇F (xt+1)
∥∥ ≤Mf

∥∥xt+1 − xt
∥∥,

where the last inequality follows from Assumption 2. Setting
τ tGradient = Mf , we obtain (32a). In the case of Newton
updates, J t = ∇2F (xt). By Assumption 2 and (68), we
obtain: ∥∥et∥∥ ≤ 2Mf

∥∥xt+1 − xt
∥∥. (69)

Moreover, by the fundamental theorem of calculus,
∇F (xt+1)−∇F (xt) can be written as:

∇F (xt+1)−∇F (xt) =

∫ 1

0

∇2F (sxt+1+(1−s)xt)(xt+1−xt)ds.

By adding and subtracting
∫ 1

0
∇2F (xt)(xt+1 − xt)ds, we

further obtain:

∇F (xt+1)−∇F (xt) =

∫ 1

0

∇2F (xt)(xt+1 − xt)ds

+

∫ 1

0

(
∇2F (sxt+1 + (1− s)xt)−∇2F (xt)

)
(xt+1 − xt)ds.

Since the integrand of the first term is constant with respect
to s, it holds that:∥∥∇F (xt+1)−∇F (xt)−∇2F (xt)(xt+1 − xt)

∥∥ =∥∥∥∥∫ 1

0

(
∇2F (sxt+1 + (1− s)xt)−∇2F (xt)

)
(xt+1 − xt)ds

∥∥∥∥ ≤∫ 1

0

∥∥∇2F (sxt+1 + (1− s)xt)−∇2F (xt)
∥∥ · ∥∥xt+1 − xt

∥∥ds ≤∫ 1

0

sLf
∥∥xt+1 − xt

∥∥2
ds =

Lf
2

∥∥xt+1 − xt
∥∥2
.

Note that in the case of Newton updates,∥∥et∥∥ =
∥∥∇F (xt+1)−∇F (xt)−∇2F (xt)(xt+1 − xt)

∥∥.
By combining (69) and the above, we obtain: ‖et‖ ≤
τ tNewton

∥∥xt+1 − xt
∥∥, where τ tNewton is defined in (32b). We

proceed to establish (32c). Recall the definition of J tBFGS in
(20):

J tBFGS = Ht
BFGS − µzD − µθSS> − εImd. (70)

Therefore, Ht+1 (suppressing the subscript BFGS) satisfies
the secant condition: Ht+1st = qt, where {qt, st} as per the
definition in (19) can be written as:

st = xt+1 − xt,
qt = ∇F (xt+1)−∇F (xt) +

(
µzD + µθSS

> + εI
)
st.

From the secant condition, it holds that:

∇F (xt)−∇F (xt+1) =

−
(
Ht+1 − µzD − µθSS> − εI

)
(xt+1 − xt).

Using (70) and the expression for ∇F (xt) −∇F (xt+1) into
(28), we obtain:∥∥et∥∥ =

∥∥(Ht −Ht+1
)

(xt+1 − xt)
∥∥

≤
∥∥Ht −Ht+1

∥∥∥∥xt+1 − xt
∥∥.

Denoting τ tBFGS =
∥∥Ht −Ht+1

∥∥ and using (27), we obtain
(32c). �

The following Lemma that will be useful for establishing
Theorem 2.

Lemma 5. Recall C :=

[
Es
S>

]
and φt = E>s α

t in (14). Denote

the smallest positive eigenvalue of CC> as σ+
min and consider

the unique dual optimal pair (α?, λ?) that lies in the column
space of C as established in Lemma 2. The following holds:

σ+
min

(∥∥αt+1 − α?
∥∥2

+
∥∥λt+1 − λ?

∥∥2
)

≤
∥∥E>s (αt+1 − α?) + S(λt+1 − λ?)

∥∥2
. (71)

Proof : We proceed by showing that [αt+1;λt+1] lies in
col(C). We rewrite dual updates (14c)–(14d) as:[

αt+1

λt+1

]
=

[
αt

λt

]
+

[µz
2 Es
µθS

>

]
xt+1 −

[
0

µθId

]
θt+1.

We show that the column space of M :=

[
0

µθId

]
belongs in

the column space of N :=

[µz
2 Es
µθS

>

]
. Consider fixed rx ∈ Rd.

Let ry ∈ Rmd such that each sub-vector component ryi = rx,
i.e., ry = [rx; . . . ; rx]. Then it holds that[µz

2 Es
µθS

>

]
ry =

[
0

µθr
y
l

]
=

[
0

µθId

]
rx.

, which shows col(M) ⊂ col(N). By choosing µz = 2µθ, we
conclude that [αt+1−α?;λt+1−λ?] lies in the column space
of C. �

Proof of Theorem 2: Using Lemma 3, we obtain:

∇F (xt+1)−∇F (x?) = −
(
E>s (αt+1 − α?) + ε(xt+1 − xt)

+S(λt+1 − λ? + µθ(θ
t+1 − θt)) + et + µzE

>
u (zt+1 − zt)),

Since F (x) is strongly convex with Lipschitz continuous
gradient, the following inequality holds [50]:

mfMf

mf+Mf

∥∥xt+1 − x?
∥∥2

+ 1
mf+Mf

∥∥∇F (xt+1)−∇F (x?)
∥∥2 ≤

(xt+1 − x?)>(∇F (xt+1)−∇F (x?)) ≤
−(xt+1 − x?)>et − ε(xt+1 − x?)>(xt+1 − xt)

−(xt+1 − x?)E>s (αt+1 − α?)− (xt+1 − x?)>S
(
λt+1 − λ?

+µθ(θ
t+1 − θt)

)
− µz(xt+1 − x?)>E>u (zt+1 − zt),

15

where the last inequality follows from substituting the expres-
sion of ∇F (xt+1)−∇F (x?) above. Using similar techniques
used in deriving (54)-(57), we obtain

2mfMf

mf+Mf

∥∥xt+1 − x?
∥∥2

+ 2
mf+Mf

∥∥∇F (xt+1)−∇F (x?)
∥∥2

≤ ε
(∥∥xt − x?∥∥2 −

∥∥xt+1 − x?
∥∥2 −

∥∥xt+1 − xt
∥∥2)

+ 2µz
(∥∥zt − z?∥∥2 −

∥∥zt+1 − z?
∥∥2 −

∥∥zt+1 − zt
∥∥2)

+ 1
µθ

(∥∥λt − λ?∥∥2 −
∥∥λt+1 − λ?

∥∥2 −
∥∥λt+1 − λt

∥∥2)
+ µθ

(∥∥θt − θ?∥∥2 −
∥∥θt+1 − θ?

∥∥2 −
∥∥θt+1 − θt

∥∥2)
+ 1

µz

(∥∥αt+1 − α?
∥∥− ∥∥αt+1 − α?

∥∥− ∥∥αt+1 − αt
∥∥2)

− 2(xt+1 − x?)>et

=
∥∥vtα − v?α∥∥2

H −
∥∥vt+1
α − v?α

∥∥2

H −
∥∥vt+1
α − vtα

∥∥2

H

− 2(xt+1 − x?)>et, (72)

Therefore, we obtain:
2mfMf

mf+Mf

∥∥xt+1 − x?
∥∥2

+ 2
mf+Mf

∥∥∇F (xt+1)−∇F (x?)
∥∥2

+
∥∥vt+1
α − vtα

∥∥2

H + 2(xt+1 − x?)>et

≤
∥∥vtα − v?α∥∥2

H −
∥∥vt+1
α − v?α

∥∥2

H. (73)

To establish linear convergence, we need to show the following
holds for some η > 0:

η
∥∥vt+1
α − v?α

∥∥2

H ≤
∥∥vtα − v?α∥∥2

H −
∥∥vt+1
α − v?α

∥∥2

H. (74)

We expand the expression of η
∥∥vt+1
α − v?α

∥∥2

H as follows:

η
∥∥vt+1
α − v?α

∥∥2

H = η
(
ε
∥∥xt+1 − x?

∥∥2
+ 2µz

∥∥zt+1 − z?
∥∥2

+ 2
µz

∥∥αt+1 − α?
∥∥2

+ µθ
∥∥θt+1 − θ?

∥∥2
+ 1

µθ

∥∥λt+1 − λ?
∥∥2
)
.

(75)

We proceed to establish an upper bound for each component
of (75). From Lemma 3, the following holds:

E>s (αt+1 − α?) + S(λt+1 − λ?) = −
{
∇F (xt+1)−∇F (x?)

+ε(xt+1 − xt) + µzE
>
u (zt+1 − zt) + µθS(θt+1 − θt) + et

}
.

Then we obtain:

σ+
min

(∥∥αt+1 − α?
∥∥2

+
∥∥λt+1 − λ?

∥∥2
)

≤
(i)

∥∥E>s (αt+1 − α?) + S(λt+1 − λ?)
∥∥2

≤
(ii)

5
(∥∥∇F (xt+1)−∇F (x?)

∥∥2
+ ε2

∥∥xt+1 − xt
∥∥2

+ µ2
θ

∥∥θt+1 − θt
∥∥2

+
∥∥et∥∥2

+ σLumaxµ
2
z

∥∥zt+1 − zt
∥∥2
)
, (76)

where (i) follows from Lemma 5; (ii) follows from the
inequality (

∑n
i=1 ai)

2 ≤
∑n
i=1 na

2
i . Recalling that we have

selected µz = 2µθ, we obtain:
2
µz

∥∥αt+1 − α?
∥∥2

+ 1
µθ

∥∥λt+1 − λ?
∥∥2

= 1
µθ

(∥∥αt+1 − α?
∥∥2

+
∥∥λt+1 − λ?

∥∥2
)

≤
(i)

5
µθσ

+
min

(∥∥∇F (xt+1)−∇F (x?)
∥∥2

+ ε2
∥∥xt+1 − xt

∥∥2

+ µ2
θ

∥∥θt+1 − θt
∥∥2

+
∥∥et∥∥2

+ σLumaxµ
2
z

∥∥zt+1 − zt
∥∥2
)
, (77)

where (i) follows from dividing (76) by σ+
min on both sides

and substituting. Note that since zt+1−z? = 1
2Eu(xt+1−x?),

it holds that:

2µz
∥∥zt+1 − z?

∥∥2 ≤ µzσ
Lu
max

2

∥∥xt+1 − x?
∥∥2
.

Using the upper bound for 2µz
∥∥zt+1 − z?

∥∥2
, the inequal-

ity (77), and µθ
∥∥θt+1 − θ?

∥∥2 ≤ 2µθ
∥∥xt+1 − x?

∥∥2
+

2
µθ

∥∥λt+1 − λt
∥∥2

from (14d) and KKTd, we obtain an upper
bound for (75) as:

η
∥∥vt+1
α − v?α

∥∥2

H ≤ η
{

5
µθσ

+
min

(∥∥∇F (xt+1)−∇F (x?)
∥∥2

+ε2
∥∥xt+1 − xt

∥∥2
+ µ2

θ

∥∥θt+1 − θt
∥∥2

+
∥∥et∥∥2

+σLumaxµ
2
z

∥∥zt+1 − zt
∥∥2
)

+ 2
µθ

∥∥λt+1 − λt
∥∥2

+(ε+ 2µθ +
µzσ

Lu
max

2)
∥∥xt+1 − x?

∥∥2
}
.

Recall that the right-hand side of (74) is lower bounded as in
(73). Therefore, it suffices to prove the following to establish
(74):

η
{

5
µθσ

+
min

(∥∥∇F (xt+1)−∇F (x?)
∥∥2

+ ε2
∥∥xt+1 − xt

∥∥2

+ µ2
θ

∥∥θt+1 − θt
∥∥2

+
∥∥et∥∥2

+ σLumaxµ
2
z

∥∥zt+1 − zt
∥∥2
)

+ 2
µθ

∥∥λt+1 − λt
∥∥2

+ (ε+ 2µθ +
µzσ

Lu
max

2)
∥∥xt+1 − x?

∥∥2
}

≤ 2mfMf

mf+Mf

∥∥xt+1 − x?
∥∥2

+ 2
mf+Mf

∥∥∇F (xt+1)−∇F (x?)
∥∥2

+
∥∥vt+1
α − vtα

∥∥2

H + 2(xt+1 − x?)>et, (78)

Note that −ζ‖et‖2− 1
ζ

∥∥xt+1 − x?
∥∥2 ≤ 2(xt+1−x?)>et holds

for any ζ > 0. To prove (78), it is therefore sufficient to show:

ζ(τ t)2
∥∥xt+1 − xt

∥∥2
+ η
{

5
µθσ

+
min

(∥∥∇F (xt+1)−∇F (x?)
∥∥2

+ ((τ t)2 + ε2)
∥∥xt+1 − xt

∥∥2
+ µ2

θ

∥∥θt+1 − θt
∥∥2

+ σLumaxµ
2
z

∥∥zt+1 − zt
∥∥2
)

+ 2
µθ

∥∥λt+1 − λt
∥∥2

+ (ε+ 2µθ +
µzσ

Lu
max

2)
∥∥xt+1 − x?

∥∥2
}

(79)

≤
(

2mfMf

mf+Mf
− 1

ζ

)∥∥xt+1 − x?
∥∥2

+ ε
∥∥xt+1 − xt

∥∥2

+ 2µz
∥∥zt+1 − zt

∥∥2
+ 2

µz

∥∥αt+1 − αt
∥∥2

+ µθ
∥∥θt+1 − θt

∥∥2

+ 1
µθ

∥∥λt+1 − λt
∥∥2

+ 2
mf+Mf

∥∥∇F (xt+1)−∇F (x?)
∥∥2

where we have used ‖et‖2 ≤ (τ t)2
∥∥xt+1 − xt

∥∥2
from Lemma

4. Establishing (79) amounts to ensuring the coefficient of each
term in the left-hand side is bounded by the coefficient of the
corresponding term on the right-hand side. By selecting η as
in (33), we establish (79). Therefore, the inequality (74) holds,
which equivalently establishes the linear convergence rate. �

Proof of Theorem 3: The proof proceeds as follows:∥∥vt+1
α − v?α

∥∥2

HΩ−1
α

=
∥∥vtα + Ωt+1

α (Tvtα − vtα)− v?α
∥∥2

HΩ−1
α

=
∥∥vtα − v?α∥∥2

HΩ−1
α

+ 2(vtα − v?α)>HΩ−1
α Ωt+1

α (Tvtα − vtα)

+ (Tvtα − vtα)>Ωt+1
α HΩ−1

α Ωt+1
α (Tvtα − vtα), (80)

Since Ωt+1
α ,Ω−1

α , and H are all diagonal matrices, they
commute with each other. Moreover, since each sub-block of

16

Ωt+1
α is Id or 0, it holds that Ωt+1

α Ωt+1
α = Ωt+1

α . After taking
conditional expectation on both sides of (80), we obtain:

Et
[∥∥vt+1

α − v?α
∥∥2

HΩ−1
α

]
=
∥∥vtα − v?α∥∥2

HΩ−1
α

+
∥∥Tvtα − vtα∥∥2

H

+2(vtα − v?α)>H(Tvtα − vtα) ≤
(i)∥∥vtα − v?α∥∥2

HΩ−1
α
− η

1+η

∥∥vtα − v?α∥∥2

H ≤(ii)(
1− pminη

1+η

)∥∥vtα − v?α∥∥2

HΩ−1
α
,

where (i) follows from the fact that 2(vα − v?α)>H(Tvα −
vα) + ‖Tvα − vα‖2H ≤ − η

1+η‖vα − v
?
α‖

2
H holds for any

vα ∈ R(m+2n+2)d using Theorem 2; (ii) follows from
η

1+η‖v
t
α − v?α‖H ≥

pminη
1+η ‖v

t
α − v?α‖

2
HΩ−1

α
. �

Proof of Corollary 2: We first distribute each αk, k ∈ [n], to
each edge and label agents and edges with an arbitrary order.
For each edge Ek, we write Ek = (i, j) with the convention
i < j. For each agent i, we divide the incident edges to two
groups: Pi = {k : Ek = (i, j), j ∈ Ni} and Si = {k : Ek =
(j, i), j ∈ Ni}. Consider the activation scheme using Ωt+1.
Recall αt+1

k = αtk + µz
2 (xt+1

i − xt+1
j). The dual updates are

described by:

φt+1
i = φti + µz

2 X
t+1
ii

∑
j∈Ni

(xt+1
i − xt+1

j)

= φti +Xt+1
ii

{∑
k∈Pi

(αt+1
k − αtk) +

∑
k∈Si

(αtk − αt+1
k)

}
.

Therefore, if Xt+1
ii = Id, then Y t+1

kk = Id for k ∈ Pi ∪ Si for
the corresponding Ωt+1

α , i.e., all incident edges are active. It
can be verified that we can map Xt+1 to Y t+1 as:

Y t+1 = Blkdiag
(⌈

EuX
t+1(1⊗ Id)

2

⌉)
,

where d·e is the entry-wise ceiling operation and 1 ∈ Rm
is the all one vector. To show Et[Ωt+1

α] � 0, we only need
to show Et[Y t+1] � 0, which amounts to showing that
Et
[⌈

EuX
t+1(1⊗Id)

2

⌉
k

]
∈ Rd×d, k ∈ [n], is positive definite.

Note that:⌈
EuX

t+1(1⊗ Id)
2

⌉
k

=

⌈
Xt+1
ii +Xt+1

jj

2

⌉
,

where (i, j) ∈ Ek. Therefore, it holds that:

Et
[⌈
EuX

t+1(1⊗ Id)
2

⌉
k

]
= Et

[⌈
Xt+1
ii +Xt+1

jj

2

⌉]
� 0,

which shows that Et[Y t+1] � 0. �

REFERENCES

[1] A. Nedić and J. Liu, “Distributed optimization for control,” Annual
Review of Control, Robotics, and Autonomous Systems, vol. 1, no. 1,
pp. 77–103, 2018.

[2] N. M. Freris, H. Kowshik, and P. R. Kumar, “Fundamentals of large
sensor networks: Connectivity, capacity, clocks, and computation,” Pro-
ceedings of the IEEE, vol. 98, no. 11, pp. 1828–1846, 2010.

[3] T. Huang, N. M. Freris, P. R. Kumar, and L. Xie, “A synchrophasor
data-driven method for forced oscillation localization under resonance
conditions,” IEEE Transactions on Power Systems, vol. 35, no. 5, pp.
3927–3939, 2020.

[4] A. Nedic, “Distributed gradient methods for convex machine learning
problems in networks: Distributed optimization,” IEEE Signal Process-
ing Magazine, vol. 37, no. 3, pp. 92–101, 2020.

[5] W. Ananduta, A. Nedić, and C. Ocampo-Martinez, “Distributed aug-
mented lagrangian method for link-based resource sharing problems of
multiagent systems,” IEEE Transactions on Automatic Control, vol. 67,
no. 6, pp. 3067–3074, 2022.

[6] F. Lin, M. Fardad, and M. R. Jovanović, “Design of optimal sparse
feedback gains via the alternating direction method of multipliers,” IEEE
Transactions on Automatic Control, vol. 58, no. 9, pp. 2426–2431, 2013.

[7] C. Saunders, A. Gammerman, and V. Vovk, “Ridge regression learning
algorithm in dual variables,” in Proceedings of the International Con-
ference on Machine Learning, 1998, p. 515–521.

[8] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[9] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order
algorithm for decentralized consensus optimization,” SIAM Journal on
Optimization, vol. 25, no. 2, pp. 944–966, 2015.

[10] ——, “A proximal gradient algorithm for decentralized composite opti-
mization,” IEEE Transactions on Signal Processing, vol. 63, no. 22, pp.
6013–6023, 2015.

[11] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Transactions on Control of Network Systems, vol. 5,
no. 3, pp. 1245–1260, 2018.

[12] S. A. Alghunaim, K. Yuan, and A. H. Sayed, “A linearly convergent
proximal gradient algorithm for decentralized optimization,” in Proceed-
ings of the International Conference on Neural Information Processing
Systems, 2019.

[13] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for
distributed optimization and learning—part i: Algorithm development,”
IEEE Transactions on Signal Processing, vol. 67, no. 3, pp. 708–723,
2019.

[14] J. Xu, Y. Tian, Y. Sun, and G. Scutari, “Distributed algorithms for
composite optimization: Unified framework and convergence analysis,”
IEEE Transactions on Signal Processing, vol. 69, pp. 3555–3570, 2021.

[15] R. Xin, U. A. Khan, and S. Kar, “A fast randomized incremental gradient
method for decentralized non-convex optimization,” IEEE Transactions
on Automatic Control, 2021.

[16] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A distributed Newton method
for network utility maximization—i: Algorithm,” IEEE Transactions on
Automatic Control, vol. 58, no. 9, pp. 2162–2175, 2013.

[17] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie, “Accelerated
dual descent for network flow optimization,” IEEE Transactions on
Automatic Control, vol. 59, no. 4, pp. 905–920, 2014.

[18] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network Newton distributed
optimization methods,” IEEE Transactions on Signal Processing, vol. 65,
no. 1, pp. 146–161, 2017.

[19] F. Mansoori and E. Wei, “A fast distributed asynchronous Newton-
based optimization algorithm,” IEEE Transactions on Automatic Control,
vol. 65, no. 7, pp. 2769–2784, 2020.

[20] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 2006.
[21] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-

tion: Numerical Methods. Prentice-Hall, Inc., 1989.
[22] S. P. Boyd, N. Parikh, E. K. wah Chu, B. Peleato, and J. Eckstein,

“Distributed optimization and statistical learning via the alternating
direction method of multipliers,” Foundations and Trends in Machine
Learning, vol. 3, pp. 1–122, 2011.

[23] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse
linear regression,” IEEE Transactions on Signal Processing, vol. 58,
no. 10, pp. 5262–5276, 2010.

[24] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for
distributed optimization: convergence analysis and network scaling,”
IEEE Transactions on Automatic Control, vol. 57, no. 3, pp. 592–606,
2012.

[25] E. Wei and A. Ozdaglar, “Distributed alternating direction method of
multipliers,” in IEEE Conference on Decision and Control, 2012, pp.
5445–5450.

[26] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear
convergence of the ADMM in decentralized consensus optimization,”
IEEE Transactions on Signal Processing, vol. 62, no. 7, pp. 1750–1761,
2014.

[27] M. Hong and Z. Q. Luo, “On the linear convergence of the alternating
direction method of multipliers,” Mathematical Programming, vol. 162,
pp. 165–199, 2017.

17

[28] P. Latafat, N. M. Freris, and P. Patrinos, “A new randomized block-
coordinate primal-dual proximal algorithm for distributed optimization,”
IEEE Transactions on Automatic Control, vol. 64, no. 10, pp. 4050–
4065, 2019.

[29] D. Jakovetić, J. M. F. Moura, and J. Xavier, “Linear convergence
rate of a class of distributed augmented lagrangian algorithms,” IEEE
Transactions on Automatic Control, vol. 60, no. 4, pp. 922–936, 2015.

[30] Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “DLM: Decentralized linearized
alternating direction method of multipliers,” IEEE Transactions on
Signal Processing, vol. 63, no. 15, pp. 4051–4064, 2015.

[31] T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed opti-
mization via inexact consensus ADMM,” IEEE Transactions on Signal
Processing, vol. 63, no. 2, pp. 482–497, 2015.

[32] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “DQM: Decentralized
quadratically approximated alternating direction method of multipliers,”
IEEE Transactions on Signal Processing, vol. 64, no. 19, pp. 5158–5173,
2016.

[33] ——, “A decentralized second-order method with exact linear conver-
gence rate for consensus optimization,” IEEE Transactions on Signal
and Information Processing over Networks, vol. 2, no. 4, pp. 507–522,
2016.

[34] M. Eisen, A. Mokhtari, and A. Ribeiro, “A primal-dual quasi-Newton
method for exact consensus optimization,” IEEE Transactions on Signal
Processing, vol. 67, no. 23, pp. 5983–5997, 2019.

[35] D. Jakovetić, D. Bajović, J. Xavier, and J. M. F. Moura, “Primal–dual
methods for large-scale and distributed convex optimization and data
analytics,” Proceedings of the IEEE, vol. 108, no. 11, pp. 1923–1938,
2020.

[36] K.-D. Kim and P. R. Kumar, “Cyber–physical systems: A perspective
at the centennial,” Proceedings of the IEEE, vol. 100, no. Special
Centennial Issue, pp. 1287–1308, 2012.

[37] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y.
Arcas, “Communication-Efficient Learning of Deep Networks from
Decentralized Data,” in Proceedings of the International Conference on
Artificial Intelligence and Statistics, 2017, pp. 1273–1282.

[38] Y. Gong, Y. Li, and N. M. Freris, “FedADMM: A robust federated deep
learning framework with adaptivity to system heterogeneity,” in IEEE
International Conference on Data Engineering, 2022, pp. 2575–2587.

[39] T. Lin, S. Ma, and S. Zhang, “Global convergence of unmodified 3-
block ADMM for a class of convex minimization problems,” Journal of
Scientific Computing, vol. 76, no. 1, pp. 69–88, 2018.

[40] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends
in Optimization, vol. 1, no. 3, p. 127–239, 2014.

[41] C. G. Broyden, “The convergence of a class of double-rank minimization
algorithms 1. general considerations,” IMA Journal of Applied Mathe-
matics, vol. 6, no. 1, pp. 76–90, 1970.

[42] R. Fletcher, “A new approach to variable metric algorithms,” The
Computer Journal, vol. 13, no. 3, pp. 317–322, 1970.

[43] D. Goldfarb, “A family of variable-metric methods derived by variational
means,” Mathematics of Computation, pp. 23–26, 1970.

[44] D. F. Shanno, “Conditioning of quasi-Newton methods for function
minimization,” Mathematics of Computation, vol. 24, no. 111, pp. 647–
656, 1970.

[45] Y. Li, N. M. Freris, P. Voulgaris, and D. Stipanović, “DN-ADMM:
Distributed newton admm for multi-agent optimization,” in IEEE Con-
ference on Decision and Control, 2021, pp. 3343–3348.

[46] ——, “D-SOP: Distributed second order proximal method for convex
composite optimization,” in American Control Conference, 2020, pp.
2844–2849.

[47] M. Eisen, A. Mokhtari, and A. Ribeiro, “Decentralized quasi-Newton
methods,” IEEE Transactions on Signal Processing, vol. 65, no. 10, pp.
2613–2628, 2017.

[48] D. Bajović, D. Jakovetić, N. Krejić, and N. K. Jerinkić, “Newton-like
method with diagonal correction for distributed optimization,” SIAM
Journal on Optimization, vol. 27, no. 2, pp. 1171–1203, 2017.

[49] N. M. Freris, S. R. Graham, and P. R. Kumar, “Fundamental limits on
synchronizing clocks over networks,” IEEE Transactions on Automatic
Control, vol. 56, no. 6, pp. 1352–1364, 2011.

[50] Y. Nesterov, Lectures on Convex Optimization. Springer Publishing
Company, 2018.

[51] Y. Li, P. G. Voulgaris, and N. M. Freris, “A communication efficient
quasi-newton method for large-scale distributed multi-agent optimiza-
tion,” in IEEE International Conference on Acoustics, Speech and Signal
Processing, 2022, pp. 4268–4272.

[52] A. Mokhtari and A. Ribeiro, “RES: Regularized stochastic BFGS
algorithm,” IEEE Transactions on Signal Processing, vol. 62, no. 23,
pp. 6089–6104, 2014.

[53] B. He, “A new method for a class of linear variational inequalities,”
Mathematical Programming, p. 137–144, 1994.

[54] W. Deng, M.-J. Lai, Z. Peng, and W. Yin, “Parallel multi-block ADMM
with o(1 / k) convergence,” Journal of Scientic Computing, p. 712–736,
2017.

[

Yichuan Li received the B.S. degree in 2016, the
M.S. degree in Mechanical Engineering in 2018, the
M.S. degree in Applied Mathematics, and the Ph.D.
degree in Mechanical Engineering in 2022, all from
the University of Illinois at Urbana-Champaign,
Champaign, IL, USA. His research interests include
multi-agent optimization, distributed machine learn-
ing, and control.

Professor Petros G. Voulgaris received the
Diploma in Mechanical Engineering from the Na-
tional Technical University, Athens, Greece, in 1986,
and the S.M. and Ph.D. degrees in Aeronautics
and Astronautics from the Massachusetts Institute
of Technology in 1988 and 1991, respectively. He
is currently Chair, Founding Aerospace Program
Director, and Victor LaMar Lockhart Professor in
Mechanical Engineering at University of Nevada,
Reno. Before joining UNR in 2020 and since 1991,
he has been a faculty with the Department of

Aerospace Engineering, University of Illinois at Urbana-Champaign holding
also appointments with the Coordinated Science Laboratory, and the depart-
ment of Electrical and Computer Engineering. His research interests are in the
general area of robust and optimal control and coordination of autonomous
systems. Dr. Voulgaris is a recipient of several awards including the NSF
Research Initiation Award, the ONR Young Investigator Award and the UIUC
Xerox Award for research. He has also been a Visiting ADGAS Chair
Professor, Mechanical Engineering, Petroleum Institute, Abu Dhabi, UAE and
a Visiting Gaungbiao Chair at Zhejiang University, China. His research has
been supported by several agencies including NSF, ONR, AFOSR, NASA.
He is also a Fellow of IEEE.

Dr. Dušan M. Stipanović received his B.S. de-
gree in electrical engineering from the University
of Belgrade, Belgrade, Serbia, in 1994, and the
M.S.E.E. and Ph.D. degrees (under supervision of
Professor Dragoslav Šiljak) in electrical engineering
from Santa Clara University, Santa Clara, California,
in 1996 and 2000, respectively. Dr. Stipanović had
been an Adjunct Lecturer and Research Associate
with the Department of Electrical Engineering at
Santa Clara University (1998-2001), and a Research
Associate in Professor Claire Tomlin’s Hybrid Sys-

tems Laboratory of the Department of Aeronautics and Astronautics at
Stanford University (2001-2004). In 2004 he joined the University of Illinois
at Urbana-Champaign where he is now Professor in the Controls Group of the
Coordinated Science Laboratory and Department of Industrial and Enterprise
Systems Engineering. Dr. Stipanović served as an Associate Editor on the
Editorial Boards of the IEEE Transactions on Circuits and Systems I and II.
Currently he is an Associate Editor for Journal of Optimization Theory and
Applications.

18

Nikolaos M. Freris (Senior Member, IEEE) re-
ceived the Diploma in ECE from the National Tech-
nical University of Athens (NTUA), Athens, Greece,
in 2005, the M.S. degree in ECE, the M.S. degree
in Mathematics, and the Ph.D. degree in ECE, all
from the University of Illinois at Urbana-Champaign
(UIUC), Champaign, IL, USA, in 2007, 2008, and
2010, respectively. He is a Professor with the School
of Computer Science and Technology and the Vice
Dean of the International College at the University
of Science and Technology of China (USTC), Hefei,

China. His research lies in AIoT/CPS/IoT: machine learning, distributed
optimization, data mining, wireless networks, control, and signal processing,
with applications in power systems, sensor networks, transportation, cyber
security, and robotics. Dr. Freris has published several papers in high-profile
conferences and journals held by IEEE, ACM, and SIAM, and he holds three
patents. His research has been sponsored by the Ministry of Science and
Technology of China, Anhui Dept. of Science and Technology, Tencent, and
NSF, and was recognized with the USTC Alumni Foundation Innovation
Scholar award, the IBM High Value Patent award, two IBM invention
achievement awards, and the Gerondelis foundation award. Previously, he
was with the faculty of NYU and, before that, he held senior researcher and
postdoctoral researcher positions at EPFL and IBM Research, respectively.
Dr. Freris is a Senior Member of ACM and IEEE, and a member of CCF and
SIAM.

	I Introduction
	II Preliminaries
	II-A Problem formulation
	II-B Background on ADMM
	II-C Introduction to quasi-Newton methods

	III Algorithmic development
	III-A Gradient updates
	III-B Newton updates
	III-C Quasi-Newton updates

	IV Asynchronous description
	IV-A Distributed and Asynchronous Implementation

	V Analysis
	V-A Preliminaries
	V-B Sublinear Convergence
	V-C Linear Convergence

	VI Numerical experiments
	VI-A Distributed LASSO
	VI-B Distributed Logistic Regression
	VI-C Distributed Ridge Regression

	VII Conclusions
	Appendix A
	Appendix B
	Appendix C
	References
	Biographies
	Yichuan Li
	Professor Petros G. Voulgaris
	Dr. Dušan M. Stipanovic
	Nikolaos M. Freris (Senior Member, IEEE)

